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A common non-pharmaceutical intervention (NPI) during the

COVID-19 pandemic has been group size limits. Furthermore,

educational settings of schools and universities have either fully

closed or reduced their class sizes. As countries begin to reopen

classrooms, a key question will be how large classes can be while

still preventing local outbreaks of disease. Here, we develop and

analyse a simple, stochastic epidemiological model where

individuals (considered as students) live in fixed households and

are assigned to a fixed class for daily lessons. We compare key

measures of the epidemic—the peak infected, the total infected

by day 180 and the calculated R0—as the size of class is varied.

We find that class sizes of 10 could largely restrict outbreaks and

often had overlapping inter-quartile ranges with our most

cautious case of classes of five. However, class sizes of 30 or

more often result in large epidemics. Reducing the class size

from 40 to 10 can reduce R0 by over 30%, as well as significantly

reducing the numbers infected. Intermediate class sizes show

considerable variation, with the total infected varying by as

much as from 10% to 80% for the same class size. We show that

additional in-class NPIs can limit the epidemic still further, but

that reducing class sizes appears to have a larger effect on the

epidemic. We do not specifically tailor our model for COVID-19,

but our results stress the importance of small class sizes for

preventing large outbreaks of infectious disease.

1. Introduction
The classic susceptible–infected–recovered (SIR) epidemiological

model has long been used to model the spread of infectious disease

in human, animal and plant populations [1,2]. More recently,

its extended susceptible–exposed–infected–recovered (SEIR)

framework has formed a central pillar of much of the modelling of

the COVID-19 pandemic, often including highly realistic movement

and contact networks [3–6]. A key non-pharamceutical intervention

(NPI) for populations across the world during the COVID-19

© 2021 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.
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pandemic has been restricting population mixing through ‘lockdowns’, with people encouraged to stay at

home and avoid mixing with individuals outside their household unless essential. This has often included

closing educational settings of universities and schools, with 31 countries enacting full school closures and

reduced schooling in a further 48 countries [7]. As countries move to reopen these settings, an important

question is how classes can be organized to minimize further disruption to students’ education while

limiting epidemic spread. There have been some excellent, in-depth modelling studies of infection spread in

educational settings, especially universities, with a range of NPIs included, often with a focus on testing and

isolation strategies [8–11]. Here, we focus on the question of how class sizes may impact an epidemic.

An important measure of infectious disease growth and severity is the basic reproductive ratio,R0 [12,13].

This well-known term defines the average number of new infections from one infected individual in an

otherwise disease-free population. In mathematical definitions, R0 is broadly the product of three

quantities: the potential (or probability) of infection upon an infectious contact, the infectious period and

the number of disease-free individuals contacted per unit time [14]. An important consequence of this is

that the larger the population that can be contacted by an infectious individual—the effective population

size—the greater the potential spread of the epidemic. Thus, if a population can be partitioned into smaller

sub-groups with minimal mixing between them, the spread of disease can be significantly limited. This is a

reality populations all over the world have experienced during the COVID-19 pandemic, with ‘lockdown’

measures aimed at limiting mixing of households or groups. Data suggest that such NPIs—such as closing

businesses, closing schools and, of relevance to our study, limiting group gathering sizes—have reduced the

R0 of COVID-19 by as much as 60% [15]. While there are many studies examining epidemic spread in

heterogeneous environments and/or on networks, to our knowledge few modelling studies have

specifically explored how group size limits might impact the extent and severity of an epidemic. Kain et al.

[5] found that ‘chopping off the tail’ of individual infection distributions—in effect preventing large

gatherings—could effectively restrict an epidemic in their COVID-19 parametrized model, reducing both

mean transmission and the variance in outcomes. In their broader examination of COVID dynamics on a

university campus, Brook et al. [9] found that a group size limit of six could reduce the effective reproductive

ratio from 1.05 to 0.86, but limits of 50 had almost no impact on disease spread. As we seek to reopen

universities and schools, some mixing between households will be essential. An important consideration,

then, is the degree to which we could allow some mixing while still limiting the extent of the epidemic.

Ultimately, our study investigates what happens to an epidemic when a population partitioned into

households is mixed for a short time period each day into fixed groups. The situation loosely in our

minds is of a university cohort living in accommodation who attend a class each day. Similarly, we

might consider a school population attending classes, or a local community forming interaction bubbles.

However, we stress that our study is a relatively simple, theoretical study of the impact of mixing, and

we make no strong claims about the precise values or predictions our model makes. For clarity and

transparency, we state here a few of our key assumptions: (i) all classes occur simultaneously with

immediate transitions between class and home, (ii) we do not include testing and isolation, (iii) there is

no further mixing than in classes and homes, either within the population or externally, and (iv) we do

not include ‘superspreaders’ but instead assume all individuals experience the same transmission rates.

We discuss the possible impact of each of these assumptions in the Discussion. We also do not attempt

to parametrize or structure our model specifically for COVID-19. Rather, we seek to identify the general

patterns that result from mixing partitioned populations into different sized groups.

2. Methods
We develop and run stochastic simulations of an epidemiological model using python (code is available

from GitHub, https://github.com/abestshef/classsizeSEIR). The underlying epidemiological model is

an SEIR framework where, within a setting (home or class), the dynamics would be given by the

following ordinary differential equations:

dS

dt
¼ �bSI, (2:1)

dE

dt
¼ bSI � vE, (2:2)

dI

dt
¼ vE� gI (2:3)

and
dR

dt
¼ gI, (2:4)
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where β is the transmission coefficient (with βI the ‘force of infection’), ω is the rate of progression from

exposed to fully infected and γ is the recovery rate. We note that our state variables are defined as

densities, not proportions, and that the total population size is N = S + E + I +R rather than being

normalized to 1. The stochastic simulations use a Gillespie algorithm [16] to calculate waiting times

between events. The possible events are initial infection (S→ E), progression to full infection (E→ I)

and recovery (I→R). Which event occurs at a chosen time point depends on their relative

probabilities at that point and in the relevant setting. Each day is divided into fixed time periods

where all students are in each setting, either home or class. We assume immediate movement between

settings, with classes occuring during t∈ [day + 0.4, day + 0.5], roughly equivalent to a 2.5 h period.

The event probabilities will be different in each setting; thus when a transition time is reached, the

waiting time is stopped and recalculated from the transition point. Besides these transitions, infection

is assumed to occur evenly throughout the 24 h period.

The total population size is N = 1000 and students are randomly divided into houses of size nh and

classes of (target) size nc. We take two household sizes, nh = 10 (100 households) and nh = 5 (200

households; arguably reasonable averages for university halls and private housing respectively). Every

household has exactly nh individuals. Target class sizes vary in steps of five from five to 50. Where

N/nc is an integer, exactly that many classes are created, all containing exactly nc individuals. Where

this is not the case, the classes contain either nc or nc− 1 individuals (for example, for a target class

size of 15, there are 62 classes of 15 students and five classes of 14 students). Both the house and class

composition is fixed in each simulation. We randomly choose 25 individuals to be infected at the

beginning of each simulation, and all other individuals are susceptible (we do not investigate the

effect of varying this initial number). Our key investigation will be to vary average class sizes and

explore the impact on the epidemic. We also compare results where transmission is high (β = 0.5γ) and

low (β = 0.2γ). These values are chosen partly to give reasonably realistic estimates for R0 and also

because the lower value represents a 60% reduction of the higher value, which we use to represent a

reduction due to NPIs (see below). While these values would appear to produce very high values of

the basic reproductive ratio, R0, in the mean-field model (b ¼ 0:5g, N ¼ 1000 ) R0 ¼ bN=g ¼ 500), it

is well known that the actual R0 is considerably lower in individual-based models, especially when

interactions networks are small [17]. We directly calculate R0 from our simulations (see below) and

found across all the results presented here the median R0 fell in the range [0.66,3.68]. We also

additionally examine the case where NPIs in the class (e.g. masks, ventilation, distancing) reduce

transmission from the high to the low value (a reduction of 60%). We additionally assume γ = 1/14

and ω = 1/7 in all simulations, giving a latent period of 7 days and infectious period of 14 days.

Recent work has highlighted the difficulties in representing outcomes from stochastic epidemic models

[18]. First, to visualize the ‘typical’ time courses, we follow the methods of Juul et al. [18] to present the

‘most central’ 50% of simulation runs. One hundred simulations are run, discretized and stored. We then

repeatedly sample subsets of these stored runs (100 samples of 20 curves) and increase the ‘score’ of any

run that falls entirely within the bounds of the sampled curves between time-points 10 and 150. Secondly,

we present three key measures of the epidemic—the peak number infected, the total number infected by

day 180 and the calculated R0 (see below)—from 100 simulation runs for each class size using box and

whisker plots. These highlight the median values, the inter-quartile range (IQR; 25%–75%), the maximum/

minimum (or 1.5 × IQR if smaller) and any outliers (values greater than 1.5 × IQR). Alongside these, we

compare the IQR of the class of five (the ‘most cautious’ approach) with all other class sizes, noting where

the IQRs do and do not overlap using shading of the boxplots. This allows us to explore whether class

sizes can be raised above this cautious level without causing large changes to the outcome.

A brief note on the basic reproductive ratio, R0; in our simple SEIR structure, we would have

R0 ¼ bN̂=g, which depends on the effective disease-free population size N̂. However, the

interpretation of N̂ will vary depending on the degree of mixing. Here, we make a direct calculation

of R0 in each simulation by recording the number of infections caused by the 25 initially infected

individuals, an intuitive measure of R0 as might be estimated during a real epidemic.

3. Results

3.1. Large households

Taking an average household size of 10 and comparing the most central 50% of runs for average class

sizes of 10 and 40 (figure 1a–c), it is clear that smaller class sizes substantially restrict the epidemic.
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When infection rates are low (β = 0.2γ, figure 1a), with a class size of 40 there is considerable variability,

with some of the central curves showing minimal spread but others reaching peaks above 15% infected.

Reducing the class size to 10 clearly restricts the central epidemics, with few curves peaking above 5%

infected and in some cases the epidemic completely finishing by day 60. For greater infection rates

(β = 0.5γ, figure 1b), there is a clear epidemic in all of the central runs for any class size, but is clearly

more severe with the larger groups, with the peak of the central runs increasing from never more

than 20% for a class size of 10 to always more than 26% for a class size of 40. Finally, we investigate

the impact of having simple NPIs in place in classes such that the infection is reduced (from β = 0.5γ

to β = 0.2γ) while in class but not at home. Compared to the previous case we do see reductions in the

epidemic, with the peaks lowered by around 10%. Noticeably, however, solely reducing the class size

from 40 to 10 (figure 1b blue versus red) causes a greater reduction in the epidemic than solely

instituting the in-class NPIs in a class of 40 (figure 1b blue versus figure 1c blue).

Looking in more detail for varying class sizes using the boxplots, with low infection rates

(figure 2a–c), we again clearly see that greater class sizes lead to larger epidemics in terms of all three
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Figure 1. Bounds of the ‘most central’ 50% of 100 simulation runs for large average households for average class sizes of 40 (blue)

and 10 (red) where infection rates are (a) low, β = 0.2γ, (b) high, β = 0.5γ and (c) high at home but low in class.
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Figure 2. Measures of epidemic severity for houseshold size of 10 for different (target) class sizes from 100 simulation runs at each

class size. Boxplots of the peak (a,d,g) and total infected by day 180 (b,e,h) and the calculated R0 (c,f,i), where infection is low,

β = 0.2γ (a–c), high, β = 0.5γ (d–f ) and high at home but low in class (g–i). The orange lines denote the median, the boxes the

25th and 75th centiles, the whiskers to 1.5 the interquartile range and circles any outliers. The dashed lines mark the inter-quartile

range (IQR) for the class of five, and colouring of the boxes whether the IQRs of each class size do (blue) or do not (yellow) overlap

the class of five’s IQR.
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measures. The colouring highlights that only a class size of 10 has an overlapping IQR for both peak and

total infections, while class sizes up to 25 have an overlapping IQR for peak infections only, meaning sizes

of 30 or above have clearly different outcomes to a class of five. Moreover, for a class size of 10 the top of the

inter-quartile range (IQR) is 19% total infecteds, but for a class size of 40 the bottom of the IQR is 58%,

emphasizing the large effect of different sizes. While all class sizes have overlapping R0 IQRs with the

class of five, since this is essentially a logarithmic quantity of epidemic growth it is not unexpected, and

the median value is reduced from 1.68 for a class size of 40 to 1.40 for a class size of 10.

We see considerable variation for intermediate class sizes, with the minimum and maximum total

infected for classes of 35 and 40 extending from below 10% to above 80%, suggesting different

locations could experience very different epidemics purely due to stochastic variation. We also note

that we assumed the same number of initial infections in all simulation runs. Different institutions

would probably start with different number of infections, which would further increase the

heterogeneity of outcomes.

When infection rates are larger (figure 2d–f ), there are very large epidemics no matter the class size,

especially in terms of the total number infected. There are clearly no class sizes where the IQRs overlap

with the smallest class for the peak and total infected, while only class sizes of 30 or smaller have

overlapping IQRs for R0. A class size of 15 or above results in more than 94% of the population

infected in every single simulation run. Smaller class sizes do lead to noticeably lower peaks,

however—the top of the IQR for class sizes of 15 is 22% and for a class size of 10 it falls to 17%.

Reducing the class size from 40 to 10 also leads to a drop in the median R0 from 3.40 to 2.64 (a 22%

reduction).

In-class NPIs lead to a modest reduction in the severity of the epidemic at all class sizes (figure 2g–i),

though the epidemic remains significantly larger for larger class sizes. Interestingly, a class size of 10 with

no NPIs (peak IQR 14%–17%, total IQR 91%–95%) generally results in smaller epidemics than a class size

of 40 with NPIs (peak IQR 21%–23%, total IQR 97%–99%). Thus group size limits in themselves may lead

to better outcomes than many other mitigation measures (given our assumptions). The combination of

small class sizes and the in-class NPIs can dramatically reduce the severity of the epidemic.

Comparing a class size of 40 without NPIs to a class size of 10 with NPIs, the median peak is

reduced from 32% to 8%, the median total from 99% to 64% and the median R0 from 3.40 to 2.48. The

class size of 10 has an overlapping IQR with the class of five for the peak infected, but no classes

overlap for total infected.

For completeness, we also ran simulations with a finer resolution of transmission coefficient, β, and

recorded the median peak and total infected (figure 3). At the lowest transmission (β = 0.1γ), there are no

outbreaks for any class size. However, as the transmission increases we clearly see the increasing

important of smaller class sizes, particularly in terms of total numbers infected.

3.2. Small households

When the average household is reduced to five, comparing figures 1 and 4 shows that the size of the

epidemic is reduced in all cases, since there is naturally less mixing between individuals. When
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Figure 3. Heatmaps of median peak and total infections for varying (target) class sizes and transmission (where β is the figure

given multiplied by γ. The houseshold size was 10 and there were 50 simulation runs for each combination of class size and

transmission rate.
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transmission is low (β = 0.2γ, figures 4a and 5a–c) there are no significant outbreaks for any class size. For

all class sizes considered the median R0 is less than 1, and the peak is lower than 5% in every simulation

run. All class sizes’ peak IQRs overlap with the class of five’s IQR, and classes of 40 or smaller have

overlapping IQRs for total infected.

We see dramatic impacts of reducing the class size when transmission is higher (β = 0.5γ, figures 4b

and 5d–f ). Reducing the class size from 40 to 10 reduced the median R0 from 2.12 to 1.40 (a 33%

decrease). Even classes of 25 lead to significant outbreaks with the bottom of the IQR being 67% for

the total and 8% for the peak, whereas for a class size of 10 the top of the IQR is 14% for total

infected and 3% for the peak. Compared to the class of five, only classes of 10 and 15 have an

overlapping IQR for the peak infected and only classes of 10 overlap for total infected. We again see

considerable variation in outcomes for fixed class sizes, with total infected in class sizes of 20 and 25

stretching from a minimum of below 10% to a maximum of above 80%.

When NPIs are included in the class setting (figures 4c and 5g–i), for a class size of 40 the median

peak is reduced from 21% without the NPI to 4% with it, and the median R0 from 2.12 to 1.52. These
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Figure 4. Bounds of the ‘most central’ 50% of 100 simulation runs for small average households for average class sizes of 40 (blue)

and 10 (red) where infection rates are (a) low, β = 0.2γ, (b) high, β = 0.5γ and (c) high at home but low in class.
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Figure 5. Measures of epidemic severity for houseshold size of five for different (target) class sizes from 100 simulation runs at each

class size. Boxplots of (a,d,g) the peak and (b,e,h) total infected by day 180 and (c,f,i) the calculated R0, where infection is (a–c)

low, β = 0.2γ, (d–f ) high, β = 0.5γ and (g–i) high at home but low in class. The orange lines denote the median, the boxes

the 25th and 75th centiles, the whiskers to 1.5 the interquartile range and circles any outliers. The dashed lines mark the inter-

quartile range (IQR) for the class of five, and colouring whether the IQRs of each class size do (blue) or do not (yellow) overlap the

class of five’s IQR.
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figures make it roughly equivalent to a class size of 15 without NPIs. We again see that the epidemic is

more severe for a class size of 40 with NPIs than for a class size of 10 without (respective median peaks:

4% versus 3%, median totals: 22% versus 12%, median R0: 1.52 versus 1.40). Combining both smaller

classes and in-class NPIs can have substantial impacts: comparing a class size of 40 without NPIs to a

class size of 10 with NPIs, we see the median peak reduced from 21% to 3%, the median total

infected from 94% to 10% and median R0 from 2.12 to 1.26. Compared to the class of five, class sizes

of 35 and below have overlapping IQRs for the peak, but only class sizes of 10 and 15 for the total

infected. We also see significant variation in outcomes for larger class sizes.

3.3. Time in class

We additionally consider what happens when we alter the time in class to be double (t∈ [day + 0.4,

day + 0.6]) or halved (t∈ [day + 0.4, day + 0.45]) compared to above, assuming large housesholds

(nh = 100) and low infection rates (β = 0.2γ). Predictably, increasing the class length leads to larger

epidemics and decreasing it leads to smaller ones (figure 6). For the shorter classes, all class sizes

peak and total IQRs overlap with the class of five. Interestingly, R0 is found to be similar for any class

size, the median varying only from 1.40 to 1.54. By contrast, no class sizes have overlapping IQRs for

total infected and only classes of 10 for peak infected when the class length is doubled.

4. Discussion
As might be expected, a clear result from our model is that the smaller the class size, the lesser the

severity of the epidemic. For our paramater sets, reducing the class size from 40 to 10 showed

reductions in the median R0 of up to 30%. Within that, our results suggest that ‘optimal’ class sizes

across all measures of epidemic severity will rarely exist. Instead, decisions may vary depending on

the aim, for example whether to ensure a low peak (to limit pressure on health services) or a low

number of total infections (to protect as many individuals as possible from infection). Broadly

speaking, small increases in class size from small groups initially lead to only modest increases in the

peak of infections but rapid increases in total infections. For example, for high infection rates and

small households, increasing the class size just from 10 to 15 led the median peak to increase from 5%

to 9% but the median total infected from a modest 27% to a substantial 66%. The average household

size and time in class also impacted the severity of outbreak, with larger households and longer

classes predictably increasing the potential for large epidemics. In these cases, small class sizes were

even more essential. Institutional decisions are therefore likely to depend on the desired outcome and

specific local conditions, and transparency of decision making will be crucial.

If we were to trust our values here as being representative of a real university (which we would

caution should be in the light of the many assumptions underlying the model), we would suggest
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Figure 6. Box plots for peak infected, total infected and R0 when the class length is doubled (a–c) or halved (d–f ). ω = 1/7,

γ = 1/14. β = 0.2γ in both settings. See earlier figures for description.
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that to ensure the best chance of a restricted epidemic then classes should be limited to 10. In many cases,

this would have an overlapping inter-quartile range with—and thus not be clearly different to—the most

cautious approach of classes of five for the peak and total infected. Slightly larger classes—up to 25—may

prevent the peak from rising too high, but will probably result in large numbers of total infections. We

would strongly recommend against larger class sizes than 25 based on our parameters and assumptions

as both peak and total infected were then consistently clearly different to the most cautious case of a class

of five. In their more detailed study applied to a specific institution, Brook et al. [9] similarly found that

small group size limits were the key NPI to reducing infection, showing that a limit of six could reduce

the effective reproductive ratio from 1.05 to 0.86, but limits of 50 had almost no impact on disease spread.

Similarly, Kain et al. [5] found that ‘chopping off the tail’ of individual transmission distributions—

effectively preventing the grouping of large numbers of individuals—could be a key control measure.

Moreover, based on data, Brauner et al. [15] found that restricting gatherings in all settings to 10

people or fewer was one of the most successful measures at reducing R0 during COVID-19. It thus

appears a consistent result that limiting group sizes to around 10 can be a successful NPI for slowing

or even stopping epidemics.

The stochastic simulations reveal considerable variation in the epidemic time courses, particularly for

intermediate class sizes. In some cases, the maximum and minimum of total infecteds in the 100

simulations spread from less than 20% to more than 80%. Thus while methods exist for

approximating individual-based models with deterministic systems of ordinary differential equations

[19–21], we highlight the importance of using stochastic simulations to appreciate the variety of

possible outcomes. In practice, this demonstrates that institutions may make the same decisions about

class sizes but experience very different epidemic time courses. As such, institutions may need to

consider their ‘risk appetite’ for organizing logistically easier bigger class sizes at the risk of a large

epidemic. Again, though, we emphasize that limiting class sizes to 10 or fewer largely prevented

significant epidemics.

We investigated a simple case of employing NPIs in the class setting that would reduce the infection rate

by 60%. We note that this would be a rather strong effect compared to estimates of NPI impacts from data

[15,22]. This reduction was assumed to be due to simple NPIs such as social distancing but the exact method

was not explicitly modelled. We found that, as would be expected, this led to smaller epidemics than if no

NPIs were present, reducing R0 by up to 25% for large class sizes. However, we consistently found that the

epidemic was smaller in a class size of 10 without NPIs than a class size of 40 with NPIs. Given that the 60%

reduction due to the NPI is already rather strong, this would suggest that reducing the class size may be the

most efficient control measure. Both models [9] and data analysis [15] have similarly found that group size

limitations was one of the most effective NPIs to prevent spread of COVID-19. Of course, both reducing the

class size and implementing the NPI could reduce the epidemic considerably, in some cases reducing the

median total infected from 96% to just 14% in our model.

As we have stated, we have relatively modest ambitions in this study of exploring how the size of

mixing groups (considered as classes here) impact the time course of epidemics in partitioned

populations. Other studies have provided highly detailed analyses of models with many realistic

assumptions, contact networks and NPIs included [3–6] including in university settings [8–11]. If our

study were to be applied to more realistic scenarios or to form the basis of decision making, some key

further additions would be necessary. There are some key additions we would highlight. Firstly, we

have assumed that all classes occur simultaneously and that transitions are immediate. In reality, classes

would probably be spread throughout the day and there would be unavoidable mixing during

transitions. Spreading the classes out would lower the effective size of the household population for

much of the day, potentially reducing infection, while increased mixing during transitions would act

oppositely. Secondly, we should consider additional NPIs, most importantly isolation of symptomatic

(and possibly asymptomatic) individuals, as have been included in other models [8–11]. Given that any

sort of isolation—whether due to infection or simply imposed—will reduce the degree of mixing and

effective population size, such an approach would clearly be expected to further limit the epidemic.

Also, we have assumed a closed population with no mixing outside of households or classes and full

adherence by the population. We should account both for further external contacts and for additional

mixing between individuals due to socializing, which we would expect to increase the potential for

infection. We also assumed that all individuals have the same transmission rate when infected, but there

is likely to be individual variation leading to ‘super-spreaders’ [23] and estimates from COVID-19 data

suggest a high degree of super-spreading occurring [24]. This is likely to lead to greater variation in

outcomes, with super-spreading often leading to rarer but larger outbreaks [23]. Furthermore, we

assume that all individuals within each household attend exactly one class with the same cohort of
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classmates. We do not account for the fact that (i) students may live in households with individuals who do

not attend classes (family or other friends, for example) or (ii) that students may attend multiple classes.

The latter in particular will lead to increased mixing of the population and thus increased transmission.

While these additions would undoubtedly change the quantitative values found here, we would expect

the fundamental findings—that smaller class sizes lead to smaller epidemics with less variation and that

the patterns will vary according to the target measure—will remain.
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