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Abstract

A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale

mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci.

We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3.

We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30-

to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3).

We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the

deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold

(T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated

by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-

specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio

¼ 0.77, 95% CI 0.74–0.81, p ¼ 3.1 3 10�31).

Introduction

Over the last 15 years, genome-wide association studies

have transformed our ability to map genetic variation un-

derlying complex traits.1 The vast majority of variants

identified in genome-wide association studies are non-cod-

ing and are thought to influence transcriptional regula-

tion,2,3 a process which can be highly cell type and tissue
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versity, Montréal, QC H4A 3J1, Canada; 82Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC H4A 3J1, Canada;
83Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif 94805,

France; 84Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; 85Molecular Biology of Breast Can-

cer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg 69120, Germany; 86Institute of Diabetes Research, Helmholtz Zentrum

München, German Research Center for Environmental Health, Neuherberg 85764, Germany; 87Center for Familial Breast and Ovarian Cancer, Faculty

of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; 88Center for Integrated Oncology (CIO), Faculty of Med-

icine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; 89Department of Preventive Medicine, Keck School of Medicine,

University of Southern California, Los Angeles, CA 90033, USA; 90Department of Oncology, Södersjukhuset, Stockholm 118 83, Sweden; 91Molecular Ge-
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specific.4 Our ability to translate these findings into a

greater understanding of the mechanisms that influence

an individual woman’s risk will require the identification

of causal variants (as opposed to correlative variants), the

targets of these functional variants (the genes or non-cod-

ing RNAs that mediate the associations observed in

genome-wide association studies) and an understanding

of the disease causal cell types and processes.1 Genome-

wide association studies of breast cancer coupled with

large-scale replication and fine-mapping studies have led

to the identification of approximately 200 breast cancer

risk loci;3,5–9 two of these loci, annotated by

rs1338704210 and rs16857609,5 map to a gene desert at

chromosome 2q35. Fine-scale mapping, combined with

in silico annotation, reporter gene assays, and allele-specific

qRT-PCR led to the identification of a putative causal

variant (rs4442975) at the rs13387042 locus.11,12

rs4442975, which is highly correlated with the tag SNP

rs13387042 (r2 ¼ 0.92, D0
¼ 0.96), maps to a consensus

binding site for the transcription factor (TF) forkhead box

A1 (FOXA1 [MIM: 602294]) with the alternative T-allele

promoting binding of FOXA1.11,12 To date, no putative

causal variant at the rs16857609 locus has been reported.

Chromatin interaction methods implicate IGFBP5 (MIM:

146734) as the target gene at both loci11–13 and for the

rs13387042 locus, eQTL analyses demonstrated associa-

tion of the protective T-allele with slightly increased

IGFBP5 levels in normal breast tissue11 and estrogen recep-

tor-positive (ERþ) breast cancers.12

Taking a functional approach based on chromosome

conformation capture (3C) assays that were anchored at

the IGFBP5 promoter, Wyszynski and colleagues identified

a putative regulatory element centered on a structural

variant (SV; esv3594306) that maps approximately 400

kb telomeric to IGFBP5.14 Allele-specific expression ana-

lyses and follow-up genotyping identified 14 highly corre-

lated variants (all r2 > 0.8 with the top SNP, rs34005590)

associated with breast cancer risk, which represent a third

risk signal (OR ¼ 0.82, p ¼ 5.6 3 10�17).14

In this analysis we report fine-scale mapping of the 2q35

region in European and Asian individuals with breast

cancer and control subjects from the Breast Cancer Associ-

ation Consortium. We confirm three independent, high-

confidence signals at 2q35 annotated by rs13387042

(signal 1), rs138522813 (signal 2), and rs16857609 (signal

3). We carry out functional annotation of credible variants

at signals 2 and 3 and implicate the deletion variant

(esv3594306) at signal 2 as causally associated with

increased IGFBP5 expression and reduced breast cancer

risk.

Material and methods

Fine-scale mapping of the 2q35 breast cancer risk locus

Fine-scale mapping of the 2q35 breast cancer risk locus was carried

out as part of a large collaborative project; full details have been

published.3 Briefly, for the current analysis we accessed data

from 94,391 individuals with invasive breast cancer and 83,477 in-

dividuals of European ancestry and 12,481 individuals with inva-

sive breast cancer and 12,758 control subjects of Asian ancestry

from 87 studies participating in the Breast Cancer Association

Consortium. All participating studies were approved by their

appropriate ethics review board and all subjects provided

informed consent.

Directly genotyped or imputed (info score> 0.8) calls for 10,314

SNPs mapping to a 1.4 Mb region at 2q35 (chr2:217,405,832–

218,796,508; GRCh37/hg19) were available for analysis. At this

threshold, the proportions of common variants (MAF R 0.05),

low-frequency variants (0.01 % MAF < 0.05), and rare variants

(0.001 % MAF < 0.01)3 that could be analyzed were 89.7%,

68.5%, and 3.6%, respectively, for OncoArray and 64.2%, 40.5%,

and 0.8%, respectively, for iCOGS. Analysis of the association be-

tween each SNP and risk of breast cancer was performed using un-

conditional logistic regression assuming a log-additive genetic

model, adjusted for study and up to 15 ancestry-informative prin-

cipal components. p values were calculated using Wald tests. For-

ward stepwise logistic regression was used to explore whether

additional loci in the fine-mapping region were independently

associated with breast cancer risk. We carried out stratified ana-

lyses to determine whether each of the independent associations
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differed according to estrogen receptor (ER) status; heterogeneity

between stratum-specific estimates was assessed using Cochran’s

Q-test. All statistical analyses were carried out using R version

3.6.1.

In silico annotation of credible variants

Credible variants at each of the three independent signals were

aligned with DNase I and ChIP-seq data (P300 [EP300 (MIM:

602700)], H3K27Ac, H3K4me1, FOXA1, GATA3 [MIM: 131320],

ERa [ESR1 (MIM: 133430)]) generated in T-47D and MCF-7 breast

cancer cells15–17 (Table S1).

Cloning of reporter assay constructs

All reporter assay plasmids were derived using the pGL4 reporter

vector (Promega). Reporter vectors were constructed using a restric-

tion digest-based cloning approach. The IGFBP5 promoter and

putative regulatory element regions (containing WT alleles) were

synthesized as gBlocks (Integrated DNA Technologies, full details

inTable S2).Double restrictiondigestsofplasmidorgBlockwereper-

formed using BglII and XhoI (for IGFBP5 promoter) or SalI and

BamHI (for putative regulatory element regions) according to the

manufacturer’s instructions (NewEnglandBiolabs [NEB]). Ligations

were performed in a 3:1 insert:vector ratio using T4 DNA ligase

(NEB), according to manufacturer’s instructions. Correct cloning

was validated by Sanger sequencing using a commercially available

service (Eurofins Genomics). Alternative (ALT) alleles of each

variant were introduced into reporter vectors using QuikChange

Lightning Site-directed Mutagenesis kit (Agilent Technologies), ac-

cording to the manufacturer’s instructions. Accurate mutagenesis

was confirmed by Sanger sequencing (Eurofins Genomics). All re-

porter gene constructs are shown in Figure S1.

Cell Culture

T-47D cells were grown in RPMI (GIBCO) supplemented with 10%

FBS (GIBCO), 10 mg/mL human insulin (Sigma), and 100 U/mL

penicillin with 100 mg/mL streptomycin (Sigma). HCT116 cells

were grown in RPMI supplemented with 10% FBS, 100 U/mL peni-

cillin, and 100 mg/mL streptomycin. HepG2 cells were grown in

EMEM (LGC Standards-ATCC) supplemented with 10% FBS and

100 U/mL penicillin with 100 mg/mL streptomycin. MCF-7 cells

(including derivative Cas9-expressing cell lines) and 293T cells

were grown in DMEM (GIBCO) supplemented with 10% FBS

and 100 U/mL penicillin with 100 mg/mL streptomycin. All cell

lines were routinely short tandem repeat (STR)-typed and tested

for mycoplasma contamination.

Reporter assays

Reporter assays were performed in T-47D, MCF-7, 293T, HCT116,

and HepG2 cell lines. Antibiotics were removed from standard

growth media 24 h before transfection to improve viability. For as-

says performed under standard conditions, approximately 16,000

cells were seeded per well of a 96-well plate for T-47D, MCF-7, and

HepG2, and approximately 8,000 cells were seeded per well of a

96-well plate for 293T and HCT116. Transfection was performed

upon reaching 70% confluency (~24 h after cell seeding). For as-

says performed after 17b-estradiol treatment, cells were first hor-

mone starved for 48 h. Approximately 10,000 cells (T-47D) and

8,000 cells (MCF-7) were seeded, per well of a 96-well plate, in

standard growth media and cultured for 24 h. The media was

then replaced with phenol red-free media (GIBCO) supplemented

with 10% charcoal-stripped FBS (GIBCO), 100 U/mL penicillin

with 100 mg/mL streptomycin, 10 nM fulvestrant (I4409, Sigma),

and 10 mg/mL human insulin (T-47D only). After 48 h, growthme-

dia was replaced with phenol red-free media supplemented with

10% charcoal-stripped FBS, 10 mg/mL human insulin (T-47D

only), with the addition of either (1) 10 nM 17b-estradiol

(E2758, Sigma) or (2) vehicle (ethanol). Transfection was per-

formed upon reaching 80% confluency (6 h after 17b-estradiol

or vehicle treatment).

Transfection was performed using X-tremeGENEHPDNA trans-

fection reagent (Roche). Equimolar amounts of the test pGL4-

based firefly luciferase vector and pRL-TK renilla luciferase control

(Promega) were combined in a 3:1 reagent:DNA ratio in OptiMEM

(Fisher Scientific). After a 30 min incubation at room temperature,

10 mL transfection mixture was added per well. Each biological

replicate was performed in technical triplicates with non-trans-

fected, mock-transfected, and pEGFP-transfected controls (Takara

Bio Inc). Cells were screened for luciferase activity 48 h after trans-

fection using the Dual-Glo Luciferase Assay System (Promega) ac-

cording to the manufacturer’s instructions.

Confirmatory genotyping and sequencing of putative

regulatory element 2 (PRE2)

Four of the five variants mapping to PRE2 (rs72951831,

rs199804270, rs138522813, and esv3594306) are highly correlated

based on 1000 Genomes data (1KGP), with the ALT alleles of

rs72951831, rs199804270, and rs138522813 all predicted to occur

in combination with the ALT (deletion) allele of esv3594306

(esv3594306: rs72951831 r2 ¼ 1.0, D0
¼ 1.0; esv3594306:

rs199804270 r2 ¼ 0.95, D0
¼ 1.0; esv3594306: rs138522813 r2 ¼

1.0, D0
¼ 1.0) . However, rs572022984 (hg19, chr2:217955897)

theoretically maps within the esv3594306 deleted region

(chr2:217,955,891–217,957,273) casting doubt on whether the

(imputed) rs572022984-del allele could occur in combination

with the esv3594306 deletion allele. To clarify this, we genotyped

all five variants in 300 randomly selected women participating in

the Generations Study18 using MassARRAY (Agena Bioscience;

full details of primers available on request). The number of carriers

of the alternative (A>-) allele at rs572022984 (MAF ¼ 0.035) was

0 (expected number ¼ 21; p ¼ 0.00002). To confirm our genotyp-

ing, we carried out Sanger sequencing (Eurofins) of a 2.4 kb region

spanning (chr2:217,955,586–217,958,000) in two individualswho

were heterozygous at the linked PRE2 SNP rs138522813. Primers

were: forward 50-CGCTTCCCCTTCATCACTTG-30 and, reverse

50-TCTCTCAGGCCAAGTCACAG-30. Sequencing confirmed the

presence of REF and ALT alleles of esv3594306, rs72951831, and

rs199804270 (rs138522813maps just outside the amplified region)

but only REF alleles at rs572022984; on this basis we excluded

rs572022984 from further analyses.

Cloning of guides for CRISPR-based enhancer

perturbation

Guides were designed using the online design tool CHOPCHOP

(http://chopchop.cbu.uib.no). Guides were selected based on their

proximity to variants of interest and specificity scores. Full details

are provided in Table S3. Cloning was performed essentially as

described in Ran et al.19 Briefly, guides were produced as two com-

plementary oligonucleotides with overhangs to facilitate cloning.

Oligos were annealed with T4 Polynucleotide Kinase (NEB). The

expression vector pKLV-U6gRNA(BbsI)-PGKpuro2ABFP (Addgene

#50946) was digested using BbsI (NEB), and ligation performed us-

ing T4 DNA ligase (NEB). Cloning was validated by sequencing

(Eurofins Genomics).
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CRISPR-based enhancer perturbation

All CRISPR cell lines were derived from a parental MCF-7 cell line.

Expression of each dCas9 construct was introduced by transduction

with a specific Cas9-expressing lentivirus: pGH125_dCas9-Blast

(Addgene #85417) for dCas9; pHR-SFFV-KRAB-dCas9-P2A-mCherry

(Addgene #60954) for dCas9-KRAB; Lenti-hEF1-BLAST-dCas9-VPR

(Dharmacon, CAS11916) for dCas9-VPR. Successfully transduced

cells were then selected for by mCherry expression (dCas9-KRAB)

or treatment with 10 mg/mL blasticidin (dCas9 and dCas9-VPR;

GIBCO). Cells were then seeded into 24-well plates at a density of

50,000 cells per well. 100 mL of sgRNA lentivirus was added. After

24 h, media was replaced and after 48 h cells were lysed using the

Cells-to-Ct kit (Life Technologies) for subsequent gene expression

analysis by RT-PCR.

Real-time PCR

Real-time PCR analysis of gene expression in cDNA samples was

performed using Taqman probes (Life Technologies) for IGFPB2

(MIM: 146731), IGFBP5, and RPL37A (MIM: 613314) normalized

to the housekeeping gene GAPDH (ThermoFisher; IGFBP2: Hs

01040719_m1, IGFBP5: Hs00181213_m1, RPL37A: Hs011023

45_m1, GAPDH: Hs03929097_g1). Reactions of 5 mL were estab-

lished using Taqman Universal Master Mix II, without

UNG (Applied Biosystems) according to the manufacturer’s

instructions.

Statistical analysis of reporter gene assays and CRISPR-

based enhancer perturbation

Firefly luciferase activity was internally normalized to renilla

luciferase activity, and each test condition normalized to the

‘‘IGFBP5 promoter-alone’’ (IGFBP5-PROM) construct. Setting

IGFBP5-PROM to 1.0, for each putative enhancer-containing re-

porter gene construct we used t tests to test (1) H0: the mean

dual luciferase ratio does not differ from 1.0 and (2) H0: the

ALT construct does not differ from the REF construct. To compare

mean dual luciferase ratios for each combination of SNP and SV

at PRE2, we used three-way analysis of variance adjusting each

variant for all other variants. To account for multiple testing,

we used a Bonferroni corrected p value of 0.0056 (individual con-

structs, Figure 2; 9 tests) and 0.017 (PRE2 combinations, Figure 3;

3 tests).

Relative gene expressionwas calculated using theDDCTmethod.

For the negative control sgRNAs (TAG-1 and TAG-2), we used t

tests to test H0: the relative gene expression does not differ from

1.0. To maximize the power of subsequent analyses, we then com-

bined the negative control data and for each of the other sgRNAs

we tested H0: relative gene expression does not differ from the

combined negative control relative gene expression. To account

for multiple testing, we used a Bonferroni corrected p value of

0.017 (PROM sgRNAs Figures 4A; 3 tests per gene) and 0.0056

(PRE2 sgRNAs, Figures 4B and 4C; 9 tests per gene).

Ethics approval and consent to participate

All participating studies were approved by their appropriate ethics

review board and all subjects provided informed consent.

Results

Fine-scale mapping of a 1.4 Mb region at 2q35

(chr2:217,407,297–218,770,424; GRCh37/hg19; Figure 1A)

incombineddata fromup to109,900 individualswithbreast

cancer and 88,937 control subjects of European Ancestry

from the Breast Cancer Association Consortium confirmed

the presence of three independent signals (p < 5 3 10�8;

Figure S2) at this region.3 After conditioning on the top

SNPat eachof these three signals (signal 1, rs4442975; signal

2, rs138522813; signal 3, rs5838651), there were no addi-

tional high-confidence signals (defined as signals for which

p < 1 3 10�6).3 Defining credible causal variants at each

signal asvariantswithconditionalpvalueswithin twoorders

of magnitude of the index variant there were 1, 5, and 42

crediblecausalvariants at PRE1,PRE2, andPRE3, respectively

(Table S4). Fine-scale mapping of this region in women of

Asian Ancestry (12,481 affected individuals and 12,758 con-

trol subjects) did not identify anypopulation-specific signals

(all associationsp>5310�8; Figure S3).Noneof the credible

causal variants at signal 2 was present in women of Asian

ancestry. The published causal variant at signal 1

(rs4442975) and all of the signal 3 credible causal variants

(Table S5) were nominally associated with breast cancer risk

in Asian women (p < 0.05). At signal 3, the index variants

differ between Europeans and Asians (rs5838651 and

2:218265091:G:<INS:ME:ALU>:218265367, respectively)

but none of the European credible causal variants could be

excluded on the basis of the Asian data.

The T-allele of rs4442975 was associated with reduced

breast cancer risk (per allele OR ¼ 0.88, 95% CI 0.87–

0.89, p ¼ 1.3 3 10�75 and OR ¼ 0.94, 95% CI 0.89–1.00,

p ¼ 0.04 in European and Asian women, respectively)

and the delG-allele of rs5838651 was associated with

increased risk (per allele OR ¼ 1.07, 95% CI 1.05–1.08,

p ¼ 1.5 3 10�16 and OR ¼ 1.07, 95% CI 1.03–1.11,

p ¼ 0.0008 in European and Asian women, respectively;

Table 1). The delT-allele of rs138522813 was associated

with reduced risk (carrier OR ¼ 0.80 95% CI 0.77–0.83,

p ¼ 5.5 3 10�32). Stratifying by ER status, the signal 1

(rs4442975) and signal 2 (rs138522813) SNPs were more

strongly associated with ERþ disease; for the signal 3 SNP

(rs5838651), there was no evidence that the ORs differed

by ER status (Table S6).

Prioritization of credible variants for functional

follow up

Fachal and colleagues3 used a Bayesian approach (PAIN-

TOR) that combines genetic association, linkage disequi-

librium, and enriched genomic features to determine

variants with high posterior probabilities of being causal

(Table S4).20 rs4442975, the only credible causal variant

at signal 1 (posterior probability ¼ 0.84), has previously

been proposed to have a functional effect on breast can-

cer risk.11,12 Four of the five variants at signal 2 had

posterior probabilities R 0.20 (combined posterior prob-

ability 0.997); none of the variants at signal 3 had pos-

terior probabilities > 0.15. To further prioritize putative

causal variants at signals 2 and 3, we aligned the 47

credible variants at these signals with markers of open

chromatin (DNase I), active transcription (P300), active
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enhancers (H3K27Ac, H3K4me1), and breast-relevant

TFs (FOXA1, GATA3, ERa) generated in T-47D and

MCF-7 breast cancer cells15–17 (Table S4). Consistent

with the PAINTOR posterior probabilities, four variants

at signal 2 colocalized with at least one of these fea-

tures. In addition, we identified two variants at signal

3 that colocalized with one of these features. These

six variants were prioritized for further functional

annotation.

Reporter gene assays of prioritized variants

For SNPs, we generated reference (REF) and alternative

(ALT) constructs in which the putative regulatory element,

defined in the first instance as a 500 to 700 bp region

centered on the SNP or SNP pair (PRE2A rs572022984;

PRE2B rs199804270 and rs72951831; PRE3 rs12694417

and rs12988242, Table S2; Figures 1B and 1C), was cloned

upstreamof a luciferase reporter gene, driven by the IGFBP5

promoter (Figure S1). For the structural variant esv3594306,

which is defined by the presence (REF) or absence (ALT) of a

1.4 kb region (chr2:217,955,891–217,957,273; GRCh37/

hg19), we generated separate REF constructs for PRE2A

and PRE2B and a single ALT construct in which the centro-

meric sequences at PRE2Awere juxtaposed to the telomeric

sequences at PRE2B with the intervening 1.4 kb deleted

(Figure 1B). Comparing the REF construct at each region

with the IGFBP5promoter construct (IGFBP5-PROM), there

was evidence that two of the putative regulatory elements

(PRE2B and PRE3) enhanced transcription from the IGFBP5

promoter (Figure 2). For PRE2B, both alleles demonstrated

A

B

C

Figure 1. 2q35 breast cancer risk locus
(A) Fine-scale mapping at 2q35 identified three high-confidence (p < 13 10�6) signals annotated by rs4442975 (signal 1), rs138522813
(signal 2), and rs5838651 (signal 3). The putative target gene (IGFBP5) maps 360 kb, 399 kb, and 703 kb from signals 1, 2, and 3, respec-
tively. All coordinates are based on GRCh37/hg19.
(B) Putative regulatory element 2 (PRE2; chr2:217,955,458–217,957,767) at signal 2 colocalizes with four highly correlated variants: three
single-nucleotide polymorphisms (SNPs; rs572022984, rs199804270, and rs72951831) and a 1.4 kb insertion/deletion variant
(esv3594306; indicated by a black bar). A fourth SNP (rs138522813)maps outside the proposed boundaries of PRE2. Regions of open chro-
matin (DNase I) andChIP-seq binding peaks for transcription factors are shown as gray bars where the shade of gray indicates the strength
of the ChIP-seq peak (light gray, weak binding; dark gray, strong binding). Also shown (yellow bars) are the coordinates of three reporter
gene constructs (PRE2A, PRE2B, and PRE2DEL) and the locations of sequences targeted by nine small guide (sg)RNAs.
(C) PRE3 (chr2:218,305,944–218,306,443) indicated by a blue bar colocalizes with two SNPs (rs12694417 and rs12988242). Regions of
open chromatin and ChIP-seq binding peaks are as in (B).
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strong enhancer activity (PRE2B-REF/REF: fold change

[FC] ¼ 27.9, p ¼ 0.004 and FC ¼ 28.7, p ¼ 0.0005; PRE2-

DEL-ALT/ALT: FC ¼ 50.5, p ¼ 0.004 and FC ¼ 44.9, p ¼

0.03 inMCF-7 and T-47D, respectively). For PRE3 the activ-

ity was more modest and only significant (p < 0.0056; Ma-

terial and methods) for the ALT allele in T-47D (PRE3-REF/

REF: FC ¼ 1.8, p ¼ 0.03 and FC ¼ 2.9, p ¼ 0.006; PRE3-

ALT/ALT FC ¼ 2.2, p ¼ 0.008 and FC ¼ 2.8, p ¼ 0.003 in

MCF-7 and T-47D, respectively; Figure 2). To test these con-

structs for cell type specificity, we used HepG2 (hepatocyte

carcinoma), 293T (embryonic kidney), and HCT116 (colo-

rectal carcinoma) cells; the only construct that influenced

transcription from the IGFBP5 promoter in these non-

breast cells was PRE2DEL-ALT/ALT in 293T cells and with

an effect size that was an order of magnitude lower (FC ¼

1.9, p ¼ 0.002; Figure S4) compared to the breast cancer

cell lines (FC > 40; Figure 2). Comparing ALT constructs

with REF constructs, only the PRE2 region showed a signif-

icant difference between alleles, with the (protective) PRE2-

DEL-ALT/ALT allele being associated with greater activity

than PRE2B-REF/REF allele (MCF-7 FC ¼ 1.8, p ¼ 0.003;

T-47D FC ¼ 1.6, p ¼ 0.09; Figure 2). Repeating these assays

in cells that were grown in the presence of low-dose estra-

diol did not alter these results; both PRE2B and PRE3 were

responsive to low-dose estradiol (Figures S5A and S5B) but

only PRE2 showed a difference between alleles, with the

protective PRE2DEL-ALT/ALT allele once again being

associated with significantly greater activity than theT
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Figure 2. Luciferase reporter assays following transient trans-
fection of PRE2 and PRE3, REF and ALT constructs, into MCF-7,
T-47D, and HepG2 cells
The PRE containing the reference (REF) allele at each SNP was
cloned downstream of the IGFBP5 promoter to generate reference
(REF) luciferase constructs. Alternative (ALT) alleles were gener-
ated by site-directed mutagenesis. Coordinates of the PREs are
given in Table S2, diagrams are in Figure S1. Error bars denote stan-
dard deviations based on three independent experiments each
done in triplicate. p values were determined by t tests and a Bon-
ferroni correction was applied to account for multiple testing.
Comparing each PRE containing construct to IGFBP5-PROM, *p
< 0.0056, **p % 0.00056; comparing ALT to REF constructs #p <
0.0056.
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PRE2B-REF/REF allele, this time in T-47D cells (MCF-7 FC¼

1.5, p ¼ 0.15; T-47D FC ¼ 2.7, p ¼ 0.002; Figure S5A).

The PRE2DEL-ALT/ALT construct comprises a haplotype

of three tightly linked variants: the ALT alleles of the two

SNPs (rs199804270:GA:G, rs72951831:G:T) with the ALT

(deletion) allele of the structural variant (esv3594306)

that brings two separate ERa, FOXA1, GATA3, and P300

ChIP-seq peaks into juxtaposition (Figure 1B). To differen-

tiate individual effects, each allele of each SNP was

introduced onto esv3594306 insertion and deletion back-

grounds separately using site-directed mutagenesis. The

PRE2A SNP (rs572022984) was not considered further due

to technical issues (Material and methods). In a combined

analysis, adjusting each variant for the other two variants,

there was evidence that deletion constructs consistently

showed greater activity than insertion constructs (MCF-7:

DEL FC ¼ 43.4, INS FC ¼ 34.4, i.e., average additional

FC for DEL ¼ 1.3, phet ¼ 0.01; T-47D: DEL FC ¼ 47.3, INS

FC ¼ 21.6, i.e., average additional FC for DEL ¼ 2.2, phet ¼

1.7 3 10�8; Figure 3).

CRISPR-based perturbation of PRE2

Reporter gene assays do not reflect the ‘‘normal’’ genomic

context of a regulatory element. Specifically, the assay tests

whether the putative regulatory element can influence

expression in an episomal context21 and from a distance

of a few kilobases; in vivo, PRE2 maps approximately 400

kb from the IGFBP5 promoter. To determine whether

PRE2 acts as an enhancer element in a cellular context,

we used a systematic CRISPR-based enhancer perturbation

approach. We hypothesized that if PRE2 acts as an

enhancer in vivo, targeting a catalytically inactive Cas9

(dCas9) fused to a repressive (KRAB) domain to regions

within PRE2 would result in lower levels of expression of

IGFBP5 (CRISPR interference; CRISPRi); by contrast, target-

ing dCas9 fused to an activating VPR domain would result

in higher levels of expression of IGFBP5 (CRISPR activa-

tion; CRISPRa).22,23 We designed CRISPR single-guide (sg)

RNAs to the ERa ChIP-seq peak at the centromeric break-

point of the deletion (guides PRE2-1 and -2), within the

esv3594306 deletion region (guides PRE2-3 to -6) and to

the ERa ChIP-seq peak at the telomeric breakpoint of the

deletion (guides PRE2-7 to -9; Figure 1B). As positive con-

trols we designed sgRNAs to target the IGFBP5 promoter

(guides PROM-1 to -3; Figure S6A) and the previously char-

acterized causal variant (rs4442975, guide PRE1-1;

Figure S6B). As negative controls we designed sgRNAs to

the published genome-wide association study signal 1 tag

SNP (rs13387042, guides TAG-1 and -2; Figure S6B). We

used MCF-7 cell lines engineered to stably express (1)

dCas9 with a repressive KRAB domain and (2) dCas9

with an activating VPR domain; as an additional control

we used MCF-7 cells that expressed dCas9 without the

KRAB or VPR domains.

In the dCas9 cell line, there was just one sgRNA (PROM-2)

that influenced IGFBP5 expression; this sgRNA targets the

IGFBP5 promoter, colocalizing with the transcription start

site (TSS) and likely reduces expression of IGFBP5 by steric

hindrance (60% reduction, p ¼ 0.004; Figure S7A). In the

CRISPRi setting, all three sgRNAs targeting the IGFBP5

promoter repressed IGFBP5 expression significantly to

8%–15% of levels in the negative controls (p ¼ 0.001, p ¼

0.001, and p¼ 0.0008 for guides PROM-1, -2, and -3, respec-

tively; Figure S8A). No sgRNA targeting non-promoter se-

quences influenced IGFBP5 expression (Figures S8A and

S8B). In theCRISPRa setting, the sgRNA50 to the IGFBP5pro-

moter (PROM-3; Figure 4A) enhanced IGFBP5 expression

more than60-fold (p¼ 0.00008) and the PRE-1-positive con-

trol sgRNA (PRE1-1) targeting rs442975 also enhanced

IGFBP5 expression (FC¼ 3.7, p¼ 0.006; Figure 4A). In addi-

tion, four of the nine sgRNAs targeting sequences at PRE2

enhanced IGFBP5 expression; specifically PRE2-1 and -2 tar-

geting the ERa ChIP-seq peak at the centromeric deletion

breakpoint (PRE2-1: FC ¼ 3.7, p ¼ 0.0005; PRE2-2: FC ¼

3.1,p¼0.001), PRE2-5 at thedistal endof thedeletion region

(PRE2-5: FC¼ 3.2, p¼ 0.002), and PRE2-8 targeting the ERa

ChIP-seq peak immediately telomeric to the deletion region

(PRE2-8: FC¼ 5.3, p¼ 0.002; Figures 4B and5A).Noneof the

sgRNAs influenced expression of two genes mapping imme-

diately 30 to IGFBP5 (IGFBP2 and RPL37A; Figure 4C).

A B Figure 3. Luciferase reporter assays
following transient transfection of con-
structs with allelic variants at PRE2B and
PRE2DEL into MCF-7 and T-47D cells
Reporter gene constructs with all possible
combinations of rs199804270 and rs7295
1831 and esv3594306 were generated by
site-directed mutagenesis of the naturally
occurring haplotypes at PRE2B and PRE2-
DEL (Material and methods) into MCF-7
(A) and T-47D (B) cells. Coordinates of the
PREs are given in Table S2, diagrams are in
Figure S1. Error bars denote standard devia-
tions based on three independent experi-
ments each done in triplicate. 3-way
ANOVA was used to compare each variant,
adjusted for theother twovariants, aBonfer-
roni correction was applied to account for
multiple testing. *p< 0.017, **p% 0.0017.
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Discussion

Fine-scale mapping at the 2q35 breast cancer locus in

women of European ancestry3 confirmed rs4442975 as

the probable causal variant at signal 1 and reduced the

number of credible causal variants at signal 2 from 14 to

5;3,14 at signal 3, however, there remained 42 credible

causal variants that could not be excluded as causal on sta-

tistical grounds alone in either the European or the Asian

data. Low-throughput functional approaches that are

used to investigate putative causal variants, including re-

porter gene assays and CRISPR screens, become prohibitive

with large numbers of credible causal variants and most

single locus11,14,24–38 and global3,6 annotation studies

have used co-localization of credible causal variants with

markers of open chromatin, active histone modifications,

and transcription factor binding in relevant cell types to

A

B

C

Figure 4. Systematic CRISPRa analysis of
2q35 putative regulatory elements
MCF-7 cells expressing dCas9-VPR were
transduced with CRISPR sgRNAs targeting:
(A) the PRE1 tag SNP rs13387042 (negative
control), the IGFBP5 promoter and the
PRE1 causal variant rs4442975 (positive
control), and (B and C) a series of sites
mapping across PRE2 (Figure 1B). Relative
gene expression (compared to vector
alone) was calculated using the DDCT

method. Full details of guide RNAs are
listed in Table S3. Error bars denote stan-
dard deviations based on three indepen-
dent experiments each done in triplicate.
p values were determined by t tests and a
Bonferroni correction was applied to ac-
count for multiple testing; (A) *p <

0.017, **p < 0.0017, ***p < 0.00017; (B
and C) *p < 0.0056, **p% 0.00056.

prioritize credible causal variants for

functional follow up. Of the 811

annotation tracks that were exam-

ined in a recent global fine-scale map-

ping analysis,3 credible causal vari-

ants were enriched at three types of

genomic features that are relevant to

long-range regulatory elements: (1)

open chromatin in ERþ cell lines

and normal breast, (2) the active his-

tone marks H3K4me1 and H3K27ac

in MCF-7 cells, and (3) ESR1,

FOXA1, GATA3, and P300 TF binding

sites. By aligning the five credible

causal variants at PRE2 and the 42

credible causal variants at PRE3 with

these marks (Table S4), we were able

to prioritize 4 of the 5 credible causal

variants at PRE2 and 2 of the 42 cred-

ible causal variants at PRE3 for follow-

up studies. By taking this approach

there is, inevitably, the possibility that we have excluded

one or more causal variants from our follow-up analyses.

For PRE2 this seems unlikely as we selected four out of

the five credible causal variants for further follow-up

studies. For PRE3 it is entirely possible, or even probable,

that we failed to prioritize one or more causal variant(s);

improving our ability to discriminate more accurately be-

tween potentially functional variants and large numbers

of correlated variants will require genome-wide datasets

with functional outputs21,39,40 generated in more relevant

cellular disease models and taking advantage of single-cell

technologies.1

Using reporter gene assays, we have demonstrated that

both the distal region of PRE2 (PRE2B) and the entire

PRE3 region can enhance transcription from the IGFBP5

promoter in a cell-type-specific manner. Despite co-local-

izing with multiple markers, we found no evidence that
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the proximal region of PRE2 (PRE2A) acts as an indepen-

dent enhancer element. The ChIP-seq peaks at this region

are, however, relatively weak (Figure 1B); combining data

from both PRE2A alleles, in both breast cancer cell lines

to increase our power (i.e., using 12 replicates rather than

3) the overall mean fold change for PRE2A was 1.14

(1.03–1.26, p ¼ 0.01), consistent with the presence of a

very modest enhancer element. Comparing REF constructs

with ALT constructs, we found no evidence that either of

the credible causal variants at PRE3 (rs12694417,

rs12988242) altered the activity of the PRE. This does not

exclude these SNPs as functional; as above, modest effects

on enhancer activitymay be difficult to detect and variants

that, for example, influence chromatin accessibility may

not be detectable in transient assays.11 However, without

preliminary in vitro evidence to suggest that one of these

variants alters cell-type-specific transcription from the

IGFBP5 promoter, pursuing further functional studies

that are predicated on this very assumption seems unlikely

A

B

Figure 5. Increasing the local density of
activator TF domains with dCas9-VPR or
by juxtaposition of two ChIP-seq peaks is
associated with increased expression of
IGFBP5

(A) Introducing dCas9 fused to a VPR acti-
vator domain at the ERa, FOXA1, GATA3
ChIP-seq peak at the centromeric end of
the deletion breakpoint (PRE2-1 and
PRE2-2), proximal to, or at, the ERa,
FOXA1, GATA3 ChIP-seq peak at the telo-
meric end of the deletion breakpoint
(PRE2-5 and PRE2-8, respectively) in-
creases expression of IGFBP5 in MCF-7
cells.
(B) Deletion of 1.4 kb on the ALT allele of
esv3594306 juxtaposes these two ERa,
FOXA1, GATA3 ChIP-seq peaks.
In each case (A and B) this increases the
density of activating TF domains in the re-
gion and is associated with increased
expression of IGFBP5.

to be fruitful. By contrast, one com-

parison that was consistent and sig-

nificant between constructs and

across the two breast cancer cell lines

was that PRE2 deletion alleles had

stronger enhancer activity than

PRE2 insertion alleles.

The purpose of our CRISPR-based

enhancer perturbation was 2-fold:

specifically, to interrogate the PRE2 re-

gion within its normal genomic

context andmoregenerally toevaluate

CRISPRi and CRISPRa approaches for

interrogating long-range regulatory el-

ements that harbor credible causal var-

iants. As none of our PRE2 sgRNAs

impacted IGFBP5 expression signifi-

cantly in the CRISPRi setting, our analysis raises questions

as to the utility of this approach for characterizing long-

range regulatory elements (PRE2 maps approximately 400

kb telomeric to the IGFBP5promoter). This is atoddswith re-

sults of a systematic CRISPRi screen to identify enhancer

elements in K562 cells, which demonstrated CRISPRi-medi-

ated repression of c-MYCexpression by sgRNAs targeting se-

quences mapping up to 1.9 Mb downstream of c-MYC.22 In

this analysis, however, CRISPRi-mediated repression by

these distal elements was modest compared to CRISPRi-

mediated repression by more proximal elements and, even

based on12 biological replicates, of borderline statistical sig-

nificance.22 By contrast, using CRISPRa we were able to

confirm that one or more elements within PRE2 can act as

a long-range regulatory element that specifically targets

IGFBP5 (rather than IGFBP2 or RPL37A). Four of the nine

guide RNAs targeting dCas9-VPR to sequences at PRE2

increased expression of IGFBP5; three of these colocalized

with ERa, FOXA1, and GATA3 ChIP-seq peaks (PRE2-1, -2,
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and -8) and a fourth (PRE2-5) mapped within the

esv3594306 deleted region (Figure 5A). There were also

two guides which targeted dCas9-VPR to sequences that

map close to the distal ERa, FOXA1, and GATA3 ChIP-seq

peak (PRE2-6and -7)butdidnot increase IGFBP5 expression;

thismay reflect the very variable efficiencyof different guide

RNAs.22 We present a theoretical model in which we hy-

pothesize that all of the PRE2 guides that increased expres-

sion of IGFBP5 increased the local density of activating TF

domains by bringing a VPR domain into the proximity of

a cluster of TF ChIP-seq peaks; one implication of the in-

crease in IGFBP5expressionweobservedwithPRE2-5,which

maps approximately 450 bp from the center of the nearest

cluster of ChIP-seq peaks (Figure 5A), is that these regulatory

elements may extend over relatively large (>1 kb) regions.

This should not, perhaps, be surprising; at a subset of

strongly activated E2-responsive enhancers, it has previ-

ously been shown that ERa recruits DNA-binding transcrip-

tion factors in trans, to form a large (1–2 MDa) complex.41

It has previously been suggested that sequences map-

ping to PRE2 act as a repressor element which, in the pres-

ence of low-dose estradiol, acts to reduce IGFBP5 expres-

sion.14 By contrast, our data support PRE2 acting as a

powerful enhancer element with the deletion allele

increasing expression of IGFBP5 over and above that of

the insertion allele with or without estradiol stimulation.

Overall, our data are consistent with a hypothetical model

in which the juxtaposition of the two ERa, FOXA1, GATA3

binding sites at PRE2 by deletion of approximately 1.4 kb

of intervening sequence generates a single extended bind-

ing region (Figure 5B) that is causally associated with

increased enhancer activity, higher levels of expression of

the putative tumor suppressor gene IGFBP5,42 and a reduc-

tion in breast cancer risk (OR ¼ 0.77, p ¼ 2.2 3 10�29) that

is largely restricted to ERþ disease.

In conclusion, we have identified putative enhancer ele-

ments at two additional 2q35 breast cancer risk loci. One of

these, mapping approximately 400 kb telomeric to IGFBP5,

enhances transcription from the IGFBP5 promoter by a fac-

tor of 30- to 40-fold. For this element we provide evidence

that a deletion of 1.4 kb is causally associated with

increased enhancer activity and suggest a mechanism for

this increased activity.
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