
This is a repository copy of Modelling and vector control of dual three‐phase PMSM with 
one‐phase open.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175419/

Version: Published Version

Article:

Hu, Y., Zhu, Z.Q. orcid.org/0000-0001-7175-3307 and Wu, Z. (2021) Modelling and vector 
control of dual three‐phase PMSM with one‐phase open. IET Electric Power Applications, 
15 (7). pp. 847-860. ISSN 1751-8660 

https://doi.org/10.1049/elp2.12064

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Received: 30 June 2020

-
Revised: 27 September 2020

-
Accepted: 20 October 2020

-
IET Electric Power Applications

DOI: 10.1049/elp2.12064

OR I G INAL RE SEARCH PA PER

Modelling and vector control of dual three‐phase PMSM with
one‐phase open

Yashan Hu1 | Z. Q. Zhu2 | Zhan‐yuan Wu3

1College of Electrical and Information Engineering,
Hunan University, Changsha, Hunan, China
2Department of Electronic and Electrical
Engineering, University of Sheffield, Sheffield, UK
3Siemens Gamesa Renewable Energy Limited,
Sheffield, UK

Correspondence
Yashan Hu, College of Electrical and Information
Engineering, Hunan University, Changsha, Hunan,
China.
Email. hu_ya_shan@sina.com

Funding information
Huxiang High‐Level Talent Gathering Project of
HUNAN Province, Grant/Award Number:
2019RS1013; Natural Science Foundation of Hunan
Province, China, Grant/Award Number: 2020JJ4006

Abstract
This study proposes a generic mathematical modelling and decoupling fault‐tolerant
vector control for dual three‐phase permanent magnet synchronous machine (PMSM) with
one phase open based on the conventional dual three‐phase voltage source inverters, ac-
counting for the mutual coupling between two sets of three‐phase windings and the second
harmonic inductance. When the dual three‐phase PMSM has one phase open, the per-
manent flux‐linkages are asymmetric and there are second harmonic components in the
conventional synchronous reference frame (dq‐frame). Based on the proposed mathe-
matical modelling, both permanent magnet flux‐linkages and currents become DC values in
the dq‐frame, and therefore, the conventional proportional integral (PI) controller can be
used to regulate the dq‐axis currents. Then, a decoupling fault‐tolerant vector control with/
without a dedicated feed‐forward compensation is proposed to validate the correctness of
the proposed mathematical modelling. Experimental results on a prototype dual three‐

phase PMSM with one phase open show that the second harmonic dq‐axis currents can be
well suppressed simply by the conventional PI controller and dedicated feed‐forward
compensation. It also shows that the decoupling fault‐tolerant control based on the pro-
posed modelling and control method has excellent dynamic performance, which is equiv-
alent to the vector space decomposition control for the healthy machine.

1 | INTRODUCTION

Reliability has always been a major concern in many electrical
drive applications such as automotive, aircraft, wind power and
transportation [1–5]. Usually, the fault‐tolerant drive system
consists of a specifically designed electrical machine [5] and a
fault‐tolerant inverter topology plus a suitable remedy strategy
that can drive the system in the postfault operation [6].

In the previous study, the fault‐tolerant control has been
investigated extensively for single three‐phase machines. The
analysis presented in [7] leads to an important conclusion that
it is still possible to apply a rotating magnetomotive force
(MMF) to the machine by changing the phase currents of the
remaining phases with a new amplitude and phase offset angle
under open‐phase fault.

Early in the 1990s, the modelling and field‐oriented control
of a single three‐phase induction machine (IM) under open‐

phase fault is presented in [8]. A unified modelling and control
approach for a three‐phase IM drive with a structural unbal-
ance (one phase open) is developed, which is also used to
perform field orientation by exploiting a suitable reference
frame transformation [9]. The vector control for a single three‐

phase permanent magnet synchronous machine (PMSM) under
open‐phase fault is introduced in [1, 9]. As one phase is open,
the system becomes unbalanced. A new single three‐phase
PMSM mathematical model is introduced to provide an
effective solution to implement field‐oriented control under
open‐phase fault. Meanwhile, additional power devices and the
availability of the neutral point of the stator windings [10–12]
or open‐end winding configuration [13] are required for the
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regulation of the currents in the other two phases
independently.

Recently, several reconfigurable fault‐tolerant multiphase
PMSM drive systems have been developed, such as the con-
ventional voltage source inverter (VSI), reduced switch‐count
converter, dual supply inverters, and multilevel inverters
[14, 15], e.g. the postfault full torque‐speed of dual three‐phase
interior‐type PMSM (IPMSM) with the configuration of the
neutral points to either isolated or connected is explored in
[16]. A five‐leg converter with a shared leg connected to two
phase windings [17] could be used when one phase of dual
three‐phase PMSM (DT‐PMSM) drive is open. However, extra
hardware, such as the triodes for alternating current or some
power switches is required, increases the system cost. There-
fore, it is of academic and industrial value to investigate the
fault‐tolerant control of multiphase PMSM based on the
conventional drive without any topology reconfiguration.

Based on the conventional multiphase drive, a synchro-
nous‐frame current controller of a five‐phase IPMSM with
open phases is proposed in [18], which enables the current to
be regulated without a steady‐state error. Although the authors
claim that the basic concepts can be extended to the n‐phases
machine with multiple open phases, no indication is given to
the configurations that are different from five‐phase machines,
especially to the asymmetrical DT‐PMSM with a shifted angle
of 30° between the two sets of three‐phase windings. Mean-
while, it does not provide any evaluation of the dynamic per-
formance of the faulty drive system. A decoupled mathematical
model of the five‐phase PMSM under single‐phase open‐cir-
cuit fault is derived and a feed‐forward compensation is pro-
posed to eliminate the influences of certain factors and
decrease the current ripple [19]. However, as the surface‐

mounted PMSM is investigated in [19], the second harmonic
inductances in the self‐inductance and mutual‐inductance are
not considered in the modelling. There are second harmonic
inductances in the inset mounted PMSM or in the surface‐

mounted PMSM if it is saturated.
The mathematical modelling and control of the six‐phase

symmetrical (shift 60° between two sets of three‐phase wind-
ings) IM with up to three open phases are presented in [20],
where the six‐phase IM has only one neutral point. A general
decoupled model of the IM with open phases and a new
control method of current reconfiguration is proposed to
reduce the pulsating torque and the machine losses. In [21], a
simple feed‐forward voltage compensation in the harmonic
subplane is proposed to reduce the torque oscillations in the
six‐phase IM due to the open phase fault. However, there are
no second harmonic inductances and permanent magnet (PM)
flux‐linkages in the faulty six‐phase IM. When the six‐phase or
DT‐PMSM is faulty with one phase open, there might be
second harmonic inductance in the self‐inductance and mutual
inductance between phases. Besides, the permanent flux‐link-
age is also unbalanced, therefore, the mathematical modelling
of DT‐PMSM and corresponding control methodology will be
different from [21].

In terms of DT‐PMSM with two isolated neutral points for
each set of three‐phase windings, Figure 1, a non‐sinusoidal
current, including the second‐order harmonics in the syn-
chronous rotating reference frame, that is, dq‐frame, is pro-
posed to reduce the torque ripple of a dual three‐phase PM
machine under one‐phase open circuit failure conditions [22].
In [23], a genetic algorithm is applied to optimise the stator
currents to maximise the average torque and minimise the
torque ripple under open‐phase fault in the DT‐PMSM with a
shift angle of 30°. However, neither of the aforementioned
methods introduces the modelling of the faulty machine.

In [24], different cases of open‐circuited faulty phases are
analysed and their fault‐tolerant controllability in the general
case is investigated for six‐phase PM bearing‐less machines,
including the feasibility of fault‐tolerant control with single,
double, or triple faulty phases. However, this drive system is
based on the open‐winding configuration [13] and the current
in each phase can be controlled individually. Meanwhile, the
mathematical modelling of the six‐phase machine is not
introduced.

A fault‐tolerant control is proposed for DT‐PMSM drives
with different phase shift angles between the two sets of three‐

phase windings under open‐phase faults [25], where the torque
capability and power loss are compared among four operation
modes, that is, normal model, single three‐phase mode, mini-
mum copper loss control, and maximum torque control. The
fault‐tolerant control [25] focuses on the maximisation of the
torque capacity with consideration of the overcurrent protection
and reconfiguration of postfault operation currents rather than
the mathematical modelling and decoupling vector control
methodology. Meanwhile, two same surface‐mounted three‐

phase traction PMSMs are coupled together to simulate the
DT‐PMSM, and therefore, the mutual coupling between two
sets of single three‐phase windings is not considered in [25].

The mathematical model of the DT‐PMSM with one open
phase (Figure 1) is introduced by the vector space decompo-
sition modelling method in [26]. However, the inductance
modelling is simplified and the second harmonic inductance
[27] is not considered in [26]. Therefore, the mathematical
modelling of the DT‐PMSM with one phase open is not
precise and accurate. Meanwhile, there are second harmonics
in the PM flux‐linkage in the dq‐frame [26], and therefore, it
cannot suppress the second harmonic currents by the con-
ventional PI controller. Although the second harmonic

F I GURE 1 Dual three‐phase drive system with phase Z open
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currents can be suppressed by the PI plus resonant control or
dual PI controller [28, 29], they suffer from stability issues and
slow dynamical performance at slow speed or standstill in the
electrical drive application.

A generic and precise mathematical modelling and decou-
pling vector control for DT‐PMSM (asymmetrical, shift angle
30°) with one phase open is proposed based on Figure 1,
accounting for the mutual coupling between two sets of three‐

phase windings and the second harmonic inductance in the
self‐inductance and mutual inductances between phases.
Inspired by the reference frame transformations introduced in
[1] to obtain a decoupling dq‐frame model for the faulty single
three‐phase PMSM similar to that normally used for machines
working in healthy conditions, the fault‐tolerant vector control
of DT‐PMSM is introduced here, with both the asymmetric PM
flux‐linkages and currents in dq‐frame in the conventional
vector controlling the turn into DC value in the dq‐frame, and
therefore, the conventional PI controller could be used to
regulate the currents. Based on the proposed mathematical
modelling, a decoupling fault‐tolerant vector control scheme
with/without the feed‐forward control is used for its validation.

2 | MATHEMATICAL MODELLING OF
DUAL THREE‐PHASE PMSM WITH ONE
PHASE OPEN

The variable speed drive (VSD) theory is introduced in [30, 31]
for the healthy dual three‐phase machine. The six‐dimensional
machine system can be decomposed into three orthogonal
subspaces, that is, αβ, z1z2, o1o2 subplanes. By the trans-
formation matrix, different harmonics are mapped to different
subplanes. The fundamental and (12k ± 1)th, k = 1, 2, … har-
monics in the real frame are mapped to αβ subplane; the (6k± 1)
th, k= 1, 3, 5, … harmonics in the real frame are mapped to z1z2
subplane; the (3k)th, k= 0, 1, 3, 5, … harmonics in the real frame
are mapped to o1o2 subplane. However, the full‐order matrix
transformation no longer functions properly when one phase is
open, where there is a conflict of interest between current con-
trollers in αβ and z1z2 subplanes [32]. Using the same concept of
the VSD theory, the modelling and vector control of the six‐

phase asymmetric IM with one phase open are presented in
[33, 34], an unbalanced stationary to synchronous rotating
reference frame transformation for stator currents are devel-
oped. Consequently, the existing field‐oriented control becomes
applicable in the postfault operation.

Considering the DT‐PMSM, without loss of generality, the
phase Z is assumed to be the open phase in this case study, by
matrix transformation shown in Equation (1), the variables in
the abc‐xyz frame, Figure 1 can be converted into two
decoupled subplanes: αβ subplane and z subplane, which are
orthogonal to each other. All the electromechanical energy
conversion‐related variable components are mapped to the αβ

subplane, and all the nonelectromechanical energy conversion‐

related variable components are projected to the z subplane.

½ Fα Fβ Fz1 Fz2 Fz3 �T

¼½T 5� ⋅

�

Fa Fx Fb Fy F c
�T ð1Þ

where [T5] can be expressed as Equation (2) if phase Z is open
and θs is equal to π/6.

½T 5�

¼ 1
3

2

6

6

6

6

6

6

4

cosð0θsÞ cosð1θsÞ cosð4θsÞ cosð5θsÞ cosð8θsÞ
sinð0θsÞ 0 sinð4θsÞ 0 sinð8θsÞ
cosð0θsÞ cosð5θsÞ cosð8θsÞ cosð1θsÞ cosð4θsÞ

1 0 1 0 1
0 1 0 1 0

3

7

7

7

7

7

7

5

:

ð2Þ

where F can be R, v, i, ψs or ψf, which correspond to stator
resistance, voltage, current, stator flux‐linkage or PM flux‐

linkage, respectively.

2.1 | Mathematical modelling in abc‐xyz
frame

The voltage and flux‐linkage equations for DT‐PMSM with
phase Z open in the abc‐xyz frame can be expressed as:

½vs� ¼ ½Rs�½is� þ
d
dt

½ψ s� ð3Þ

½ψ s� ¼ ½Ls�½is� þ
�

ψ f
�

ð4Þ

where [Rs], [vs], [is], [ψs] and [ψf] correspond to stator resis-
tance, voltage, current, stator flux‐linkage and PM flux‐linkage
with one phase open in abc‐xyz frame, respectively. [Ls] is the
inductance matrix [27] for dual three‐phase PM machine with
phase Z open, which can be expressed as Equation (5)

½Ls� ¼

2

6

6

6

6

4

Laa Max Mab May Mac
Mxa Lxx Mxb Mxy Mxc
Mba Mbx Lbb Mby Mbc
Mya Myx Myb Lyy Myc
Mca Mcx Mcb Mcy Lcc

3

7

7

7

7

5

ð5Þ

Assuming the induced back electromotive force (EMF) is
sinusoidal; eddy current and hysteresis losses, mutual leakage
inductance, saturation are neglected; the inductance of higher
order than the second‐order and mutual leakage inductance
[27, 35, 36] is not considered, the self‐inductance of the phases
can be expressed as:

LPP ¼ Lsl þ Ldqavg þ Ldqdif f cosð2θPÞ ð6Þ

Ldqavg ¼
�

Ld þ Lq
��

2 ð7Þ

HU ET AL. - 849



Ldqdif f ¼
�

Ld − Lq
��

2 ð8Þ

The mutual inductance between phases in each set of
three‐phase windings can be expressed as:

MPQ ¼Mdqavg cos
�

θP − θQ
�

þMdqdif f cos
�

θP þ θQ
�

ð9Þ

The mutual inductance between phases in a different set of
three‐phase windings can be expressed as:

MPQ ¼Mdq12avg cos
�

θP − θQ
�

þMdq12dif f cos
�

θP þ θQ
�

ð10Þ

where P stands for phase a, x, b, y, c or z, while Q rep-
resents another phase that is different with phase P. θP and
θQ are the electrical angles of the axis of phase P and phase
Q's winding shifted from d‐axis of PM rotor. Lsl is the
phase leakage inductance, (Lsl + Ld) is the phase self‐
inductance when the axis of phase winding is aligned to d‐
axis, (Lsl + Lq) is the phase self‐inductance when the axis of
phase winding is aligned to the q‐axis. Mdqavg cos(θP‐θQ) and
Mdqdiff cos(θP‐θQ) are average and second harmonic mutual
inductances between phases in each set of three‐phase
windings, respectively. Mdq12avg cos(θP‐θQ) and Mdq12diff cos
(θP‐θQ) are average and second harmonic mutual inductances
between phases in a different set of three‐phase windings,
respectively.

2.2 | Mathematical modelling in αβ‐z1z2z3
subplanes

Applying Equation (1) to Equations (3) and (4) respectively, the
voltage and flux‐linkage equations in αβ‐ z1z2z3 subplanes can
be expressed as Equations (11) and (12) respectively.

½vαβz� ¼ ½Rαβz�½iαβz� þ
d
dt

½ψ sαβz� ð11Þ

½ψ sαβz� ¼ ½Lαβz�½iαβz� þ
�

ψ f αβz
�

ð12Þ

where [vαβz] is equal to [T5][vs]; [iαβz] is equal to [T5][is];
[ψsαβz] is equal to [T5][ψs]; [ψfαβz] is equal to [T5][ψf]; [Lαβz]
is equal to [T5][Ls][T5]−1 and [Rαβz] is equal to [T5][Rs]
[T5]−1.

As iz2 and iz3 are zero in the dual three‐phase system with
two isolated neutral points when phase Z is open, only the
flux‐linkages in the αβ subplane and z1‐axis need to be
considered. The stator flux‐linkage in αβ subplane [ψsαβ] can
be separated from Equation (12) and expressed as Equation
(13).

½ψ sαβ� ¼ ½Lαβ�½iαβ� þ ½Mαβz1�iz1 þ
�

ψ f αβ

�

ð13Þ

where [Lαβ] and [Mαβz1] are shown in Equations (A2) and (A8),
respectively, [ψsαβ] = [ψsαψsβ]T, [iαβ] = [iαiβ]T.

The stator flux‐linkage ψsz1 in z1‐axis can also be separated
from Equation (12) and expressed as Equation (14).

ψ sz1 ¼ Lz1iz1 þMz1βiβ þ ψ f z1 ð14Þ

where Lz1 and Mz1β are shown in Equations (A9) and (A10),
respectively.

It can be seen from Equations (13) and (14) that there is a
mutual coupling between the αβ subplane and the z1z2z3
subplane, the mathematical model is not fully decomposed if
Mz1β and [Mαβz1] are not zero.

The voltage equations in the αβ subplane and z1z2z3 sub-
plane can be separated from Equation (11) and expressed as
Equations (15) and (16), respectively, if each phase winding
resistance is R.

½vαβ� ¼ R½iαβ� þ
d
dt

½ψ sαβ� ð15Þ

vz1 ¼ Riz1 þ
d
dt

ψ sz1 ð16Þ

The PM flux‐linkage of each phase is proportional to the
phase back‐EMF, if only the fundamental component is
considered, and the PM flux‐linkage of each phase can be
expressed as:

2

6

6

6

6

4

ψ f a
ψ f x
ψ f b
ψ f y
ψ f c

3

7

7

7

7

5

¼ ψm

2

6

6

6

6

4

cosðθ − 0θsÞ
cosðθ − 1θsÞ
cosðθ − 4θsÞ
cosðθ − 5θsÞ
cosðθ − 8θsÞ

3

7

7

7

7

5

ð17Þ

where the subscript ‘f ’ indicates the PM flux‐linkage, ψm is its
amplitude and θ is the electrical angle of PM rotor, then the
PM flux‐linkage in αβ‐z1z2z3 subplanes can be expressed as:

2

6

6

6

6

4

ψ f α

ψ f β

ψ f z1
ψ f z2
ψ f z3

3

7

7

7

7

5

¼ ½T 5�

2

6

6

6

6

4

ψ f a
ψ f x
ψ f b
ψ f y
ψ f c

3

7

7

7

7

5

¼ ψm

2

6

6

6

6

4

cosðθÞ
1=2 ⋅ sinðθÞ

0
0

1=3 ⋅ sinðθÞ

3

7

7

7

7

5

ð18Þ

Equation (18) indicates that the PM flux‐linkage in the αβ

subplane is not balanced. To obtain a balanced PM flux‐linkage
in the αβ subplane, an additional matrix transformation is
required. Similar to the method introduced in the modelling of
single three‐phase PMSM with one phase open [1], the addi-
tional matrix [B] can be expressed as:

½B� ¼
�

1 0
0 2

�

ð19Þ

850 - HU ET AL.



The transformation can be expressed as:

½Fα2β2� ¼
�

Fα2
Fβ2

�

¼ ½B�
�

Fα

Fβ

�

ð20Þ

Substituting PM flux‐linkages in αβ subplane into Equa-
tion (20), the PM flux‐linkages are mapped to a new stationary
frame, that is, the α2β2‐frame, which can be expressed as:

�

ψ f α2
ψ f β2

�

¼ ½B�
�

ψ f α

ψ f β

�

¼ ψm

�

cosðθÞ
sinðθÞ

�

ð21Þ

Equation (21) shows that the PM flux‐linkages in α2β2‐

frame are balanced. By applying Equation (20) to Equation
(13), the voltage equation in α2β2‐frame can be expressed as:

½ vα2 vβ2 �T ¼ R½ iα2 iβ2 �T þ d
dt
½ψ sα2 ψ sβ2 �T ð22Þ

The stator flux‐linkage in α2β2‐frame can be expressed as:

�

ψ sα2
ψ sβ2

�

¼ ½Lα2β2�
�

iα2
iβ2

�

þ ½Mα2β2z1�iz1 þ
�

ψ f α2
ψ f β2

�

ð23Þ

where [Lα2β2] and [Mα2β2z1] are shown in Equations (A11) and
(A12), respectively.

2.3 | Mathematical modelling in dq‐frame

On applying the rotation transformation for the voltages and
flux‐linkages in the α2β2‐frame, the dq‐axis voltages and flux‐

linkages can be expressed as:

�

vd vq
�T ¼

�

Tdq
�

½ vα2 vβ2 �T ð24Þ
�

ψ sd ψ sq
�T ¼

�

Tdq
�

½ψ sα2 ψ sβ2 �T ð25Þ
�

ψ f d ψ f q
�T ¼

�

T dq
��

ψ f α2 ψ f β2
�T ð26Þ

where [Tdq] is the rotation transformation matrix, shown
as:

�

T dq
�

¼
�

cosðθÞ sinðθÞ
−sinðθÞ cosðθÞ

�

ð27Þ

Substitute Equation (21) into Equation (26), the dq‐axis
PM flux‐linkages can be expressed as:

�

ψ f dq
�

¼
�

ψ f d ψ f q
�T ¼ ½ψm 0 �T ð28Þ

As the expected trajectory of current vector iαβ = iα + jiβ is a
circle for a rotating circle‐based MMF in the machine with
constant speed, after transformation to α2β2‐frame, the trajec-
tory of current vector iα2β2 = iα2 + jiβ2 is not a circle anymore.
Therefore, if [Tdq] is applied to [iα2β2] directly, id and iq will not be
a DC value. Consequently, it is not easy to maintain the steady‐

state errors to zero in dq‐frame as the dq‐axis currents are AC
values. To solve this issue, a new matrix conversion Equation (29)
is introduced. By applying Equation (29) to currents in α2β2‐

frame, the currents in dq‐frame can be expressed as:

�

id iq
�T ¼

h

Tdq I

i

½ iα2 iβ2 �T ð29Þ

where

h

T dq I

i

¼
�

cosðθÞ sinðθÞ=2
−sinðθÞ=2 cosðθÞ

�

ð30Þ

Then, Equation (29) can also be rewritten as:

� id
iq

�

¼
h

Tdq I

i

�

iα2

iβ2

�

¼
h

T dq I

i

½B�
�

iα
iβ

�

¼
�

T dq
�

�

iα
iβ

�

ð31Þ

The stator flux‐linkages in dq frame can be expressed as:

�

ψ sd

ψ sq

�

¼
�

Tdq
�

 

½Lα2β2�
�

iα2

iβ2

�

þ ½Mα2β2z1�iz1 þ
"

ψ f α2

ψ f β2

#!

¼
�

�

T dq
�

½Lα2β2�
h

T dq I

i

−1�
�

h

T dq I

i

�

iα2

iβ2

��

þ
�

Tdq
�

½Mα2β2z1�iz1 þ
�

T dq
�

"

ψ f α2

ψ f β2

#

ð32Þ

Define

�

Ldq
�

¼
�

T dq
�

½Lsα2β2�
h

T dq I

i

−1
ð33Þ

�

Mdqz1
�

¼
�

T dq
�

½M sα2β2z1� ð34Þ

then Equation (32) can be rewritten as:

�

ψ sd
ψ sq

�

¼
�

Ldq
�

�

id
iq

�

þ
�

Mdqz1
�

iz1 þ
�

ψ f d
ψ f q

�

ð35Þ

where [Ldq] and [Mdqz1] can be expressed in Equations (A22)
and (A27).
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Apply Equation (27) to Equation (22), i.e.,

�

T dq
�

"

vα2

vβ2

#

¼
�

T dq
�

R
h

Tdq I

i

−1
 

h

Tdq I

i

"

iα2

iβ2

#!

þ
�

Tdq
� d
dt

 

�

T dq
�

−1

 

�

T dq
�

"

ψα2

ψβ2

#!!

ð36Þ

Then Equation (36) can be simplified as:

�

vd
vq

�

¼
�

Rdq
�

�

id
iq

�

þ d
dt

�

ψ sd
ψ sq

�

þ ω

�

−ψ sq
ψ sd

�

ð37Þ

where

�

Rdq
�

¼ R
�

1 0
0 1

�

þ 1
2
R½MðθÞ� ð38Þ

½MðθÞ� ¼
�

1 − cosð2θÞ sinð2θÞ
sinð2θÞ 1 þ cosð2θÞ

�

ð39Þ

Neglecting the reluctance torque, the electromagnetic ‐tor-
que can be expressed as Equation (40), where p is the number of
pole pairs. The derivation is detailed in Section 7‐Appendix.

T e ¼ 3p
�

− idψ f q þ iqψ f d
�

ð40Þ

It is worth noting that the modelling is based on the
conventional dual three‐phase VSIs. When one phase is open,
it is simply isolated from the system without any extra hard-
ware reconfiguration. The open phase scenarios of DT‐PMSM
can be listed as Table 1 according to the number of the open
phase it can operate with reduced capability in the scenarios of
one phase open, two phases open and three phases open
(phase ABC or phase XYZ open only). Although the mathe-
matical modelling is focused on the scenario of one phase
open, the methodology can be extended to the scenarios of
two phases open and three‐phase open.

3 | FAULT‐TOLERANT VECTOR
CONTROL SCHEME

The fault‐tolerant vector control of DT‐PMSM with one phase
open illustrated in Figure 2 is used to verify the correctness of
the proposed mathematical modelling. Within and current limit
for power converters operating normally and under postfault
operation conditions, to achieve the same torque, the peak
current of DT‐PMSM with two isolated neutral points will be
1.732, 1.803 or 2 times of peak current in the healthy mode if
the maximum torque control, minimum copper loss control or

single three‐phase mode control [22, 26] is used respectively.
Therefore, the torque will be 1/1.732, 1/1.803 and 1/2 of the
maximum torque of the healthy mode respectively. In terms of
the voltage limit, the power capacity will be constrained by the
DC bus voltage. As the trajectory of the output voltage vector
under postfault operating conditions is not a circle anymore,
and thus, it is challenging to determine the power capability,
which can be obtained by an offline optimisation that takes
into account simultaneously the voltage and current constraints
[16]. In this case study, the minimum copper loss control
[25, 37] is adopted for investigation. Two conventional PI
controllers are used to regulate the dq‐axis currents in the
dq‐frame. By inverse [Tdq] transformation to vd* and vq*, the vα2*
and vβ2* in α2β2‐frame can be deduced, and then, these signals
are converted to vα* and vβ* in αβ‐frame by inverse [B] trans-
formation. As shown in the voltage Equation (16), there is a
fundamental component in ψz1 in Equation (14). Therefore,
the PI plus resonance controller (PI‐R) with the centre fre-
quency of a fundamental component is used to regulate the iz1
current to zero for minimum copper loss control [25, 37]. The
output of the PI‐R controller is vz1* . When all the signals vα*,

F I GURE 2 Decoupling vector control with feedforward
compensation for DT‐PMSM with phase‐Z open

TABLE 1 Open phase scenarios of dual three‐phase PMSM

Categories Scenarios

One phase A B C X Y Z

Two phases AB BC CA XY YZ ZX

AX AY AZ BX BY BZ

CX CY CZ

Three phases (can work) ABC XYZ

Three phases (cannot work) AXY AYZ AZX BXY BYZ BZX

CXY CYZ CZX ABX ABY ABZ

BCX BCY BCZ CAX CAY CAZ

Four phases Cannot work

Five phases Cannot work

Six phases Cannot work
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vβ*, vz1* , vz2* and vz3* are ready, the va*, vb*, vc*, vx* and vy* can be
obtained by inverse [T5] transformation, and then, the duties
can be derived by the conventional space vector pulse width
modulation (SVPWM) generation.

Vffd_d and Vffd_q are the feed‐forward voltages in the d‐axis
and q‐axis, respectively, which can be expressed as:

�

vf f d d
vf f d q

�

¼ 1
2
R½MðθÞ�

�

id
iq

�

þ ω

�

−ψ sq
ψ sd

�

ð41Þ

From the second part in Equation (38), it can be seen
that the resistances in the dq‐frame vary with the rotor
position. Besides, there are also second harmonics in −ωψq
and ωψd as there are second harmonic inductances in ½Ldq�
in Equation (A22) and ½Mdqz1� in Equation (A27). If the
voltage in Equation (41) is compensated accurately by the
feed‐forward compensation, the current control in the faulty
condition can be treated as the same as that in healthy
condition.

4 | EXPERIMENTS

The test platform is constructed based on dSPACEDS1005,
which is shown in Figure 3. The dual three‐phase VSI power
topology is the same as Figure 1, while the phase Z is left
open deliberately. Two single three‐phase VSIs share the
same DC voltage source. Two independent SVPWM modu-
lators are used to generate pulse width modulation (PWM)
duties for each set of three‐phase windings. The prototype
machine is coupled to a DC generator, which is connected to
an adjustable power resistor. The load can be adjusted by
changing the resistance of the power resistor. If the friction is
neglected, the electromagnetic torque could be reflected by
the speed.

In the fault‐tolerant control, the postfault operation should
be in a similar way of the healthy machine with a circular
trajectory for the current vector, therefore, the rotating MMF
will be the same as the healthy machine when the DT‐PMSM is
faulty with one phase open [7]. In this experiment, the mini-
mum copper loss control [25, 37] is adopted, where the tra-
jectory of the current vector is the same as that of the healthy
machine, whilst the copper loss is the minimum. With this
control strategy, the phase currents should be the same as

Equation (42), where Im is the amplitude of the current vector,
and θ is the electrical rotor position.

2
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4

ia
ix
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iy
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¼ Im

2
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6

4

cosðθ þ π=2Þ
ffiffiffi

3
p .

2cosðθ þ π=2Þ
−1=2cosðθ þ π=2Þ þ

ffiffiffi

3
p

sinðθ þ π=2Þ
−

ffiffiffi

3
p .

2cosðθ þ π=2Þ
−1=2cosðθ þ π=2Þ −

ffiffiffi

3
p

sinðθ þ π=2Þ

3

7

7
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ð42Þ

On applying Equation (1) to Equation (42), the currents in
αβ‐z1z2z3 subplanes are:

½ iα iβ iz1 iz2 iz3 �T¼
Im½−sinðθÞ cosðθÞ 0 0 0 � T ð43Þ

As can be seen from Equation (43), the currents in the αβ

subplane are balanced, and a rotating MMF can be achieved by
the phase currents with a new amplitude and phase offset angle
as Equation (42) under open‐phase fault.

The parameters of prototype DT‐PMSM are shown in
Table 2 and the parameters in Table 3 are derived from the
measured inductances by LCR meter. The inductances in the
faulty condition with one phase open are shown in Table 4.
When the machine speed is rated speed, the amplitude of
variable impedance in Equation (A22) can be listed in Table 5.
Since Ldq ac2 is much smaller than Ldq ac1, the voltage distur-
bance in steady operation is mainly caused by Ldq ac1 in
Equation (A22) and variable resistances in Equation (38).

The current loop is executed for every PWM cycle at 100
μs. The overall time delay Td including the PWM output delay,
current sampling delay and processing delay, is approximately
1.5 times of PWM period, which is Td = 150 μs. The design
principle of PI gains is that the dominant pole of 1/(Ls+R) is

dSPACE

Dual 3-phase drive

DC power supply

Control power 

supply

F I GURE 3 Experimental setups for DT‐PMSM

TABLE 2 Parameters of prototype DT‐PMSM

Parameters Value Parameters Value

Resistance (Ω) 1.096 Power (W) 240

Flux‐linkage (Wb) 0.075 Rated speed (rpm) 400

Pole pairs 5 DC link voltage (V) 40
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cancelled by the zero‐point of the PI controller [38], Then, Kp
and Ki can be optimally designed as:

kp ¼
L

4ζ2Td
; ki ¼

R
4ζ2Td

ð44Þ

where ξ is the damping factor. In this case study, the resistance
and inductances in the dq‐frame vary with rotor position. As
the voltage drop from 1/R*[M(θ)] is compensated by feed‐

forward compensation, the resistance for the design of PI gains
can be treated as a DC value. In terms of inductances, for
simplicity, the inductance L for the calculation of Kp in
Equation (44) is chosen as the minimum value in Equations
(A22) and (A9), that is L = 4.579 mH for d‐axis current
regulator, L = 5.190 mH for the q‐axis current regulator, and L
= 1.443 mH for z1‐axis current regulator. Besides, the cut‐
frequency of the practical resonant controller in z1‐axis current
regulator is chosen as 1/200 times of the resonant frequency,
and its integral gain is set to be the same as the integral gain of
the PI controller. Therefore, the gains of the current regulator
can be listed in Table 6.

4.1 | VSD control in healthy mode

To set up the benchmark for the fault‐tolerant control with one
phase open, the results of VSD control in the healthy mode [31]

are introduced at first. The PI plus resonant control for the sixth‐

order harmonic in the dq‐frame is used to eliminate the fifth and
seventh harmonics in phase currents in the harmonic subplane

TABLE 4 Inductances in the faulty condition with one phase open

Parameters Value (mH) Parameters Value (mH)

Lequ
d

4.58 Ldq ac1
1.932

Lequ
q

5.19 Ldq ac2
0.49

Mdqz1 ac
0.49

TABLE 5 Amplitude of variable impedance with rated speed

Parameters Value (Ω)

The second part in Equation (A22): ωLdq_ac1/2 0.202

The third part of Equation (A22) ωLdq_ac2/2 0.051

The variable resistor in Equation (38): R/2 0.548

TABLE 6 Parameters of regulators

Parameters Value

Proportional gain of d‐axis current regulator 15.27

Integral gain of d‐axis current regulator 3654

Proportional gain of q‐axis current regulator 17.31

Integral gain of q‐axis current regulator 3654

Proportional gain in z1‐axis current regulator 4.81

Integral gain of in z1‐axis current regulator 3654

Integral gain of the resonant controller in z1‐axis 3654

TABLE 3 Inductances of prototype DT‐PMSM

Parameters Value (mH) Parameters Value (mH)

Lsl 0.8 Ldqdiff ‐1.000

Ld 1.917 Mdqavg ‐0.617

Lq 3.917 Mdqdiff 0.592

Md ‐0.025 Mdq12avg 0.984

Mq ‐1.209 Mdq12diff ‐0.265

Ldqavg 2.917

(a)

(b)

(c)

(d)

F I GURE 4 VSD control in healthy mode@ iq ∗ ¼1A
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[31]. In this test, iq∗ is assigned to 1A and the experimental results
are shown in Figure 4. As can be seen from Figure 4(a), the
currents of phase‐ABC and phase‐XYZ have the same ampli-
tude and balanced. Phase X current lags phase A current by 30º,
phase Y current lags phase B current by 30º. Figure 4(b) shows
that iα and iβ in the αβ subplane are very sinusoidal, iz1, and iz2 in
the z1z2 sub‐plane are well regulated to zero. The harmonic
analysis of id and iq shown in Figure 4(c) indicates that there are
negligible second harmonic components. The speed and calcu-
lated torque are shown in Figure 4(d). The speed is about 160rpm
and the average torque is approximately 1.125Nm.

4.2 | Steady‐state operation

The experiments without/with feed‐forward compensation
with iq∗ ¼1A are shown in Figures 5 and 6, respectively. From
Figures 5(a) and 6(a), it can be seen that the phase currents of
the first set are unbalanced, the phase current of the remaining

two phases in the second set is opposite to each other due to
phase Z is open. Meanwhile, the phase current harmonic an-
alyses in the bottom part of Figures 5(a) and 6(a) indicate that
the phase currents are not sinusoidal, and the majority of
harmonics are the third, fifth and seventh harmonics, which
resulted from the asymmetric inverter nonlinearity [17]. iα and
iβ in the αβ subplane shown in Figures 5(b) and 6(b) are very
sinusoidal, whilst iz1 in Figures 5(b) and 6(b) is zero, which
indicates that the minimum copper loss control is used.

There are distinct second‐order current harmonics in the dq‐

axis current id and iq in Figure 5(c) without feed‐forward
compensation. In contrast, with feed‐forward compensation,
the second harmonic currents in dq‐axis current id and iq,
Figure 6(c), are suppressed effectively with only conventional PI
control, which shows the superiority of second‐order harmonic
currents suppression due to the feed‐forward compensation. It is

(a)

(b)

(c)

(d)

F I GURE 5 Measured results without feed‐forward compensation@
iq∗ ¼1A

(a)

(b)

(c)

(d)

F I GURE 6 Measured results with feed‐forward compensation iq ∗ ¼1A
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worth noting that there is a little portion of fourth harmonic that
exists in the d‐axis currents in Figures 5(c) and 6(c), which is due
to the voltage distortion resulting from the asymmetrical inverter
nonlinearity when one phase is open [17]. The speeds and
calculated torque without and with feed‐forward compensation
are shown in Figures 5(d) and 6(d), respectively. The speeds are
both around 160rpm and very stable without obvious fluctua-
tions. However, the calculated torque in Figure 6(d) has less
oscillation than that in Figure 5(d).

To further illustrate the reasonability of the proposed
mathematical modelling, the experimental results with/without
feed‐forward compensation under iq∗ ¼2A are evaluated. The
profile of the phase currents and currents in αβ‐z1z2z3 sub-
planes are similar to the currents in Figures 5 and 6, except that
the amplitudes of currents are different and the speeds are
about 320rpm. Therefore, they will not be demonstrated
anymore to avoid redundancy. Instead, the dq‐axis currents
and corresponding fast Fourier transform analysis are shown in
Figure 7. The second‐order harmonic is apparent in id and iq
(Figure 7(a)) without feed‐forward compensation. With feed‐

forward compensation, the second‐order harmonic in id and iq
(Fig. 7(b)) is suppressed effectively.

4.3 | Step response

In this experiment, the iq∗ reference current is stepped from 0.5
to 1 A at the time of 0.00 s. The step responses without and

with feed‐forward compensation are shown and compared in
Figure 8. The dq‐axis currents without and with feed‐forward
compensation are shown in Figure 8(a)–(d), respectively. As
can be seen from Figure 8(b) and (d), the iq response exhibits
excellent performance in terms of step response and quick
settling time in both cases with and without feed‐forward
compensation. However, iq in Figure 8(d) has less oscillation in
steady‐state operation than that in Figure 8(b).

4.4 | Comparison of dynamic performance

The step response of the decoupling vector control with/
without feed‐forward compensation with one phase open is
compared with the healthy DT‐PMSM with VSD control in
Figure 9. The iq reference current is stepped from 0.5A to 1A at
the time of 0s. It shows that their step responses are almost the
same, which indicates that the decoupling fault‐tolerant vector

(a)

(b)

F I GURE 7 Measured results with/without feed‐forward
compensation@ iq∗ ¼2A

(a)

(b)

(c)

(d)

F I GURE 8 Measured step responses without/with feed‐forward
compensation
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control has similar performance as the VSD control for the
healthy DT‐PMSM. However, there is some oscillation in the iq
step response under control without feed‐forward compensa-
tion, which resulted from the second‐order harmonic current.
The comparative results show that the proposed mathematical
modelling of DT‐PMSM is reasonable and correct.

5 | CONCLUSION

This study proposes a generic mathematical modelling and
decoupling fault‐tolerant vector control of DT‐PMSM with
one phase open, which accounts for the mutual coupling be-
tween two sets of three‐phase windings and the second‐order
harmonic inductances. The general modelling methodology
can also be extended to the dual three‐phase machines or other
multiphase machines with multiple phases open easily. Based
on the proposed mathematical modelling, the permanent flux‐

linkage and current in the dq‐frame become DC values. A
proposed decoupling fault‐tolerant vector control scheme
with/without dedicated feed‐forward voltage compensation is
used in the experiments for the validation of mathematical
modelling. With the dedicated feed‐forward compensation, the
second harmonic components in the dq‐frame are well sup-
pressed. The dynamic performance of the fault‐tolerant con-
trol for the faulty DT‐PMSM with one phase open is
equivalent to that of the VSD control for healthy DT‐PMSM,
indicating the correctness of the proposed modelling.

NOMENCLATURE
Fα, Fβ, Fz1 Components in αβ‐ z1z2z3 frame
Fz2, Fz3 F can be R, v, i, ψs or ψf, which

represents to stator resistance, voltage,
current, stator flux‐linkage, or
PM flux‐linkage

[Fαβz] [Fαβz] = [Fα Fβ Fz1 Fz2 Fz3]T

[Fαβ] [Fα Fβ]T

Fα2, Fβ2 Components in α2β2‐frame
[Fα2β2] [Fα2 Fβ2]T

Fd, Fq Components in dq‐frame for dual three‐phase
PMSM

[Fdq] [Fd Fq]T

Fd1, Fq1 Components in the dq‐frame for the first set
of three‐phase windings

Fd2, Fq2 Components in the dq‐frame for the second set
of three‐phase windings

[Lαβz] Inductance matrix in αβ‐z1z2z3 frame
[Rαβz] Resistance matrix in αβ‐z1z2z3 frame
[Lαβ] Inductance matrix in αβ‐frame
Lz1 Inductance in z1‐axis
[Mαβz1] Mutual inductance matrix between αβ‐frame

and z1‐axis
Mz1β Mutual inductance between β‐axis and z1‐axis
[Lα2β2] Inductance matrix in α2β2‐frame
[Mα2β2z1] Mutual inductance matrix between α2β2‐frame

and z1‐axis
[Ldq] Inductance matrix in dq‐frame
[Mdqz1] Mutual inductance matrix between

dq‐frame and z1‐axis
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APPENDIX

1) Equations in abc‐xyz frame

The mathematical modelling in the abc‐xyz frame has been
introduced in Section 2.1. In terms of electromagnetic torque,
it can be calculated as the derivative of the stored magnetic
coenergy Wc with respect to a small displacement [39]. In the
same way, the torque for the faulty dual three‐phase PMSM can
be expressed as:

T e ¼
∂W c

∂Ω
¼ p

2
½is�T

∂½Ls�
∂θ

½is� þ p½is�T
∂
�

ψ f
�

∂θ
ðA1Þ

where p is the number of pole pairs. As can be seen from
Equation (A1), the torque includes two parts, the first part of
Equation (A1) is the reluctance torque, and the second part of
Equation (A1) is PM torque.

2) Equations in αβ‐z1z2z3 subplanes

The inductance matrix in the αβ‐frame can be expressed as:

½Lαβ�

¼
�

Ld1 þ Lq1

2

�

I2 þ
�

Ld1 − Lq1

2

�

"

cosð2θÞ sinð2θÞ
sinð2θÞ=2 −cosð2θÞ

#

þ

�

Md12 þMq12

2

�

I2 þ
�

Md12 − Mq12

2

�

"

cosð2θÞ sinð2θÞ
sinð2θÞ=2 0

#

ðA2Þ
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where

Ld1 ¼ Ld2 ¼ Lsl þ Ldqavg þ
Mdqavg

2

þ
�

Ldqdif f þ 2Mdqdif f
�

2

ðA3Þ

Lq1 ¼ Lq2 ¼ Lsl þ Ldqavg þ
Mdqavg

2

−

�

Ldqdif f þ 2Mdqdif f
�

2

ðA4Þ

Md21 ¼Md12 ¼ 3
�

Mdq12avg þMdq12dif f
��

2 ðA5Þ

Mq21 ¼Mq12 ¼ 3
�

Mdq12avg − Mdq12dif f
��

2 ðA6Þ

I2 ¼
�

1 0
0 1

�

ðA7Þ

The mutual inductance matrix between αβ‐frame and z1‐

axis can be expressed as:

½Mαβz1� ¼
�

�

Ld1 − Lq1
�

2
−

�

Md12 − Mq12
�

2

�

2

6

4

0

sinð2θÞ
2

3

7

5

ðA8Þ

The self‐inductance in z1‐axis is:

Lz1 ¼
�

Ld1 þ Lq1

2

�

þ
�

Ld1 − Lq1

2

�

cosð2θÞ

−

�

Md12 þMq12

2

�

−

�

Md12 − Mq12

2

�

cosð2θÞ
ðA9Þ

The mutual inductance Mz1β can be expressed as:

Mz1β ¼
��

Ld1 − Lq1

2

�

−

�

Md12 − Mq21

2

��

sinð2θÞ ðA10Þ

By the introduction of matrix [B], the inductance matrix in
α2β2‐frame can be expressed as:

½Lα2β2� ¼ ½B�½Lαβ�½B�−1¼
�

Ld1 þ Lq1

2

�

I2 þ
�

Ld1 − Lq1

2

�

"

cosð2θÞ sinð2θÞ=2

sinð2θÞ −cosð2θÞ

#

þ

�

Md12 þMq12

2

�

I2 þ
�

Md12 − Mq12

2

�

"

cosð2θÞ sinð2θÞ=2

sinð2θÞ 0

#

ðA11Þ

½Mα2β2z1� ¼ ½B�½Mαβz1�

¼
��

Ld1 − Lq1

2

�

−

�

Md12 − Mq12

2

��

"

0

sinð2θÞ

#

ðA12Þ

Since

½is� ¼ ½T 5�−1½iαβz� ðA13Þ

½Ls� ¼ ½T 5�−1½Lαβz�½T 5� ðA14Þ
�

ψ f
�

¼ ½T 5�−1�
ψ f αβz

�

ðA15Þ

Substituting Equations (A13), (A14) and (A15) into
Equation (A1) and after simplification, the torque calcu-
lated in αβ‐z1z2z3, subplanes can be expressed in Equation
(A16):

T e ¼
p
2

�

½iαβz�T ½M5�
∂½Lαβz�

∂θ
½iαβz�

�

þp
�

½iαβz�T ½M5�
∂
�

ψ f αβz
�

∂θ

�

ðA16Þ

where [M5] is expressed in Equation (A17).

½M5� ¼
�

½T 5�−1�T ½T 5�−1 ðA17Þ

Neglecting reluctance torque, the Equation (A16) can be
rewritten as:

T e ¼ 3p
�

½iαβ�T ½B�
∂
�

ψ f αβ

�

∂θ

�

ðA18Þ

Since

½iαβ�T ¼
�

½B�−1½iα2β2�
�T ¼ ½iα2β2�T

�

½B�−1�T ðA19Þ
½ψ sα2β2� ¼ ½B�½ψ sαβ� ðA20Þ

Equation (A18) can be rewritten as:

T e ¼ 3p
�

½iα2β2�T ½B�−1∂
��

ψ f α2β2
��

∂θ

�

ðA21Þ
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3) Equations in dq‐frame

The inductances in dq‐frame can be expressed as:

�

Ldq
�

¼

2

6

4

Lequ
d 0

0 Lequ
q

3

7

5
þ

1
2

�

Ldq ac1 − Ldq ac2 cosð2θÞ
�

½MðθÞ�

ðA22Þ

Lequ
d ¼ Ld1 þMd12 ðA23Þ

Lequ
q ¼ Lq1 þMq12 ðA24Þ

Ldq ac1 ¼
�

Ld1 þ Lq1
��

2 −

�

Md12 þMq12
��

2 ðA25Þ

Ldq ac2 ¼
�

Ld1 − Lq1
��

2 −

�

Md12 − Mq12
��

2 ðA26Þ

The mutual inductance matrix between dq‐frame and z1‐

axis can be expressed as:

�

Mdqz1
�

¼Mdqz1 ac sinð2θÞ
�

sinðθÞ
cosðθÞ

�

ðA27Þ

where

Mdqz1 ac ¼ Ldq ac2 ðA28Þ

If the second harmonic inductance is neglected, Ldq ac2
and Mdqz1 ac will be zero. Since,

½iαβ2�T ¼
��

T dqI
�

−1�idq
��T ¼

�

idq
�T

⋅

��

T dqI
�

−1�T

�

ψ f αβ2
�

¼
�

T dq
�

−1�
ψ f dq

� ðA29Þ

Neglecting the reluctance torque, Equation (A21) can be
rewritten as:

T e ¼ 3p
�

idq
�T��T dqI

�

−1�T ½B�−1∂
��

T dq
�

−1�
ψ f dq

��

∂θ
ðA30Þ

Assuming [ψfdq] is constant, Equation (A30) can be
simplified as:

T e ¼ 3p
�

idq
�T��T dqI

�

−1�T ½B�−1∂
��

Tdq
�

−1�
ψ f dq

��

∂θ

¼p
 

�

idq
�T

"

0 −3

3 0

#

�

ψ f dq
�

!

¼ 3p
�

− idψ f q þ iqψ f d
�

ðA31Þ
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