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Criteria for a direct sum of modules to be a multiplication

module over noncommutative rings

T. Alsuraiheed and V. V. Bavula

Abstract

We study multiplication modules. The rings are not assumed to be commutative. Several
criteria with some applications are given for a direct sum of modules to be a multiplication
module.
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1 Introduction

In this paper, module means a left module and R is a ring with 1 (not necessarily commutative).

An R-module M is called a multiplication module if every submodule of M is equal to IM
for some two-sided ideal I of the ring R. If M is a left ideal of R then M is called a left multipli-

cation ideal.

An R-module M is a multiplication R-module iff N = [N : M ]M for every submodule N of M
where [N : M ] := annR(M/N) (Lemma 2.1). The class of all multiplication R-modules is denoted
by Modm(R). In case R is a commutative ring, Modm(R) contains R, all cyclic R-modules, and all
invertible ideals of R. For a noncommutative ring, a cyclic module is not necessarily a multiplication
module.

For a ring R, let I(R) be the set of its ideals. The set (I(R),⊆) is a partially ordered set (a poset,
for short). For an R-module M , let SubR(M) be the set of its submodules. The set (SubR(M),⊆)
is a poset. The map µM : I(R) → SubR(M), I 7→ IM respects inclusion. Clearly, an R-module M
is a multiplication module iff the map µM is a surjection.
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A ring R is said to be a left multiplication ring (resp., a right multiplication ring) if for
every two ideals I and J of R such that J ⊆ I, there exists an ideal J ′ of R such that J = J ′I
(resp., J = IJ ′). A ring R is called a multiplication ring if it is a right and left multiplication
ring. In case R is a commutative ring, R is a multiplication ring iff I(R) ⊆ Modm(R). Examples
of multiplication commutative rings are Dedekind domains, principal ideal domains and rings in
which all ideals are idempotent.

Krull introduced the concept of a commutative multiplication ring in [12] as a generalization
of the concept of Dedekind domain. Larsen and McCarty in [13, Theorem 9.21] proved that if
every prime ideal of a commutative ring R is a multiplication ideal then R is a multiplication ring.
In 1981, Barnard [7] presented the notion of multiplication modules over commutative rings. The
fundamental theorem of abelian group could be described as every finitely generated Z-module is a
direct sum of multiplication modules. This result stimulated many authors to study properties of
such class of modules over a commutative ring. For example, Barnard [7], P. F. Smith [15], D. D.
Anderson[4], and Y. Alshaniafi and S. Singh [2]. The first systematic study of multiplication modules
over commutative ring seems to start with El-bast and Smith in [10]. Besides proving many basic
properties of multiplication modules over commutative ring, they gave several characterisations of
such modules. In [14], Mott proved that a multiplication ring has finitely many minimal prime ideals
iff it is a Noetherian ring. In 2019, T. Alsuraiheed and V. V. Bavula [3], presented a characterization
of multiplication commutative rings with finitely many minimal prime ideals: Each such ring is a

finite direct product of rings
n∏

i=1

Di where Di is either a Dedekind domain or an Artinian, local,

principal ideal ring and vice versa.
The algebras of polynomial integro-differential operators over a field K of characteriastic zero

(introduced in [8]),

In = K〈x1, . . . , xn, ∂1, . . . , ∂n,

∫

1

, . . . ,

∫

n

〉,

have many interesting properties that are almost opposite to the ones of the algebra of polynomial
differential operators An = K〈x1, . . . , xn, ∂1, . . . , ∂n〉, the Weyl algebra (where ∂i and

∫
i
are the

partial derivations and integrations with respect to the variable xi). In particular, the algebras In
are neither left nor right Noetherian and non-simple. Futhermore, the classical Krull dimension of
the algebra In is n and all ideals of In are idempotent ideals, [8]. Therefore, the algebras In are
multiplication rings (Corollary 3.2). This result motivated us to study the class of multiplication
modules over noncommutative rings. We have to indicate that there are only very few results in
the literatures about multiplication modules over noncommutative rings (see [16]).

Five criteria for a direct sum of modules to be a multiplication module over an

arbitrary ring. Let R be a ring (not necessarily commutative). To formulate the first criterion
(Theorem 1.4) we need to introduce the following concepts.

Definition 1.1. We say that the intersection condition holds for a direct sum M =
⊕

λ∈Λ Mλ

of nonzero R-modules Mλ if for all submodules N of M ,

N =
⊕

λ∈Λ

N ∩Mλ.

Definition 1.2. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with card(Λ) > 2,
aλ = annR(Mλ) and a

′
λ = ∩µ 6=λaµ. We say that the orthogonality condition holds for the direct
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sum M if
a
′
λMµ = δλµMµ for all λ, µ ∈ Λ

where δλµ is the Kronecker delta. Clearly, a′λ 6= 0 for all λ ∈ Λ (since all Mλ 6= 0). In particular,
aλ 6= 0 for all λ ∈ Λ.

Definition 1.3. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with card(Λ) ≥ 2.
We say that the strong orthogonality condition holds for the direct sum M if for each set of
R-modules {Nλ}λ∈Λ such that Nλ ⊆ Mλ, there is a set of ideals {Iλ}λ∈Λ of R such that

IλMµ = δλµNλ for all λ, µ ∈ Λ.

The set of ideals {Iλ}λ∈Λ is called an orthogonalizer of {Nλ}λ∈Λ.

In particular, the orthogonality condition holds for M =
⊕

λ∈Λ Mλ iff the set of ideals {a′λ}λ∈Λ

is an orthogonalizer of {Mλ}λ∈Λ. If the orthogonality condition holds for M =
⊕

λ∈Λ Mλ and
{Iλ}λ∈Λ is an orthogonalizer of {Mλ}λ∈Λ then Iλ ⊆ a

′
λ for all λ ∈ Λ.

Theorem 1.4 is the first criterion for a direct sum of modules to be a multiplication module
which given via the intersection and strong orthogonality conditions.

Theorem 1.4. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with card(Λ) ≥ 2. Then
M is a multiplication R-module iff the intersection and strong orthogonality conditions hold for the
direct sum M =

⊕
λ∈Λ Mλ. Furthermore, if M =

⊕
λ∈Λ Mλ is a multiplication R-module then

1. the R-modules Mλ are multiplication modules, and

2. for each submodule N of M and each ideal I of R such that N = IM , N
⋂
Mλ = IMλ for

all λ ∈ Λ.

Before stating the second criterion, we need to introduce and discuss some concepts.

Definition 1.5. Let N be an R-submodule of M . An ideal J of the ring R is called a compressor

of N (in M) if N = JM .

Any sums of compressors of N is a compressor of N . The set of all compressors of N (in
M) is denoted by I(N,M). The set I(N,M) is a non-empty set iff [N : M ] is a compressor
of N ([N : M ]M = N), and in that case [N : M ] is the largest compressor of N . Notice that
[N : M ]M ( N , in general.

Let N be a submodule of a multiplication R-module M . Then the set

I(N,M) := {I ⊳ R | IM = N} (CINM)

is a non-empty set which is closed under addition of ideals (if I, J ∈ I(N,M) then I+J ∈ I(N,M)).
The sum

I(N,M) =
∑

I∈I(N,M)

I (CINM1)

is the largest element of the set I(N,M) (w.r.t. inclusion). Clearly, I(N,M) = [N : M ].
Let M = {Mλ}λ∈Λ and N = {Nλ}λ∈Λ be sets of R-modules such that Nλ ⊆ Mλ for all λ ∈ Λ.

Let I(N ,M) be the set of all sets of ideals {Iλ}λ∈Λ such that IλMµ = δλµNλ for all λ, µ ∈ Λ, i.e.,
the set contains all the orthogonalizers for N . In general, the set I(N ,M) could be an empty set.
In particular, if M = {M} and N = {N} then I(N ,M) = I(N,M).
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Lemma 1.6. Let M = {Mλ}λ∈Λ be a set of R-modules such that their direct sum M =
⊕

λ∈Λ Mλ

is a multiplication module. Then for every set of R-modules N = {Nλ}λ∈Λ such that Nλ ⊆ Mλ for
all λ ∈ Λ, the set I(N ,M) is a non-empty set.

Proof. The result follows from Theorem 1.4. �
Suppose that I(N ,M) 6= ∅. Then the set I(N ,M) is closed under addition (componentwise):

if sets I = {Iλ}λ∈Λ and J = {Jλ}λ∈Λ belong to I(N ,M) then I +J = {Iλ + Jλ}λ∈Λ ∈ I(N ,M).
So, the sum in I(N ,M),

I(N ,M) :=
∑

I∈I(N ,M)

I

is the largest element of the set I(N ,M) w.r.t. componentwise inclusion, i.e., I ⊆ J iff Iλ ⊆ Jλ
for all λ ∈ Λ. The set I(N ,M) is called the largest orthogonalizer in I(N ,M).

If the orthogonality condition holds for the direct sum M =
⊕

λ∈Λ Mλ then I(M,M) = {a′}
where a

′ = annR(
⊕

µ 6=λ Mµ) =
⋂

µ 6=λ annR(Mµ) (Corollary 4.3).
Now, we can state the second criterion for a direct sum of modules to be a multiplication module.

Theorem 1.7. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with card(Λ) ≥ 2. Then
M is a multiplication module iff

1. the R-modules Mλ, where λ ∈ Λ, are multiplication modules, and

2. for each submodule N of M , I(N ,M) 6= ∅ where N = {N ∩ Mλ}λ∈Λ and M = {Mλ}λ∈Λ,
and N = (

∑
λ∈Λ Iλ)M for all/some {Iλ}λ∈Λ ∈ I(N ,M).

We need to the following definition to introduce the third criterion.

Definition 1.8. A set of ideals {aλ}λ∈Λ of a ring R is called an orthogonal set of ideals of R
if aλaµ = 0 for all λ 6= µ.

The next theorem is the third criterion for a direct sum of modules to be a multiplication
modules given via orthogonal ideals.

Theorem 1.9. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with card(Λ) ≥ 2,

a := annR(M) and R := R/a. Then M is a multiplication module iff

1. the ring R contains a direct sum of nonzero orthogonal ideals a
′ =

⊕
λ∈Λ a

′
λ such that Mλ =

a
′
λM for all λ ∈ Λ, and

2. for each submodule N of M , N = b
′M for an ideal b′ of R such that b′ =

⊕
λ∈Λ b

′
λ is a direct

sum of ideals b
′
λ = b

′ ∩ a
′
λ of R for all λ ∈ Λ.

Theorem 1.10 is the fourth criterion for a direct sum of modules to be a multiplication module
given via the orthogonality and intersection conditions.

Theorem 1.10. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with card(Λ) ≥ 2.
Then M is a multiplication module iff

1. the R-modules Mλ are multiplication modules where λ ∈ Λ,

2. the intersection condition holds for the direct sum M =
⊕

λ∈Λ Mλ, i.e., for any sumbodule N
of M , N =

⊕
λ∈Λ(N ∩Mλ), and
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3. the orthogonality condition holds for the direct sum M =
⊕

λ∈Λ Mλ, i.e., for all λ, µ ∈ Λ,
a
′
λMµ = δλµMµ.

Definition 1.11. A submodule N of an R-module M is called an EndR(M)-stable submodule
(resp., EndR(M)-invariant submodule) if f(N) ⊆ N (resp., f(N) = N) for every 0 6= f ∈
EndR(M).

Definition 1.12. We say that the EndR(M)-stability condition holds for an R-module M if
every submodule N of M is an EndR(M)-stable submodule.

Theorem 1.13 is the fifth criterion for a direct sum of modules to be a multiplication module
given via the orthogonality and EndR(M)-stability conditions.

Theorem 1.13. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with card(Λ) ≥ 2.
Then M is a multiplication module iff

1. the R-modules Mλ are multiplication modules where λ ∈ Λ,

2. every submodule N of M is an EndR(M)-stable submodule, and

3. the orthogonality condition holds for the direct sum M =
⊕

λ∈Λ Mλ.

The proofs of the theorems/criteria above are given in Section 4. Section 5 contains many
applications and results based on these criteria. In Section 2, some known results are generalized
to noncommutative case. Section 3 provides some properties of the class of multiplication modules
over an arbitrary ring that are used in the proofs of this paper.

2 Preliminaries

For an R-module M , let CycR(M) be the set of its cyclic submodules. For an R-module M , we
denote by annR(M) its annihilator. An R-module M is called faithful if annR(M) = 0. For a
submodule N of M , the set [N : M ] := annR(M/N) = {r ∈ R | rM ⊆ N} is an ideal of the
ring R that contains the annihilator annR(M) = [0 : M ] of the module M . The set θ(M) :=∑

C∈CycR(M)[C : M ] is an ideal of R. Clearly, annR(M) ⊆ θ(M). If M is an ideal of R then

M ⊆ θ(M).
Let M be an R-module. We denote by Sub⊕R(M) the set of the direct summands of M . EpiR(M)

and MonR(M) denote the set of all epimorphisms and monomorphisms from M to M , respectively.
Clearly, EpiR(M) ⊆ EndR(M) and MonR(M) ⊆ EndR(M). The group of automorphisms of an
R-module M is denoted by AutR(M). Clearly, AutR(M) = EpiR(M) ∩MonR(M).

In this section, several properties of the class of multiplication modules over a ring (not nec-

essarily commutative) are provided. They are generalizations of some known results in the
commutative case.

Lemma 2.1. An R-module M is a multiplication module iff N = [N : M ]M for any submodule N
of M .

Proof. (⇒) Let N be a submodule of the multiplication module M . Then there exists an ideal
I of R such that N = IM . Hence, N = IM ⊆ [N : M ]M ⊆ N . This implies that N = [N : M ]M .
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(⇐) This is implication is obvious. �

Let N be a submodule of M . Then [N : M ]M ⊆ N , and so we have a short exact sequence of
modules

0 → [N : M ]M → N → N/[N : M ]M → 0.

Lemma 2.2. An R-module M is a multiplication module iff C = [C : M ]M for every C ∈
CycR(M).

Proof. (⇒) Lemma 2.1.
(⇐) Suppose that C = [C : M ]M for every cyclic submodule C of M . Let N be a submodule

of M and I =
∑

C∈CycR(N)[C : M ]. Then

IM =
∑

C∈CycR(N)

[C : M ]M =
∑

C∈CycR(N)

C = N.

Hence, M is multiplication module. �

Proposition 2.3. Any homomorphic image of a multiplication module is a multiplication module.

Proof. Let M be a multiplication R-module and f : M → N be an R-epimorphism. For each
submodule K of N , f−1(K) = IM for some ideal I of R. Now, K = f(f−1(K)) = f(IM) =
If(M) = IN . Hence, N is multiplication module. �

Proposition 2.4. Let M be an R-module. Then M is a multiplication R-module if the following
two conditions hold:

1. ∩λ∈ΛIλM = (∩λ∈ΛIλ)M for every non-empty set of ideals {Iλ |λ ∈ Λ} of R, and

2. for any submodule N of M and an ideal I of R such that N ⊂ IM , there exists an ideal J of
R such that J ⊂ I and N ⊆ JM .

Proof. Let N be a submodule of M and S be the set of ideals I ′ of R such that N ⊆ I ′M .
Clearly, R ∈ S. The ideal A = ∩I′∈SI

′ is the smallest element in S since, by condition 1, N ⊆
∩I′∈SI

′M = AM . Now, suppose that N ⊂ AM , we seek a contradiction. Then, by condition 2,
there exists an ideal B of R such that B ⊂ A and N ⊆ BM . Therefore B ∈ S. This contradicts to
the minimality of A and hence, N = AM , i.e., M is a multiplication module. �

Proposition 2.5 is a criterion for a module to be a multiplication module.

Proposition 2.5. Let M be an R-module. Then M is a multiplication R-module iff for every
nonzero submodule N of M , M/N is a multiplication module such that [N : M ] * annR(M).

Proof. (⇒) Let N be a nonzero submodule of M . Then N = [N : M ]M (Lemma 2.1). Since
N 6= 0, we must have [N : M ] 6⊆ annR(M). By Proposition 2.3, the factor module M/N is a
multiplication module.

(⇐) Let N be a nonzero submodule of the R-module M and I = [N : M ]. By the assumption,
IM 6= 0 (since I * annR(M)) and M/IM is a multiplication module. So, by Lemma 2.1, N/IM =
[N/IM : M/IM ](M/IM) = [N : M ](M/IM) = 0, and therefore N = IM . Hence, M is a
multiplication module. �
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Proposition 2.6. Let M be a multiplication R-module. Then

1. If N and K are submodules of M such that M/N ∼= M/K then N = K.

2. If f : M → R is an R-homomorphism then for every m ∈ M , f(m)M ⊆ Rm.

Proof. 1. Since M is a multiplication module and M/N ∼= M/K, N = [N : M ]M =
annR(M/N)M = annR(M/K)M = [K : M ]M = K.

2. Since M is a multiplication module, Rm = IM for some ideal I of R. Now, f(m)M ⊆
f(Rm)M = f(IM)M = If(M)M ⊆ IM = Rm. Hence, f(m)M ⊆ Rm. �

Proposition 2.7. Let M be a semisimple R-module such that [N : M ] * annR(M) for every simple
submodule N of M . Then M is a multiplication module.

Proof. Let K be a submodule of M . Since M is a semisimple module, K =
⊕

i∈I Mi is a direct
sum of simple submodules Mi of M . As Mi is simple and [Mi : M ] * ann(M), [Mi : M ]M = Mi.
Now,

K =
∑

i∈I

Mi =
∑

i∈I

[Mi : M ]M = (
∑

i∈I

[Mi : M ])M.

Hence, M is a multiplication module, by Lemma 2.1. �

Let M be an R-module. Anderson in [4], defined the ideal θ(M) =
∑

C∈CycR(M)[C : M ] where

R is a commutative ring. In case I is an ideal of R, it is clear that I ⊆ θ(I).

Lemma 2.8. Let M be a multiplication R-module. Then M = θ(M)M .

Proof. Since M is a multiplication R-module, M =
∑

C∈CycR(M) C =
∑

C∈CycR(M)[C : M ]M ⊆

(
∑

C∈CycR(M)[C : M ])M = θ(M)M , by Lemma 2.2, and the lemma follows. �

The next lemma provides a sufficient condition for a multiplication module to be finitely gener-
ated.

Lemma 2.9. Let M be a multiplication R-module. If θ(M) is a finitely generated R-module then
the R-module M is finitely generated.

Proof. Since θ(M) =
∑

C∈CycR(M)[C : M ] and the R-module θ(M) is finitely generated, θ(M) =
n∑

i=1

Rθi for some elements θi ∈ [Ci : M ] where Ci are cyclic submodules of M . Now, by Lemma

2.8, M = θ(M)M =

n∑

i=1

RθiM ⊆
n∑

i=1

Ci ⊆ M , i.e., M =

n∑

i=1

Ci is a finitely generated R-module. �

Corollary 2.10. If R is a left Noetherian ring then every multiplication R-module is finitely gen-
erated.

Proof. The corollary follows from Lemma 2.9. �
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3 Some properties of multiplication modules over noncom-

mutative rings

In this section, we provide some properties and characterizations of multiplication modules over an
arbitrary ring.

The algebras In form a subclass of the class of multiplication rings.

Recall that a ring R is a multiplication ring iff for every two ideals I ⊆ J of R, I = KJ = JK ′

for suitable ideals K and K ′ of R.

Lemma 3.1. Let R be a ring such that all its ideals are idempotent ideals. Then R is a multipli-
cation ring.

Proof. Let I and J be ideals of R such that J ⊆ I. Then J = J2 ⊆ JI ⊆ J , i.e., J = JI. Hence,
I is a left multiplication module. Similarly, I is a right multiplication module, and hence, R is a
multiplication ring. �

Corollary 3.2. The algebras In, n ≥ 1, of polynomial integro-differential operators over a field of
characteristic zero are (left and right) multiplication rings.

Proof. By [8, Corollary 3.3(3)], every ideal of all In is an idempotent ideal. So, the result follows
from Lemma 3.1. �

Incomparability of the annihilators.

Proposition 3.3. Let M be a multiplication R-module and M1,M2 be R-modules such that annR(M1) ⊆
annR(M2) and the direct sum of R-modules M1

⊕
M2 is an epimorphic image of the R-module M .

Then M2 = 0.

Proof. Let f : M → M1

⊕
M2 be an epimorphism and p1, p2 be the projections of the module

M1

⊕
M2 onto M1 and M2, respectively. For i = 1, 2, let fi = pif and Ki = ker(fi). Then

M/Ki
∼= Mi. So,

[K1 : M ] = annR(M1) ⊆ annR(M2) = [K2 : M ].

Since the R-module M is a multiplication module, we have K1 = [K1 : M ]M ⊆ [K2 : M ]M = K2,
by Lemma 2.1. Let k2 ∈ M2. Then (0, k2) = f(m) for some element m ∈ M . Clearly, f1(m) =
p1(0, k2) = 0, i.e., m ∈ K1. Since K1 ⊆ K2, 0 = f2(m) = p2f(m) = p2(0, k2) = k2, i.e., M2 = 0. �

Corollary 3.4. Let M be a multiplication R-module and M1,M2 be R-modules such that annR(M1) =
annR(M2) and the direct sum of R-modules M1

⊕
M2 is an epimorphic image of the R-module M .

Then M1 = M2 = 0. �

Proof. The corollary follows from Proposition 3.3. �
Proposition 3.5 shows that every multiplication module M does not admit a direct summand

which is isomorphic to M .

Proposition 3.5. Let R be a ring and M be a multiplication R-module. If M ∼= M ⊕N where N
is an R-module then N = 0.

8



Proof. Since M ∼= M
⊕

N , annR(M) = annR(N) ∩ annR(M). So, annR(M) ⊆ annR(N).
Hence, by Proposition 3.3, N = 0. �

Ideals {ai | i ∈ I } of a ring R are called incomparable if ai * aj for all distinct elements i, j ∈ I.

Corollary 3.6. Let M be a multiplication R-module and the direct sum of nonzero R-modules⊕
i∈I Mi be an epimorphic image of M . Then the set of ideals {annR(Mi) | i ∈ I} are incomparable.

In particular, all the ideals {annR(Mi) | i ∈ I} are distinct and the modules {Mi | i ∈ I} are not
pairwise isomorphic. In particular, annR(Mi) 6= 0 for all i ∈ I.

Proof. Let ai = annR(Mi). Suppose that ai ⊆ aj for some i 6= j. Then the direct sum Mi

⊕
Mj

is an epimorphic image of M such that ai ⊆ aj . By Proposition 3.3, Mj = 0, a contradiction. �

Corollary 3.7. Let a direct sum of R-modules M =
⊕

i∈I Mi be a multiplication module with
card(I) ≥ 2. Then the set of ideals {annR(Mi) | i ∈ I} are incomparable. In particular, none of the
direct summands Mi is a faithful R-module, i.e., annR(Mi) 6= 0 for all i ∈ I.

Proof. The corollary follows from Corollary 3.6. �
For a module N and a set I, we denote by N (I) a direct sum of I copies of N .

Corollary 3.8. Let M be a multiplication R-module. Then every nonzero factor module of M
cannot be of the type N (I) for some nonzero R-module N and a set I of cardinality ≥ 2.

Proof. This follows from Proposition 3.3. �

Corollary 3.9. Let M be a nonzero multiplication R-module. If M is a free R-module then M ∼= R.

Proof. If M is free R-module, i.e., M ∼= R(I) for some I then, by Corollary 3.8, the set I must
be a single element and hence M ∼= R. �

Let R be a ring and R̂ be the set of isomorphism classes of its simple modules. Let M be a
semisimple R-module. Then M =

⊕
V ∈R̂

M(V ) where M(V ) is the sum of all simple submodules
of M isomorphic to V . The module M(V ) is called the isotypic component of M corresponding to
V , or, briefly, the V -isotypic component of M .

Corollary 3.10. Let M be a multiplication R-module. Every semisimple factor module of M is a
direct sum of non-isomorphic simple modules, (i.e., each isotypic component is a simple module)
with incomparable annihilators.

Proof. The corollary follows from Corollary 3.6. �

Corollary 3.11. Let 0 → M1 → M → M2 → 0 be a short exact sequence of R-modules where
M1 and M2 are non-zero R-modules and ai = annR(Mi) for i = 1, 2. If M is a multiplication
module and either a1 ⊆ a2 or a2 ⊆ a1 then the short exact sequence is not split. In particular,
Ext1R(M2,M1) 6= 0.

Proof. If the short exact sequence were split then M ∼= M1 ⊕M2. By Corollary 3.6, the ideals
a1 and a2 would be incomparable as M is a multiplication module, a contradiction. �
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4 Criteria for a direct sum of modules to be a multiplication

module

In this section, the proofs of the five criteria stated in the Introduction are given for a direct sum
of modules to be a multiplication module.

Proof of Theorem 1.4. (⇒) Since M is a multiplication module, for each submodule N of M
there is an ideal I of R such that N = IM = I(

⊕
λ∈Λ Mλ) =

⊕
λ∈Λ IMλ ⊆

⊕
λ∈Λ N

⋂
Mλ ⊆ N ,

i.e., N =
⊕

λ∈Λ N
⋂
Mλ and N

⋂
Mλ = IMλ, and so, the intersection condition holds for M .

Let {Nλ}λ∈Λ be a set of R-modules such that Nλ ⊆ Mλ for all λ ∈ Λ. Clearly, Nλ is a submodule
of M . So, there exists an ideal Iλ of R such that Nλ = IλM =

⊕
µ∈Λ IλMµ, and so IλMµ = δλµNλ

for all λ, µ ∈ Λ, i.e., the strong orthogonality condition holds.
(⇐) Let N be a submodule of M . We have to show that N = IM for some ideal I of R. By

the intersection condition, N =
⊕

λ∈Λ Nλ where Nλ = N
⋂
Mλ ⊆ Mλ. For the set {Nλ}λ∈Λ, let

{Iλ}λ∈Λ be a set of ideals that satisfies the strong orthogonality condition (IλMµ = δλµNµ for all
λ, µ ∈ Λ). Then I =

∑
λ∈Λ Iλ is an ideal of R such that IM =

∑
λ,µ∈Λ IλMµ =

∑
λ,µ∈Λ δλµNµ =∑

λ∈Λ Nλ =
⊕

λ∈Λ Nλ = N , as required. �

Lemma 4.1. Suppose that a direct sum of nonzero R-modules M =
⊕

λ∈Λ Mλ is a multiplication
module. Let N be a submodule of M , N = {Nλ := N

⋂
Mλ}λ∈Λ and M = {Mλ}λ∈Λ. Then for all

{Iλ}λ∈Λ ∈ I(N ,M), N = (
∑

λ∈Λ Iλ)M .

Proof. (
∑

λ∈Λ Iλ)M =
∑

λ,µ∈Λ IλMµ =
∑

λ,µ∈Λ δλµNλ =
∑

λ∈Λ Nλ = N , by Theorem 1.4. �

The next theorem is an explicit description of the largest orthogonalizer I(N ,M) in I(N ,M).

Theorem 4.2. Suppose that a direct sum M =
⊕

λ∈Λ Mλ of nonzero R-modules with card(Λ) ≥
2 is a multiplication module. Let aλ = annR(Mλ), M ′

λ :=
⊕

µ 6=λ Mµ and a
′
λ = annR(M

′
λ) =⋂

µ 6=λ aµ. Let N be a submodule of M , N = {Nλ := N
⋂
Mλ}λ∈Λ and M = {Mλ}λ∈Λ. Then

I(N ,M) = {Iλ}λ∈Λ where Iλ = I(Nλ,Mλ)
⋂
a
′
λ for all λ ∈ Λ (Mλ is a multiplication R-module as

an epimorphic image of the multiplication R-module M , so I(Nλ,Mλ) makes sense).

Proof. Let J = {Jλ}λ∈Λ ∈ I(N ,M). Then Jλ ⊆ Iλ for all λ ∈ Λ, by the maximality of
I(N ,M). By the very definition, Iλ ⊆ I ′λ := I(Nλ,Mλ)

⋂
a
′
λ for all λ ∈ Λ. To finish the proof of

the theorem it suffices to show that {I ′λ}λ∈Λ ∈ I(N ,M). For all λ 6= µ, I ′λMµ = 0 (since I ′λ ⊆ aµ).
Finally, Nλ = IλMλ ⊆ I ′λMλ ⊆ I(Nλ,Mλ)Mλ = Nλ. Hence, Nλ = I ′λMλ, as required. �

Proof of Theorem 1.7. (⇒) IfM is a multiplication module then so is every moduleMλ (since
Mλ is an epimorphic image of M , Proposition 2.3), and so the condition 1 holds. The condition 2
holds, by Lemma 4.1.

(⇐) Let N be a submodule of M . Since Mλ is a multiplication module for all λ ∈ Λ, I(Nλ,Mλ)
makes sense. Let I ′λ = I(Nλ,Mλ) ∩ a

′
λ where a

′
λ = annR(

⊕
µ 6=λ Mµ). Then {I ′λ} ∈ I(N ,M), i.e.

I(N ,M) 6= ∅, and therefore, by condition 2, N = (
∑

λ∈Λ Iλ)M . Hence, M is a multiplication
module. �

The next corollary is an explicit description of the element I(M,M).

Corollary 4.3. Suppose that a direct sum of nonzero R-modules M =
⊕

λ∈Λ Mλ is a multiplication
module where card(Λ) ≥ 2, aλ = annR(Mλ) and a = annR(M). Assume M = {Mλ}λ∈Λ. Then
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1. I(M,M) = {a′λ}λ∈Λ and a
′
λ := ∩µ 6=λaµ 6= ∩µ∈Λaµ = annR(M) for all λ ∈ Λ.

2. Let π : R → R = R/a, r 7→ r := r + a. Then
∑

λ∈Λ a′λ =
⊕

λ∈Λ a′λ in R and a′λ 6= 0 for all
λ ∈ Λ.

3. M = a′M where a′ =
∑

λ∈Λ a′λ. In particular, a′λMµ = δλµMµ for all λ, µ ∈ Λ.

4. For each submodule N of M , N = b
′M for some ideal b′ of R such that b′ =

⊕
λ∈Λ b

′
λ is a

direct sum of ideals b
′
λ of R such that b′λ ⊆ a′λ for all λ ∈ Λ.

Proof. 1. By Theorem 4.2, I(M,M) = {Iλ}λ∈Λ where Iλ = I(Mλ,Mλ) ∩ a
′
λ = R ∩ a

′
λ = a

′
λ.

Since card(Λ) > 2 and Mλ 6= 0 for all λ ∈ Λ, a′λ 6= 0 for all λ ∈ Λ, by Theorem 1.4.

2. Suppose that the sum
∑

λ∈Λ a′λ is not a direct sum. Then there is a nonzero element aλ ∈ a′λ

that can be written as a sum
∑

µ 6=λ aµ for some elements aµ ∈ a′µ. As the R-module M is faithful,

0 6= aλM = aλMλ = (
∑

µ 6=λ aµMλ) = 0, a contradiction. Hence, the sum
∑

λ∈Λ a′λ is a direct sum,

and, by statement 1, a′λ 6= 0 for all λ ∈ Λ.
3. a′M =

∑
λ,µ∈Λ a

′
λMµ =

∑
λ,µ∈Λ δλµMλ =

∑
λ∈Λ Mλ = M , by statement 1.

4. This statement follows from Theorem 4.2. �.

Proof of Theorem 1.9. (⇒) This implication follows from Corollary 4.3.
(⇐) It suffices to show that the conditions of Theorem 1.4 are satisfied for the module M =⊕

λ∈Λ Mλ where Mλ = a
′
λM . Let N be a submodule of M . By condition 2, there is an ideal b′

such that N = b
′M =

⊕
λ∈Λ b

′
λM where b

′
λ = b

′ ∩ a
′
λ. Let Nλ = b

′
λM . Then N =

⊕
λ∈Λ Nλ ⊆⊕

λ∈Λ(N ∩ Mλ) ⊆ N , i.e., Nλ = N ∩ Mλ, and so, the condition 1 of Theorem 1.4 holds. By the
very definition of Nλ, Nλ = b

′
λM = b

′
λMλ, and for all λ 6= µ, b′λMµ ⊆ a

′
λMµ = a

′
λa

′
µM = 0 ·M = 0,

i.e., b′λMµ = 0. So, the condition 2 of Theorem 1.4 holds, as required. �

Proof of Theorem 1.10. (⇒) This implication follows from Theorem 1.4 and Corollary 4.3.
(⇐) Let N be a submodule of M . Then, by the intersection condition, N =

⊕
λ∈Λ Nλ where

Nλ = N ∩Mλ. Since Mλ is a multiplication module, Nλ = JλMλ for an ideal Jλ of R. Then we
have Nλ = Jλa

′
λMλ, by the orthogonality condition. Let Iλ = Jλa

′
λ. Then the conditions 1 and 2

of Theorem 1.4 are satisfied since a
′
λa

′
µ ⊆ a = annR(M), and so, IλMµ = IλIµMµ ⊆ a

′
λa

′
µMµ ⊆

aM = 0. Therefore the implication (⇐) follows from Theorem 1.4. �

The next corollary is a criterion for a direct sum of simple modules to be a multiplication
module.

Corollary 4.4. Let M =
⊕

λ∈Λ Mλ be a direct sum of simple R-modules. We keep the notation of
Corollary 4.3. Then M is a multiplication R-module iff for all λ, µ ∈ Λ, a′λMµ = δλµMµ.

Proof. (⇒) By Corollary 4.3, I(M,M) = {a′λ}λ∈Λ where M = {Mλ}λ∈Λ, and the implication
follows.

(⇐) Suppose that a′λMµ = δλµMµ for all λ, µ ∈ Λ. Clearly, the simple R-modules {Mλ}λ∈Λ are
pairwise non-isomorphic. So, if N is a submodule of M then N =

⊕
λ∈Λ N ∩Mλ. Let Supp(N) =

{λ ∈ Λ |N ∩Mλ 6= 0, i.e., N ∩Mλ = Mλ}. Then

N =
⊕

λ∈Supp(N)

Mλ =
⊕

λ∈Supp(N)

a
′
λMλ = (

∑

λ∈Supp(N)

a
′
λ)M. �
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The next lemma introduces some properties of the endomorphisms ring of a multiplication
module.

Lemma 4.5. Let M be a multiplication R-module. Then

1. EpiR (M) = AutR (M).

2. The EndR(M)-stability condition holds for the R-module M . In particular, if f ∈ EndR(M)
then for all g ∈ EndR(M), g(im(f)) ⊆ im(f).

3. If N is a submodule of M then N is an EpiR(M)-invariant submodule, i.e., for every f ∈
EpiR(M), f(N) = N .

4. If M =
⊕

i∈I Mi and f ∈ HomR (M,N) where N is an R-module then f(M) =
⊕

i∈I f(Mi).

5. If M =
⊕

i∈I Mi then EndR(M) =
∏

i∈I EndR(Mi), i.e., the inclusion
∏

i∈I EndR(Mi) ⊆
EndR(M) is an equality. In particular, HomR (Mi,Mj) = 0 for all i 6= j; and AutR (M) ∼=∏

i∈I AutR (Mi).

6. If R is a commutative ring and C is a cyclic submodule of the R-module M then for every
f ∈ EndR(M), f |C = rC : C → C, m 7→ rm for some element r = r(f) ∈ R. Futhermore,
the ring EndR(M) is a commutative ring.

Proof. 1. Let f ∈ EpiR (M). Then M/ker(f) ∼= M . Since M is a multiplication module,
ker(f) = [ker(f) : M ]M = annR(M/ker(f))M = annR(M)M = 0, and therefore f ∈ AutR (M).

2. Let N be a submodule of M and f ∈ EndR(M). Then N = IM for some ideal I of R. So,
f(N) = f(IM) = If(M) ⊆ IM = N , i.e., N is an EndR(M)-stable submodule.

3. Let N be a submodule of M and f ∈ EpiR(M). By statement 2, f(N) ⊆ N . By statement 1,
there exists g ∈ AutR(M) such that gf = fg = 1, and therefore N = 1N = g(f(N)) ⊆ f(N) ⊆ N ,
i.e., N = f(N). Hence, N is an EpiR(M)-invariant submodule.

4. By Theorem 1.4, ker(f) =
⊕

i∈I(ker(f)∩Mi). Hence f(M) ∼= M/ker(f) =
⊕

i∈I Mi/ker(f)∩
Mi

∼=
⊕

i∈I f(Mi), and so f(M) =
⊕

i∈I f(Mi).
5. Statement 5 follows from statement 2 since f(Mi) ⊆ Mi for all i ∈ I and f ∈ EndR(M).
6. Statement 6 follows from statement 2. �

Proof of Theorem 1.13. (⇒) It follows from Theorem 1.10 and Lemma 4.5.
(⇐)In view of Theorem 1.10, it suffices to prove that the intersection condition holds for the

direct sum M =
⊕

λ∈Λ Mλ. For each λ ∈ Λ, let jλ : M → M be a composition of the projection
homomorphism M → Mλ and the inclusion homomorphism Mλ → M . Clearly, jλ ∈ EndR(M),
and N ⊆

∑
λ∈Λ(N ∩Mλ) =

⊕
λ∈Λ(N ∩Mλ) ⊆ N since N is EndR(M)-stable, i.e., N =

⊕
λ∈Λ(N ∩

Mλ), and so, the intersection condition holds. Hence, by Theorem 1.10, the R-module M is a
multiplication module. �

5 Some applications

In this section, we will use the above mentioned criteria to introduce many properties of the class
of multiplication modules over noncommutative rings.

The refinement condition.
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Definition 5.1. Let M be an R-module. We say that two of its decompositions into direct sum
of submodules, M =

⊕
i∈I Mi and M =

⊕
j∈J Nj, satisfy the refinement condition if M =⊕

i∈I,j∈J Mi ∩Nj. We say that the module M satisfies the refinement condition if every two of
its direct sum decomposition satisfy the refinement condition.

Let M be an R-module and E = EndR(M). Then the R-module M is a direct sum of its
submodules iff the identity map 1 : M → M , m 7→ m is a sum of orthogonal idempotents, that is
1 =

∑
λ∈Λ eλ where eλeµ = δλµeλ and for every element m ∈ M , eλm = 0 for all but finitely many

λ.
In more detail, if M =

⊕
λ∈Λ Mλ then 1 =

∑
λ∈Λ eλ where eλ is the projection onto Mλ.

Conversely, if 1 =
∑

λ∈Λ eλ is a sum of orthogonal idempotents then M =
⊕

λ∈Λ Mλ where Mλ =
eλM . The infinite sum makes sense as it is applied to a finite sum of elements and the maps are
projections.

Proposition 5.2 is a criterion for a module to satisfy the refinement condition.

Proposition 5.2. Let M be an R-module and E = EndR(M). Then the R-module M satisfies
the refinement condition iff for any two sums of orothognal idempotents in E, 1 =

∑
i∈I ei and

1 =
∑

j∈J fj, eifj = fjei for all i ∈ I and j ∈ J .

Proof. (⇒) Suppose that an R-module M satisfies the refinement condition. Let 1 =
∑

i∈I ei
and 1 =

∑
j∈J fj be sums of orthogonal idempotents in E. Then M =

⊕
i∈I Mi =

⊕
j∈J Mj

where Mi = eiM and Mj = fjM . Since the R-module satisfies the refinement condition, M =⊕
i∈I,j∈J Mi∩Mj , and 1 =

∑
i∈I,j∈J eifj is the correspondent sum of orthogonal idempotents such

that eifj = fjei for all i ∈ I and j ∈ J .
(⇐) Suppose that M =

⊕
i∈I Mi and M =

⊕
j∈J Mj and 1 =

∑
i∈I ei, 1 =

∑
j∈J fj are

the correspondent sum of orthogonal idempotents. Since eifj = fjei for all i ∈ I and j ∈ J ,
1 =

∑
i∈I,j∈J eifj is a sum of orthogonal idempotents. Hence, eifjM = Mi ∩ Mj and M =⊕

i∈I,j∈J(Mi ∩Mj). �

Definition 5.3. For an R-module M , let Dec(M) = DecR(M) be the set of all its direct sum
decompositions. We say that a direct sum decomposition

⊕
i∈I Mi is finer than a direct sum

decomposition
⊕

j∈J Nj and write
⊕

i∈I Mi ≥
⊕

j∈J Nj if I =
∐

j∈J Ij is disjoint union of non-
empty subsets Ij such that for each j ∈ J , Nj =

⊕
i∈Ij

Mi.

The set (Dec(M),≥) is a partially ordered set (a poset, for short). Let maxDec(M) be a set of
maximal elements of Dec(M).

Definition 5.4. ds.dim(M) = sup{card(I) |M =
⊕

i∈I Mi ∈ Dec(M)} is called the direct sum

decomposition dimension.

If an R-module M satisfies the refinement condition and maxDec(M) 6= ∅ then maxDec(M)
contains a unique decomposition, say

⊕
i∈I Mi, and so, ds.dim(M) = card(I).

Corollary 5.5. Let M be a multiplication module such that M =
⊕

i∈I Mi =
⊕

j∈J Nj and L be
a submodule of M . Then

1. M =
⊕

i∈I,j∈J Mi ∩ Nj, i.e., every multiplication module satisfies the refinement condition,
and
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2. L =
⊕

i∈I,j∈J L ∩Mi ∩Nj.

Proof. By Theorem 1.4, Mi =
⊕

j∈I Mi∩Nj for all i ∈ I. Then M =
⊕

i∈I Mi =
⊕

i∈I,j∈J Mi∩
Nj , and statement 1 holds. Statement 2 follows from Theorem 1.4 and statement 1. �

Definition 5.6. Let R be a ring. The ideal uniform dimension of R, iu.dim(R), is the supre-
mum of cardinalities of sets I such that

⊕
i∈I ai is a direct sum of ideals of R.

Proposition 5.7. Let M be a multiplication R-module. Then ds.dim(M) ≤ iu.dim(R/annR(M)).

Proof. The proposition follows from Corollary 4.3. �

Definition 5.8. Let R be a ring. Then m.dim(R) = sup{ds.dim(M) |M is a multiplication R-
module} is called the multiplication dimension.

Corollary 5.9. Let R be a ring. Then m.dim(R) ≤ sup{iu.dim(R/annR(M)) |M is a multiplication
R-module} ≤ sup{iu.dim(R/annR(M)) |M is an R-module}.

Proof. The corollary follws from Proposition 5.7. �

Every multiplication module is a unique direct sum of indecomposable modules.

The next proposition shows that there is a unique decomposition of any multiplication module as
a direct sum of indecomposable modules (if such decomposition exists).

Proposition 5.10. Let M be a multiplication R-module. Suppose that M =
⊕

i∈I Mi =
⊕

j∈J Nj

are direct sums of indecomposable R-modules. Then there is a bijection σ : I → J such that
Mi = Nσ(i) for all i ∈ I.

Proof. By Theorem 1.4, Mi =
⊕

j∈J Mi ∩Nj for all i ∈ I. The module Mi is indecomposable.
So, Mi = Nσ(i) for a unique σ(i) ∈ J . If i 6= i′ then σ(i) 6= σ(i′), i.e., the map σ : I → J , i 7→ σ(i),
is an injection. By symmetry, there is an injection τ : J → I, j 7→ τ(j), such that Nj = Mτ(j).
Clearly, στ(j) = j and τσ(i) = i for all j ∈ J and i ∈ I. So, σ = τ−1, and the result follows. �

Definition 5.11. The set of nonzero R-modules {Mλ}λ∈Λ where card(Λ) > 2 is called homomor-

phically independent if HomR (Mλ,Mµ) = 0 for all λ 6= µ where λ, µ ∈ Λ.
We say that a direct sum M =

⊕
λ∈Λ Mλ has enough complements if for every direct

summand K of M , there is a subset Λ′ ⊆ Λ such that M =
⊕

λ∈Λ′ Mλ

⊕
K.

Proposition 5.12. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules where card(λ) > 2.
If M is a multiplication R-module then

1. The set {Mλ}λ∈Λ is homomorphically independent.

2. If Mλ is indecomposable and K is a nonzero direct summand submodule of M then either
Mλ ⊆ K or Mλ ∩ K = 0. Moreover, if M =

⊕
λ∈Λ Mλ is direct sum of indecomposable

modules then Sub⊕R(M) = {
⊕

λ∈Λ′ Mλ |Λ
′ ⊆ Λ}, i.e., M has enough complements.

3. If all R-modules Mλ, λ ∈ Λ, have direct sum with enough complements then the R-module M
has enough complements.
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Proof. 1. It follows from Lemma 4.5.
2. IfK is a nonzero direct summand submodule ofM then there exists a submoduleK ′ ofM such

that M = K
⊕

K ′. By Theorem 1.4, Mλ = Mλ∩K
⊕

Mλ∩K ′. So, either Mλ ⊆ K or Mλ∩K = 0
(since Mλ is indecomposable). Therefore, by Theorem 1.4, K =

⊕
λ∈Λ(Mλ ∩ K) =

⊕
λ∈Λ′ Mλ

where Λ′ ⊆ Λ.
3. For every λ ∈ Λ, letMλ =

⊕
i∈Iλ

Ni. Clearly,
⊕

λ∈Λ(
⊕

i∈Iλ
Ni) is a direct sum decomposition

of M . Let K be a direct summand of M , i.e., there exists a submodule K ′ of M such that
M = K

⊕
K ′. By Theorem 1.4, Mλ = Mλ∩K

⊕
Mλ∩K ′, i.e., Mλ∩K is a direct summand of Mλ.

So, by statement 2, Mλ ∩K =
⊕

i∈I′

λ
⊆Iλ

Ni. Therefore, by Theorem 1.4, K =
⊕

λ∈Λ(K ∩Mλ) =⊕
λ∈Λ(

⊕
i∈I′

λ
⊆Iλ

Ni), i.e., M has enough complements. �

Corollary 5.13. Let M =
⊕

i∈I Mi be a direct sum of nonzero R-modules where card(I) > 2. If
M is a multiplication R-module and N is an indecomposable submodule of M then N ⊆ Mi for
some i ∈ I.

Proof. By Theorem 1.4, N =
⊕

i∈I(N ∩ Mi). Since N is an indecomposable submodule,
N = N

⋂
Mi for some i ∈ I, i.e., N ⊆ Mi for some i ∈ I. �

Corollary 5.14. Let M =
⊕

i∈I Mi be a direct sum of indecomposable R-submodules of M where
card(I) > 2. If M is a multiplication module and N is an indecomposable direct summand of M
then N = Mi for some i ∈ I.

Proof. Since N is a direct summand of M , there exists a submodule K of M such that M =
N

⊕
K. By Theorem 1.4, N =

⊕
i∈I(N

⋂
Mi). It follows that there exists i ∈ I such that

N = N
⋂
Mi (since N is indecomposable). Again, by Theorem 1.4, since M = N

⊕
K and Mi is a

submodule of M , Mi = (Mi

⋂
N)

⊕
(Mi

⋂
K) = N

⊕
(Mi

⋂
K). It follows that Mi = N (since Mi

is indecomposable and N 6= 0). �

Definition 5.15. An R-module M satisfies the direct sum cancellation property if M =
K

⊕
L = K

⊕
L′ where K, L and L′ are R-modules then L = L′.

Lemma 5.16. Every multiplication module satisfies the direct sum cancellation property.

Proof. Let M be a multiplication R-module such that M = K
⊕

L = K
⊕

L′ where K, L and
L′ are R-modules. Then, by Theorem 1.4, L = (K ∩ L) ⊕ (L ∩ L′) = L ∩ L′ which follows that
L ⊆ L′. Similarly, L′ ⊆ L. �

Definition 5.17. Let R be a ring. An R-module M satisfies the summand property if K + L
and K ∩ L are also direct summands of M for all direct summands K and L of M .

Proposition 5.18. Every multiplication module satisfies the summand property.

Proof. Let K and L be direct summand submodules of M . Then M = L ⊕ L∗ = K ⊕K∗ for
some submodule L∗ and K∗ of M . Since M is a multiplication module,

K = (K ∩ L)⊕ (K ∩ L∗),

by Theorem 1.4. Therefore K ∩ L is a direct summand submodule of K. Hence, K ∩ L is a direct
summand submodule of M . Now, since K+L is a submodule of M = L⊕L∗, K+L = L⊕(K∩L∗),
by Theorem 1.4. Since K is a direct summand submodule of M and L∗ is a submodule of M , K∩L∗
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is a direct summand submodule of L∗, by Theorem 1.4, i.e., L∗ = (K∩L∗)⊕K ′ whereK ′ = K∗∩L∗.
So,

M = L⊕ L∗ = L⊕ ((K ∩ L∗)⊕K ′) = (L⊕ (K ∩ L∗))⊕K ′ = (K + L)⊕K ′.

Hence, K +L is a direct summand submodule of M . Hence, M satisfies the summand property. �
Let M be a multiplication module with a direct sum decomposition. The next corollary gives

an intersection decomposition for every submodule of M .

Corollary 5.19. Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules where card(I) > 2.
If M is a multiplication module then for each submodule N of M , N =

⋂
λ∈Λ(N + M ′

λ) where
M ′

λ =
⊕

µ 6=λ Mµ.

Proof. By Theorem 1.4, N =
⊕

λ∈Λ N
⋂
Mλ. So, for every λ ∈ Λ, N +M ′

λ = N ∩Mλ ⊕M ′
λ,

and the corollary follows. �
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