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Abstract

Financial markets are time-evolving complex systems containing different finan-

cial entities, such as banks, corporations and institutions that interact through

transactions and respond to external economic and political events. They can

be conveniently represented as a network structure. In this paper, we analyse

the unweighted and weighted market networks from a statistical mechanical

perspective. In particular, we propose a novel thermodynamic analogy to char-

acterise the dynamic structural properties of time-evolving networks. The intri-

cate pattern of edge connections in the network is modelled by using a heat bath

analogy in which particles occupy the energy states according to the Boltzmann

distribution. According to this analogy the occupation of the energy states is de-

termined by the temperature of the heat bath, and the spectrum of energy states

of the network is determined by the number of nodes and edges. For unweighted

networks, the binary representation of the elements in the adjacency matrix can

be modelled as a statistical ensemble, using the corresponding partition function

to compute thermodynamic network characterisations. For weighted networks,

on the other hand, the derived thermodynamic quantities together with their

distribution of fluctuations identify the salient structure in the network evolu-
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tion. We conduct experiments on time-evolving stock exchanges using data for

the S&P500 Index Stock Exchanges over the past decade. The thermodynamic

characterisations provide an excellent framework to identify epochs in which

there is significant variance in network structure during financial crises induced

by economic and political events.

Keywords: Stock Market Networks, Thermodynamic Characterisations,

Statistical Mechanics

1. Introduction

Trading in financial markets is usually associated with transactions that

involve the exchange of assets, and reflect the interactions between different

financial entities. However, this method of trading is difficult to accurately

explain or predict when the market is influenced by an external economic or5

political event that has a long-term impact on the global economy [1]. Since

2008, there is a growing literature on applying ideas from statistical mechanics

and thermodynamics, sometimes referred to as econophysics, to explore what

happens in the proximity of critical market events [2, 3]. Generally speaking,

the time-evolving financial market can be regarded as a network in which the10

nodes represent financial entities or individuals and the edges capture how the

correlations in their performance evolve with the time [4, 5]. The graph-based

methods, often known as complex networks for large-scale datasets, provide a

number of impressive applications in the financial and business markets. As a

specific example, for stock markets the volatility in stock prices is taken as the15

main representative of market activity and the trading relationships between

the financial entities [6]. The corresponding thermodynamic characteristics of

the network structure reflect the variations in trading activity as the market

network evolves.

To quantify financial market networks, sophisticated tools developed in com-20

plex network theory have been deployed to analyse the topological and structural

properties of the underlying time-evolving networks [7]. Most recent literature
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attempts to link structural changes to change in network function, and thus

explain the intrinsic mechanisms underlying the financial market [8, 9]. For

example, considering the long-term impact of the financial crises on the global25

economy, or studying whether the entropic features of stock markets identify

the relevant nature of a crisis [10]. Recently, ideas from statistical mechanics

developed in the field of physics have provided a powerful tool for analysing

the dynamics of network evolution [11]. This method attempts to describe the

characteristics of stock market networks from a thermodynamic perspective [12].30

The energy and entropy of the thermal system are derived from a partition func-

tion which represents states of the stock market network [13, 14]. For example,

by interpreting the weighted network as a grand canonical ensemble it is pos-

sible to develop an analogy in which the edges to are mapped to particles in a

statistical mechanical system. By transforming the original edge structure of a35

graph together with its adjacency matrix into the equivalent oriented line graph,

the edge weights can be treated as generalized coordinates. These co-ordinates

include energy and the magnetic moment, and can be used to derive theoretical

models for reconstructing the network connections [15].

However, most of the methods reported in the literature focus on the net-40

works which describe how the pattern of binary-valued edges evolve with time

[16, 17]. There is little literature that discusses both unweighted and weighted

networks, and their use in representing financial market [18]. Motivated by the

need to fill this gap in the literature and to augment the methods available for

understanding the evolution of financial market network dynamics, this paper45

proposes a novel representation of time-evolving networks from the perspective

of statistical mechanics. We commence from the analogue of particles in a sta-

tistical mechanical system with the energy states of the edge configuration of

the network populated according to the Boltzmann distribution [19]. The total

energy of this system is related to the sum of the edge weights [15]. Following50

this approach, the entire network system can be represented by the configu-

ration of edges at a fixed number of elements in the adjacency matrix [15],

where the nodes in the network correspond to the financial entities under study.
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Taking the simple case of an undirected and unweighted network, the thermo-

dynamic microstates for each edge are associated with the binary state in the55

adjacency matrix. Introducing the concept of a statistical ensemble for network

dynamics further enriches the interpretation of thermodynamic characteristics

[20]. Distinct from the previous interpretation of weighted edges as particles

in a grand canonical ensemble [15], here we commence from the definition of

the entropy derived from the configuration probability on an unweighted graph.60

The resulting statistical mechanical model can then be extended to the case of

weighted networks by considering the distribution of edge weights. In this way,

we derive new expressions for the partition function and the derived thermody-

namic quantities, and then use these to describe the time-evolving behaviour of

financial market networks.65

The motivation of this paper is to provide graph-based pattern recognition

approaches to model the complex structural relations and to extract useful char-

acterisations from the time-varying stock market networks. The statistical me-

chanical methods in complex networks hold out the novel potential as powerful

tools for the description of dynamic networks [21, 22]. This derives the cor-70

responding thermodynamic quantities for both unweighted and weighted stock

market networks. The developed approach here contribute to the comprehensive

analysis of the stock markets and detect anomalous behaviours.

The main contribution of this paper is to provide the novel thermodynamic

analogy in which the particles correspond to network edges, and where the75

weighted edge connections explicitly explain the fundamental meaning of mi-

crostates in the network structure. In our previous work, we use the graph

spectra and partition function to derive the network thermal quantities [11, 23].

This does not provide an explicit explanation of the physical meaning for the

particles in the network system. Different from the previous analytical frame-80

work, here, we commence from the configuration of edges in the unweighted

network to propose a new way to develop the fundamental concept of entropy

and temperature in the network system. Starting with a simple binary state

network [12, 24], we propose a new and more intuitive method for network de-
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scription, i.e., the canonical ensemble, to analyse the thermal characteristics of85

the network structure. This can be further extended to the more complicated

cases, such as weighted networks and directed networks, to derive the novel

thermodynamic properties in network structure.

Table 1: A Table of Thermal Quantities with their Corresponding Meanings in Stock Market

Networks

Thermal Quantities Corresponding Meanings in Stock Market Networks

Thermodynamic system stock market networks

Network edges stock price interactions

Particles analogue
edges in the network are analogue to

particles in the thermodynamic system

Total Energy the total edge weights in the network

Energy edge weight

Energy States/levels discretized edge weights; binary values for unweighted network

Entropy the logarithm of the number of edge combinations

Temperature change of energy over the change of entropy T = ∂U/∂S

Heat Bath external environment outside the stock markets

Partition Function exponential summation of all possible energy states

Canonical Ensemble
a group of stock market networks with a fixed number of nodes

and various value of edge weights

Compared to existing wors, the advantages of our proposed method are to

characterise the dynamic structural properties from the thermodynamic point90

of view. This proposes an efficient and accurate computation for the unweighted

and weighted networks from the statistical mechanics . By analysing the prob-

ability configuration of edge connections, this work reveals the intricate mech-

anism in the network structure evolution [25]. The corresponding derived ther-

mal quantities, such as entropy, energy and temperature, provide a sophisticate95

way to describe the network evolution. This brings a bridge to analyse the

network structural characterisations between the microscope and macroscopic
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perspectives [26]. In particular to the application of the financial market, these

derived thermodynamic quantities can effectively detect statistically significant

observations on stock market networks [27]. This is more sensitive than other100

state-of-the-arts indicators to detect the salient features in the network struc-

ture. It provides an efficient way of identifying critical financial events during

the evolution and can be regarded as a novel reference index to predict the

financial crisis.

To better describe the statistical mechanical concepts in the financial mar-105

kets, we provide a list of terms, as shown in Table1, a summary with the names

in thermal physical background corresponding to the econophysic meaning of

stock market networks. A more detailed description of individual quantities will

be further developed in our theoretical analysis.

This paper is organised as follows. We first introduce the preliminary con-110

cepts of market network construction in Sec.II. Then, we derive the fundamental

definition of temperature in networks. This provides a thermal analogy to anal-

yse the network structure. In Sec.III, we begin with a simple case of unweighted

networks. This introduces the concept of microstate and the corresponding bi-

nary state in the network system. Then, in Sec.IV, we describe networks as115

a canonical ensemble and make use of the concept of the partition function

for calculating the thermodynamic quantities. In Sec.V, we explore the case of

weighted networks. We propose two kinds of weight distribution and discuss the

resulting weight fluctuations. Finally, we conduct the experiments on the stock

market data with S&P500 Index to characterise and evaluate the time-varying120

network properties.
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2. Thermodynamic Representation

2.1. Preliminaries

Let G(V,E) be an unweighted network with a set of nodes V and a set of

edges E ⊆ |V | × |V |. The adjacency matrix A is defined as125

A =







1 if (u, v) ∈ E

0 otherwise.

(1)

where (u, v) is a pair of nodes forming an edge in the network. The correspond-

ing degree matrix K is diagonal, whose elements are the node degrees

K(u, u) = du =
∑

v∈V

Auv (2)

For a weighted network Gw, the pair of nodes (u, v) is also associated with a

weighting function which gives a real non-negative value w(u, v) for each edge,

i.e., u ∈ V, v ∈ V , and u 6= v. The weighted adjacency matrix Aw for a weighted

network is given by

Aw(u, v) =







w(u, v) if (u, v) ∈ E

0 otherwise.

(3)

where, for the undirected network, the weighting function is symmetric, i.e.,130

w(u, v) = w(v, u) for all pairs of nodes that (u, v) ∈ E, u 6= v.

2.2. Network Temperature

Commencing from this prescription of complex networks, we interpret the

network as a thermal particle system. According to our analogy, the particles

occupy the energy levels of the thermal system that is in equilibrium with a heat135

bath. These particles can occupy a set of energy states, and the probability of

occupying a particular energy state at a given temperature is determined by the

Boltzmann distribution.

We first consider an unweighted network. The number of nodes is fixed

then the structure of the network is specified by a |V | × |V | adjacency matrix140
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whose elements indicate the existence or otherwise of edges. Suppose that the

probability of connecting a randomly selected pair of nodes with an edge is p.

We can thus regard each edge as the outcome of a Bernoulli trial. In other

words, an edge connection can be regarded as a binomial distribution

p(u, v) = pA(u,v)(1− p)(1−A(u,v)) =







p if A(u, v) = 1

1− p if A(u, v) = 0

(4)

where A(u, v) is an element in the adjacency matrix A.145

If the edges are the results of independent Bernoulli trials, then the proba-

bility of the observed edge set E can be written in the form

P (E) =
∏

(u,v)

p(u, v), if (u, v) ∈ |V | × |V | (5)

We can thus dichotomise the network into those pairs of nodes connected

by an edge, and those that are not connected. With a binomial model of edge

formation, the probability of the observed configuration of edges is

P (E) =

(|V |2
|E|

)

p|E|(1− p)|V |2−|E| = ce−U/T (6)

where T is the temperature, c is a normalizing constant and U is the energy

associated with the edges in the network.

The exponential function in Eq.(6) comes from the thermal equilibrium un-

der the Boltzmann distribution [5]. The thermal system aims to occupy the

state of highest multiplicity in terms of the entropy associated with the distri-150

bution of particles among different energy states. The exponential distribution

results from this model by using the method of Lagrange multipliers [6].

According to our analogy, the total energy U is the sum of weights over the

complete set of edges. For the unweighted network, the weight of an edge is set

to unity. Thus, the definition of total energy in the network is given by

U = w|E| (7)

where w is the weight for each edge, which we take as unity in the unweighted

networks.
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The conservation law applying, in this case, is that if the number of nodes155

|V | is constant then the |V | × |V | adjacency matrix has a fixed number of

locations (or traps) that putative edges can occupy. When the number of edges

is determined, then the total energy of the network is also determined.

According to Boltzmann statistics, the entropy of a statistical mechanical

system is proportional to the logarithm of the number of microstates, and the

constant of proportionality is the Boltzmann constant kB . To compute the

entropy via this route, we introduce the multiplicity parameter W , to account

for the number of ways for choosing the |E| edge states from the available |V |2

combinatorial possibilities. This is just the number of permutations for all edges

obtained with the combinatorial formula

W (|V |, |E|) = (|V |2)!
|E|!(|V |2 − |E|)! (8)

where the symbol of ! indicates a factorial.

According to Boltzmann’s formula, the entropy is given by S = kB lnW ,

where kB is the Boltzmann constant. In other words, the entropy is propor-

tional to the logarithm of the number of edge combinations. Using Stirling’s

approximation log n! ≈ n log n− n for large n, we find

S = kB lnW (9)

= log[(|V |2)!]− log(|E|!)− log[(|V |2 − |E|)!]

= −|V |2kB
[ |E|
|V |2 ln

|E|
|V |2 + (1− |E|

|V |2 ) ln(1−
|E|
|V |2 )

]

The quantity p = |E|
|V |2 is the probability of a connection between a pair of nodes

and is the edge-density in the network. As a result

S = −|V |2kB [p ln+(1− p) ln(1− p)] (10)

Since p is the probability of an edge link between a pair of nodes, and 1− p the160

probability of a pair of nodes being unlinked, then the entropy is just the sum

of the Shannon entropies of the total expected number of edges and non-edges.

With expressions for network energy and entropy to hand, for a network

with a fixed volume (i.e. the number of nodes), the relationship between the
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incremental changes in energy and entropy is dU = TdS, where T is the tem-

perature. Hence, the temperature T for the network configuration with a fixed

number of nodes |V | and edges |E| is given by

1

T
=

(
∂S

∂U

)

N,E

=
kB
w

ln

( |V |2
|E| − 1

)

(11)

In Eq.(11), if we exponentiate both left and right hand sides, the exponential

factor is related to the average degree in the network

ew/kBT =
|V |2
|E| − 1 =

|V |
〈d〉 − 1 (12)

where 〈d〉 = |E|/|V | is the average node degree or the number of connections

per node. 〈·〉 denotes an ensemble average as the mean of a quantity following

a function of possible states according to the Boltzmann distribution.165

Thus, this gives the relationship between the average degree with the inverse

temperature 1/T

〈d〉 = |E|
|V | =

|V |
ew/kBT + 1

=
|V |
Z

e−βw (13)

where β = 1/kBT and Z is the partition function for each edge given by

Z =
∑

i

e−βwi = e−βw + 1 (14)

Here, the edge is binary state in the partition function, i.e., w1 = 0 and w2 = w.

The standard deviation for the node degree can be regarded as the measure

of fluctuation in global structure of the network. It is given by,

σd =

√
√
√
√

|V |
∑

i=1

(di − 〈d〉)2 =

√
√
√
√

|V |
∑

i=1

(

di −
|V |
Z

e−βw

)2

(15)

The degree fluctuation can be used to measure how the set of nodes consti-

tuting a graph deviate both from the mean value and the individual value at

thermal equilibrium. The latter is controlled by the global temperature param-

eter.170

10



3. Unweighted Networks

We commence from the edge configuration to develop the fundamental con-

cepts of entropy and temperature in the network. This is the crucial ingredient

of our method and it is discussed in detail in Section 2. Both the unweighted

and weighted variants of our method rely fundamentally on the idea of edge175

configuration.

We make an analogy in which the edges are the particles in the thermal

system [28]. A physical model which allows us to exploit this analogy is to

regard the edges as |E| impurity atoms trapped in a potential defined by the

|V | × |V | adjacency matrix [5]. The non-zero entries in the adjacency matrix180

are the locations of these traps. Each edge exists in one of two energy states,

either the ground state w1 = 0 or the excited state w2 = w.

The binary edge states are the microstates in the network, and they are

specified by the set of occupation numbers {ni}, where ni = 0 or 1 depending

on whether the ith edge is in its ground state or the excited state. The total

energy of the network can be derived from the sum of these edge microstates by

summing over all node degrees

U ({ni}) = w

|E|
∑

i=1

ni ≡ w|E| (16)

Thus, the macrostates of the network are specified by their total energy U ,

and their number of nodes |V |. This is consistent with Eq.(7) for the unweighted

network. The difference is that instead of considering the weights on the edges,185

we regard the total energy in the network from an alternative point of view, i.e.,

energy states and occupation number. Here, the state for each edge is binary

and represents whether or not the edge exists. The occupation number relates

to the degree of each node. In this way, the physical meaning of energy is more

related to the network structure in a more reasonable way.190

The probability of the microstates can be derived from the joint probability

distribution which in turn depends on the microstate energies. For a single
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particular edge in the microstate n1, the unconditional probability is

p (n1) =
∑

{n2,...,nN}

p ({ni}) =
W

(
U − n1w, |V |2 − 1

)

W (U, |V |2) (17)

whereW is the binomial coefficient in Eq.(8), i.e. the number of ways of choosing

U
n1w

excited states from among the available |V |2 possible configurations. Once,

a fractional amount of energy for a specific edge is allocated, the remaining

energy to be distributed among the |V |2 − 1 remaining configurations. Hence

p (n1) =
W (U, |V |2 − 1)

W (U, |V |2) (18)

=
(|V |2 − 1)!

|E|! (|V |2 − |E| − 1)!
· |E|!

(
|V |2 − |E|

)
!

(|V |2)!

= 1− |E|
|V |2

Since |E|/|V |2 = U/(|V |2w), the occupation probabilities at an inverse tem-

perature β are

p(w1 = 0) =
1

1 + e−βw
=

1

Z
(19)

where Z = 1 + e−βw is the partition function for the edge. For p(w2 = 1) =

1− p(w1 = 0) = |E|/|V |2, the probability for an edge to be in the excited state

is

p(w2 = 1) =
e−βw

1 + e−βw
=

e−βw

Z
(20)

Therefore, the probability for the binary states in the network relates directly

to the temperature and the corresponding partition function.

4. Canonical Ensembles

The definition of the canonical ensemble in statistical mechanics represents

a group of particle systems, each of which can exchange its energy with a large195

heat bath.

By applying the probabilistic methods to describe networks, the traditional

approach is to measure or observe a property of a network several times without

controlling the microscopic states to estimate the distribution of the observa-

tions. Gibbs introduced the concept of an ensemble [29]. This consists of a200
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large number of virtual copies (sometimes infinitely many) of the system, each

of which represents a possible state that the system might occupy. A statistical

ensemble is thus a probability distribution for the state of the system. Each

member of the ensemble represents a possible macrostate [29]. This provides a

convenient way to calculate the thermodynamic properties of a network system.205

Recall, the network of binary states defined in the last section is analogous to

a thermal system forming a canonical ensemble. It can exchange energy until it

is in thermal equilibrium with a large heat reservoir whose temperature remains

constant. This means that the ensemble consists of a set of networks, each with

an identical number of edges and nodes, but with different edge configurations210

and structural connections.

Additionally each edge has microstates. These are the binary states with

occupation numbers ni , where ni = 0 or 1. The total energy of the network

in Eq.(16) is conserved and the probabilities of microstates ni in the canonical

ensemble are given by

p({ni}) =
1

Q exp



−βw

|E|
∑

i=1

ni



 (21)

where β = 1/kBT and Q is the partition function for the whole network system,

Q(β, |E|) =
∑

{ni}

exp



−βw

|E|
∑

i=1

ni



 = (1 + e−βw)|E| = Z |E| (22)

With these ingredients, a) the corresponding free energy is

F (T, |E|) = −kBT lnQ = −|E|kBT ln
[

1 + e−w/(kBT )
]

(23)

b) the corresponding entropy is

S = −
(
∂F

∂T

)

E

= |E|kB ln
[
1 + e−βw

]

︸ ︷︷ ︸

−F/T

+

( |E|w
T

)
e−βw

1 + e−βw
(24)

and c) the average internal energy is

U = F + TS =
|E|w

1 + ew/(kBT )
(25)
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Alternatively, the average internal energy can also be obtained from the

corresponding partition function

U = −∂ lnQ
∂β

=
|E|we−βw

1 + e−βw
=

|E|
Z

we−βw (26)

Finally, we note that the heat capacity is given by

C =

(
∂U

∂T

)

E

= |E|kB(βw)
2eβw

[1 + e−βw]
2 = |E|kB

(
βw

Z

)2

eβw (27)

The heat capacity is an interesting characteristic of a network structure

whose temperature limits reflect the structural properties in the network. At

high temperature, the heat capacity corresponds to a saturation state in which

the edge states reach maximum occupation. At low temperature, the heat215

capacity vanishes because of the exponential term exp(−βw). This characterises

the energy gap between the lowest state and the second-lowest state, which

shows the numerical imbalance between the edge and the non-edge states.

Since the joint probability in Eq.(21) of each edge microstate is independent,

we have

p(ni) =
e−βwni

1 + e−βw
(28)

where ni = 0 or 1.

This result is consistent with Eq.(19) and Eq.(20), which provides a more220

elaborate way to analyse the network in the canonical ensemble.

The total partition function of Eq.(22) covers the cases of both particles

and non-particles. This relates to the Erdos-Renyi model and the probability

of edge connection between nodes. However, the important difference is that it

provides a new way to view this simple network model from the thermodynamic225

perspective. The canonical ensemble method introduces novel thermodynamic

quantities related to the network structure. In Section 3 and Section 4, we

consider the simple case that all edge connections have an equal probability.

This lays the groundwork for the treatment of weighted networks where different

edge connections have different probabilities.230
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5. Weighted Networks

A weighted network contains a weighting function for the edges. This func-

tion encodes information concerning the nature of the connections. Examples

include the strength of the connection between a pair of nodes, the correla-

tion between the distributions of node attributes, and pairwise node degree235

co-occurrence. By mapping the weighted edges to particles, the grand canoni-

cal ensemble framework has been used to develop statistical mechanical models

that can be used to describe real weighted networks [15].

To determine the partition function of a network, we need to know the rel-

evant energy levels so that we can label the states of the system. We take the240

edge weights to be analogous to the energy states in the previously discussed

thermal network system [15]. For the weighted network, the microstates asso-

ciated with each edge are no longer binary. We need to determine how many

states lie within a given energy interval, and this leads us to define the density

of states (DOS).245

The distribution of weights is mapped to the density of microstates (DOS)

in the networks. This is closely related to the degree distribution [30]. Here, we

study two conservative distributions of DOS, namely, the exponential distribu-

tion and the power-law. This allows us to compute the thermal characteristics

for weighted networks.250

Extending the discrete form of partition function in Eq.(14),to accommodate

the continuous distribution of weights present we compute the integral form of

the partition function for the weighted network

Zw =

∫ ∞

0

e−βwD(w)dw (29)

where D(w) is the distribution function for the weights, here taken to be the

density of states (DOS).

Here, we consider two typical examples of weight distributions, i.e., expo-

nential and power-law distributions. These two distributions always appear in

statistical physics known as ”thermal” and ”superthermal” parts.255
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5.1. Exponential Distribution

When the edge weights in the network follow an exponential distribution,

the corresponding partition function is given by

ZE
w =

∫ ∞

0

e−βwkeαwdw (30)

where the D(w) = keαw, α > 0, k = 1/α ≥ 1.

The integral form of the partition function converges when it satisfies the

condition that β > α >= 0. The resulting partition function in the case of the

exponential distribution is,

ZE
w =

k

β − α
, (β > α > 0) (31)

giving a) the average internal energy

UE
w = −∂ lnZE

w

∂β
=

1

β − α
(32)

b) the entropy,

SE
w = logZE

w + βUE
w = log

(
k

β − α

)

+
β

β − α
(33)

and c) the heat capacity

CE
w = −β2 ∂ lnUE

w

∂β
=

β2

(β − α)2
(34)

All three thermal quantities depend on both the exponential parameter and the

temperature.

5.2. Power-law Distribution260

When the distribution of edge weights follows the power-law, the correspond-

ing partition function can be written as

ZP
w =

∫ ∞

0

e−βwcwγdw =
cΓ(γ + 1)

βγ+1
(35)

where D(w) = cwγ , γ > 0, c ≥ 1 and Γ(γ + 1) is the Gamma function that

Γ(γ + 1) = γ! =
∫∞

0
e−xxγdx.
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This partition function gives the average internal energy as

UP
w = −∂ lnZP

w

∂β
=

γ + 1

β
(36)

the entropy

SP
w = logZP

w + βUP
w = log

(
cΓ(γ + 1)

βγ+1

)

+ γ + 1 (37)

and the heat capacity

CP
w = −β2 ∂ lnUP

w

∂β
= γ + 1 (38)

While both the average energy and entropy depend on temperature and

the power index, the heat capacity depends only on the power index and not

temperature.265

Therefore, the thermal quantities in the weighted network depend on the

corresponding partition functions with the appropriately selected distribution

of edge weights. For the exponential distribution, the corresponding thermo-

dynamic quantities take on simple forms depending on both the exponential

constant and temperature. However, in the power-law case, the corresponding270

energy and entropy present more complicated forms, depending on a Gamma

function of the power-law parameter. Importantly, the heat capacity does not

depend on the temperature.

5.3. Network Weight Fluctuation

For a weighted network in the canonical ensemble, the weights of edges can

range between zero and infinity. The average internal energy is proportional to

the average weight in the network. This can be expressed in terms of the ther-

modynamic equilibrium under the Boltzmann distribution as shown in Eq.(26)

U = 〈w〉 |E| = −∂ logZ

∂β
=

∑

s wse
−βws

∑

s e
−βws

(39)

Holding the edge weight ws constant, we take the partial derivative of the mean

weights with respect to the parameter β to obtain

∂U

∂β
= −

∑

s w
2
se

−βws

∑

s e
−βws

+

[∑

s wse
−βws

]2

[
∑

s e
−βws ]

2 = −
〈
w2

〉
+ 〈w〉2 (40)
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where 〈·〉 denotes an average. This give the definition of network weights fluc-

tuation as

〈δw〉2 =
〈
w2

〉
− 〈w〉2 = −∂U

∂β
= kBT

2 ∂U

∂T
= kBT

2C (41)

where C is the heat capacity in Eq.(27). The relative root-mean-square fluctu-

ation in terms of network weights is given by

〈δw〉
〈w〉 =

√

〈w2〉 − 〈w〉2

〈w〉2
=

√
kBT 2C

〈w〉 ∼ 1
√

|E|
(42)

which means for large number of edges in the network, the relative root-mean-275

square fluctuation in the values of weights is negligible. Thus, in the thermody-

namic limit the network has weights equal to, or almost equal to, the average

weight.

For further understanding of the weight fluctuation, we treat the weight w as

a continuous variable with the density of states D(w). This gives the probability

density P (w) as

P (w)dw = ρ(w)D(w)dw ∝ e−βwD(w)dw (43)

Thus, two factors influence the probability density for network weights. The

first is the Boltzmann factor which exponentially decreases with w, and the

second is the density of states D(w) which monotonically increases with w.

Therefore, there is an optimal value w∗ which gives the maximum probability

and that satisfies the condition

∂

∂w

[
e−βwD(w)

]
∣
∣
∣
∣
w=w∗

= 0 (44)

that is, by
∂

∂w
log[D(w)]

∣
∣
∣
∣
w=w∗

=
∂

∂w
log[e−βw]

∣
∣
∣
∣
w=w∗

= β (45)

Recalling the definition of temperature in Eq.(11), the corresponding calculation

gives optimal solution for the network weight

w∗ =
U

|E| = 〈w〉 (46)
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This shows that the most probable value of network weight is identical to the

average weight in a network, i.e. the mode and the mean are identical.280

We can apply the Taylor expansion to further explore the behaviour of the

logarithm of the probability density around the optimal solution w∗ =< w >.

The first two terms in the Taylor expansion are

log
[
e−βwD(w)

]
= (−βw + S/kB) +

1

2

∂2

∂w2
log

[
e−βwD(w)

]∣
∣
w=w∗

+ . . . (47)

= −β(w − TS)− (w − w∗)2

2kBT 2C
+ . . .

As a result the probability density P (w) has the following proportionality

P (w) ∝ e−βwD(w) ≈ e−β(w−TS) exp

[

− (w − w∗)2

2kBT 2C

]

(48)

Leading us to conclude that the weights w are distributed according to a

Gaussian distribution. The mean value is w∗ and the dispersion is
√
kBT 2C.

When the number of edges in the network is large, this results in an extremely

sharp (narrow) distribution, so that the fluctuation of network weights is small.

The matrix D(w) is the general representation of the density of states. It is285

related to the edge weight matrix P (w) which is the probability density function

for each edge. The relationship between the two matrices is given exactly by

Eq.(43). A more detailed analysis of the edge weight variance around the mean

is given by Eq.(48).

6. Experiment and Evaluation290

In this section, we experiment with the methods developed in the earlier sec-

tions of this paper. Although our analysis applies to any time-evolving network,

here we concentrate on the analysis of financial market data, and in particular

stock market data.

6.1. Time-evolving Stock Market Networks295

The stock market data comes from the Yahoo! financial dataset [31]. This

dataset contains the closing prices of 485 companies in the S&P500 Index Stock
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Exchanges. The stock closing prices are recorded over 2619 trading days, from

the beginning of January 2010 to the end of June 2020. The 415 stocks that are

present on all trading days are selected from this set. These company stocks300

are grouped into 11 industrial stock sectors, namely, Consumer Discretionary,

Consumer Staples, Energy, Financials, Health Care, Industrials, Information

Technology, Materials, Real Estate, Telecommunication Services and Utilities.

To represent the stock market data as a time-evolving network, we compute

the logarithm of the return price and use this to describe the closing price of

the stock over the trading period. We then make use of the cross-correlation

coefficients for the closing price time series for the individual stock. According

to our representation, each stock is represented by a labelled node in the network

which is attributed by the closing price time series for that stock. In other words,

each node represents a company whose stock is traded. The corresponding

edges between pairs of nodes indicate statistical similarities between the closing

process time series over a specified time window. This statistical similarity is

characterised by using the time-serial logarithm of return prices over a particular

period. In particular, we use the cross-correlation coefficients between the time

series.

C∆T
ij (t, τi,j) = E[Pi(t) ∗ Pj(t+ τi,j)] =

1

∆t

∆t−1∑

t′=0

Pi(t+ t′)Pj(tτi,j + t′) (49)

where Pi(t) is the closing price of the stock (node) indexed i at the day (time)

indexed t, τi,j is a time-lag for the time series of nodes i and j and ∆t the width305

of a sampling window interval in trading days.

We rank the value of cross-correlation coefficients to identify those pairs

of nodes with the largest statistical similarity between stock closing price time

series. The maximum value of the correlation function in Eq.(49) can well reflect

the periodic components in the stock sequence. Thus, the correlation matrix M310

is the largest value of cross-correlation coefficients in C, which is also viewed as

the edge weights in the weighted stock market network.

However, the correlation coefficient matrix M alone is not sufficient to repre-

sent the topology structure of financial networks. For instance, it does not fulfil
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the definition of axiomatic requirements of a metric. To overcome these prob-315

lems, we apply the method to generate edges by considering the multivariate

normal distribution of the covariance matrix [32]. To get the adjacency matrix A

from the correlation matrix M , we assume the elements in M follow a multivari-

ate normal distribution, i.e., M ∼ N (0,Σ), where V ar[Mij ] = Σ(i,j),(i,j) = 1,

Cov[Mij ,Mik] = Σ(i,j),(i,k) = ρ, and Cov[Mij ,Mkl] = Σ(i,j),(k,l) = 0. The320

structure of the covariance matrix Σ is such that the edge weights connecting

to a common node have covariance ρ, while the edge weights not connected by

a common node have zero covariance.

The adjacency matrix of the unweighted network is obtained by setting a

threshold ξ ∈ R and covariance ρ ∈ [0, 1/2] to obtain the pairs of nodes with

the most significant correlations as the edges in the network. The threshold ξ

is setting with the inverse error function of the Gaussian distribution [32], i.e.,

ξ = Φ−1

(

1− 〈d〉
|V |2 − 1

)

(50)

where Φ(ξ) is the normal distribution, 〈d〉 is the average degree in the network.

Then, The corresponding adjacency matrix is given by [32]325

Aij(t) =







1 if M(i,j) ≥ ξ

0 otherwise.

(51)

where the constrain ρ ∈ [0, 1/2] makes Σ positive semidefinite.

Finally, we sequentially slide the sampling window by steps of one trading

day to generate a sequence of networks according to the stock market time. This

yields a time-varying stock market network with a fixed number of 415 nodes

and varying edge structure for each of the 2,619 trading days. The direction for330

each edge is determined by the sign of time lag. All these directions represent

the trading in stock price between the companies.

6.2. Experimental Results

6.2.1. Unweighted Stock Market Networks

We first investigate the thermal quantities for the unweighted time-varying335

networks. This is useful as a means to analyse the network fluctuation and to
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detect the structural variance in network time series.
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Figure 1: Thermodynamic entropy and S&P500 index in the recent ten years (January 2010 –

June 2020). The critical financial events are indicated, namely, Flash Crash in 2010, Japan’s

Tsunami in 2011, Occupy Wall Street, European Debt Crisis, Fiscal Cliff Debate, Fed Renews

QE, Debt Ceiling Standoff, US Government Shutdown in 2013, Quantitative Easing, Swiss

Central Bank abandons peg to euro, Greek Debt Crisis, Collapse in oil prices, China devalues

the currency, OPEC Cut, Brexit Vote, Trump Election Win, U.S – China Trade War, HK

Riots, FED & Monetary Policy and COVID-19.

In Fig.1, we plot the thermodynamic entropy for the stock exchange networks

and compare it with the value of the S&P500 market index over the decade cov-

ered by our data. The stock market networks undergo fluctuation during critical340

financial events listed in the caption of the figure. Compared with the tradi-

tional S&P500 market index, the sharp peaks in the thermodynamic entropy

indicate significant changes in network structure during the different financial

events. Examples include the Flash Crash in 2010, Japan’s Tsunami in 2011,

Occupy Wall Street, European Debt Crisis, Fiscal Cliff Debate, Fed Renews QE,345

Debt Ceiling Standoff, US Government Shutdown in 2013, Quantitative Easing,

Swiss Central Bank abandons peg to euro, the Greek Debt Crisis, Collapse in oil

prices, China devalues the currency, OPEC Cut, Brexit Vote, Trump Election

Win, U.S – China Trade War, HK Riots, FED & Monetary Policy and COVID-

19. Each peak of the thermal entropy can identify with changes in network350

structure due to the listed events or anomalies.
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Fig.2 plots the four thermal quantities for the network time series. These

are a) temperature,b) average internal energy, c) entropy and d) heat capacity.

Similar to the thermodynamic entropy, the additional thermal quantities can

identify anomalies in the time series due to critical financial events. Compared355

to the alternative thermal representations, entropy (yellow line in Fig.2) is more

sensitive to the network variations. Taking the Flash Crash in 2010 as an
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Figure 2: Four thermodynamic quantities for the time-evolving stock market networks in the

last decade. (a) Blue line, temperature; (b) Red line, energy; (c) Yellow line, entropy; (d)

Purple line, heat capacity.

example, entropy yields a larger fluctuation than the alternative three thermal

quantities, undergoing a sharp downturn during the crisis. This is consistent

with market behaviour during the crisis. Many investors lose trust in the market360

as stock prices collapse. Subsequently, numerous large corporations attempt to

re-establish investor confidence to stimulate market activity. This results in

significant fluctuation in the structure of the stock market, which potentially

reflects the exchanges of investor information as measured by entropy. On the

other hand, the thermal quantity of temperature is the least sensitive to the365

stock markets. It remains at a constant level compared to other thermodynamic

representations. This is in line with the theoretical analysis that temperature is

related to the number of nodes and edges in the network. For this stock market

dataset, the number of nodes is fixed and the edge sets vary.
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Figure 3: The thermodynamic entropy difference and energy difference in S&P500 Index

Stock Data (2010–2020) for original financial networks. Critical financial events, i.e, Japan’s

Tsunami in 2011, Occupy Wall Street, Debt Ceiling Standoff, Swiss Central Bank abandons

peg to euro, Brexit Vote, Trump Election Win, U.S–China Trade War and COVID-19.

Then, we explore the anomaly detection in the first-order difference of ther-370

modynamic entropy and energy. A set of well-documented crisis periods have

quantitatively identified the relationship between a financial crisis and network

changes as shown in Fig.3. This plots the curve of the first-order difference in

entropy and energy alongside critical financial events. Compared to the rep-

resentation of thermodynamic quantities in Fig.2, the first difference of these375

variables are more clear to indicate the change of time and the significant finan-

cial events.

Furthermore, for each of the considered financial events, the detailed in-

formation around the period of the relevant crisis is represented with the cor-

responding thermodynamic quantities. Taking the Flash Crash in 2013 as an380

example, both the thermodynamic energy and entropy present a sharp trough

and peak in the corresponding time series. This indicates a dramatic variation

in network structure over a short time. On the other hand, the Eurozone Debt

Crisis presents a broad span of thermal quantities. This implies that the re-

lated financial event has a persistent effect on the pattern of trades in the stock385

market. The three derived thermodynamic quantities are all efficient ways to

capture the network structure during the different financial events.

Then, to explore the variations in network structure with the thermodynamic
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Figure 4: An example of critical financial events, i.e., US-China Trade War, with thermo-

dynamic entropy and S&P500 Index. We illustrate the visualization of network structures

during and around the US-China trade war.

quantities, we choose the period of the US-China trade war as an example to

visualize the structural fluctuations with thermodynamic entropy around the390

critical financial events. This illustrates the corresponding thermal quantities

can be used as indicators to identify instabilities in the stock markets. As

shown in Fig.3, before the US-China trade war, the value of entropy remains

at a constant low-level corresponding to a dense community structure or the

connected components in the network. However, when the trade war began, the395

network structure undergoes a significant variation corresponding to the large

fluctuation in the thermodynamic entropy. The connections between stock in

the network become increasingly sparse during the trade war. Afterwards, the

market recovers confidence with the density of network connection increasing.

This is illustrated in Fig.4, we select four-time epochs to visualise the network400

structures A, B, C, and D. In the figure the node colour represents the density

connections.

Finally, we compare two significant financial crises, namely, the 2008 Global

Financial Crisis (GFC 2008)) and 2020 COVID-19 Crisis (C-19), to explore the

different patterns of the stock market index and entropy. As shown in Fig.5(a),405

for GFC-2008 the market index a gentle decrease, commencing from the middle
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Figure 5: Comparisons between 2008 Crisis and COVID-19 with thermodynamic entropy and

S&P500 Index. (a)2008 Global Financial Crisis (Jan 2008 - Dec 2009); (b) COVID-19 (Nov

2019 - Jun 2020))

of 2008 and ending early in 2009. There is a sharp fall in the market index in

September 2008, which is reflected by a peak in the value of the thermodynamic

entropy. During the entire period of crisis, the entropy undergoes significant

local fluctuations. However, the peaks and troughs in the entropy suggest that410

the structural changes in the pattern of market trades (the inter-stock edges)

occur when there are steep drops or increases in the market index. On the

other side, although there is a sharp drop in the market index during C-19,

the pattern of this financial crisis is different from GFC 2008. In Fig.5(b), the

duration of the COVID-19 crisis is very short. It takes place over a period of one415

month. It manifests itself as an abrupt drop in the market index and a sudden

jump in entropy. There are no significant fluctuations in the thermodynamic

entropy. Therefore, the abrupt change of thermodynamic entropy represents

changes in the trading pattern associated with the financial crisis, and its lack

of fluctuations reflects the difference greater stability in the pattern of trading420

connections.

6.2.2. Weighted Stock Market Networks

For weighted stock market networks, we first investigate the network weight

fluctuations. Fig.6 plots the average network weights and fluctuations and com-

pares these to the value of the S&P500 Index. Both the average weights and425

their fluctuations exhibit the same trends as the S&P500 Index. Over the decade
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Figure 6: The stock market network average weights and fluctuations compared to S&P500

Index.

covered by the data, the index was more or less monotonically increasing except

for the recent COVID-19 crisis, when there was an abrupt drop in share prices.

The network weight fluctuations are inline with the stock market index, which

is more sensitive as an indicator of significant financial crises since it smooths430

out small fluctuations.

Next, we apply a maximum likelihood to estimate the parameters for both

the exponential and power-law distributions of the DOS in the weighted network

models. Fig.7(a) and Fig.7(b) plot the histograms of the weight distribution in

the selected stock market networks respectively. Both of the exponential and435

power-law distributions exist in the constructed weighted networks.

Furthermore, we explore the estimated parameters in both weight distri-

butions. In Fig.7(c), the estimated exponential parameter α for the DOS fall

into two main intervals between [0.06, 0.08] and [0.10, 0.18]. This means that

the most weighted networks in the stock market present an exponential distri-440

bution. In Fig.7(d), the power-law parameters γ are estimated to fall in the

interval of [0.2, 0.45], which is not consistent with the values expected from the

theoretical analysis of the power-law distribution that the internal parameters

are between [2, 3]. This show that most stock market networks do not strictly

follow the power-law distribution for the weights[33].445

Then, we plot the estimated parameters (i.e., α in the exponential distribu-

tion and γ in the power-law distribution) in two-dimensional space. This shows

how the estimated parameters α-γ changes with time. As shown in Fig.8(a),
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Figure 7: The exponential and power-law distributions of DOS in the weighted networks.

(a) network weights in the exponential distribution; (b) network weights in the power-law

distribution; (c) the histogram of estimated exponential parameter α for the DOS; (d) the

histogram of power-law parameters γ for the DOS.

the critical financial crises are indicated on the network trajectory in the esti-

mated α-γ parameter space, where the points are connected by a line according450

to their time of occurrence. The global crises are marked as different colour

symbols against the background. Examples include the 2011 Japanese Tsunami

(red triangles), Occupy Wall Street in 2011 (yellow squares), US Government

Shutdown in 2013 (black circles), Swiss Central Bank abandons peg to euro in

2015, and Trump Electron Win in 2016 (purple left-pointing and blue right-point455

triangles, respectively), and 2019 US-China Trade War (green squares), Brexit

in 2019 (purple diamonds), and COVID-19 in 2020 (black asterisks). The plots

show the values of the estimated parameters from the exponential distribution

and the power-law distribution change with the time for the evolving financial

market network. Different financial crises occur at different locations in this460

α-γ parameter space. This highlights that the critical event structure of the

network can be captured by the estimated parameters.

A similar pattern can be observed in Fig.8(b) which plots the average weights

〈w〉 and their fluctuations 〈δw〉 as a function of time. This shows a roughly
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Figure 8: (a) The trajectory of estimated parameters α-γ space. (b) The trajectory of average

weights 〈w〉 and their fluctuations 〈δw〉. Critical financial events: Japan’s Tsunami in 2011

(red triangles), Occupy Wall Street in 2011 (yellow squares), US Government Shutdown in

2013 (black circles), Swiss Central Bank in 2015 and Trump Win Electron in 2016 (purple

left-pointing and blue right-point triangles, respectively), and US-China Trade War in 2019

(green squares), Brexit 2019 (purple diamonds), and COVID-19 in 2020 (black asterisks).

linear correspondence between the average weights and weight fluctuations. The465

most significant difference is that the COVID-19 event presents a wider variety

compared to other financial crises.

Therefore, the thermodynamic quantities for both the unweighted and weighted

networks can be used to represent the time-evolving stock market networks. For

the unweighted networks, the derived thermal characterisations indicate critical470

financial events. For the weighted networks, the corresponding weight distribu-

tions and fluctuations identify the detailed trading patterns and can be used to

assess the potential risk to investors in different market sectors.

6.3. Evaluation of threshold sensitivity

In order to evaluate the effect of varying the threshold in Eq.(50), Fig.9475

shows the relationship between the number of edges and the total weight for

the different networks in the financial market as a function of time. Here, we

set the cumulative probability determined by the inverse error function for the

Gaussian distribution to be 95%, 75% and 50%, respectively. This generates

corresponding threshold values of 0.4303, 0.5891 and 0.8788 for each network480

configuration. In Fig.9, the total number of edges for the generated time-evolv-

ing networks shows the same gross trends as the total network weight. There is
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sudden jump in both the number of edges and the total weight during 2015. The

higher the value of the threshold, the fewer edges in the generated networks.

After 2015 for low threshold values the number of edges in the stock market485

networks is quite volatile. However, by weighting the edges this volatility is to

some extent regulated and the total weight varies more smoothly with time.
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Figure 9: The effect of the threshold in Eq.(50) on the number of edges and the total weight.

Fig.1 and Fig.2 provide a qualitative performance for the derived thermal

characterisations to detect financial events. To better quantitatively evaluate

these results, we apply the regression in the time-evolving stock market net-490

works to indicate the peaks of these fluctuations. Here, we regarded the critical

financial detection as a binary classification problem, and provide more strict

performance evaluations to compare with other stock market indicators, such

as S&P500 Index, NYSE Arca International Market Index(ADR), Moving Av-

erage Convergence/Divergence(MACD), etc. Table2 shows the performance of495

these evaluations for several different indicators, respectively, coming from the

numerical stock market analysis, network structural properties and thermody-

namic quantities.

For the accuracy to detect the financial crisis, our derived thermodynamic

entropy presents a high performance (82.47% in accuracy) compared to the other500

quantities. The accuracy of other thermodynamic indicators slightly drops to

around 80%, but still keeping excellent to identify the critical financial events.

For other stock indicators, S&P 500 Index shows a better result than other so-

phisticated stock market index. However, the simple network structural prop-
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Table 2: Performance metrics for different stock market indicators

Indicator Accuracy Sensitivity Specificity Precision Recall F1 Score G-mean

S&P500 Index 0.7852 1.0000 0.7146 0.5353 1.0000 0.6973 0.8454

ADR 0.5286 0.4855 0.5439 0.2731 0.4855 0.3496 0.5138

MACD 0.5265 0.4532 0.5351 0.1029 0.4532 0.1678 0.4925

Average Degree 0.4563 0.3224 0.4941 0.1526 0.3224 0.2071 0.3991

Average Shortest Path 0.4093 0.3157 0.4575 0.2305 0.3157 0.2665 0.3801

Temperature 0.7885 0.9561 0.7238 0.5718 0.9561 0.7156 0.8319

Energy 0.8144 0.9854 0.7452 0.6103 0.9854 0.7538 0.8569

Heat Capacity 0.8125 0.9752 0.7453 0.6128 0.9752 0.7526 0.8525

Entropy 0.8247 1.0000 0.7531 0.6235 1.0000 0.7681 0.8678

erties, such as the average degree and the average shortest path, do not present505

a strong ability to identify the fluctuated peaks in this case. Thus, the result-

ing method combined with the thermodynamic network characterisations can

work as an efficient tool to detect stock market fluctuations related to critical

financial events.

7. Conclusion510

The analysis of time-evolving stock markets provides a reliable indicator for

identifying the decline of stock value during the financial crisis. This study ap-

plies the tools in the complex networks to describe the dynamic stock exchanges

with the inference of underlying financial activities and partnerships.

To this end, we have presented a novel statistical mechanical description for515

the time-evolving unweighted and weighted stock market networks. Commenc-

ing from the analogy of the network edges as the particles in the thermal system,

we introduce the physical interpretation of temperature related to the network

structure. We have explored the binary representation of the adjacency matrix

and the description of the network connection as statistical canonical ensem-520

bles. We have also discussed the origins of the weight fluctuations in dynamic

networks.

Experimental results for the S&P500 Index Stock Exchanges over the past

decade reveal that the thermodynamic characterisations can effectively detect

the statistically significant of observations on stock market networks. Four kinds525
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of thermodynamic quantities, i.e., energy, entropy, temperature and heat capac-

ity, are useful to provide an indicator to identify the financial crisis during the

network evolution. In particular, the thermodynamic entropy is more sensitive

than the other three quantities to detect the salient features in the network

structure. This provides an efficient way of identifying critical financial events530

during evolution.

The work suggests a number of directions for further investigation. Novel

methods for dynamic network construction provide new insights into stock mar-

ket evolution. In addition, the unweighted adjacency matrix depends on the

certain strategy of choosing a suitable threshold to the cross-correlation coeffi-535

cients of the weighted networks. This provides additional developments about

the relevance of thermodynamic characterisations with the parameters in the

time-evolving network construction.
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