
This is a repository copy of Towards a query-optimal and time-efficient algorithm for
clustering with a faulty oracle.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175522/

Version: Accepted Version

Proceedings Paper:
Peng, P. orcid.org/0000-0003-2700-5699 and Zhang, J. (2021) Towards a query-optimal
and time-efficient algorithm for clustering with a faulty oracle. In: Proceedings of the 34th
Annual Conference on Learning Theory (COLT 2021). 34th Annual Conference on
Learning Theory (COLT 2021), 15-19 Aug 2021, Boulder, Colorado. Proceedings of
Machine Learning Research (134). PMLR .

© 2021 The Authors and PMLR. This is an author-produced version of a paper
subsequently published in Proceedings of Machine Learning Research, Volume 134
(COLT 2021).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ar
X

iv
:2

10
6.

10
37

4v
1

 [
cs

.L
G

]
 1

8
Ju

n
20

21

Towards a Query-Optimal and Time-Efficient Algorithm for

Clustering with a Faulty Oracle

Pan Peng* Jiapeng Zhang†

Abstract

Motivated by applications in crowdsourced entity resolution in database, signed edge prediction

in social networks and correlation clustering, Mazumdar and Saha [NIPS 2017] proposed an elegant

theoretical model for studying clustering with a faulty oracle. In this model, given a set of n items

which belong to k unknown groups (or clusters), our goal is to recover the clusters by asking pairwise

queries to an oracle. This oracle can answer the query that “do items u and v belong to the same

cluster?”. However, the answer to each pairwise query errs with probability ε, for some ε ∈ (0, 1

2
).

Mazumdar and Saha provided two algorithms under this model: one algorithm is query-optimal while

time-inefficient (i.e., running in quasi-polynomial time), the other is time efficient (i.e., in polynomial

time) while query-suboptimal. Larsen, Mitzenmacher and Tsourakakis [WWW 2020] then gave a new

time-efficient algorithm for the special case of 2 clusters, which is query-optimal if the bias δ := 1−2ε of

the model is large. It was left as an open question whether one can obtain a query-optimal, time-efficient

algorithm for the general case of k clusters and other regimes of δ.

In this paper, we make progress on the above question and provide a time-efficient algorithm with

nearly-optimal query complexity (up to a factor of O(log2 n)) for all constant k and any δ in the regime

when information-theoretic recovery is possible. Our algorithm is built on a connection to the stochastic

block model.

1 Introduction

Clustering is a fundamental problem in machine learning with many applications. In this paper, we study an

elegant theoretical model proposed by Mazumdar and Saha [2017a] for studying clustering with the help of

a faulty oracle. The model is defined as follows:

Model Given a set V = [n] := {1, · · · , n} of n items which contains k latent clusters V1, · · · , Vk such

that ∪iVi = V and for any 1 ≤ i < j ≤ k, Vi ∩ Vj = ∅. The clusters V1, . . . , Vk are unknown. We wish to

recover them by making pairwise queries to an oracle O, which answers if the queried two vertices belong

to the same cluster or not. This oracle gives correct answer with probability 1− ε, for some ε ∈ (0, 12). That

is, for any vertices u, v ∈ V , if u and v belong to the same cluster, then

O(u, v) =
{

+ with probability 1− ε,

− with probability ε,

*Department of Computer Science, University of Sheffield. Email: p.peng@sheffield.ac.uk
†Department of Computer Science, University of Southern California. Email: jiapengz@usc.edu

1

and if u, v belong to two different clusters, then

O(u, v) =
{

+ with probability ε,

− with probability 1− ε.

Equivalently, the model can be formalized as follows: Define a function τ : V × V → {±1} such that

τ(u, v) = 1 if u, v belong to the same cluster and τ(u, v) = −1 if u, v belong to different clusters. For any

u, v, let ηu,v ∈ {±1} be a random noise in the edge observation such that E[ηu,v] = δ. The noises ηu,v are

independent for all pairs u, v ∈ V . Then the oracle O returns the sign of

τ(u, v)ηu,v

when the pair u, v is queried. Note that by the above two formalization, it holds that 1− ε = 1
2 + δ

2 . In the

following, we call δ the bias of the model.

It is assumed that repeating the same question to the oracle O, it always returns the same answer. (This

was known as persistent noise in the literature; see e.g. [Goldman et al., 1990].) Our goal is to recover the

latent clusters efficiently (i.e., within polynomial time) with high probability by making as few queries to the

oracle O as possible.

Motivations The above model captures several fundamental applications. In the entity resolution (also

known as the record linkage) problem [Fellegi and Sunter, 1969], the goal is to find records in a data set

that refer to the same entity across different data sources. Currently fully automated techniques for entity

resolution has been unsatisfactory and current crowdsourcing platforms use human in the loop to help im-

prove accuracy (see e.g. [Karger et al., 2011, Wang et al., 2012, Dalvi et al., 2013, Gokhale et al., 2014,

Vesdapunt et al., 2014, Mazumdar and Saha, 2017b]). That is, the workers are asked to answer if any two

items u, v represent the same entity. It has been noted that the answers from non-expert workers are in-

evitably noisy. Furthermore, the goal of these crowdsourcing platforms is to use minimal number of queries

to reduce cost and time for recovering the entities (clusters), which can be well modelled by the clustering

with a faulty oracle.

Another motivation is to predict the signed edges in a social network [Leskovec et al., 2010], where

the sign (‘+’ or ‘−’) on an edge indicates positive relation or negative relation between the correspond-

ing two nodes. This problem can arise in many scenarios, e.g., voting on Wikipedia [Burke and Kraut,

2008] and making friends on Slashdot [Brzozowski et al., 2008]. Theoretically, there has been a line of

work [Chen et al., 2014a, Mitzenmacher and Tsourakakis, 2016] that considers the model that allows the

algorithm to query the sign of an edge (u, v), which in turn can indicate whether u, v belongs to the same

cluster or not. It is further assumed that the answer to each query is correct with probability 1− ε, for some

ε ∈ (0, 12). Thus, their model is also well captured by the previous model of clustering with a faulty oracle.

There is also some other related work on edge classification [Cesa-Bianchi et al., 2012].

In addition, the model of clustering with noisy oracle is closely related to the problem of correlation

clustering. In the correlation clustering problem [Bansal et al., 2004], we are given an undirected signed

graph, and our goal is to partition the vertex set into clusters so that the number of agreements1 is maxi-

mized or the number of disagreements2 is minimized. This problem is NP-hard and several approximation

algorithms have been provided. In a variant formalization called noisy correlation clustering [Bansal et al.,

2004, Mathieu and Schudy, 2010], after given the ground truth clustering, the sign of each edge is flipped

1These are the number of + edges inside clusters plus the number of − edges between clusters.
2These are the number of − edges inside clusters plus the number of + edges between clusters.

2

with some probability ε. If the original graph is complete, then this is exactly the input of the problem of

clustering with a faulty oracle.

Finally, the model is strongly connected to the stochastic block model (SBM), which is popular model

for studying graph clustering algorithms. In the SBM with parameters N, k, p, q such that 0 ≤ q < p ≤ 1,

denoted by SBM(N, k, p, q), there is a set V of N vertices with a hidden k-partition V1, · · · , Vk such that

∪iVi = V , where each part Vi is called a cluster. A graph G is generated from the SBM(N, k, p, q) model,

if for any two vertices u, v ∈ V , an edge is added between u, v with probability p if u, v are from the

same cluster, and with probability q if u, v are from two different clusters. There has been a vast amount

of research on recovering the underlying clusters from the SBM with different ranges of parameters in the

past decade (see the recent survey [Abbe, 2017]). Consider the noisy clustering model with and parameters

n, k, δ. Suppose that we make queries on all pairs u, v ∈ V , then the graph G that is obtained by adding

all + edges answered by the oracle O is exactly the graph that is generated from the SBM model with

parameters N = n, k, p = 1
2 + δ

2 and q = 1
2 − δ

2 . However, in our problem, our goal is to recover the

clusters by making sublinear number of queries, i.e., without seeing the whole graph.

State-of-the-art Mazumdar and Saha [2017a] gave an inefficient algorithm that perform O(nk logn
δ2

) queries

to the oracle that recovers all the clusters of size Ω(logn
δ2

). The query complexity of this algorithm nearly

matches an information-theoretic lower bound Ω(nk
δ2
) presented by the same authors. The running time

of their algorithm is O
(

(

k log n/δ2
)(logn)/δ2

)

, which is quasi-polynomial, and there is an inherent ob-

stacle to push this algorithm to be efficient (see Section 1.3 for more details). Towards efficient algo-

rithms, they designed another algorithm that runs in time O(nk logn
δ2

+ k(k
2 logn
δ4

)ω), makes O(nk logn
δ2

+

min{nk2 lognδ4 , k
5 log2 n
δ8 }) queries and recovers all clusters of size at least Ω(k logn

δ4), where ω is the matrix

multiplication exponent.

In a follow-up work, Larsen et al. [2020] proposed an improved algorithm for the case k = 2, i.e., two

clusters. This algorithm runs in time O(n logn
δ2

+ log3 n
δ8

) and makes O(n logn
δ2

+ log2 n
δ6

) queries. See Table 1

for a comparison of these results.

Note that the above two efficient algorithms are query-suboptimal when δ is small, i.e., δ = o(n−1/4),
even for k = 2. Due to this, Larsen et al. [2020] raised the following open question:

“Can we design a query-optimal, time-efficient algorithm that performs O(kn logn
δ2) queries for

all 0 < δ < 1?”

It is the main question we are trying to address in this paper. Note that for any non-trivial algorithm with

query complexity O(nk logn
δ2

), it suffices to assume that δ ≥ (k log n/n)1/2, as the maximum number of

queries one can make is n2.

1.1 Our results

We give an algorithm with the following performance guarantee for the problem of clustering with a faulty

oracle.

Theorem 1. There exists a polynomial time algorithm NOSIYCLUSTERING that recovers all the clusters

of size Ω(k
4 logn
δ2

) with success probability 1 − on(1). The total number queries that NOSIYCLUSTERING

performs to the faulty oracle O is O(nk logn
δ2

+ k10 log2 n
δ4

).

3

clusters query complexity time-efficient ? reference

k
O(nk logn

δ2
) No

[Mazumdar and Saha,

2017a]O(nk logn
δ2

+min{nk2 logn
δ4

, k
5 log2 n
δ8
}) Yes

Ω(nk
δ2
) Lower bound

2 O(n logn
δ2

+ log2 n
δ6

) Yes [Larsen et al., 2020]

k
nearly-balanced: O(nk logn

δ2
+ k4 log2 n

δ4
) Yes

this work
O(nk logn

δ2
+ k10 log2 n

δ4
) Yes

Table 1: Comparison of algorithms for clustering with a faulty oracle. We say an algorithm is time-efficient,

if it runs in polynomial time (in n, k, 1/δ). We stress that all the upper bound holds for algorithms success

probability at least 1− on(1), while the lower bound is for any algorithm with constant success probability.

Note that for any constant k, the query complexity of our algorithm NOISYCLUSTERING in Theorem 1

is

O(
n log n

δ2
+

log2 n

δ4
) =

{

O(n logn
δ2

) if δ = ω((log nn)1/2)

O(n log2 n
δ2) if δ ∈ [Ω((1n)

1/2), O((log n
n)1/2))

Thus, as long as δ = Ω((1n)
1/2) (i.e., δ is in the regime when information-theoretic recovery is possible),

our algorithm achieves nearly-optimal query complexity (up to a factor of O(log2 n)). On the other hand, if

δ = o((1n)
1/2), it is impossible to recover the latent clusters, which follows from the information-theoretic

lower bound Ω(n
δ2
) and an inherent restriction on the maximum number of queries, i.e., n2, as there are at

most n2 edges. Therefore, we almost fully resolve the aforementioned open question by Larsen et al. [2020]

for any constant k ≥ 2.

The main focus on this paper is to optimize the dependency on δ. We do not attempt to optimize

the dependency on k. By combining ideas from Mazumdar and Saha [2017a], we believe it is possible to

slightly improve the term k10. However several evidences suggested there is an inherent obstacle to match

the information theoretical lower bound by efficient algorithms. See Section 1.3 for more details. The

algorithm NOISYCLUSTERING is built upon a simple algorithm for the case that the underlying clustering

V1, . . . , Vk are nearly-balanced, i.e., each cluster Vi has size Ω(nk). For the latter case, we achieve a slightly

better algorithm. Formally, we define a b-balanced partition as follows.

Definition 2. Let b ∈ [0, 1]. Given a vertex set V and a partition V1, . . . , Vk such that ∪iVi = V , we call

V1, . . . , Vk a b-balanced partition, if for each i, |Vi| ≥ bn/k.

We show the following result for the case that the underlying partition is the b-balanced.

Theorem 3. Let b ∈ (0, 1]. Let n ≥ C0k2 log
2 n

b2δ2 for some constant C0 > 0. Suppose that the underlying

partition V1, . . . , Vk of V = [n] is b-balanced. There is a polynomial time algorithm that recovers all the

clusters with success probability 1 − on(1). The total number queries that the algorithm performs to the

faulty oracle O is O(nk · log n/δ2 + k4 · log2 n/(b4δ4)).

For any constant b > 0, the query complexity of the above algorithm is O(k
4 log2 n
δ4

+ kn logn
δ2

), which

is in comparison to the information-theoretic lower bound Ω(nk
δ2
) that also holds for the nearly-balanced

instance [Mazumdar and Saha, 2017a]. The query complexity almost matches the lower bound when k =
o((δ2 · n)1/3), which leaves open in the range (δ2 · n)1/3 ≤ k ≤ δ2 · n. Interestingly, there exists evidence

suggesting that there is no efficient algorithm matching the information theoretical lower bound when k is

large. We refer to Section 1.3 for a more detailed discussion.

4

1.2 Discussion of previous approaches and an overview of our algorithms

We first sketch the main idea underlying the algorithms in [Mazumdar and Saha, 2017a, Larsen et al., 2020].

Their algorithms do the following:

1. select a subset T of t = poly(k log n/δ) vertices, and build a graph HT = (T,ET) by making queries

for all pairs u, v ∈ T and defining the edge set ET according to the query answers;

2. find all sub-clusters X of size Ω(logn
δ2

) from the T by making use of the graph HT , where a set X is

a sub-cluster if X ⊆ Vi for some cluster Vi;

3. grow each of the sub-clusters X to Vi: arbitrarily select a subset X0 ⊆ X of size Θ(lognδ2) and add all

vertices v ∈ V to X such that the number of ‘+’ neighbors of v in X0 is more than
|X0|
2 .

Then the algorithm removes all the identified clusters and repeat the above process if the number of remain-

ing vertices is still large and more clusters need to be identified.

Both of the previous two efficient algorithms are based on some ‘local’ approaches of finding sub-

clusters from HT (in Step 2 above), i.e., by counting the number of ‘+’ neighbors and/or shared neighbors

of vertices in T . Such ‘local’ approaches require the algorithm to choose a large subset T whose size

eventually results in the sub-optimality of the total number of queries to the oracle. We also note that the

query-optimal algorithm in [Mazumdar and Saha, 2017a] is a ‘global’ approach in the sense that it makes

use of a large subgraph of HT to cluster the vertices in T . However their subroutine for finding the subgraph

requires quasi-polynomial time, which can not be improved to polynomial time, assuming that the hidden

clique problem is hard in average case, which is a well-believed assumption in complexity theory.

Our approach. Our algorithm is built upon the same framework, while uses several new ideas. One of

our key observations is that we can make use of the ‘global’ and time-efficient algorithms for clustering

graphs generated from SBM with appropriate parameters to find sub-clusters in the small representative

graph HT , when the input instance is nearly-balanced. Slightly more precisely, note that for any subset

T ⊂ V , if we let ET be the set of all ‘+’ edges from the query answers and let HT = (V,ET), then we

can equivalently view HT as generated from the stochastic block model SBM(|T |, k, p, q) with p = 1
2 + δ

2 ,

q = 1
2 − δ

2 . Previous research (e.g,. [McSherry, 2001, Vu, 2018]) suggests that if HT contains k nearly-

balanced clusters and the parameters |T |, p, q, k satisfy certain conditions (see Theorem 14), then with high

probability, we can efficiently recover all the clusters in T . Now if the original instance V1, . . . , Vk is nearly-

balanced (i.e., |Vi| ≥ bn
k , i ≤ k, for some constant 0 < b < 1), then we can show that a randomly sample

set T with Θ(k
2 logn
δ2

) vertices will satisfy both the nearly-balanced requirement of HT and the condition

for clustering SBM. Then by applying one algorithm (specifically, Vu’s algorithm; see Theorem 4) for

clustering the graph HT from SBM(|T |, k, p, q) to find all the sub-clusters X1, . . . ,Xk, and growing each

sub-cluster as described before, we obtain our algorithm for clustering the nearly-balanced instance with

improved performance guarantee. We give details in Section 3.

For the unbalanced instance, i.e., there exists at least one cluster of size less than bn
k , we have to modify

this algorithm since unbalanced instance is a barrier to algorithms for the stochastic block model. Our

second observation is that there must exist a size-gap between different clusters, which allows us to filter out

the small size clusters. The remaining large clusters are again nearly-balanced (with different balance ratio),

which can be clustered as before. Concretely, let s1 ≥ · · · ≥ sk be the size of each cluster. If sk < bn
k , we

show there is a µ > 0 and h ∈ [k] such that,

s1 ≥ · · · ≥ sh ≥ µ · n > (µ− b · k−2) · n ≥ sh+1 · · · ≥ sk.

5

Notice that for every i ≤ h and v ∈ Vi, the expectation of the degree of v in the random graph G is

E
G
[|{u : (u, v) ∈ E(G)}|] =

(

1

2
+

δ

2

)

|Vi|+
(

1

2
− δ

2

)

(n− |Vi|) ≥
(

1

2
− δ

2

)

n+ δµn

On the other hand, for each i′ > h and v′ ∈ Vi′ , the expectation of degree of v is

E
G

[

|{u : (u, v′) ∈ E(G)}|
]

=

(

1

2
+

δ

2

)

|Vi|+
(

1

2
− δ

2

)

(n− |Vi|) ≤
(

1

2
− δ

2

)

n+ δµn− δ · b · k2n

Therefore, there is a δ · b · k2n gap between large clusters and small clusters (in expectation). It is easy to

show that the gap also exists with high probability by applying the standard concentration bound.

Now if we sample a subset T of size at least Ω(k
4 logn
δ2

), then we can guarantee that with high probability,

for all vertices in large clusters Vi (i ≤ h), they have degree larger than some threshold dh in HT , while

for all vertices in small clusters Vi (i > h), they have degree smaller than dh in HT . In this way, we

can filter out all vertices in T that belong to small clusters and let the remaining vertex set be T ′ and the

corresponding subgraph be HT ′ . Then we can run Vu’s algorithm on HT ′ to identify all the sub-clusters

in T ′ that corresponding to large clusters in G. However, there is one subtle issue in the above approach,

that is, we do not know the index h that corresponds to the size-gap. To resolve this issue, we simply try

all possible candidates h: for each h ∈ [k], we pretend that h is the index corresponding to the size-gap of

the clusters. Then we use h to obtain a filtered subgraph HT ′ and invoke Vu’s algorithm on HT ′ to find h
sets X1, . . . ,Xh. Now we give a simple algorithm to test if h is the ‘right’ index, by testing if all sets Xi

are biased towards some true cluster C or not, i.e., if the the majority of Xi belong to C . We can show that

if for an index h, all the sets X1, . . . ,Xh pass the bias testing, then we can still use each Xi to grow the

cluster. Finally, if h is the index that corresponds to size-gap, then it will pass the test with high probability

by the previous argument, which ensures that we can always find some clusters in this way. We give details

in Section 4.

1.3 Towards optimal dependency on the number of clusters

As mentioned before, our algorithm (in Theorem 3) for clustering nearly-balanced instances makes O(k ·
n log n/δ2+k4 log2 n/δ4) queries, which is in comparison to the known lower bound Ω(k·n/δ2) [Mazumdar and Saha,

2017a]. There exists evidence indicating that our query complexity might be almost optimal, in particular,

improving the factor k4 in the second term of the query complexity seems difficult when k is large.

Several papers [Decelle et al., 2011, Chen et al., 2014b] suggested that, using non-rigorous but deep

arguments from statistical physics, efficiently recovering the clusters in SBM(N, p, q, δ) is impossible if
p−q√

p = o(
√
N
s), where s is the size of minimum cluster. Translating it to our case with N = n, p = 1

2 + δ
2 ,

q = 1
2 − δ

2 and s = Ω(nk), it suggests that even if we query the whole graph (i.e., with Θ(n2) queries),

it is impossible to recover the clusters if k = ω(δ
√
n). On the other hand, suppose that there exists a

polynomial time algorithm B that solves our problem with query complexity O(kn/δ2 + k4−ε/δ4) for any

constant ε > 0, then it can recover the clusters in the corresponding SBM model by querying o(n2) pairs,

for k = δn
1

2
+ ε

10 = ω(δ
√
n), which seems impossible by the aforementioned evidence.

It will be very interesting to formally prove that the query complexity O(k · n log n/δ2 + k4 log2 n/δ4)
of the algorithm in Theorem 3 is almost optimal (up to a log2 n factor) for any polynomial time algorithm,

by assuming some standard hardness assumptions (e.g. finding a random clique is hard) in complexity

theory. In fact, Mazumdar and Saha [Mazumdar and Saha, 2017a] also pointed it is impossible to push their

query-optimal algorithm to be efficient unless there is an efficient algorithm finding hidden clique in random

graphs .

6

2 Two Subroutines

We now introduce two subroutines, which will be used in our clustering algorithms later.

2.1 An algorithm for nearly balanced clustering in stochastic block model

For convenience of notation, we introduce the following. Fix any k clusters V1, . . . , Vk and a bias parameter

δ ∈ [0, 1). The distribution D(V1, . . . , Vk, δ) samples a random graph as follows: for any two vertices u and

v, we add an edge between them with probability (1/2+ δ/2) if u and v come from the same cluster Vi, and

add an edge between them with probability (1/2 − δ/2) otherwise. The goal of the clustering algorithm is

to recover the clusters V1, . . . , Vk though a random graph G ∼ D(V1, . . . , Vk, δ).
We first note that the following result was implicitly shown in Vu [2018].

Theorem 4 (Vu [2018]). Let δ ∈ [0, 12] and G ∼ D(V1, . . . , Vk, δ). Let n = |V1| + · · · + |Vk|. Suppose

that the partition V1, . . . , Vk is b-balanced for some b ∈ (0, 1]. Then there exists an algorithm, denoted by

BALPARTITION(G, k, δ, b), that recovers all the clusters V1, . . . , Vk of G in polynomial time with probability

at least 1− n−8, if the following condition holds,

n ≥ c0
k2

b2δ2
log n,

where c0 > 1000 is some universal constant.

This theorem is slightly different from the original version of Vu [2018], and we present an explanation

in Appendix B.1.

2.2 Growing a cluster from a biased set

All our algorithms will make use of a subroutine (Algorithm 1) for classifying vertices in V with the help

of a biased set B, of which the majority belong to the same cluster. More formally, we give the following

definition.

Definition 5. Let η ∈ [0, 12]. Let C be a true cluster, i.e., C = Vi for some i ∈ [k]. A set of vertices B is

called (η,C)-biased if |B ∩ C| ≥ (1/2 + η) · |B|.

Note that if η = 1
2 , then all the vertices in set B are contained in C , i.e., B ⊆ C . In this case, we all B a

sub-cluster of C . We now describe this subroutine and state its performance guarantee.

Algorithm 1 BELONGTOCLUSTER(v,B): test if v belongs to a cluster C , given a (η,C)-biased set B

1: Query all pairs v,w for w ∈ B and let cnt be the number of + answers

2: if cnt ≥ |B|
2 then

3: return Yes

4: else

5: return No

6: end if

Lemma 6. Let B be a set that is (η,C)-biased and have size at least
16 logn
η2δ2

. Then with probability at least

1− n−7,

7

• for all vertices v ∈ C , BELONGTOCLUSTER(v,B) returns Yes;

• for all vertices v ∈ V \ C , BELONGTOCLUSTER(v,B) returns No.

Note that the above lemma says that by invoking BELONGTOCLUSTER(v,B) for any v ∈ V , we can

identify all the cluster members in C with high probability.

Proof of Lemma 6. Let v be an arbitrary vertex. Let Bv denote the subset of vertices of B that belong to the

same cluster as v. Query all the edges between v and B. Then the expected number of ‘+’ neighbors of v is

(

1

2
+

δ

2

)

|Bv|+
(

1

2
− δ

2

)

|B \Bv| =
(

1

2
− δ

2

)

|B|+ δ|Bv |

Let λ = ηδ|B|
2 . Note that λ2/|B| ≥ 4 log n as |B| ≥ 16 logn

η2δ2 . Recall that B is (η,C)-biased for some

constant η and cluster C . We consider two cases.

• If v ∈ C , then |Bv| ≥ (12 + η)|B| and the expected number of ‘+’ neighbors of v is at least

(

1

2
− δ

2

)

|B|+
(

1

2
+ η

)

δ|B| =
(

1

2
+ ηδ

)

|B|

By Chernoff–Hoeffding bound (see Theorem 13), with probability at least 1− e−2λ2/|B| ≥ 1− n−8,

the number of ‘+’ neighbors of v is at least

(

1

2
+ ηδ

)

|B| − λ =

(

1

2
+

1

2
ηδ

)

|B| > 1

2
|B| (1)

• if v ∈ C ′ for some cluster C ′ 6= C , then |Bv| ≤
(

1
2 − η

)

|B|, the expected number of ‘+’ neighbors

of v is at most
(

1

2
− δ

)

|B|+
(

1

2
− η

)

δ|B| =
(

1

2
− ηδ

)

|B|

By Chernoff–Hoeffding bound, with probability at least 1− e−2λ2/|B| ≥ 1− n−8, the number of ‘+’

neighbors of v is at most

(

1

2
− ηδ

)

|B|+ λ =

(

1

2
− 1

2
δη

)

|B| < 1

2
|B|

Therefore, with probability at least 1− n−7, for each vertex v ∈ V , it holds that

• if v ∈ C , then the number of + neighbors is at least 1
2 |B|, and BELONGTOCLUSTER(v, B) returns

Yes; and

• if v /∈ C , then the number of + neighbors is less than 1
2 |B|, and BELONGTOCLUSTER(v,B) returns

No.

8

3 Clustering Nearly-Balanced Instances

In this section, we give our algorithm for clustering b-balanced instances, for any b ∈ (0, 1]. It simply first

invokes the following Algorithm 2 and then Algorithm 3. It is built on the two subroutines BALPARTITION

and BELONGTOCLUSTER introduced in Section 2.

Algorithm 2 BALANCEDCLUSTERING(V, k, δ, b): clustering for a b-balanced instance

1: Let n = |V |, b′ = b/2 and c0 be the constant from Theorem 4

2: Randomly sample a subset T ⊂ V of size |T | = 400c0k2 logn
b2δ2

3: Query all pairs u, v ∈ T and let HT be graph on vertex set T with only positive edges from the query

answers

4: Apply BALPARTITION(HT , k, δ, b
′) to obtain clusters X1, . . . ,Xk

Algorithm 3 GLOBALGROW(V,X1, . . . ,Xk): from sub-clusters to clusters

1: Let U = V and n = |V |
2: For each 1 ≤ i ≤ k, find an arbitrary subset X ′

i ⊆ Xi of size 1600 logn
δ2

3: for each i ∈ [k] do

4: let Ci := {v ∈ U : BELONGTOCLUSTER(v,X ′
i) returns Yes}

5: update U ← U \ Ci

6: end for

7: return C1, · · · , Ck

Now we provide the analysis of this algorithm, i.e., prove Theorem 3. In the following, we let T denote

the sample set from BALANCEDCLUSTERING(V, k, δ, b). For each i ∈ [k], let Ti = T ∩ Vi be the sub-

clusters. We first show that, with high probability, the clusters T1, . . . , Tk are balanced.

Lemma 7. Let V1, . . . , Vk be a family of b-balanced clusters. Then with probability at least 1 − n−7,

T1, . . . , Tk is b′-balanced.

Proof. Since V1, . . . , Vk is a family of b-balanced clusters, we have that E[|Vi ∩ T |] ≥ b · |T |/k. Notice

that T is a uniform random subset. By the Chernoff bound, for each i, with probability at least 1 − n−8,

|Ti| ≥ b′ · |T |/k. The claim then follows by the union bound.

Now we may assume that (T1, . . . , Tk) is b′-balanced. Since the size of T is large, i.e., |T | = 400c0k2 logn
b2δ2 =

100·c0·k2 logn
b′2δ2

, we are able to recover the clusters in T by Theorem 4.

Lemma 8. Suppose that the partition T1, . . . , Tk of the sampled set T is b′-balanced. Let X1, . . . ,Xk be

the output sets of BALANCEDCLUSTERING(V, k, δ, b). Then

Pr[X1, . . . ,Xk is not a correct clustering of HT] ≤ |T |−8

Proof. Note that by our choice of |T | and that b′ = b
2 , we have |T | ≥ c0

k2

b′2δ2 log n. Then the correctness of

Lemma 8 simply follows by Theorem 4.

Now we are ready to prove Theorem 3.

9

Proof of Theorem 3. By Lemma 8, the output X1, . . . ,Xk is a correct clustering of HT , with probability

1−on(1). Conditioned on this, we know that each Xi is (12 , C)-biased for some cluster C . This also implies

that each X ′
i ⊆ Xi is (12 , C)-biased. Thus, by invoking BELONGTOCLUSTER(v,X ′

i) for all v ∈ V and

i ≤ k and by Lemma 6 with η = 0.1 < 1
2 , we can guarantee that the output C1, . . . , Ck of GLOBAL-

GROW(V,X1, . . . ,Xk) is a correct clustering with probability 1−Θ(|T |−8) = 1− on(1).
Note that we query all the pairs u, v ∈ T , which corresponds to |T |2 queries. Note further that there are

at most k clusters, each of which grows from a sub-cluster of size Θ(logn
δ2

). In total, the query complexity of

Algorithm 2 and 3 is upper bounded by O(|T |2 + k logn
δ2
·n) = O(k4 · log2 n/(b4δ4)+nk · log n/δ2). Since

the running time of BALPARTITION is polynomial in |T |, k, δ, b and the running time for growing each of

the clusters is linear in n, the total running time of our algorithm is polynomial (in n, k, δ, b).

4 Clustering the General Instances

In the section, we give our algorithm for the general instances.

4.1 Existence of size-gap in unbalanced instances

We first focus on the unbalanced case, that is, the underlying clustering is not b-balanced, i.e., the size of

the minimum cluster is less than bn
k . Let V1, . . . , Vk be a family of clusters, and let s1, . . . , sk be the size of

each cluster respectively. Without loss of generality, we assume that s1 ≥ · · · ≥ sk. A useful observation

is the following size-gap lemma. Roughly speaking, for any unbalanced clusters, there a threshold which

separates large and small clusters.

Lemma 9 (size-gap). Let b ∈ [0, 12]. If sk < bn
k , then there exists h < k such that

• sh ≥ n
k − h·b·n

k2
, and sh+1 <

n
k −

(h+1)·b·n
k2

.

Hence the gap between sh and sh+1 is at least bn
k2

.

Proof. Note that by averaging argument, it holds that s1 ≥ n−sk
k−1 ≥

(1−b/k)n
k−1 > (1−b/k)n

k = n
k − bn

k2
. This

implies that the subset I ⊆ [k] of indices i with si ≥ n
k − i·bn

k2 is not empty. Let h be the largest i in the

set I . Furthermore, since sk < bn
k ≤

(1−b)n
k = n

k − k·bn
k2

for any b ≤ 1
2 , it must hold that k /∈ I and thus

h ≤ k − 1. The statement of the lemma then follows from the choice of h.

4.2 Recovering sub-clusters from the sampled subgraph with known gap

From Lemma 9, we know that in the unbalanced case, there is a size-gap between two clusters Vh and Vh+1,

for some index h ≤ k − 1. In the following, we first present an algorithm under the assumption that the

index h is known. Later, we show how to use this algorithm to deal with the general case.

10

Algorithm 4 GAPCLUSTERING(V, h, δ, b): clustering with known size-gap

1: Let n = |V | and sample a set T ⊂ U of size t = 8c0k4 logn
b2·δ2

2: Query all pairs u, v ∈ T
3: Let HT = (T,ET) be graph on vertex set T with only positive edges from the query answers

4: Remove all vertices in HT with degree less than dh := t
2 −

(

1
2 − 1

k + (h+1/2)b
k2

)

δt

5: Let T ′ be the set of remaining vertices and let the resulting graph be HT ′

6: Apply BALPARTITION(HT ′ , k, δ, b′′ := h
2k) to find clusters X1, . . . ,Xh

The crucial idea of the above algorithm is that we are able to show the Step 4 of Algorithm 4 removes

all vertices sampled from small clusters in T . Hence the remaining graph T ′ becomes a nearly-balanced

clustering instance, in which the sub-clusters correspond to large clusters V1, . . . , Vh. We have the following

lemma regarding this algorithm.

Lemma 10. Let b ∈ [0, 12]. Suppose that sh ≥ n
k − h·b·n

k2
, and sh+1 <

n
k −

(h+1)·b·n
k2

. Then with probability

1 − O(k−24 log−8 n), the algorithm GAPCLUSTERING(V, h, δ, b) successfully recover all the sub-clusters

from the sampled set T , which correspond to true clusters V1, . . . , Vh.

Proof. Let Ti = Vi ∩ T , where T is the sample set with t vertices from the algorithm. Let λ1 = bt
4k2 . Note

that λ2
1/t ≥ 4 log n by our setting t = 8c0k4 logn

b2δ2
.

We first note that (over the randomness of sampling the vertex set T)

• for any i ≤ h, it holds that E[|Ti|] ≥ (1k − hb
k2
)t. Thus, by Chernoff–Hoeffding bound (Theorem 13),

with probability at least 1− e−2λ2

1
/t ≥ 1− n−8,

|Ti| ≥
(

1

k
− hb

k2

)

t− λ1 =

(

1

k
− (h+ 1/4)b

k2

)

t (2)

• for any i > h, it holds that E[|Ti|] < (1k −
(h+1)b

k2
)t = (1k − hb

k2
)t− bt

k2
. Thus, with probability at least

1− e−2λ2

1
/t ≥ 1− n−8,

|Ti| <
(

1

k
− hb

k2

)

t− bt

k2
+ λ1 ≤

(

1

k
− (h+ 3/4)b

k2

)

t (3)

In the following, we assume the inequalities (2) and (3) hold for all i ≤ k, which occur with probability at

least 1− n−7 by the union bound.

Now we analyze the vertex degrees of vertices in the queried graph HT . We first note that for any v ∈ Ti,

its expected degree is

(

1

2
+

δ

2

)

|Ti|+
(

1

2
− δ

2

)

|T \ Ti| =
(

1

2
− δ

2

)

|T |+ δ|Ti|

Let λ2 =
btδ
4k2

. Note that λ2
1/t ≥ 4 log n by our setting. Now we have that

• for any i ≤ h and vertex v ∈ Ti, then its expected degree is at least

(

1

2
− δ

2

)

t+ δbh ≥
(

1

2
− δ

2

)

t+ δ ·
(

1

k
− (h+ 1/4)b

k2

)

t.

11

Thus, over the randomness of querying the oracle regarding vertices in T , with probability at least

1− e−2λ2

2
/t ≥ 1− n−8, the degree of v is at least

(

1

2
− δ

2

)

t+ δ ·
(

1

k
− (h+ 1/4)b

k2

)

t− λ2 =

(

1

2
− δ

2

)

t+ δ ·
(

1

k
− (h+ 1/2)b

k2

)

t

• for any i > h and vertex v ∈ Ti, its expected degree is less than

(

1

2
− δ

2

)

t+ δ|Ti| ≤
(

1

2
− δ

2

)

t+ δ ·
(

1

k
− (h+ 3/4)b

k2

)

t

Thus, with probability at least 1− e−2λ2

2
/t ≥ 1− n−8, the degree of v is less than

(

1

2
− δ

2

)

t+ δ ·
(

1

k
− (h+ 3/4)b

k2

)

t+ λ2 =

(

1

2
− δ

2

)

t+ δ ·
(

1

k
− (h+ 1/2)b

k2

)

t

Let dh := (12 − δ
2)t + δ ·

(

1
k −

(h+1/2)b
k2

)

t = t
2 −

(

1
2 − 1

k + (h+1/2)b
k2

)

δt. That is, with probability at

least 1−n−7, all vertices in T1, . . . , Th have degree at least dh, and all vertices in Th+1, . . . , Tk have degree

less than dh. Then by the description of the algorithm, T ′ = ∪i≤hTi.

Now we note that HT ′ ∼ D(T1, . . . , Th, δ), and that the number of clusters in HT ′ is h. Now we apply

BALPARTITION(HT ′ , h, δ, b′′) on HT ′ . Recall that we have chosen t = 8c0k4 logn
b2δ2 . Note that we only need

to consider the case that t ≤ n (as otherwise, we can simply query the whole graph). Now we note that

t ≥ |T ′| ≥
h
∑

i=1

|Ti| ≥ h ·
(

1

k
− (h+ 1/4)b

k2

)

t ≥ ht

2k

Furthermore, we know for each i ≤ h,

|Ti| ≥
(

1

k
− (h+ 1/4)b

k2

)

t ≥ t

2k
≥ |T

′|
2k

=
h

2k
· |T

′|
h

.

Thus, if we set b′′ = h
2k , then the partition T1, · · · , Th is b′′-balanced. Note that |T ′| ≥ ht

2k ≥
4c0k3 logn

b2δ2
.

Thus,

log |T ′| ≤ log t ≤ log n

|T ′|
log |T ′| ≥

4c0k
2

h2
· h

2

δ2
· log n
log t

≥ c0
b′′2
· h

2

δ2

Thus by Theorem 4, the algorithm BALPARTITION(HT ′ , h, δ, b′′) successfully recover all the clusters T1, . . . , Th

with probability at least 1− |T ′|−8 ≥ 1−O((bδ)16k−24 log−8 n).

4.3 Finding a good index h

In the previous section, we presented an algorithm for finding clusters assuming that the index h that corre-

sponds to the size-gap is known, and we have shown that the algorithm GAPCLUSTERING(V, h, δ, b) outputs

h sub-clusters from the sampled set T . However, in the general case, we do not know this index h. To handle

12

this issue, we enumerate all possible candidates h for 1 ≤ h ≤ k, and use a subroutine to test if the current

candidate h is ‘right’ or not, which in turn makes use of a procedure for testing the bias of a given set.

We first describe the algorithm for testing the bias of a set. Its performance is guaranteed in Lemma 11.

Algorithm 5 TESTBIAS(n,B, η): test if a set B is (η,C)-biased for some cluster C

1: for i = 1, · · · , 16k·lognb do

2: Randomly sample a vertex vi and query all the pairs vi, u for u ∈ B
3: if the number of ‘+’ neigbhors of vi in B is at least (12 + 1

2ηδ)|B| then

4: return Yes

5: end if

6: end for

7: return No

Lemma 11. Let B be a vertex set of size at least
64 logn
η2δ2

. There exists one algorithm TESTBIAS(n,B, η)

that with probability at least 1− n−7,

• accepts B, if B is (η,C)-biased for some cluster C of size at least bn
k , i.e., |B ∩C| ≥ (1/2 + η) · |B|

• rejects B, if B is not (η4 , C)-biased for any C , i.e., for any C , |B ∩ C| < (1/2 + η
4) · |B|.

Proof. We first consider the case that B is (η,C)-biased for some cluster C of size at least bn
k . Note that

with probability at least 1− n−8, one of the sampled 16k logn
b vertices will belong to C , as |C| ≥ bn

k .

Furthermore, by the same calculations as the inequality (1) in the proof of Lemma 6, we know that with

high probability, the + neighbors of v is at least (12 + 1
2ηδ)|B|, then TESTBIAS(n,B, η) will return Yes.

Now suppose that B is not (η4 , C)-biased for any C . For any vertex v ∈ V , let Bv be the set of vertices

in B in the same cluster as v. Then |Bv| < (12 + η
4)|B|. The expected number of ‘+’ neighbors of v is

(

1

2
− δ

2

)

|B|+ δ|Bv | ≤
(

1

2
− δ

2

)

|B|+ δ

(

1

2
+

η

4

)

|B| =
(

1

2
+

ηδ

4

)

|B|

Let λ = ηδ|B|
4 . Note that λ2/|B| ≥ 4 log n as |B| ≥ 64 logn

η2δ2
. By Chernoff–Hoeffding bound, with probabil-

ity at least 1−e−2t2/|B| ≥ 1−n−8, the number of + neighbors of v is less than (12+
ηδ
4)|B|+λ = (12+

ηδ
2)|B|.

In this case, the TESTBIAS(n,B, η) will return No.

Now we describe our idea for finding a good index h and the corresponding sub-clusters. For each

h ∈ [k], we first “pretend” that the gap is h, and invoke GAPCLUSTERING(V, h, δ, b) to find h different

sets X1, · · · ,Xh (or invoke BALANCEDCLUSTERING(V, h, δ, b) if h = k). Then we select sufficiently

large subsets X ′
i ⊂ Xi, 1 ≤ i ≤ h, and test if all of the sets X ′

i are sub-clusters by invoking a subroutine

TESTBIAS(n,X ′
i , η). If so, we say the corresponding index h is accepted, and the algorithm outputs the sets

X ′
1, . . . ,X

′
h.

13

Algorithm 6 ENUMERATEINDEX(V, k, δ, b, η): find a good index h and the corresponding sub-clusters

1: Let n = |V |
2: for h = k, . . . , 1 do

3: if h == k then

4: Invoke BALANCEDCLUSTERING(V, h, δ, b) to find h clusters X1, . . . ,Xh

5: else

6: Invoke GAPCLUSTERING(V, h, δ, b) to find h clusters X1, . . . ,Xh

7: end if

8: For each i ≤ h, let X ′
j be an arbitrary subset of Xj of size 256 logn

η2δ2

9: if for all i ≤ h, TESTBIAS(n,X ′
i , η) returns Yes then

10: return X ′
1, . . . ,X

′
h

11: end if

12: end for

13: return Fail.

We have the following lemma regarding the performance guarantee of the above algorithm.

Lemma 12. Let η2/b ≥ 64/c0, where c0 is the constant from Theorem 4. It holds that with probability at

least 1− n−6,

• there exists an index h ∈ [k] such that ENUMERATEINDEX(V, k, δ, b, η) will output h sets X ′
1, . . . ,X

′
h;

• if X ′
1, . . . ,X

′
h are the sets output by ENUMERATEINDEX(V, k, δ, b, η), then each of them is (η/4, C)-

biased for some cluster C .

Proof. If the instance is b-balanced, then we let h = k, and by Lemma 8, BALANCEDCLUSTERING(V, h, δ, b)
outputs all the sub-clusters X1, . . . ,Xh from the sample set T . If the instance is not b-balanced, then by

Lemma 10, there exists an index h ∈ [1, k − 1] that corresponds to size-gap, and thus all the output sets

Xi by GAPCLUSTERING(V, h, δ, b) are sub-clusters. In both cases, we know that Xi’s are (12 , C)-biased

for some cluster C . Now by the previous argument, we can guarantee that each of the set Xi has size at

least 200c0k logn
bδ2

(in case that h = k) or 4c0k3 logn
b2δ2

(in case that h ≤ k − 1), and thus larger than 256 logn
η2δ2

,

as η2/b ≥ 64/c0 by assumption. Therefore, we can find subsets X ′
i, 1 ≤ i ≤ h of size 256 logn

η2
that are

(12 , C)-biased for some cluster C . Thus, by Lemma 11, for all i ≤ h, TESTBIAS(n,X ′
i , η) will be accepted

with high probability.

Now we prove the second item of the lemma. Let h be an index such that 1 ≤ h ≤ k. Let X ′
1, . . . ,X

′
h

be the sets corresponding to Step 8 of the algorithm ENUMERATEINDEX. Let Eh denote the event that there

exists one of the sets X ′
i , 1 ≤ i ≤ h is not (η4 , C)-biased for any C . For any h such that Eh holds, we know

that with probability at least 1 − n−7, one of tests TESTBIAS(n,X ′
i , η) will return No and thus h will not

be accepted. Therefore, we can assume that for any h ≤ k such that Eh holds, h will be rejected, which

happens with probability at least 1−n−6. Furthermore, under this assumption, we have that if h is accepted,

then Eh does not hold, i.e., all the sets X ′
i , 1 ≤ i ≤ h are (η4 , C)-biased for some cluster C .

4.4 The final algorithm

Our algorithm is outlined as follows.

• Initialize U = V and suppose the number of clusters in the current graph G[U] is kc, which equals k
at very beginning. Repeat the following until U has small enough size or kc ≤ 1.

14

– Use ENUMERATEINDEX(U, kc , δ, b, η) to find h sets X ′
1, . . . ,X

′
h, for some h ≤ kc.

– Grow the found sets X ′
1, . . . ,X

′
h to find the clusters C1, . . . , Ch .

– Update kc to be kc − h, and remove all the clustered vertices from U .

• Output all the found clusters Ci’s.

The psuedocode of the algorithm is as follows.

Algorithm 7 NOISYCLUSTERING(V, k, δ): the final clustering algorithm

1: Let U = V ; let kc = k be the number of clusters in current graph; let j = 0 be the number of clusters

found so far; let c0 be the universal constant from Theorem 4; let b = η = 0.1

2: while |U | ≥ 40000c0k4 logn
δ2 and kc ≥ 2 do

3: Invoke ENUMERATEINDEX(U, kc , δ, b, η) and let X ′
1, . . . ,X

′
h denote the output h sets.

4: for each i ∈ [h] do

5: Cj+i ← {v ∈ U : BELONGTOCLUSTER(v,X ′
i) returns Yes}

6: U ← U \ Cj+i

7: end for

8: j ← j + h
9: kc ← kc − h

10: end while

11: return all the clusters Ci’s

Proof of Theorem 1. Since we have set b = η = 0.1, it holds that η2/b ≥ 64/c0 as c0 ≥ 1000 by Theorem

4. By Lemma 12, we know Algorithm 7 will output X ′
1, . . . ,X

′
h for some h ≤ kc, and each of these sets is

(η4 , C)-biased for some cluster C . Then by Lemma 6, we can grow each X ′
i to get the true cluster C . Note

that at least one cluster will be found in each iteration, and the error probability in each iteration is at most

on(1)/k (by Lemma 8 and 10). The final algorithm thus succeeds with probability 1− on(1) as there are at

most k iterations. The correctness of the algorithm then follows from the fact that the algorithm stops when

all the k clusters have been identified or the size of the remaining graph becomes smaller than 40000c0k4 logn
δ2

.

Now we bound the query complexity of the algorithm. Note that there are at most k iterations. In

each iteration, we invoke ENUMERATEINDEX to try all k possible values of h. For each h, we will sample

at most t = 400c0k4 logn
b2δ2 = 40000c0k4 logn

δ2 vertices and query the induced subgraph by making t2 queries

for finding biased sets. To test the bias of each candidate set X ′
i (i.e., invoke TESTBIAS(n,X ′

i , η)), we

only need to sample Θ(k logn
b) vertices and make O(k logn

b · lognη2δ2) queries. For the accepted index h, i.e.,

ENUMERATEINDEX outputs h sets X1, . . . ,XH , we will make use of the subsets X ′
1, . . . ,X

′
h to grow the

clusters, and growing any set X ′
i to the true cluster requires at most 256 logn

η2δ2 n queries. Finally, we note that

there can be at most k subsets X ′
i throughout the whole procedure that we will use to grow the clusters.

Thus, the total query complexity is O(k2t2 + kn log n/δ2) = O(k
10 log2 n

δ4
+ nk logn

δ2
).

Regarding the running time, we let T (t, k, δ) = poly(t, k, 1/δ) denote the running time of BALPARTI-

TION (in Theorem 4) on a set of size t. The running time for TESTBIAS(n, Ti , η) is proportional to the size

Ti and the running time of using BELONGTOCLUSTER to identify each cluster is at most tn. Thus, the total

running time is O(k2T (t, k, δ) + kn log n/δ2) = O((k logn
δ)C + nk logn

δ2), for some constant C > 0.

15

References

Emmanuel Abbe. Community detection and stochastic block models: recent developments. The Journal of

Machine Learning Research, 18(1):6446–6531, 2017.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56(1-3):89–113,

2004.

Michael J Brzozowski, Tad Hogg, and Gabor Szabo. Friends and foes: ideological social networking. In

Proceedings of the SIGCHI conference on human factors in computing systems, pages 817–820, 2008.

Moira Burke and Robert Kraut. Mopping up: modeling wikipedia promotion decisions. In Proceedings of

the 2008 ACM conference on Computer supported cooperative work, pages 27–36, 2008.

Nicolo Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. A correlation clustering ap-

proach to link classification in signed networks. In Conference on Learning Theory, pages 34–1. JMLR

Workshop and Conference Proceedings, 2012.

Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering partially observed graphs via convex

optimization. The Journal of Machine Learning Research, 15(1):2213–2238, 2014a.

Yudong Chen, Sujay Sanghavi, and Huan Xu. Improved graph clustering. IEEE Transactions on Information

Theory, 60(10):6440–6455, 2014b.

Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vibhor Rastogi. Aggregating crowdsourced binary rat-

ings. In Proceedings of the 22nd international conference on World Wide Web, pages 285–294, 2013.

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic analysis of the

stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6):

066106, 2011.

Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomized

algorithms. Cambridge University Press, 2009.

Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the American Statistical Associa-

tion, 64(328):1183–1210, 1969.

Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan Rampalli, Jude Shavlik, and

Xiaojin Zhu. Corleone: hands-off crowdsourcing for entity matching. In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pages 601–612, 2014.

Sally A Goldman, Michael J Kearns, and Robert E Schapire. Exact identification of circuits using fixed

points of amplification functions. In Proceedings [1990] 31st Annual Symposium on Foundations of

Computer Science, pages 193–202. IEEE, 1990.

David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing systems. In

Advances in neural information processing systems, pages 1953–1961, 2011.

Kasper Green Larsen, Michael Mitzenmacher, and Charalampos Tsourakakis. Clustering with a faulty

oracle. In Proceedings of The Web Conference 2020, pages 2831–2834, 2020.

16

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in online

social networks. In Proceedings of the 19th international conference on World wide web, pages 641–650,

2010.

Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In Proceedings of the twenty-

first annual ACM-SIAM symposium on Discrete Algorithms, pages 712–728. SIAM, 2010.

Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Advances in Neural Information Pro-

cessing Systems, pages 5788–5799, 2017a.

Arya Mazumdar and Barna Saha. A theoretical analysis of first heuristics of crowdsourced entity resolution.

In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pages 970–976, 2017b.

Frank McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE Symposium on Foun-

dations of Computer Science, pages 529–537. IEEE, 2001.

Michael Mitzenmacher and Charalampos E Tsourakakis. Predicting signed edges with o(n1+o(1) log n
queries. arXiv preprint arXiv:1609.00750, 2016.

Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. Crowdsourcing algorithms for entity resolution. Pro-

ceedings of the VLDB Endowment, 7(12):1071–1082, 2014.

Van Vu. A simple svd algorithm for finding hidden partitions. Combinatorics, Probability and Computing,

27(1):124–140, 2018.

Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crowder: crowdsourcing entity resolu-

tion. Proceedings of the VLDB Endowment, 5(11):1483–1494, 2012.

Appendix

A Preliminaries

We will make use of the following Chernoff–Hoeffding bound (see Theorem 1.1 in Dubhashi and Panconesi

[2009]).

Theorem 13 (The Chernoff–Hoeffding bound). Let t ≥ 1. Let X :=
∑

1≤i≤tXi, where Xi, 1 ≤ i ≤ t, are

independently distributed in [0, 1]. Then for all λ > 0,

Pr[X > E[X] + λ],Pr[X < E[X]− λ] ≤ e−2λ2/t.

B Deferred Proofs from Section 2

B.1 Proof of Theorem 4

We use G ∼ SBM(N, k, p, q) to denote that the graph G is generated from the SBM(N, k, p, q) model. Let

Cu be the cluster that contains u, for any u ∈ V . The following was shown by Vu [2018].

17

Theorem 14 (Theorem 1.2 in Vu [2018]). Let G ∼ SBM(N, k, p, q). Let s be the size of the minimum cluster.

There exists a universal constant c1 > 20 such that the following holds. Assume that

σ :=
√

max{p(1 − p), q(1− q)} ≥ c1 logN/N, s ≥ c1 logN, and k = o((N/ logN)1/2).

Suppose further that for any u, v that belong to two different clusters

√

|Cu|+ |Cv|(p− q) ≥ c1

(

σ

√

N

s
+
√

logN

)

.

Then there exists a polynomial time algorithm A that recovers all the clusters V1, · · · , Vk of G, with proba-

bility at least 1−N−8.

Now we show that Theorem 4 can be derived the above theorem.

of Theorem 4. Note that to recover the clusters of G ∼ D(V1, . . . , Vk, δ), it suffices to consider the SBM(N, k, p, q)

model with N = n, k and p = 1
2 + δ

2 and q = 1
2 − δ

2 . Furthermore, since the corresponding partition is

b-balanced, the size of the smallest cluster is s ≥ bn
k . Let c0 = 8c21, where c1 is the universal constant from

Theorem 14.

Now we claim that the precondition of Theorem 14 is satisfied. By the assumption that n ≥ c0(k
2 log n)/(b2δ2),

it hols that k = o((N/ logN)1/2) and s ≥ bN
k ≥ c1 logN . Note further that

σ =

√

(
1

2
+

δ

2
)(
1

2
− δ

2
) =

√

1

4
− δ2

4
∈ [

√
3

4
,
1

2
] =⇒ σ ≥ c1 logN/N

where we used the assumption that δ ≤ 1
2 and that n is sufficiently large.

Furthermore, for any two different clusters, we have |Cu|+ |Cv| ≥ 2bn
k . Note that

p− q = δ, =⇒
√

|Cu|+ |Cv|(p − q) ≥ δ

√

2bn

k
,

√

N

s
≤
√

k

b
,

√

logN =
√

log n =⇒ σ

√

N

s
+
√

logN ≤ 1

2

√

k

b
+
√

log n

Then by the precondition that

n ≥ c0
k2

b2δ2
log n ≥ c21

(

k2

4b2δ2
+

k log n

bδ2

)

we have that

δ2
2bn

k
≥ 2c21(

k

4b
+ log n) =⇒ δ

√

2bn

k
≥ c1

(

1

2

√

k

b
+
√

log n

)

,

where we used the inequality 2x2 + 2y2 ≥ (x+ y)2. Thus,

√

|Cu|+ |Cv|(p− q) ≥ c1

(

σ

√

N

s
+
√

logN

)

.

Therefore, by Theorem 14, with probability at least 1− n−8, we can recover all the clusters V1, . . . , Vk

in polynomial time.

18

	1 Introduction
	1.1 Our results
	1.2 Discussion of previous approaches and an overview of our algorithms
	1.3 Towards optimal dependency on the number of clusters

	2 Two Subroutines
	2.1 An algorithm for nearly balanced clustering in stochastic block model
	2.2 Growing a cluster from a biased set

	3 Clustering Nearly-Balanced Instances
	4 Clustering the General Instances
	4.1 Existence of size-gap in unbalanced instances
	4.2 Recovering sub-clusters from the sampled subgraph with known gap
	4.3 Finding a good index h
	4.4 The final algorithm

	A Preliminaries
	B Deferred Proofs from Section 2
	B.1 Proof of Theorem 4

