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Simple Summary: Metastatic lesions in bone tissue are a common complication in breast and

prostate cancer patients, accounting for the larger part of pain and suffering in late-stage cancer.

The metastatic cancer cells that form these lesions must travel from the primary tumour to a distant

bone and enter a mechanically active environment that is largely regulated in response to physical

exercise by bone cells known as osteocytes. This study used cell culture techniques to investigate if

osteocytes can regulate breast and prostate cancer cells, and how mechanical stimulation of these

sensitive bone cells affects cancer cell behaviour. Osteocytes signalled for decreased proliferation of

cancer cells, but mechanical stimulation reversed this in breast cancer. By developing a microfluidic

organ-chip model, we demonstrated the feasibility and importance of replicating the mechanical

tumour microenvironment, finding increased invasion of cancer cells with mechanical stimulation.

Abstract: Breast and prostate cancers preferentially metastasise to bone tissue, with metastatic lesions

forming in the skeletons of most patients. On arriving in bone tissue, disseminated tumour cells

enter a mechanical microenvironment that is substantially different to that of the primary tumour

and is largely regulated by bone cells. Osteocytes, the most ubiquitous bone cell type, orchestrate

healthy bone remodelling in response to physical exercise. However, the effects of mechanical

loading of osteocytes on cancer cell behaviour is still poorly understood. The aim of this study

was to characterise the effects of osteocyte mechanical stimulation on the behaviour of breast and

prostate cancer cells. To replicate an osteocyte-controlled environment, this study treated breast

(MDA-MB-231 and MCF-7) and prostate (PC-3 and LNCaP) cancer cell lines with conditioned media

from MLO-Y4 osteocyte-like cells exposed to mechanical stimulation in the form of fluid shear stress.

We found that osteocyte paracrine signalling acted to inhibit metastatic breast and prostate tumour

growth, characterised by reduced proliferation and invasion and increased migration. In breast

cancer cells, these effects were largely reversed by mechanical stimulation of osteocytes. In contrast,

conditioned media from mechanically stimulated osteocytes had no effect on prostate cancer cells.

To further investigate these interactions, we developed a microfluidic organ-chip model using the

Emulate platform. This new organ-chip model enabled analysis of cancer cell migration, proliferation

and invasion in the presence of mechanical stimulation of osteocytes by fluid shear stress, resulting

in increased invasion of breast and prostate cancer cells. These findings demonstrate the importance

of osteocytes and mechanical loading in regulating cancer cell behaviour and the need to incorporate

these factors into predictive in vitro models of bone metastasis.

Cancers 2021, 13, 2906. https://doi.org/10.3390/cancers13122906 https://www.mdpi.com/journal/cancers
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1. Introduction

Breast and prostate are the two most prevalent cancer types worldwide, with the
vast majority of these 1 million combined annual deaths related to metastatic disease [1].
Bone tissue is generally one of the most common tumour metastasis sites, with over
450,000 patients currently suffering from this condition in the US [2]. This is particularly
true for breast and prostate cancer, with 65–75% of breast and prostate metastatic patients
developing skeletal lesions, together accounting for more than 80% of all cases of metastatic
bone disease [3,4]. Furthermore, we now know that metastatic spread is an early event
in breast cancer development [5,6], with disseminated tumour cells already detectable
in bone marrow by the time primary tumours are found [7]. Once tumour metastasis
has been diagnosed, five-year patient survival rates in the UK decrease from 90–98%
when diagnosed at Stage I-II to 26% at Stage IV for breast cancer, and 99% to 30% at
equivalent stages for prostate cancer [8]. Upon discovery of bone metastases, prognosis is
particularly poor, with a median survival time of 1–4 years in breast and prostate cancer
patients [3]. Therefore, bone metastases are now the largest contributor to patient suffering
and mortality for breast and prostate cancer patients, and yet how these tumours establish
a presence in bone remains poorly understood.

Clinical trials have suggested that combined aerobic and resistance exercise programs
result in reliable and meaningful improvements in quality of life, fatigue, aerobic fitness,
bone mineral density and muscular strength in breast cancer patients [9,10]. Mechanical
loading (i.e., load-bearing physical exercise) has also been found to decrease metastasis-
induced osteolysis in a xenograft model [11]. Similarly, a systematic meta-analysis of
exercise in prostate cancer patients found improvements in quality of life, cancer-specific
fatigue, strength and fitness [12], though no changes to metastasis were observed and
bone metastases actually increased in one exercise group [13]. In contrast to breast can-
cer research, no study has applied mechanical loading to an in vivo model of prostate
cancer metastases in bone tissue, possibly due to the lack of in vitro studies into this
mechanical microenvironment.

To date, much of the literature has focused on interactions between disseminated
tumour cells, extracellular matrix components in the tumour microenvironment [14,15],
and the varied bone cell types residing in the bone marrow [16,17] and vascular niches [18].
Indeed, a number of recent studies suggest that osteoblast-like cells may arise within
primary breast [19] and prostate tumours [20]. While this approach is inherently sensible,
given the marrow is the likely point of arrival of tumour cells, it neglects more than 90%
of bone cells [21]. These cells, osteocytes, reside within the bone matrix in a series of
interconnected cavities and channels, known as the lacunocanalicular network [22,23].
Within this network, osteocytes act as master regulators of bone health through a variety of
mechanisms. These include coordinating the activity of osteoblasts, osteoclasts and other
cell types to balance bone deposition and resorption [21,24,25]; sensing and responding
to mechanical forces [26–30]; actively remodelling the surrounding bone matrix [31–33].
Importantly, osteocytes have been observed to upregulate cytokine signalling in vitro in
response to applied mechanical loading, in the form of both substrate stretch and fluid
flow [34–36]. Since cytokines are potent regulators of cancer cell behaviour, it is therefore
possible that mechanical stimulation of osteocytes associated with physical exercise, may
alter cancer cell metastasis.

Despite the important role of osteocytes in healthy bone remodelling, their potential in-
teractions with cancer cells are relatively understudied. A number of previous studies have
identified the role of the osteocyte in regulating cancer cell behaviour, finding that osteocyte
paracrine signalling can alter proliferative, migratory, and invasive behaviours [37–41].
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Notably, no study has yet examined the effect of osteocyte mechanical stimulation on
prostate cancer cells, with breast cancer remaining the primary focus of study. A key
limitation in this area has been the difficulty in selectively loading osteocytes while in
co-culture with cancer cells, which has confined researchers to conditioned media studies.
This has been partially overcome with the advent of microfluidic co-culture organ-chip
platforms, with a number of models recently developed in attempts to recapitulate the bone
marrow and bone tissue microenvironments [42–44]. This technology has been applied to
replicate extravasation of MDA-MB-231 breast cancer cells in the presence of osteocytes,
neatly demonstrating reduced extravasation of these cells with mechanical stimulation
of the bone cells [37]. Therefore, this developing technology presents a novel platform to
investigate the effects of mechanical stimulation and bone–cancer interactions in vitro.

Osteocytes have been unveiled as a potential key player in the metastatic cascade in
both breast and prostate cancer, with mechanical stimulation an important factor in this
developing tumour microenvironment. Therefore, the aim of this study was to investigate
the influence of mechanically stimulated osteocytes on the proliferation, invasion and
migration potential of a selection of common breast and prostate cancer cell lines. Addi-
tionally, a co-culture organ-chip system is presented, providing a more predictive in vitro
model of osteocyte–cancer cell cross-talk and regulation by mechanical loading during the
formation of metastatic tumours.

2. Materials and Methods

2.1. Cell Culture Conditions

The MLO-Y4 osteocyte-like mouse cell line, a kind gift from Professor L. Bonewald
(University of Missouri, Kansas City, MO, USA), was cultured on collagen-coated surfaces
(rat tail collagen type I, 0.15 mg/mL) with α-modified essential medium (α-MEM, Ther-
mofisher, Waltham, MA, USA) supplemented with 2.5% foetal bovine serum (FBS), 2.5%
iron supplemented calf serum (CS, HyClone Laboratories, Logan, UT, USA), and 100 U/mL
penicillin and 100 µg/mL streptomycin (all Sigma-Aldrich, St. Louis, MO, USA). Two
human breast cancer cell lines (MDA-MB-231 and MCF-7), and two human prostate cancer
cell lines (PC3 and LNCaP) were sourced from the American Type Culture Collection
(ATCC), and were routinely maintained in Dulbecco’s modified Eagle’s medium (DMEM,
Thermofisher) supplemented with 10% FBS, and 100 U/mL penicillin and 100 µg/mL
streptomycin (all Sigma-Aldrich). All cells were maintained at 37 ◦C, with 5% CO2 and
95% humidity. Conditioned media (CM) was collected after 48 h of culture on osteocytes,
then centrifuged for 10 min at 10,000 rpm and vacuum-filtered through Steriflip 0.22 µm
filters (Sigma-Aldrich) to remove suspended cells and cellular debris.

Mechanical loading was applied to the MLO-Y4 cells using oscillatory fluid flow
generated by culturing cells in rectangular flasks (82 × 92 mm; 10 mL of media) on a
rocking platform which oscillated at a frequency of 0.5 Hz and with an amplitude of
1.5 cm for 24 h after an initial 24 h static period post seeding. This system has been shown
to generate spatiotemporal fluid-flow induced maximal shear stress of approximately
0.1 Pa across a layer of cells [45,46] that is partially representative of that experienced by
osteocytes within the lacunar network in bone (0.01–1 Pa) [47–50]. In all experiments, CM
was collected after 24 h of fluid shear or unsheared static culture conditions.

In all cases, CM from MLO-Y4 cells was applied to cancer cells at a 1:1 ratio. Uncul-
tured MLO-Y4 standard media was applied at a 1:1 ratio to cancer cells in control groups,
to remove any variability from combining different media types. Each conditioned media
experiment contained 3 sample wells, and was repeated on 3 separate occasions, resulting
in n = 9 samples per group.

2.2. Microfluidic Organ-Chip Culture Conditions

The design and fabrication of the Organ-Chip (S-1, Emulate Inc., Boston, MA, USA)
were described previously [51]. Briefly, the chip is composed of a flexible polydimethylsilox-
ane (PDMS) elastomer containing two parallel microchannels (1 × 1 mm and 1 × 0.2 mm,
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cancer cell and osteocyte channel, respectively) [52] separated by a porous flexible PDMS
membrane (50 µm thick, with 7 µm diameter pores with 40 µm spacing, giving 2% porosity
over a surface area of 0.171 cm2 separating the two channels). Both channels of the chips
were coated with collagen I (rat tail collagen type I, 0.15 mg/mL; Sigma). Coated chips
were then incubated overnight at 37 ◦C and 5% CO2. Chips were inverted and seeded in
the bottom channel with MLO-Y4 osteocyte-like cells at 1,500,000 cells/mL, which were
allowed to attach to the membrane over 2 h before flushing with fresh media. Chips were
then flipped upright, and the procedure repeated to seed the top channel with cancer
cells at a concentration of 400,000 cells/mL. Cells were allowed to acclimatise to culture
conditions for 24 h.

Mechanical stimulation to the MLO-Y4 cells was provided by increasing the media
flow rate in the osteocyte channel. The standard flow rate for media replenishment was
set at 30 µL/h, applying a negligible shear stress of ~3 × 10−5 Pa, while the mechanically
loaded channels were assigned a flow rate of 1000 µL/h, generating a shear stress across
the osteocytes of approximately 0.03 Pa. This high flow condition was applied every day
for 6 h, for 10 days post-seeding.

2.3. Proliferation Assay

Cancer cell proliferation was assessed using the AlamarBlue cell viability assay (Life
Technologies, Eugene, OR, USA) which detected redox reduction during cell growth. In each
experiment, cancer cells were seeded onto 24-well plates at a density of 25 × 103 cells/cm2.
At the experimental endpoint, after 48 h cultured with control or conditioned media, 50 µL
of the AlamarBlue reagent was added to each well containing cells and 500 µL of culture
medium. Cells were then incubated for 3 h at 37 ◦C. The fluorescence was measured with a
Synergy 4 multi-mode microplate reader (BioTek Instruments, Winooski, VT, USA) with
excitation at 544 nm and emission at 590 nm. The fluorescence value was proportional to the
number of viable cells, and absolute values for these data are contained in supplementary
information (Figure S2).

In the microfluidic chips, individual cells were counted for each field of view ob-
tained in order to quantify the degree of cell proliferation in the presence or absence of
mechanical stimulation.

2.4. Invasion Assays

Invasiveness of cancer cells was measured using an in vitro Matrigel invasion as-
say [53]. Briefly, transwell inserts (8-µm pores) for 24-well plates were precoated with
50 µL/insert of 1 mg/mL Matrigel (Corning Inc., Corning, NY, USA), for 1 h at 37 ◦C. Subse-
quently, cancer cells were seeded into the upper chamber of each insert at 75 × 103 cells/cm2

in 250 µL basal medium. Then, 500 µL of either control medium or CM was added to the
lower chamber under the inserts. After incubation for 24 h, cells that had penetrated the
Matrigel-coated membrane and adhered to other side of the inserts were dissociated with
Trypsin (Sigma-Aldrich) for 7 min at 37 ◦C. A total of 250 mL of media was then added
to neutralise the Trypsin. AlamarBlue was then added to the solution containing invaded
cells, with the assay performed as described for proliferation above. Absolute values for
invasion experiments are contained in supplementary information (Figure S3).

Within the chip model, invasion of cancer cells through two matrix layers and across
the porous chip membrane was measured by staining with EpCAM, which is strongly
expressed by breast and prostate cancer cells, but not expressed by MLO-Y4 cells. EpCAM
stain in the bone channel was quantified using ImageJ.

2.5. Migration Assays

Migration assays were performed over a 12 h period on both the conditioned media
and chip co-culture experiments, which is substantially lower than the >24 h doubling
times of each cell line. A 24-well plate was seeded with cancer cells at a density of
50 × 103 cells/cm2 and cultured until formation of a confluent monolayer. After 48 h of



Cancers 2021, 13, 2906 5 of 15

CM treatment, the monolayer was scratched with a 200 µL pipette tip to create a linear
wound approximately 200 µm wide. Migration of the cells into the wound gap was
monitored by light microscopy serial time-lapse imaging for 12 h using a Lumascope LS720
live-cell imaging system (Etaluma Inc., Carlsbad, CA, USA) with a 10× objective. Cells
remained in conditioned media throughout this period. The percentage of wound gap
closure was measured using ImageJ software (National Institutes of Health, Bethesda,
MD, USA) as previously described [54].

The chip model is a closed microenvironment preventing use of the scratch wound
assay. Therefore, cell migration was measured using a standard cell migration tracking
plugin for ImageJ. Cells were stained for 45 min with CellTracker Green (Catalogue #
C7025, Thermofisher Scientific, Waltham, MA, USA) at 5 µm in serum-free medium, and
were then trypsinised and seeded as normal, with the stain remaining visible for up to
9 days. Migration across the surface of the membrane of 20 individual cells in each chip
was measured on time-lapse images captured every hour over a 12 h period on day 8, with
time-lapse scans obtained using the Muvicyte Live-Cell Imaging System (PerkinElmer,
Waltham, MA, USA). Absolute values for gap closure are included in supplementary data
(Figure S4).

2.6. Immunocytochemistry and Microscopy

Cells in both channels on chips were stained for DAPI (1 ug/mL) and Alexa Fluor-
647 conjugated Phalloidin (both ThermoFisher Scientific), as well as cancer cell-specific
marker EpCAM (CD326, Catalogue #53-8326-42, Thermofisher Scientific). Imaging was
performed at 20× on a Zeiss 710 ELYRA PS.1 confocal microscope using an EC Plan-
Neofluar10×/0.3 M27 objective (Zeiss, Oberkochen, Germany). Confocal z-sections were
made throughout the cell depth (approximately 20 sections) using 5 µm step size with
an image format of 2048 × 2048 yielding a pixel size of 0.415 × 0.415 µm (image size
approximately 850 × 850 µm).

2.7. Statistical Analysis

As described in figure legends, the statistical analyses were performed using one-way
ANOVA with Bonferroni post-hoc test using GraphPad Prism 5 (GraphPad Software, San
Diego, CA, USA). Statistical significance compared to associated controls indicated as
follows: * p < 0.05, ** p < 0.05, *** p < 0.001, by one-way ANOVA with Bonferroni post-hoc
test. Where indicated in the figure legends, conditioned media experiments were repeated
independently multiple times and similar results were obtained.

3. Results

3.1. Proliferation in All Cancer Cell Lines Was Decreased by Osteocyte Conditioned Media, with
Mechanical Stimulation Reversing This Effect in Breast Cancer Cells

The triple-negative breast cancer cell line MDA-MB-231 was observed to have higher
proliferation than the oestrogen receptor-positive MCF-7 breast cancer cell line, while
among the two prostate cancer cell lines the androgen receptor-negative PC-3 cells pro-
liferated more rapidly than the receptor-positive LNCaP cells (Figure 1A). Addition of
unstimulated conditioned media from MLO-Y4 osteocyte-like cells resulted in signifi-
cantly reduced proliferation, in both breast cancer cell lines and both prostate cancer cell
lines (Figure 1B). Media taken from MLO-Y4 cells mechanically stimulated via fluid shear,
reversed this effect in breast cancer cells. This was shown by a significant increase in
proliferation compared to breast cancer cells treated with conditioned media from un-
loaded osteocytes. Consequently, there were no significant differences in breast cancer cell
proliferation compared to cells without conditioned media. However, in prostate cancer
cells, fluid shear-loading of osteocytes did not change proliferation when compared to cells
treated with conditioned media from unloaded osteocytes (Figure 1B).



Cancers 2021, 13, 2906 6 of 15

Figure 1. Osteocyte conditioned media decreased proliferation in all cell lines. Mechanical stimulation

of osteocytes reversed this decrease in breast cancer cells, but not prostate cancer cells. (A) Absolute

values of proliferation, in relative fluorescence units, of breast (MDA-MD-231 and MCF-7) and

prostate (PC-3 and LNCaP) cancer cell lines, after 48 h in standard control media. (B) Fold change in

proliferation relative to control showing the effect of 50% diluted conditioned media from MLO-Y4

osteocyte-like cells under no-shear or flow-shear conditions (n = 9). Data normalised to control

after 48 h with bar representing mean ± standard deviation. Statistically significant differences

are indicated based on one-way ANOVA with Bonferroni post-hoc test (* p < 0.05, ** p < 0.01,

*** p < 0.001).

3.2. Invasion of Cancer Cells Was Decreased by Osteocyte Conditioned Media with and without
Mechanical Stimulation

Absolute values for invasion were broadly similar for most of the cell lines, apart
from the more invasive MDA-MB-231 cells (Figure 2A). In a similar manner to prolif-
eration, osteocyte conditioned media broadly inhibited invasion in all four cancer cell
types (Figure 2B). Mechanical stimulation of osteocytes via fluid shear had no effect on
this response in any of the cancer cell lines, such that there were no statistically significant
differences in invasion levels with and without shear.
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Figure 2. Osteocyte conditioned media decreased invasion in both breast and prostate cell lines,

regardless of application of mechanical stimulation. (A) Absolute values of invasion through Matrigel-

coated transwell inserts, in relative fluorescence units, of breast (MDA-MD-231 and MCF-7) and

prostate (PC-3 and LNCaP) cancer cell lines, after 48 h in standard control media. (B) Fold change

in invasion relative to control showing the effect of 50% diluted conditioned media from MLO-Y4

osteocyte-like cells under unloaded or fluid-shear conditions (n = 9). Data normalised to control

after 48 h with bar representing mean ± standard deviation. Statistically significant differences are

indicated based on one-way ANOVA with Bonferroni post-hoc test (* p < 0.05, *** p < 0.001).

3.3. Migration in Three of the Four Cancer Cell Lines Was Increased by Osteocyte Conditioned
Media, with Mechanical Stimulation of Osteocytes Reversing this Effect

The most migratory cells were the MDA-MB-231 breast cancer line and the least
migratory were the LNCaP prostate cancer line, with MCF-7 and PC-3 cells migrating by
similar amounts (Figure 3A). Conditioned media treatment of cancer cells resulted in large
increases in migration in one breast (MDA-MB-231) and both prostate cancer cell lines
(Figure 3B,C). In these cell lines, mechanically stimulated osteocyte conditioned media
partly reversed this switch to a more migratory phenotype. By contrast, the application of
osteocyte condition media to the MCF-7 breast cancer cell line reduced migration behaviour
both with and without osteocyte mechanical stimulation.
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Figure 3. Osteocyte conditioned media increased migration in one of the breast and both of the

prostate cancer cells lines, with mechanical stimulation of osteocytes reversing this effect. (A) Abso-

lute values of migration of breast (MDA-MD-231 and MCF-7) and prostate (PC-3 and LNCaP) cancer

cell lines, after 48 h in standard control media. (B) Representative images of observed migration

12 h post scratch-wound assay in MDA-MB-231, MCF-7, PC-3 and LNCaP cancer cell lines. Scale

bar = 50 µm. (C) Fold change in migration relative to control showing the effect of 50% diluted

conditioned media from MLO-Y4 osteocyte-like cells under static or fluid-shear conditions (n = 9).

Data normalised to control after 48 h with bar representing mean ± standard deviation. Statisti-

cally significant differences are indicated based on one-way ANOVA with Bonferroni post-hoc test

(* p < 0.05, ** p < 0.01, *** p < 0.001).
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3.4. An Organ-Chip Co-culture Model Replicated Effect of Conditioned Media on Cancer Cell
Migration but Not Proliferation or Invasion

We successfully developed an organ-chip co-culture model using the Emulate platform.
This enabled MLO-Y4 cells to be stimulated with fluid shear in one channel and separated
by a porous membrane from either breast (MDA-MB-231) or prostate (PC-3) cancer cells in
the other channel (Figure 4).

μ

 

μ

μ

Figure 4. The microfluidic organ-chip incorporating bone and cancer cell channels. (A) The Emulate

organ-chip (reproduced with permission). (B) Schematics showing the cancer cells in the top channel

(1 × 1 mm) and the bone cells in the bottom channel (1 × 0.2 mm) subjected to fluid shear stress of

0.03 Pa caused by media flow. The two channels are separated by a membrane with 7 µm diameter

pores. (C) Brightfield image showing the entire length of the channels. The boxed region at the

right-hand end is magnified to show MLO-Y4 cells in the bottom channel (D, red) and MDA-MB-231

cells in the top channel (E, green) and merged (F). Scale bar = 20 µm.

Using this organ-chip model, data from a single chip experimental found that mechan-
ical loading of MLO-Y4 cells via fluid shear (0.03 Pa) had minimal effect on proliferation of
either MDA-MB-231 or PC-3 cells. Fluid shear had no effect on proliferation of either cancer
cell type as quantified by number of EpCAM stained cells in the top channel (Figure 5) but
appeared to trigger increased invasion of breast and prostate cancer cells (EpCAM stained
cells in bottom channel).

Fluid shear inhibited MDA-MB-231 cell migration, but not PC-3 cell migration, repli-
cating effects seen with conditioned media (Figure 6). These preliminary results in the
organ-chip model differ from those seen with conditioned media in terms of cancer cell
proliferation and invasion.
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Figure 5. Mechanical stimulation of osteocytes had no effect on proliferation but increased invasion

in organ-chip models of breast and prostate cancer bone metastasis. Representative confocal images

of (A) the MDA-MB-231 breast cancer bone metastasis chip and (B) the PC-3 prostate cancer bone

metastasis chip. Immunofluorescent staining for cancer cells (EpCAM, green), actin (Phalloidin, red)

and nuclei (DAPI, blue) in both the cancer cell channel and the osteocyte channel. The images are

single confocal planes with an additional magnified view of the osteocyte channel (right) and the

orthogonal projection showing both channels (below). The upper panels show images from organ

chips in which the MLO-Y4 cells were exposed to minimal shear stress (0.00003 Pa), with lower

panels showing organ-chips with higher shear conditions (0.03 Pa). Invasion of EpCAM-stained

cancer cells through the porous membrane into the bone channel are indicated (*). Scale bar = 20 µm.

Associated analysis of EpCAM-positive cancer cells to quantify (C) proliferation in both channels,

and (D) invasion into the bone channel. Data based on three separate confocal z-stacks for each chip.
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μ

μ

Figure 6. Mechanical stimulation of osteocytes in organ-chip models decreased migration of breast cancer cells but

had no effect on prostate cancer cells. (A) Representative confocal image showing the technique for quantification of

migration of cancer cells as measured via live-cell imaging and tracking of cells labelled with CellTracker (green). (B) The

corresponding bright-field image (scale bar = 20 µm). (C) Associated quantification of migration for individual cells within

chips (n = 20–40 cells from 1 organ-chip per group).

4. Discussion

The use of cell lines within in vitro models presents a number of limitations. The
different origins of the mouse MLO-Y4 osteocyte-like cells, and the human breast and
prostate cancer cells, is not ideal. However, these are very well-established cancer cell lines,
which are frequently studied in mouse models of cancer cell metastasis [55,56]. The MLO-
Y4 cell line is limited in its low sclerostin expression, a Wnt signalling inhibitor, relative
to osteocytes in vivo. Despite this, MLO-Y4 cells are by far the most well-understood
osteocyte cell line [57] and have the advantage of a more consistent phenotype compared
to other options, such as primary cell isolations. Use of MLO-Y4 cells also allows for
comparison to the few other studies in this nascent area of research. Therefore, while
acknowledging the limitations of these cell lines, their use allowed for tight control of
experimental variabilities and direct comparison with similar studies.

Throughout this study mechanical stimulation of osteocytes was applied via specific
quantifiable levels of fluid shear stress to replicate the in vivo loading environment within
bone [47–50]. However, it is important to note the difference in the loading regimes em-
ployed in the conditioned media experiments (Figures 1–3) versus the co-culture developed
in the organ-chip model (Figures 4–6). For conditioned media experiments, we used oscilla-
tory shear stress of 0.1 Pa whilst in the organ-chip the mechanical loading was provided as
unidirectional shear stress of 0.03 Pa. The loading in the organ-chip is the maximum shear
stress currently achievable using the Emulate platform which can normally only apply
unidirectional flow in each channel. Furthermore, while the shear on osteocytes due to
the rocking experiment did not disrupt the stable osteocyte monolayer or visually affect
osteocyte cell number, the conditioned media has not been normalised to subtle changes in
cell number in these experiments. Additionally, in a preliminary experiment on a single
chip, osteocyte number was not found to change with application of shear due to flow
(Figure S1).

This study examines the effects of osteocyte paracrine signalling on two breast cancer
cell lines (MDA-MB-231 and MCF-7) and two prostate cancer cell lines (PC-3 and LNCaP).
Soluble factors released from the bone cells downregulate proliferation (Figure 1) and
invasion (Figure 2) whilst, in all but the MCF-7 cells, conditioned media from the osteocytes
increased migration (Figure 3). Together these findings indicate that osteocytes encourage
metastatic cancer cells towards a more mesenchymal and less proliferative phenotype.

A number of previous studies have similarly identified the role of the osteocyte
in regulating cancer cell behaviour, finding that osteocyte paracrine signalling can alter
proliferative, migratory, and invasive behaviours [37–41]. This has been most widely
studied using breast cancer cell lines. A study by Cui et al. was the first to investigate this
experimentally, using conditioned media to demonstrate that soluble factors secreted by
osteocytes could upregulate proliferation and migration in a range of breast and prostate
cancer cell lines [39]. This work was expanded upon to include the effect of mechanical



Cancers 2021, 13, 2906 12 of 15

loading, showing that the triple-negative MDA-MB-231 breast cancer cell line exhibited
reduced invasiveness and trans-endothelial migration when treated with flow-stimulated
osteocyte conditioned media [38,41]. A separate study into the oestrogen receptor-positive
MCF-7 breast cancer cell line identified a new potential mechanism, CXCL1/2, through
which mechanical stimulation of osteocytes may upregulate proliferation and migration
in these cells [40]. However, these studies have reported conflicting findings. Whilst
some studies report increased proliferation and transwell invasion of MDA-MB-231 cells
with conditioned media [39], and further increases in invasion with loading [38], other
studies report decreased MCF-7 migration and proliferation with applied fluid shear [40].
Nevertheless, it is clear from these previous studies and our data presented here that
osteocytes regulate breast cancer cell behaviour and that aspects of this regulation are
modulated by mechanical loading of the osteocytes. However, this behaviour appears to be
sensitive to differences in experimental set-up, making direct comparisons with previous
studies challenging.

Intriguingly, mechanical stimulation of osteocytes by fluid shear inhibited the reg-
ulatory effect of conditioned media on breast cancer cell proliferation but not invasion.
This effect of loading was particularly evident in MDA-MB-231 breast cancer cells, where
conditioned media from loaded osteocytes completely blocked the reduction in prolifer-
ation and increase in migration otherwise seen without loading. Interestingly, using our
organ-chip co-culture model, mechanical loading of osteocytes stimulated invasion in these
MDA-MB-231 breast cancer cells.

In this study we also present new data for prostate cancer cells, demonstrating for the
first time the effects of signalling from osteocytes and how this is regulated by mechanical
loading. Compared to breast cancer cells, conditioned media experiments indicated that
mechanical loading had minimal effect on prostate cancer cells. However, the preliminary
findings from our organ-chip co-culture model showed that fluid shear stimulation of
osteocytes triggers increased invasion of both breast and prostate cancer cells (Figure 5).
Together our data suggests that fluid shear forces on osteocytes, as generated by mechanical
loading during exercise, may block the normal osteocyte suppression of metastasis in breast
and prostate cancer.

From a clinical perspective it is interesting that applied loading led to decreased
invasion in all cell lines, as this would imply a protective effect for mechanical loading
via exercise of bone tissue. However, in breast cancer cells, flow stimulation decreased
migration and increased proliferation, indicating that loading of osteocytes signals for
more proliferative behaviour in breast cancer cells that could enhance tumour growth. The
contrasting behaviour observed in prostate cancer cells under the influence of osteocytes
may underlie the osteoblastic lesions commonly found in prostate cancer patients, with
breast cancer metastatic patients more frequently presenting with osteolytic lesions. Indeed,
while this study focused on the regulation of cancer cells by osteocyte mechanobiology,
our observations of reduced proliferation of MLO-Y4 cells in a chip imply that cancer cells
can regulate osteocyte behaviour in turn. This has important implications for degenerative
diseases such as osteoporosis, as these conditions have previously been shown to result
in decreased mechanosensitivity in osteocytes in aged and osteoporotic bone [28,48,58].
Additional disruption of osteocyte mechanosensation by cytokine signalling from cancer
cells would likely exacerbate this effect, and further degrade bone quality.

This research area is likely to benefit from the expanding use of organ-chip models
such as the Emulate platform. This enabled controlled levels of fluid shear stress to be
applied to bone cells within a microfluidic channel whilst monitoring cancer cell behaviour
in a separate channel connected by a porous membrane. In so doing, the organ-chip models
replicate a more realistic tumour microenvironment in order to better understand how
bone cells regulate cancer cell behaviour and metastasis.
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5. Conclusions

Further work is needed to investigate the possible reciprocal interaction between can-
cer cells and the various bone cell types, as well as the impact of physical exercise on breast
and prostate metastasis in vivo. However, this study presents important evidence showing
that mechanical stimulation is a potent regulator of osteocyte–cancer cell interactions in
the developing metastatic cascade, for both breast and prostate cancer. We found that
osteocyte signalling generally inhibits metastatic breast and prostate tumour growth, but
that mechanical stimulation may reverse some of these effects. Indeed, our co-culture,
organ-chip model demonstrates increased breast and prostate cancer cell invasion with
mechanical stimulation of osteocytes. This study therefore highlights both the feasibility
and the importance of including mechanical stimulation within predictive organ-chip and
other in vitro models of metastatic cancer in bone.
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loaded MLO-Y4 osteocytes, Figure S4. Absolute values for percentage gap closure in a scratch wound

migration assay for breast (MDA-MB-231, MCF-7) and prostate (PC-3, LNCaP) cancer cells when
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