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Abstract 20 

Background: Associative transcriptomics has been used extensively in Brassica napus to 21 

enable the rapid identification of markers correlated with traits of interest. However, within the 22 

important vegetable crop species, Brassica oleracea, the use of associative transcriptomics 23 

has been limited due to a lack of fixed genetic resources and the difficulties in generating 24 

material due to self-incompatibility. Within Brassica vegetables, the harvestable product can 25 

be vegetative or floral tissues and therefore synchronisation of the floral transition is an 26 

important goal for growers and breeders. Vernalisation is known to be a key determinant of 27 

the floral transition, yet how different vernalisation treatments influence flowering in B. 28 

oleracea is not well understood.   29 

Results: Here, we present results from phenotyping a diverse set of 69 B. oleracea 30 

accessions for heading and flowering traits under different environmental conditions. We 31 

developed a new associative transcriptomics pipeline, and inferred and validated a population 32 

structure, for the phenotyped accessions. A genome-wide association study identified 33 

miR172D as a candidate for the vernalisation response. Gene expression marker association 34 

identified variation in expression of BoFLC.C2 as a further candidate for vernalisation 35 

response. 36 

Conclusions: This study describes a new pipeline for performing associative transcriptomics 37 

studies in B. oleracea. Using flowering time as an example trait, it provides insights into the 38 

genetic basis of vernalisation response in B. oleracea through associative transcriptomics and 39 

confirms its characterisation as a complex G x E trait. Candidate leads were identified in 40 

miR172D and BoFLC.C2. These results could facilitate marker-based breeding efforts to 41 

produce B. oleracea lines with more synchronous heading dates, potentially leading to 42 

improved yields. 43 

 44 
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 49 

Introduction 50 

Ensuring synchronous transiting from the vegetative to the reproductive phase is important for 51 

maximising the harvestable produce from brassica vegetables. Many cultivated brassica 52 

vegetables arose from their native wild form B. oleracea var. oleracea [1]. Wild cabbage, B. 53 

oleracea L., is a cruciferous perennial growing naturally along the coastlines of Western 54 

Europe. From this single species, selective breeding efforts have enabled the production of 55 

the numerous subspecies we see today. The specialization of a variety of plant organs has 56 

given rise to the large diversity seen within the species. Various parts of brassicas are 57 

harvested, including leaves (e.g. leafy-kale and cabbage), stems (e.g. kohl-rabi), and 58 

inflorescences (broccoli and cauliflower). For all subspecies, the shift from the vegetative to 59 

reproductive phase is important and being able to genetically manipulate this transition will aid 60 

the development and production of synchronous brassica vegetables. 61 

Determining how both environmental and genotypic variation affect flowering time is important 62 

for unravelling the mechanisms behind this transition. For many B. oleracea varieties, a period 63 

of cold exposure, known as vernalisation, is required for the vegetative-to-floral transition to 64 

take place. This requirement for vernalisation, or lack thereof, determines whether the plant is 65 

a winter annual, perennial or biennial or whether it is rapid-cycling or a summer annual [2]. As 66 

a consequence, the response of the plant to vernalisation provides quantifiable variation that 67 



has been exploited by breeders to develop varieties with more synchronous heading. Such 68 

variation will be key for future breeding in the face of a changing climate. 69 

Genome-wide association studies (GWAS) are an effective means of identifying candidate 70 

genes for target traits from panels of genetically diverse lines [3]. GWAS has been used 71 

successfully in numerous plant species including Arabidopsis, maize, rice and Brassica  [4–72 

7]. However, its application is reliant on genomic resources which are not always available for 73 

complex polyploid crops. Associative transcriptomics uses the sequences of expressed genes 74 

(mRNAseq) aligned to a reference to identify and score molecular markers that correlate with 75 

trait data. These molecular markers represent variation in gene sequences and expression 76 

levels. Therefore, unlike traditional GWAS analysis, associative transcriptomics also enables 77 

identification of associations between traits and gene expression levels [4]. Associative 78 

transcriptomics is a robust method for identifying significant associations and is being used 79 

increasingly to identify molecular markers linked to trait-controlling loci in crops [8–11]. 80 

An important factor to account for in association studies is the genetic linkage between loci. If 81 

the frequency of association between the different alleles of a locus is higher or lower than 82 

what would be expected if the loci were independent and randomly assorted, then the loci are 83 

said to be in linkage disequilibrium (LD) [12]. LD will vary across the genome and across 84 

chromosomes and it is important to account for this in GWAS analyses. This variation in LD 85 

is due to many factors, including selection, mutation rate and genetic drift. Strong selection or 86 

admixture within a population will increase LD. Accounting for the correct population structure 87 

reduces the risk of detecting spurious associations within GWAS analyses. The population 88 

structure can be determined from unlinked markers [13]. 89 

Here, we develop and validate an associative transcriptomics pipeline for B. oleracea. A 90 

specific population structure consisting of unlinked markers was generated using SNP data 91 

from 69 lines of genetically fixed B. oleracea from the Diversity Fixed Foundation Set [14]. The 92 



pipeline was successfully used for the identification of candidate leads involved in 93 

vernalisation response, identifying a strong candidate in miR172D. 94 

 95 

Results 96 

Exposure to different environmental conditions identifies vernalisation 97 

requirements across the phenotyped accessions 98 

We selected a subset of 69 B. oleracea lines, diverse in both eco-geographic origin and crop 99 

type, from the B. oleracea Diversity Fixed Foundation Set [14]. We used these accessions to 100 

evaluate the importance of vernalisation parameters by quantifying flowering time under 101 

different conditions (vernalisation start, duration and temperature). Two key developmental 102 

stages were monitored: ‘days to buds visible’ (DTB) and ‘days to first flower’ (DTF). The 103 

variation in flowering time across the different treatments and between the different lines is 104 

shown in Fig. 1. The different vernalisation start times demonstrate that exposure to the longer, 105 

ten-week pre-vernalisation growth period (10WPG) typically results in earlier flowering, 106 

compared to the shorter, six-week pre-growth period (6WPG). The mean DTB for 6WPG was 107 

21.0 days (SD = 51.6), compared to 5.8 days (SD = 49.9) for the 10WPG (Wilcoxon Test, W 108 

= 17958, P = 0.004). Similarly, we found a significant difference in the time taken to reach DTF 109 

between the two treatment groups, with a mean of 57.9 days (SD = 55.5) following the 6WPG, 110 

in comparison to 35.9 days (SD = 53.1) following the 10WPG (Wilcoxon Test, W = 17471, P 111 

= 2.96e-05). 112 

Changes in vernalisation duration led to a significant difference in DTB, but not in DTF. 113 

Following the six-week vernalisation (6WV), the mean DTB was 9.5 days (SD = 44.5) 114 

compared to 5.8 days (SD = 46.8) after exposure to twelve-weeks of vernalisation (12WV) 115 

(Wilcoxon Test, W = 19532, P = 0.002). This difference was coupled with more synchronous 116 



heading between lines following the 12WV period. The impact of vernalisation duration on 117 

DTB varied across the population, reflecting the numerous factors that can affect DTB 118 

depending on crop type, such as stem elongation and developmental arrest. 119 

Of the three parameters we investigated, vernalisation temperature resulted in the most 120 

pronounced phenotypic differences. The 5ºC vernalisation (5 ºCV) resulted in the largest DTB 121 

(slowest overall bud development), whereas the 10ºC vernalisation (10 ºCV) treatment 122 

resulted in the largest DTF. The distribution between heading dates was distinctly different 123 

between the temperatures.  Higher vernalisation temperatures resulted in larger the variation 124 

in DTB and DTF. The more synchronous heading and flowering for the 5ºCV treatment 125 

suggests that this temperature was able to saturate the vernalisation requirement for a large 126 

proportion of the lines. After exposure to the warmer temperatures, the variation in DTB and 127 

DTF were greatly increased (Additional File 1), indicating that the cooler vernalisation 128 

temperature aided faster transitioning in some lines, but delayed the development of others. 129 

This is consistent with differences in B. oleracea crop types, for example Brussels Sprouts are 130 

known to have a strong vernalisation requirement, whereas Summer Cauliflower have been 131 

bred to produce curd rapidly without the need for cold exposure [15,16]. 132 

The effect of vernalisation temperature on the floral transition is demonstrated clearly between 133 

the Broccoli Mar DH and the Brussel Sprout Cavolo Di Bruxelles Precoce (Fig.1A), with polar 134 

responses to vernalisation temperature. Mar DH transitioned fastest under the 15 ºC 135 

vernalisation (15 ºCV) treatment, whereas Cavolo Di Bruxelles Precoce transitioned faster 136 

under the 5 ºCV treatment. Faster transitions at higher vernalisation temperatures as in the 137 

case of Mar DH, however, can lead to undesirable phenotypes from a grower’s perspective 138 

(Fig. 1B).  139 

 140 



Unlinked markers are required to generate a representative population 141 

structure 142 

GWAS requires trait, SNP and population data. The correct population structure is important 143 

for ensuring that associations are with the trait of interest rather than identified on account of 144 

relatedness within the population, in particular for panels of only one species. To generate a 145 

representative population structure, it is necessary to ensure the SNPs used are unlinked [13]. 146 

However, different criteria have been used to select these SNPs [6,17–19]. To evaluate the 147 

impact of SNP selection criteria, we generated two population structures and investigated their 148 

suitability for representing the panel.  149 

Using all markers with a minor allele frequency (MAF) larger than 0.05 [4,20,21], reduced the 150 

total number of SNPs from 110,555 to 36,631. Calculation of ΔK showed a maximum value of 151 

K=2, although a further peak in ΔK was observed at K=5 (Additional File 6A), thus identifying 152 

substructure within the population. ΔK frequently identifies K=2 as the top level of hierarchical 153 

structure, even when more subpopulations are present [21,22]. Subsequent phylogenetic 154 

analysis (Additional File 7A, 7B) identified clusters representing these sub populations. 155 

Therefore, to account for substructure within the population, the value of K=5 was used for 156 

further analysis [22,23]. A second population structure was generated using stricter 157 

parameters, requiring the markers be biallelic, MAF > 0.05, one per gene and at least 500 bp 158 

apart. A total of 664 SNPs met these requirements, resulting in the identification of four 159 

subpopulation clusters (Additional File 4).  160 

We assessed the two population structures based on crop type and phenotypic data. Using 161 

K=5, generated using the less stringent parameters, (Figs. 2A, 2C, 2E) cluster one contained 162 

only broccoli and calabrese, both members of the same subspecies var. italica [24,25], 163 

whereas cluster two mainly comprised cauliflower, subspecies var. botrytis. Late flowering 164 

accessions were included in both clusters. Interestingly, this population structure grouped the 165 



rapid cycling and late flowering kales together with a spread of accessions from other crop 166 

types, in cluster four. The remaining two clusters were small by comparison: cluster three 167 

comprised of seven accessions, a mixture of broccoli, cauliflower and kale; cluster five 168 

consisted of just two lines, one kale and one cauliflower.  169 

The four clusters identified using more stringent SNP selection criteria contained all of the 170 

rapid cycling kales in cluster one, characterised by their early heading and flowering 171 

phenotypes (Figs. 2B, 2D, 2F). This was identified as a clear subgroup within the phylogenetic 172 

tree (Additional File 7C). Cluster two was mainly broccoli and calabrese, whilst cluster three 173 

consisted largely of the earlier flowering cauliflowers. Cluster four contained the late flowering 174 

individuals from all crop types within the population, hence the larger variation in heading and 175 

flowering for this cluster.  176 

Comparison of the clustering of accessions between the two population structures 177 

demonstrated the more stringent SNP criteria gave rise to a population structure in which 178 

individuals were grouped with other accessions that would be expected to be genetically 179 

similar based on knowledge of crop type and flowering phenotype. Consequently, this 180 

population structure was applied in subsequent GWAS analyses. 181 

To gauge the extent of linkage disequilibrium we calculated the mean pairwise squared allele-182 

frequency correlation (r2) for mapped markers. A linkage disequilibrium window of 50 183 

(providing > 3 million pairwise values of r2) resulted in a mean pairwise r2 of 0.0979, confirming 184 

a low overall level of linkage disequilibrium in B. oleracea.  185 

 186 

Associative transcriptomics identifies miR172D as a candidate for controlling 187 

vernalisation response 188 



SNP associations were compared to the physical positions of orthologues of genes known to 189 

be involved in the floral transition in Arabidopsis. A total of 43 flowering time related traits 190 

(Additional File 2) were analysed using this pipeline, including DTB and DTF for each 191 

treatment. A total of 111 significant SNPs were identified, P < 0.05, six of which demonstrated 192 

clear association peaks and were investigated further (Table 1). 193 

We first sought to identify genetic associations with the trait data for the non-vernalised 194 

experiment. Whilst no significant association peaks were identified for DTB, a single marker 195 

association at Bo8g089990.1:453:T was identified (P = 2.29E-06) for DTF under non-196 

vernalising conditions. This marker was within a region demonstrating good synteny to 197 

Arabidopsis, despite there being a number of unannotated gene models present. 198 

Conservation between Arabidopsis and B. oleracea suggests that this region contains an 199 

orthologue of microRNA172D, AT3G55512, which has been linked to the floral transition in A. 200 

thaliana  [26,27] (Fig. 3A). Furthermore, the difference in DTB between 10WPG6WV5 ºCV 201 

and 10WPG12WV15 ºCV, identified a significant association on C07 at Bo7g104810.1:204:T 202 

(FDR, P < 0.05). This association was in the vicinity of a second orthologue of miR172D (Fig. 203 

3C). 204 

We then analysed the association with traits relating to the timing of vernalisation. No 205 

significant associations were identified for traits after 6WPG12WV5 ºCV. However, a strong 206 

association was identified on C07 at the marker Bo7g026810.1:124:G, for DTF for 207 

6WPG12WV10 ºCV. Synteny with Arabidopsis suggests that an orthologue of FRI 208 

INTERACTING PROTEIN 1, (FIP1), AT2G06005.1 (Fig. 3D) is present within this region.  209 

Within Arabidopsis it has been demonstrated that FIP1 interacts with FRIGIDA (FRI) [28] 210 

which is a major source of natural variation in flowering time in Arabidopsis and has been 211 

shown to be important in determining vernalisation requirement. Additionally, significant 212 

associations (FDR, P < 0.05), were found for DTB for 6WPG12WV10 ºCV. An association was 213 

identified at Bo9g179000.1:2589:G, which is in the vicinity of an orthologue of Early Flowering 214 



6 (ELF6), AT5G04240.1 (Fig. 3B), a nuclear targeted protein able to affect flowering time 215 

irrespective of FLC.  216 

The differences in flowering phenotype between the SNP variants for the four strongest 217 

associations were analysed (Fig. 4). There were significant differences in the traits associated 218 

with miR172D (DTF with no vernalisation and the difference in DTB for plants grown under 5 219 

ºCV and 15 ºCV) for different alleles (Fig. 4A and B). For Bo7g104810.1:204:T (difference in 220 

DTB after exposure to 5 ºCV and 15 ºCV), five individuals, four broccoli and one cauliflower, 221 

contained the A variant. The alternate variant, a T allele, and was present in 50 individuals. 222 

Conversely, Bo8g089990.1:453:T (DTF with no vernalisation) had 11 individuals with a C 223 

allele at this locus, whilst 51 had a T allele. Interestingly, individuals with the C allele were 224 

present in every crop type.  225 

 226 

Associative transcriptomics identifies BoFLC.C2 as a candidate gene involved in 227 

vernalisation requirement in B. oleracea 228 

An advantage of performing associative transcriptomics as opposed to GWAS, is the 229 

additional ability to identify associations between gene expression and the trait of interest. 230 

GWAS analysis identified an association of the difference between DTB and DTF with a 231 

10WPG6WV5 ºCV with a candidate marker in the well characterized flowering time gene, 232 

BoFLC.C2 (Table 1). Using gene expression marker (GEM) analysis, BoFLC.C2 expression 233 

was also identified as being significantly associated with both the DTB and DTF under non-234 

vernalising conditions (Fig. 5).  BoFLC.C2 exhibited both low and high expression within the 235 

population. As expected, all five rapid cycling accessions demonstrated no BoFLC.C2 236 

expression. Recently, a Brassica consortium developed targeted sequence capture for a set 237 

of relevant genes, including FLC. DNA from four of the five rapid cycling accessions had been 238 

enriched with that capture library and sequenced. Lacking a reference sequence for B. 239 



oleracea that contains BoFLC.C2, we used B. napus (cv. Darmor) [29] as a reference to map 240 

the captured sequence data from the four rapid cycling accessions to. Comparison of B. 241 

oleracea transcript data [30] to this Darmor genome reference revealed a 99.54 % identity in 242 

coding sequence, allowing Darmor to be used as a surrogate reference. Indeed, we found that 243 

BoFLC.C2 was absent from all four rapid cycling accessions, GT050381, GT080767, 244 

GT100067 and GT110222, revealed by a lack of read mapping (Additional File 10). BoFLC.C2 245 

is known to be involved in vernalisation response [30] and rapid cycling varieties do not require 246 

a period of vernalisation in order to transition to the floral state. As a control, we investigated 247 

mapping for 49 non-rapid cycling accessions where we expect BoFLC.C2 to be present. For 248 

all 49 we found the expected read mapping evidence, confirming that use of the polyploid B. 249 

napus reference is appropriate (Additional File 10). The control of flowering is a complex, 250 

multigenic trait, therefore we would not expect a single locus to explain all variation across the 251 

entire dataset. Indeed, only a weak positive correlation (DTB R2 = 0.024, DTF R2 = 0.036) 252 

between flowering phenotype and BoFLC.C2 expression was identified. A strong positive 253 

correlation (DTB R2 = 0.871, DTF R2 = 0.891) was found for the phenotypic extremes (rapid 254 

cycling lines with no expression and the late flowering lines with high levels of BoFLC.C2), 255 

Fig. 6, confirming a role for BoFLC.C2. 256 

 257 

Discussion 258 

Determining which genes underly phenotypic traits is a key step for crop improvement. A 259 

powerful approach for identifying candidates is associative transcriptomics, which has been 260 

implemented for several crops. However, for the important vegetable crop B. oleracea, no 261 

such pipeline has been published to date. Here we present a validated associative 262 

transcriptomics pipeline for B. oleracea and use it to identify gene candidates for vernalisation.  263 



To reduce the risk of false positives, we developed stringent criteria to identify unlinked 264 

markers for the determination of the population structure. The population structure was 265 

validated using crop type and phenotypic information on heading and flowering, this example 266 

was chosen as producing synchronous B. oleracea vegetables is a key goal for growers and 267 

breeders. Quantifying vernalisation responses for different varieties is an important step 268 

towards this goal, providing a foundation for targeted breeding.  269 

Phenotyping for both DTB and DTF under different environmental conditions revealed a varied 270 

response within the population and identified some general trends. Altering the timing of 271 

vernalisation demonstrated that a shorter growth period prior to the exposure to cold extended 272 

the time taken to reach DTB and DTF. This could be attributed to the presence of a juvenile 273 

phase in many of the lines, which has been widely documented in B. oleracea [14,31,32]. A 274 

juvenile plant is described as being unable to respond to floral inductive cues. The fact that 275 

many lines were able to flower much faster following longer pre-vernalisation growth, suggests 276 

they had reached the adult vegetative phase and were receptive to cold as a floral inductive 277 

cue. Further experimental work would be needed to test this hypothesis.  278 

Increasing vernalisation length and reducing vernalisation temperature resulted, on average, 279 

in faster and more synchronous heading and flowering. This was a predicted outcome, as 280 

current knowledge suggests that increased vernalisation duration and cooler vernalisation 281 

temperatures would saturate the vernalisation requirement of a larger proportion of 282 

accessions.  283 

 Using our validated population structure with associative mapping, we identified candidates 284 

orthologous to known Arabidopsis floral regulators, including miR172D. In Arabidopsis, the 285 

miR172 family post-transcriptionally supress a number of APETALA1-like genes, including 286 

TARGET OF EAT1, 2 and 3, which in turn aids the promotion of floral induction [27,33–35]. 287 

Furthermore, the SNP variant data for both associations implicating miR172D, exhibit 288 



significant phenotypic differences.  Two orthologues of Arabidopsis miR172D have been 289 

identified in B. oleracea [36] but their functional roles have yet to be determined.  290 

GWAS analysis identified a significant association with BoFLC.C2 and the difference in DTB 291 

and DTF following a ten-week pre-growth period, with six weeks of vernalisation at 5 ºC. 292 

BoFLC.C2 is a well characterized flowering time gene [30] and the ability of the GWAS pipeline 293 

to identify a known candidate gives confidence in the method. Furthermore, GEM analysis 294 

identified BoFLC.C2 expression as being significantly associated with both DTB and DTF 295 

under non-vernalising conditions, which can be attributed to the extreme phenotypes within 296 

the population (Fig. 6). No BoFLC.C2 expression was detected in five lines. A loss-of-function 297 

mutation at BoFLC.C2 in cauliflower has been associated with an early flowering phenotype 298 

[37], indicating that BoFLC.C2 has an equivalent role in cauliflower to FLC in Arabidopsis. 299 

Four of the five lines for which BoFLC.C2 expression could not be detected did not have the 300 

BoFLC.C2 paralogue according to the bait capture sequencing data. These four lines were all 301 

kales and demonstrated an early flowering phenotype, suggesting that BoFLC.C2 has a 302 

similar role to AtFLC in kales, and potentially across B. oleracea. Although DTB and DTF were 303 

highly correlated with BoFLC.C2 expression under non-vernalising conditions for the 304 

phenotypic extremes, for the whole population the correlation was low. This is to be expected 305 

as BoFLC.C2 is just one of many genes that we expect to be involved in the floral transition 306 

within B. oleracea and therefore is unlikely to account for all the observed variation. 307 

The expression data used for the GEM analysis was generated from leaf tissue at one 308 

timepoint. As a consequence, any genes which are not expressed in the leaf at this time will 309 

not be identified in this analysis. Use of transcriptome data from other tissues in addition to 310 

the leaf data could identify a greater number of associations.  311 

 312 

Conclusion 313 



Identifying genes underlying phenotypic traits in B. oleracea is an important step for the 314 

improvement of brassica vegetables. Here, we generate and validate a novel pipeline for 315 

associative transcriptomics analysis in B. oleracea and show that this pipeline is effective in 316 

identifying genetic regulators of complex traits, such as flowering time, demonstrating this 317 

approach can be utilised for other traits of agronomic importance, such as germination, quality 318 

traits and disease resistance. GWAS analysis identified miR172D as a candidate for 319 

vernalisation response, whilst GWAS and GEM analysis identified a significant marker at 320 

BoFLC.C2, an important gene in the vernalisation pathway of B. oleracea. Our results provide 321 

insight into the genetic control of flowering in B. oleracea, and candidates which could provide 322 

a foundation for future breeding strategies.  323 

 324 

Methods 325 

 326 

Plant Materials and Growth Conditions 327 

A subset of 69 lines fixed as doubled haploids (DH) or at S4 and above were chosen from the 328 

Brassica oleracea Diversity Fixed Foundation Set [14] (Additional File 1) comprising 329 

accessions from seven different B. oleracea crop types;  cabbage, cauliflower, calabrese, 330 

broccoli, kohl rabi, kale and Brussels sprout. Plants were grown in cereals mix (40 % Medium 331 

Grade Peat, 40 % Sterilised Soil, 20 % Horticultural Grit, 1.3 kg/m³ PG Mix 14-16-18 + Te 332 

Base Fertiliser, 1 kg/m³ Osmocote Mini 16-8-11 2 mg + Te 0.02 % B, Wetting Agent, 3 kg/m³ 333 

Maglime, 300 g/m³ Exemptor) and given a pre-growth period of either six or ten weeks in a 334 

glasshouse under natural light supplemented with LED lighting (16h daylength 21/18 °C 335 

day/night). At the end of the pre-growth period, three plants of each line for each treatments 336 

were transferred to Conviron controlled environment rooms for six or twelve weeks 337 



vernalisation at 5, 10 or 15 ºC (16 h daylength LED, 60 % humidity). Following vernalisation, 338 

plants were re-potted into 2 L pots and placed into a polytunnel under natural light using a 339 

randomised block design. All plants came out of vernalisation and into the polytunnel on the 340 

same day due to staggered sowing to control for post-vernalisation environmental conditions. 341 

Three replicates of each line were grown without vernalisation as a non-vernalised control 342 

group. The plants were scored at buds visible (DTB) and upon opening of first flower (DTF) 343 

[38]. A summary of pre-growth and vernalisation conditions and traits analysed is given in 344 

Additional File 2. 345 

 346 

SNP Calling 347 

The growth conditions, sampling of plant material, RNA extraction and transcriptome 348 

sequencing was carried out as described by He et al. [39]. The RNA-seq data from each 349 

accession were mapped on to CDS models from the Brassica oleracea pangenome [40] as 350 

reference sequences, using Maq v0.7.1 [41]. SNPs were called by the meta-analysis of 351 

alignments as described in Bancroft et al. [42]. SNP positions were excluded if they had a 352 

read depth < 10, a base call quality < Q20, missing data > 0.25, and > 3 alleles. This resulted 353 

in a SNP file containing 110,555 SNPS, and 65017 unigene sequences with associated RPKM 354 

values. 355 

 356 

Population Structure and GWAS analyses 357 

Population structure was generated using both relaxed (all markers with a minor allele 358 

frequency (MAF) > 0.05) and stringent criteria using STRUCTURE [43] (burn-in10000, MCMC 359 

10000, 10 iterations). For the stringent criteria, SNPs were required to be biallelic, with a minor 360 

allele frequency (MAF) > 0.05 and a minimum distance of 500-bp between markers. 361 



STRUCTURE HARVESTER [44] was used to determine the optimal K value. The Q matrix 362 

used in GWAS analysis was calculated using CLUMPP [45]. 363 

TASSEL [46] version 5.0 was used to select the most appropriate model for each trait based 364 

on QQ plots. Generalised linear models (GLM), with correction for population structure using 365 

the Q matrix or PCA (5 PCs) were used to look for associations. For GWAS analysis only SNP 366 

markers with an allele frequency > 0.05 were used. To gauge the extent of linkage 367 

disequilibrium, the mean pairwise r2 was calculated using the SlidingWindow function within 368 

TASSEL, with a linkage disequilibrium window of 50. TASSEL was used to construct 369 

phylogenetic trees, using the Neighbour Joining method and all SNPs with MAF > 0.05. Trees 370 

were graphed in R using the package ggtree [47].  371 

Gene expression marker (GEM) associations were calculated by an in-house script in R 372 

Version 3.6.3 using a fixed effect linear model with RPKM values, excluding markers with an 373 

average expression below 0.5 RPKM. Linear regression was performed using RPKM as a 374 

predictor value to predict a quantitative outcome of the trait value. Both SNP and GEM outputs 375 

were plotted as Manhattan Plots created using an in-house R script. All scripts are available 376 

at https://github.com/JIC-CSB/Boleracea-AssociativeTranscriptomics. Statistical significance 377 

for both GWAS and GEM association was determined by the false discovery rate (FDR) [48] 378 

calculated using the QValue package [49] in R. 379 

 380 

DNA Extraction  381 

Genomic DNA of accessions used in bait capture sequencing was prepared from young leaf 382 

tissue of plants grown in a glasshouse (16h LED supplementary light, 21/18 °C day/night). 383 

Light was excluded for 48 h prior to harvesting. Nuclei were extracted from ~3 g of tissue prior 384 

to CTAB based DNA extraction. Extracts were treated with RNase T1, RNaseA and 385 



Proteinase K to remove RNA and protein contamination, respectively. DNA was resuspended 386 

in 50 µl dH2O and checked for quality. DNA was quantified by and stored at -20 °C. 387 

 388 

Targeted Sequence Enrichment analysis 389 

A bait library for targeted sequence enrichment for a specific subset of genes was developed 390 

and synthesized with Arbor Biosciences (https://arborbiosci.com/). Samples were 4 plexed 391 

and run on the NovaSeq S4, PE150, 1Gbp/library. Reads from individual accessions were 392 

mapped to the reference sequence of B. napus cv. Darmor-bzh [29] using BWA [50] version 393 

0.7.17-r1188 using aln/sampe and standard parameters. Mapped reads were sorted and 394 

indexed using SAMTOOLS [51] version 1.10 sort and index, and subsequently visualized with 395 

Integrative Genomics Viewer (IGV) [52].  396 

 397 
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 544 

Figure Legends 545 

 546 

Figure 1: Flowering time traits exhibit a varied response to different environmental 547 

conditions within the population. Examples of opposing phenotypic response to different 548 

vernalisation temperatures can be observed in A) Brussels Sprout, Cavolo Di Bruxelles 549 

Precoce (GT120168) and B) Broccoli, Mar DH (GT110244).  Variation across the population 550 

for C) DTB post vernalisation per treatment, per line. D) DTF post vernalisation per 551 

treatment, per line. Day 0 represents the end of vernalisation, negative values represent 552 

heading or flowering during the pre-growth or vernalisation.  553 



 554 

Figure 2: The choice of SNP pruning rules can significantly change the inferred population 555 

structure. Density plots representing A) DTB, C) DTF for the accessions within the five 556 

subpopulation clusters. Density plots representing B) DTB, D) DTF for the accessions within 557 

the four subpopulation clusters. E) Population structure generated from SNPs with MAF > 558 

0.05 F) Population structure generated from more stringent SNP pruning (Biallelic only, MAF 559 

> 0.05, > 500-bp apart, one per gene).   560 

 561 

Figure 3: The developed pipeline identifies associations with flowering traits. Distribution of 562 

mapped markers associating with A) Number of DTF under non-vernalising conditions B) 563 

DTB after a six-week pre-growth, twelve weeks vernalisation 10 ºC C) The difference in DTB 564 

between six and twelve weeks of vernalisation at 15 ºC, after exposure to a ten-week pre-565 

growth D) The DTF after exposure to six-week pre-growth, twelve weeks vernalisation 10 ºC. 566 

Sixty-nine accessions of B. oleracea were phenotyped for DTB and DTF and marker 567 

associations were calculated using a generalized linear model, implemented in TASSEL to 568 

incorporate population structure. Log10 (P values) were plotted against the nine B. oleracea 569 

chromosomes in SNP order. Blue line FDR threshold, P< 0.05, FDR threshold was not met 570 

for A) and D). 571 

  572 

Figure 4: A significant phenotypic difference was found for individuals exhibiting SNP 573 

variants for the associations pointing to miR172D as a candidate. Boxplots represent the 574 

trait data, DTB or DTF for each of the significant markers alongside the different alleles 575 

present across the population for each marker. The box represents interquartile range, 576 

outliers are represented by black dots. 577 

 578 



Figure 5: GEM analysis identifies FLC expression on chromosome C2 as a candidate for 579 

flowering traits under non-vernalising conditions. Distribution of gene expression markers 580 

associating with A) DTB after exposure to non-vernalising conditions B) DTF after exposure 581 

to non-vernalising conditions. Log10 (P values) were plotted against the nine B. oleracea 582 

chromosomes in SNP order.  Blue line FDR threshold, P < 0.05. 583 

 584 

Figure 6: A strong positive correlation can be seen between lines at the phenotypic 585 

extremes and their BoFLC.C2 expression levels. Colours represent the subpopulation of 586 

each line, as determined by population structure analysis.  587 

 588 

Table 1: Significant SNP associations with vernalisation response in diverse B. oleracea 589 

accessions, detected across the genome (FDR < 0.05), including model information.   590 
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Model Information

Marker Chromosome Alleles -Log10(p) Marker R
2 

Traits Arabidopsis ID Orthologue Model Population Structure Correction

Bo6g103650.1:2010:T C06 C/T/Y
6.4017787 0.39231 6P 12V 10 ºC DTB AT1G67140.3 SWEETIE GLM Q-Matrix

Bo9g179000.1:2589:G C09 G/T/K
6.4077566 0.39662 6P 12V 10 ºC DTB AT5G04240.1 ELF6 GLM Q-Matrix

Bo1g011280.1:786:A C01 A/T/W 6.0844894 0.44220 10P 12V 5 ºC DTF AT4G31490.1 Coatomer, beta subunit GLM Q-Matrix

Bo7g026810.1:124:G C07 A/G/R 4.7781947 0.36476 6P 12V 10 ºC DTF AT2G05790.1 O-Glycosyl hydrolases family 17 protein GLM PCA

Bo7g104810.1:204:T C07 A/T/W 5.9788107 0.41678 10P 6V 15 - 5 ºC DTB AT3G55512 mir172D GLM Q-Matrix

Bo2g009460.1:894:T C02 C/T 7.6880767 0.40565 10P 6V 5 ºC DTF - DTB AT5G10140.4 FLC.C2 GLM Q-Matrix

Marker Information Association Information
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