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PARAMETERIZED PRE-COLORING EXTENSION AND LIST1

COLORING PROBLEMS∗2

GREGORY GUTIN† , DIPTAPRIYO MAJUMDAR† , SEBASTIAN ORDYNIAK‡ , AND3

MAGNUS WAHLSTRÖM†4

Abstract. Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the param-5
eterized complexity of the following problems parameterized by k: (1) Given a graph G, a clique6
modulator D (a clique modulator is a set of vertices, whose removal results in a clique) of size k for G,7
and a list L(v) of colors for every v ∈ V (G), decide whether G has a proper list coloring; (2) Given a8
graph G, a clique modulator D of size k for G, and a pre-coloring λP : X → Q for X ⊆ V (G), decide9
whether λP can be extended to a proper coloring of G using only colors from Q. For Problem 1 we10
design an O∗(2k)-time randomized algorithm and for Problem 2 we obtain a kernel with at most11
3k vertices. Banik et al. (IWOCA 2019) proved the following problem is fixed-parameter tractable12
and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v)13
of exactly n− k colors for every v ∈ V (G), decide whether there is a proper list coloring for G. We14
obtain a kernel with O(k2) vertices and colors and a compression to a variation of the problem with15
O(k) vertices and O(k2) colors.16

1. Introduction. Graph coloring is a central topic in Computer Science and17

Graph Theory due to its importance in theory and applications. Every text book18

in Graph Theory has at least a chapter devoted to the topic and the monograph19

of Jensen and Toft [25] is completely devoted to graph coloring problems focusing20

especially on more than 200 unsolved ones. There are many survey papers on the21

topic including recent ones such as [13, 22, 31, 33].22

For a graph G, a proper coloring is a function λ : V (G) → N≥1 such that for23

no pair u, v of adjacent vertices of G, λ(u) = λ(v). In the widely studied Coloring24

problem, given a graph G and a positive integer p, we are to decide whether there is a25

proper coloring λ : V (G) → [p], where henceforth [p] = {1, . . . , p}. In this paper, we26

consider two extensions of Coloring: the Pre-Coloring Extension problem and27

the List Coloring problem. In the Pre-Coloring Extension problem, given a28

graph G, a set Q of colors, and a pre-coloring λP : X → Q, where X ⊆ V (G), we are29

to decide whether there is a proper coloring λ : V (G) → Q such that λ(x) = λP (x)30

for every x ∈ X. In the List Coloring problem, given a graph G and a list L(u)31

of possible colors for every vertex u of G, we are to decide whether G has a proper32

coloring λ such that λ(u) ∈ L(u) for every vertex u of G. Such a coloring λ is called33

a proper list coloring. Clearly, Pre-Coloring Extension is a special case of List34

Coloring, where all lists of vertices x ∈ X are singletons and the lists of all other35

vertices are equal to Q.36

The p-Coloring problem is a special case of Coloring when p is fixed (i.e., not37

part of input). When Q ⊆ [p] (L(u) ⊆ [p], respectively), Pre-Coloring Extension38

(List Coloring, respectively) are called p-Pre-Coloring Extension (List p-39

Coloring, respectively). In classical complexity, it is well-known that p-Coloring,40

p-Pre-Coloring Extension and List p-Coloring are polynomial-time solvable41

for p ≤ 2, and the three problems become NP-complete for every p ≥ 3 [28, 31]. In this42

paper, we solve several open problems about pre-coloring extension and list coloring43

problems, which lie outside classical complexity, so-called parameterized problems.44

∗A preliminary and shortened version of this paper has been accepted at STACS 2020.
†Royal Holloway, University of London, UK (gutin@cs.rhul.ac.uk, dip-

tapriyo.majumdar@rhul.ac.uk, Magnus.Wahlstrom@rhul.ac.uk)
‡University of Leeds, UK (sordyniak@gmail.com)
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2 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTRÖM

We provide basic notions on parameterized complexity in the next section. For more45

information on parameterized complexity, see recent books [14, 18, 20].46

The first two problems we study are the following ones stated by Golovach et al.47

[23] (see also [30]) who asked to determine their parameterized complexity. These48

questions were motivated by a result of Cai [10] who showed that Coloring with49

Clique Modulator (the special case of Pre-Coloring Extension with Clique50

Modulator when X = ∅) is fixed-parameter tractable (FPT). Note that a clique51

modulator of a graph G is a set D of vertices such that G−D is a clique. When using52

the size of a clique modulator as a parameter we will for convenience assume that the53

modulator is given as part of the input. Note that this assumption is not necessary54

(however it avoids having to repeat how to compute a clique modulator) as we will55

show in Section 2 that computing a clique modulator of size k is FPT and can be56

approximated to within a factor of two.57

58

Input: A graph G, a clique modulator D of size k for G, and a list L(v) of
colors for every v ∈ V (G).

Problem: Is there a proper list coloring for G?

List Coloring with Clique Modulator parameterized by k

59

60
61

Input: A graph G, a clique modulator D of size k for G, and a pre-coloring
λP : X → Q for X ⊆ V (G) where Q is a set of colors.

Problem: Can λP be extended to a proper coloring of G using only colors from
Q?

Pre-Coloring Extension with Clique Modulator parameterized by k

62

63
In Section 3 we show that List Coloring with Clique Modulator is FPT.64

We first show a randomized O∗(2k log k)-time algorithm, then we improve the running65

time to O∗(2k) using more refined tools and approaches. Note that all our random-66

ized algorithms are one-sided error algorithms having a constant probability of being67

wrong, when the algorithm outputs no.68

We note that the time O∗(2k) matches the best known running time of O∗(2n)69

for Chromatic Number (where n = |V (G)|) [6], while applying to a more powerful70

parameter. It is a long-open problem whether Chromatic Number can be solved71

in time O(2cn) for some c < 1 and Cygan et al. [15] ask whether it is possible to72

show that such algorithms are impossible assuming the Strong Exponential Time73

Hypothesis (SETH).74

We conclude Section 3 by showing that List Coloring with Clique Modu-75

lator does not admit a polynomial kernel unless NP ⊆ coNP/poly. The reduction76

used to prove this result allows us to observe that if List Coloring with Clique77

Modulator could be solved in time O(2cknO(1)) for some c < 1, then the well-78

known Set Cover problem could be solved in time O(2c|U ||F|O(1)), where U and F79

are universe and family of subsets, respectively. The existence of such an algorithm80

is open, and it has been conjectured that no such algorithm is possible under SETH;81

see Cygan et al. [15]. Thus, up to the assumption of this conjecture (called Set Cover82

Conjecture [27]) and SETH, our O∗(2k)-time algorithm for List Coloring with83

Clique Modulator is best possible w.r.t. its dependency on k.84

In Section 4, we consider Pre-Coloring Extension with Clique Modula-85

tor, which is a subproblem of List Coloring with Clique Modulator and prove86
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 3

that Pre-Coloring Extension with Clique Modulator, unlike List Color-87

ing with Clique Modulator, admits a polynomial kernel: a linear kernel with at88

most 3k vertices. This kernel builds on a known, but counter-intuitive property of89

bipartite matchings (see Proposition 2.2), which was previously used in kernelization90

by Bodlaender et al. [8].91

In Section 5, we study an open problem stated by Banik et al. [3]. In a classic92

result, Chor et al. [12] showed that Coloring has a linear vertex kernel parameterized93

by k = n−p, i.e., if the task is to “save k colors”. Arora et al. [2] consider the following94

as a natural extension to list coloring, and show that it is in XP. Banik et al. [3] show95

that the problem is FPT, but leave as an open question whether it admits a polynomial96

kernel.97

98

Input: A graph G on n vertices, an integer k, and a list L(v) of exactly n−k
colors for every v ∈ V (G).

Problem: Is there a proper list coloring for G?

(n− k)-Regular List Coloring parameterized by k

99

100
We answer this question in affirmative by giving a kernel with O(k2) vertices and101

colors, as well as a compression to a variation of the problem with O(k) vertices,102

encodable in O(k2 log k) bits. We note that this compression is asymptotically almost103

tight, as even 4-Coloring does not admit a compression into O(n2−ε) bits for any104

ε > 0 unless the polynomial hierarchy collapses [24].105

This kernel is more intricate than the above. Via known reduction rules from106

Banik et al. [3], we can compute a clique modulator of at most 2k vertices (hence our107

result for List Coloring with Clique Modulator also solves (n− k)-Regular108

List Coloring in 2O(k) time). However, the usual “crown rules” (as in [12] and109

in Section 4) are not easily applied here, due to complications with the color lists.110

Instead, we are able to show a set of O(k) vertices whose colorability make up the111

“most interesting” part of the problem, leading to the above-mentioned compression112

and kernel.113

In Section 6, we consider further natural pre-coloring and list coloring variants114

of the “saving k colors” problem of Chor et al. [12]. We show that the known fixed-115

parameter tractability and linear kernelizability [12] carries over to a natural pre-116

coloring generalization but fails for a more general list coloring variant. Since (n−k)-117

Regular List Coloring was originally introduced in [2] as a list coloring variant118

of the “saving k colors” problem, it is natural to consider other such variants. We119

conclude the paper in Section 7, where in particular a number of open questions are120

discussed.121

2. Preliminaries.122

2.1. Parameterized Complexity. An instance of a parameterized problem Π123

is a pair (I, k) where I is the main part and k is the parameter ; the latter is usually a124

non-negative integer. A parameterized problem is fixed-parameter tractable (FPT) if125

there exists a computable function f such that instances (I, k) can be solved in time126

O(f(k)|I|c) where |I| denotes the size of I and c is an absolute constant. The class127

of all fixed-parameter tractable decision problems is called FPT and algorithms which128

run in the time specified above are called FPT algorithms. As in other literature on129

FPT algorithms, we will often omit the polynomial factor in O(f(k)|I|c) and write130

O∗(f(k)) instead. To establish that a problem under a specific parameterization is131
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4 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTRÖM

not in FPT we prove that it is W[1]-hard as it is widely believed that FPT 6=W[1].132

A reduction rule R for a parameterized problem Π is an algorithm A that given an133

instance (I, k) of a problem Π returns an instance (I ′, k′) of the same problem. The134

reduction rule is said to be safe if it holds that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π.135

If A runs in polynomial time in |I| + k then R is a polynomial-time reduction rule.136

Often we omit the adjectives “safe” and “polynomial-time” in “safe polynomial-time137

reduction rule” as we consider only such reduction rules.138

A kernelization (or, a kernel) of a parameterized problem Π is a reduction rule139

such that |I ′|+k′ ≤ f(k) for some computable function f . It is not hard to show that140

a decidable parameterized problem is FPT if and only if it admits a kernel [14, 18, 20].141

The function f is called the size of the kernel, and we have a polynomial kernel if f(k)142

is polynomially bounded in k.143

A kernelization can be generalized by considering a reduction (rule) from a param-144

eterized problem Π to another parameterized problem Π′. Then instead of a kernel we145

obtain a generalized kernel (also called a bikernel [1] in the literature). If the problem146

Π′ is not parameterized, then a reduction from Π to Π′ (i.e., (I, k) to I ′) is called a147

compression, which is polynomial if |I ′| ≤ p(k), where p is a fixed polynomial in k. If148

there is a polynomial compression from Π to Π′ and Π′ is polynomial-time reducible149

back to Π, with a reduction I ′ 7→ (I, k) such that furthermore k ≤ |I ′|O(1), then150

combining the compression with the reduction gives a polynomial kernel for Π.151

2.2. Graphs, Matchings, and Clique Modulator. We consider finite sim-152

ple undirected graphs. For basic terminology on graphs, we refer to a standard153

textbook [16]. For an undirected graph G = (V,E) we denote by V (G) the ver-154

tex set of G and by E(G) the edge set of G. For a vertex v ∈ V (G), we de-155

note by NG(v) and NG[v] the open respectively closed neighborhood of v in G, i.e.,156

NG(v) := {u | {u, v} ∈ E(G) } and NG[v] := NG(v) ∪ {v}. We extend this notion in157

the natural manner to subsets V ′ ⊆ V (G), by setting NG(V
′) :=

⋃
v∈V ′ NG(v) and158

NG[V
′] :=

⋃
v∈V ′ NG[v]. Moreover, we omit the subscript G, if the graph G can be159

inferred from the context. If V ′ ⊆ V (G), we denote by G\V ′ the graph obtained from160

G after deleting all vertices in V ′ together with their adjacent edges and we denote161

by G[V ′] the graph induced by the vertices in V ′, i.e., G[V ′] = G \ (V (G) \ V ′). We162

say that G is bipartite with bi-partition (A,B), if {A,B} partitions V (G) and G[A] as163

well as G[B] have no edges.164

A matching M is a subset of E(G) such that no two edges in M share a common165

endpoint. We say that M is maximal if there is no edge e ∈ E(G) such that M∪{e} is166

a matching and we say that M is maximum if it is maximal and there is no maximal167

matching in G containing more edges than M . We denote by V (M) the set of all168

endpoints of the edges in M , i.e., the set
⋃

e∈M e. We say that M saturates a subset169

V ′ ⊆ V (G) if V ′ ⊆ V (M). Let H = (V,E) be an undirected bipartite graph with170

bi-partition (A,B). We say that a set C is a Hall set for A or B if C ⊆ A or C ⊆ B,171

respectively, and |NH(C)| < |C|. We will need the following well-known properties172

for matchings.173

Proposition 2.1 (Hall’s Theorem [16]). Let G be an undirected bipartite graph174

with bi-partition (A,B). Then G has a matching saturating A if and only if there is175

no Hall set for A, i.e., for every A′ ⊆ A, it holds that |N(A′)| ≥ |A′|.176

Proposition 2.2 ([8, Theorem 2]). Let G be a bipartite graph with bi-partition177

(X,Y ) and let XM be the set of all vertices in X that are endpoints of a maximum178

matching M of G. Then, for every Y ′ ⊆ Y , it holds that G contains a matching that179
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 5

covers Y ′ if and only if so does G[XM ∪ Y ].180

Clique Modulator Let G be an undirected graph. We say that a set D ⊆ V (G) is181

a clique modulator for G if G−D is a clique. Since we will use the size of a smallest182

clique modulator as a parameter for our coloring problems, it is natural to ask whether183

the following problem can be solved efficiently.184

185

Input: A graph G and an integer k
Problem: Does G have a clique modulator of size at most k?

Clique Modulator parameterized by k

186

187
The following proposition shows that this is indeed the case. Namely, Clique188

Modulator is both FPT and can be approximated within a factor of two. The former189

is important for our FPT algorithms and the later for our kernelization algorithms as190

it allows us to not depend on a clique modulator given as part of the input.191

Proposition 2.3. Clique Modulator is fixed-parameter tractable (in time192

O∗(1.2738k)) and can be approximated within a factor of two.193

Proof. It is straightforward to verify that a graph G has a clique modulator of194

size at most k if and only if the complement G of G has a vertex cover of size at195

most k. The statement now follows from the fact that the vertex cover problem is196

fixed-parameter tractable [11] (in time O∗(1.2738k)) and can be approximated within197

a factor of two [21].198

2.3. Polynomial sieving. Algorithms based on polynomial sieving and sim-199

ilar algebraic techniques have become an important component of the toolbox for200

parameterized and exact algorithms. One of the early examples within the field is201

the algorithm for computing Chromatic Number in time O∗(2n) by Björklund et202

al. [6]. Further developments include techniques such as multilinear detection [26]203

(see also [7]). We review only what we need for this paper; for more background and204

further techniques, see [15, 26, 7, 5].205

For a positive integer p, [p] denotes the set {1, 2, . . . , p}. For a polynomial P , we206

denote the coefficient of a monomial T of P by coefPT .207

The following lemma is central to the approach.208

Lemma 2.4. (Schwartz-Zippel [32, 36]). Let P (x1, . . . , xn) be a multivariate poly-209

nomial of total degree at most d over a field F, and assume that P is not identically210

zero. Pick r1, . . . , rn uniformly at random from F. Then Pr[P (r1, . . . , rn) = 0] ≤211

d/|F|.212

The general approach is to construct a polynomial whose terms enumerate po-213

tential solutions, and then use sieving techniques over the polynomial to ensure that214

undesired solutions cancel and only actual solutions remain. As long as the sieved215

polynomial can be evaluated in FPT time, this then gives a randomized FPT algo-216

rithm using the Schwartz-Zippel lemma, as above. In the case that we are working217

over a field of characteristic 2, we will implicitly assume that the field is large enough218

to allow an application of the above lemma with good success probability, e.g., by219

moving to an extension field or starting with a large enough field GF(2ℓ).220

We will use the following simple inclusion-exclusion based sieving technique, pre-221

viously used by Wahlström [34]. Let P (x1, . . . , xn) be a polynomial and I ⊆ [n] a set222

of indices. Define P−I(x1, . . . , xn) = P (y1, . . . , yn), where yi = 0 for i ∈ I and yi = xi223

otherwise. Then the following holds. (The variant for a field of characteristic 2 was224
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6 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTRÖM

proved by Wahlström [34]. The other variant can be proved similarly.)225

Lemma 2.5. Let P (x1, . . . , xn) be a polynomial over a field of characteristic two226

(over reals, respectively), and J ⊆ [n] a set of indices. Define227

Q(x1, . . . , xn) =
∑

I⊆J

P−I(x1, . . . , xn)228

(Q(x1, . . . , xn) =
∑

I⊆J

(−1)|I|P−I(x1, . . . , xn), respectively).229

Then for any monomial T divisible by Πi∈Jxi we have coefQT = coefPT, and for230

every other monomial T we have coefQT = 0.231

We will also use the connection between permanents and bipartite matchings. Let232

G be a bipartite graph with balanced bi-partition (U, V ), i.e., |U | = |V |. The bipartite233

adjacency matrix of G is a matrix A, with rows are indexed by U and columns indexed234

by V , such that A[u, v] = 1 for u ∈ U , v ∈ V if uv ∈ E(G), and A[u, v] = 0 otherwise.235

It is well known that the permanent perA enumerates perfect matchings of G, but236

that it is hard to evaluate in general. The exception is in fields of characteristic 2,237

where it coincides with the determinant, but where we furthermore have to worry238

about cancellations due to the characteristic.239

In order to work with determinants instead of the permanent, we define the240

following. The Edmonds matrix A of G is defined as the bipartite adjacency matrix,241

except every non-zero entry A[u, v] = 1 is replaced by a distinct variable A[u, v] =242

yuv. Letting Y = {yuv | uv ∈ E(G)}, we see that detA is a polynomial in Y of243

degree n = |U |. We extend this to the case when G is a bipartite multigraph. Let244

Y = {ye | e ∈ E(G)} as above, and, if G contains d edges e1, . . . , ed between u245

and v for u ∈ U , v ∈ V , then we let A[u, v] =
∑d

i=1 yei . In both cases, if we view246

detA as a polynomial in Y , then the monomials of detA are in bijection with the247

perfect matchings of G. Now the Schwartz-Zippel lemma allows us to test for perfect248

matchings via a randomized evaluation of detA. Furthermore, given a set of edge249

weights w(e) for edges of G, we define the weighted Edmonds matrix in the same way250

as the Edmonds matrix, except every occurrence of a variable ye for an edge e ∈ E(G)251

is replaced by w(e)ye. In the case where the weights w(e) are themselves polynomials,252

in a set of further variables X, this allows us to use Lemma 2.5 with P (X,Y ) = detA253

to sieve in FPT time for particular kinds of matchings in G. See Theorem 3.1 for an254

example.255

3. List Coloring with Clique Modulator. We are ready to prove the first256

result of this section.257

Theorem 3.1. List Coloring with Clique Modulator can be solved by a258

randomized algorithm in time O∗(2k log k).259

Proof. Let L =
⋃

v∈V (G) L(v) and C = G−D. We say that a proper list coloring260

λ for G is compatible with (D,D′) if:261

• D = {D1, . . . , Dp} is the partition of all vertices in D that do not reuse colors262

used by λ in C into color classes given by λ and263

• D′ = {D′
1, . . . , D

′
t} is the partition of all vertices in D that do reuse colors264

used by λ in C into color classes given by λ.265

Note that {D1, . . . , Dp, D
′
1, . . . , D

′
t} is the partition of D into color classes given by λ.266

For a given pair (D,D′), where each set Di and D′
i is independent in G, we will267

now construct a bipartite multigraph B (with weights on its edges) such that B has a268
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 7

perfect matching satisfying certain additional properties if and only if G has a proper269

list coloring that is compatible with (D,D′). B has bi-partition (C∪{D1, . . . , Dp}, L)270

and edges as follows. Let c ∈ C and ℓ ∈ L be such that ℓ ∈ L(c). Then B contains271

an edge ecℓ between c and ℓ. Furthermore, for every j ∈ [t] there is a further edge272

ecℓ,j between c and ℓ if and only if ℓ ∈ (
⋂

d∈D′
j
L(d)) ∩ L(c) and c is not adjacent to273

any vertex in D′
j . Moreover, B has an edge between a vertex Di and a vertex ℓ ∈ L274

if and only if ℓ ∈
⋂

d∈Di
L(d). Finally, if |C| + p > |L| then λ cannot exist and we275

have a no-instance. Otherwise, we add |L| − |C| − p dummy vertices to the partite276

set C ∪ {D1, . . . , Dp} and make the dummy vertices adjacent to all vertices in L.277

For weights, we introduce a new set of variables X = {x1, . . . , xt}, and for every278

edge ecℓ,j created above we set w(ecℓ,j) = xj . Every other edge e of B has weight279

w(e) = 1. For an illustration of B, see Figure 1.280

Fig. 1. Illustration of the construction of B. (1, (xj)j∈J ) means that there are 1 + |J | parallel
edges between c1 and 1 with weights 1, xj1 , xj2 , . . . , xj|J|

, where J = {j1, j2, . . . , j|J|}.

Note that G has a proper list coloring that is compatible with (D,D′) if and only281

if B has a perfect matching F such that there is a bijection α between [t] and t edges282

in F such that for every i ∈ [t], the weight of the edge α(i) is xi. Indeed, we have283

w(α(i)) = xi if and only if α(i) = ecℓ,i for some vertices c and ℓ, which in turn implies284

that D′
i ∪ {c} is an independent set in G and ℓ ∈ L(u) for every u ∈ D′

i ∪ {c}. Along285

with the further edges of F of weight 1, this defines a proper coloring λ for G which286

is compatible with (D,D′).287

Let M be the weighted Edmonds matrix of B with weights w (see Section 2.3),288

for simplicity constructed over a field of characteristic 2. Let Y = {ye | e ∈ E(B)}289

be the set of further variables introduced in the construction of M . Then detM is290

a polynomial in variables X ∪ Y , and as discussed in Section 2.3, the monomials of291

detM are in bijection with perfect matchings of B; in particular, the latter holds since292

every weight w(e) defined above is a single monomial. Furthermore, for every perfect293

matching F of B, the monomial of detM corresponding to F equals
∏

e∈F w(e)ye.294

Now it is not hard to see that detM has a monomial containing
∏t

j=1 xj if and295

only if B has a perfect matching F such that there is a bijection α between [t] and t296

edges in F such that for every i ∈ [t], the weight of the edge α(i) is xi, which in turn297

is equivalent to G having a proper list coloring that is compatible with (D,D′). Note298

that the other |C| − t edges of the form cℓ contribute a factor 1 to the monomial, as299

do the edges of the form Diℓ.300
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8 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTRÖM

Hence, deciding whether G has a proper list coloring that is compatible with301

(D,D′) boils down to deciding whether detM has a monomial containing
∏t

j=1 xj .302

For any evaluation of variables X and Y , we can compute detM in polynomial-303

time [9].304

Now write y = (y1, . . . , ym), and let P (x1, . . . , xt, y) = detM . Define

Q(x1, . . . , xt) =
∑

I⊆[t]

P−I(x1, . . . , xt, y).

Note that each of P and Q is of degree at most 2n.305

By Lemma 2.5, Q(x1, . . . , xt) 6= 0 if and only if detM has a monomial containing306 ∏t

j=1 xj . Moreover, using Lemmas 2.4 and 2.5 (with P and Q just defined), we can307

verify with a single evaluation of Q whether Q(x1, . . . , xt) = 0 (i.e. whether detM308

contains a monomial containing
∏t

j=1 xj) with probability at least 1 − 2n
|F| ≥ 2/3 for309

a field F of characteristic 2 such that |F| ≥ 6n. Furthermore, Q can be evaluated in310

time O∗(2t).311

Our algorithm sets t = k and for every pair (D,D′), where D∪D′ is a partition of312

D into independent sets, constructs the graph B and matrixM . It then verifies in time313

O∗(2t) whether Q(x1, . . . , xt, y1, . . . , ym) = 0, and if Q(x1, . . . , xt, y1, . . . , ym) 6= 0 it314

returns ‘Yes’ and terminates. If the algorithm runs to the end, it returns ‘No’.315

Note that the time complexity of the algorithm is dominated by the number of316

choices for (D,D′), which is in turn dominated by O∗(Bk), where Bk is the k-th Bell317

number. By Berend and Tassa [4], Bk < ( 0.792k
ln(k+1) )

k, and thus the total running time318

is O∗(Bk2
k) = O∗(2k log k).319

3.1. A faster FPT algorithm. We now show a faster FPT algorithm, running320

in time O∗(2k). It is a variation on the same algebraic sieving technique as above,321

but instead of guessing a partition of the modulator it works over a more complex322

matrix. We begin by defining the matrix, then we show how to perform the sieving323

step in O∗(2k) time.324

3.1.1. Matrix definition. As before, let L =
⋃

v∈V (G) L(v) be the set of all325

colors, and let C = G −D. Define an auxiliary bipartite graph H = (UH ∪ VH , EH)326

where initially UH = V (G) and VH = L, and where vℓ ∈ EH for v ∈ V (G), ℓ ∈ L if327

and only if ℓ ∈ L(v). Additionally, introduce a set L′ = {ℓ′d | d ∈ D} of k artificial328

colors, add L′ to VH , and for each d ∈ D connect ℓ′d to d but to no other vertex.329

Finally, pad UH with |VH | − |UH | artificial vertices connected to all of VH ; note that330

this is a non-negative number, since otherwise |L| < |V (C)| and we may reject the331

instance.332

Next, we associate with every edge vℓ ∈ EH a set S(vℓ) ⊆ 2D as follows.333

• If v ∈ V (C), then S(vℓ) contains all sets S ⊆ D such that the following hold:334

1. S is an independent set in G335

2. N(v) ∩ S = ∅336

3. ℓ ∈
⋂

s∈S L(s).337

• If v ∈ D and ℓ ∈ L, then S(vℓ) contains all sets S ⊆ D such that the following338

hold:339

1. v ∈ S340

2. S is an independent set in G341

3. ℓ ∈
⋂

s∈S L(s).342

• If v or ℓ is an artificial vertex – in particular, if ℓ = ℓ′d for some d ∈ D – then343

S(vℓ) = {∅}.344
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 9

Finally, define a matrix A of dimensions |UH | × |VH |, with rows labelled by UH and345

columns labelled by VH , whose entries are polynomials as follows. Define a set of346

variables X = {xd | d ∈ D} corresponding to vertices of D, and additionally a set347

Y = {ye | e ∈ EH}. Then for every edge vℓ in H, v ∈ UH , ℓ ∈ VH we define348

P (vℓ) =
∑

S∈S(vℓ)

∏

s∈S

xs,349

where as usual an empty product equals 1. Then for each edge vℓ ∈ EH we let A[v, ℓ] =350

yvℓP (vℓ), and the remaining entries of A are 0. We argue the following. (Expert351

readers may note although the argument can be sharpened to show the existence352

of a multilinear term, we do not wish to argue that there exists such a term with353

odd coefficient. Therefore we use the simpler sieving of Lemma 2.5 instead of full354

multilinear detection, cf. [14].)355

Lemma 3.2. Let A be defined as above. Then detA (as a polynomial) contains a356

monomial divisible by
∏

x∈X x if and only if G is properly list colorable.357

Proof. We first note that no cancellation happens in detA. Note that monomials358

of detA correspond (many-to-one) to perfect matchings ofH, and thanks to the formal359

variables Y , two monomials corresponding to distinct perfect matchings never interact.360

On the other hand, if we fix a perfect matching M in H, then the contributions of M361

to detA equal σM

∏
e∈M yeP (e), where σM ∈ {1,−1} is a sign term depending only362

on M . Since the polynomials P (e) contain only positive coefficients, no cancellation363

occur, and every selection of a perfect matching M of H and a factor from every364

polynomial P (e), e ∈ M results (many-to-one) to a monomial with non-zero coefficient365

in detA.366

We now proceed with the proof. On the one hand, let c be a proper list coloring of367

G. Define an ordering ≺ on V (G) such that V (C) precedes D, and define a matching368

M as follows. For every vertex v ∈ V (C), add vc(v) to M . For every vertex v ∈ D,369

add vc(v) to M if v is the first vertex according to ≺ that uses color c(v), otherwise370

add vℓ′v to M . Note that M is a matching in H of |V (G)| edges. Pad M to a perfect371

matching in H by adding arbitrary edges connected to the artificial vertices in UH ;372

note that this is always possible. Finally, for every edge vℓ ∈ M with ℓ ∈ L we373

let Dvℓ = D ∩ c−1(ℓ). Observe that for every edge vℓ in M , Dvℓ ∈ S(vℓ); indeed,374

this holds by construction of S(vℓ) and since c is a proper list coloring. Further let375

pvℓ =
∏

v∈Dvℓ
xv; thus pvℓ is a term of P (vℓ). It follows, by the discussion in the first376

paragraph of the proof, that377

ασM

∏

vℓ∈M

yvℓpvℓ378

is a monomial of detA for some constant α > 0, where σM ∈ {1,−1} is the sign term379

for M . It remains to verify that every variable xd ∈ X occurs in some term pvℓ. Let380

ℓ = c(d) and let v be the earliest vertex according to ≺ such that c(v) = ℓ. Then381

vℓ ∈ M and xd occurs in pvℓ. This finishes the first direction of the proof.382

On the other hand, assume that detA contains a monomial T divisible by
∏

x∈X x,383

and let M be the corresponding perfect matching of H. Let T = α
∏

e∈M yepe for384

some constant factor α, where pe is a term of P (e) for every e ∈ M . Clearly such385

a selection is possible; if it is ambiguous, make the selection arbitrarily. Now define386

a mapping c : V (G) → L as follows. For v ∈ V (C), let vℓ ∈ M be the unique edge387

connected to v, and set c(v) = ℓ. For v ∈ D, let v′ be the earliest vertex according388

to ≺ such that xv occurs in pv′ℓ, where v′ℓ ∈ M . Set c(v) = ℓ. We verify that c is389
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10 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTRÖM

a proper list coloring of G. First of all, note that c(v) is defined for every v ∈ V (G)390

and that c(v) ∈ L(v). Indeed, if v ∈ V (C) then c(v) ∈ L(v) since vc(v) ∈ EH ; and if391

v ∈ D then c(v) ∈ L(v) is verified in the creation of the term pvc(v) in P (vc(v)). Next,392

consider two vertices u, v ∈ V (G) with c(u) = c(v). If u, v ∈ D, then u and v are393

represented in the same term pv′c(v) for some v′, hence u and v form an independent394

set; otherwise assume u ∈ V (C). Note that u, v ∈ V (C) is impossible since otherwise395

the matching M would contain two edges uc(u) and vc(u) which intersect. Thus396

v ∈ D, and v is represented in the term puc(u). Therefore uv /∈ E(G), by construction397

of P (uc(u)). We conclude that c is a proper coloring respecting the lists L(v), i.e., a398

proper list coloring.399

3.1.2. Fast evaluation. By the above description, we can test for the existence400

of a list coloring of G using 2k evaluations of detA, as in Theorem 3.1; and each401

evaluation can be performed in O∗(2k) time, including the time to evaluate the poly-402

nomials P (vℓ), making for a running time of O∗(4k) in total (or O∗(3k) with more403

careful analysis). We show how to perform the entire sieving in time O∗(2k) using404

fast subset convolution.405

For I ⊆ D, let us define A−I as A with all occurrences of variables xi, i ∈ I406

replaced by 0, and for every edge vℓ of H, let P (vℓ)−I denote the polynomial P (vℓ)407

with xi, i ∈ I replaced by 0. Then a generic entry (v, ℓ) of A−I equals408

A−I [v, ℓ] = yvℓP−I(vℓ),409

and in order to construct A−I it suffices to pre-compute the value of P−I(vℓ) for every410

edge vℓ ∈ EH , I ⊆ D. For this, we need the fast zeta transform of Yates [35], which411

was introduced to exact algorithms by Björklund et al. [6].412

Lemma 3.3 ([35, 6]). Given a function f : 2N → R for some ground set N and413

ring R, we may compute all values of f̂ : 2N → R defined as f̂(S) =
∑

A⊆S f(A)414

using O∗(2|N |) ring operations.415

We show the following lemma, which is likely to have analogues in the literature,416

but we provide a short proof for the sake of completeness.417

Lemma 3.4. Given an evaluation of the variables X, the value of P−I(vℓ) can be418

computed for all I ⊆ D and all vℓ ∈ EH in time and space O∗(2k).419

Proof. Consider an arbitrary polynomial P−I(vℓ).420

Recalling P (vℓ) =
∑

S∈S(vℓ)

∏
s∈S xs, we have:421

P−I(vℓ) =
∑

S∈S(vℓ)

[S ∩ I = ∅]
∏

s∈S

xs =
∑

S⊆(D−I)

[S ∈ S(vℓ)]
∏

s∈S

xs,422

using Iverson bracket notation.1 Using f(S) = [S ∈ S(vℓ)]
∏

s∈S xs, this clearly fits423

the form of Lemma 3.3, with f̂(D − I) = P−I(vℓ). Hence we apply Lemma 3.3424

for every edge vℓ ∈ EH , for O∗(2k) time per edge, making O∗(2k) time in total to425

compute all values.426

Having access to these values, it is now easy to complete the algorithm.427

Theorem 3.5. List Coloring with Clique Modulator can be solved by a428

randomized algorithm in time O∗(2k).429

1Recall that for a logical proposition P , [P ] = 1 if P is true and 0, otherwise.
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Proof. Let A be the matrix defined above (but do not explicitly construct it yet).430

By Lemma 3.2, we need to check whether detA contains a monomial divisible by431 ∏
x∈X x, and by Lemma 2.5 this is equivalent to testing whether432

∑

I⊆D

(−1)|I| detA−I 6≡ 0.433

By the Schwartz-Zippel lemma (Lemma 2.4), it suffices to randomly evaluate the434

variables X and Y occurring in A and evaluate this sum once; if G has a proper list435

coloring and if the values of X and Y are chosen among sufficiently many values, then436

with high probability the result is non-zero, and if not, then the result is guaranteed437

to be zero. Thus the algorithm is as follows.438

1. Instantiate variables of X and Y uniformly at random from [N ] for some439

sufficiently large N . Note that for an error probability of ε with 0 < ε < 1,440

it suffices to use N = Ω(n2(1/ε)).441

2. Use Lemma 3.4 to fill in a table with the value of P−I(vℓ) for all I and vℓ in442

time O∗(2k).443

3. Compute444 ∑

I⊆D

(−1)|I| detA−I ,445

constructing A−I from the values P−I(vℓ) in polynomial time in each step.446

4. Answer YES if the result is non-zero, NO otherwise.447

Clearly this runs in total time and space O∗(2k) and the correctness follows from the448

arguments above.449

3.2. Refuting Polynomial Kernel. In this section, we prove that List Col-450

oring with Clique Modulator does not admit a polynomial kernel. We prove this451

result by a polynomial parameter transformation fromHitting Set where the param-452

eter is the number of sets, which is known not to have a polynomial kernel [17]. Notice453

that Hitting Set parameterized by number of sets is equivalent to Set Cover pa-454

rameterized by the universe size.455

Theorem 3.6. List Coloring with Clique Modulator parameterized by k456

does not admit a polynomial kernel unless NP ⊆ coNP/poly.457

Proof. Let us recall the formal definition of the Hitting Set problem.458

459

Input: A universe U of n elements, a family F ⊆ 2U of m subsets of U , and
an integer k.

Problem: Is there X ⊆ U with at most k elements such that for every F ∈ F ,
it holds that F ∩X 6= ∅?

Hitting Set parameterized by m

460

461
Let (U,F , k) be an instance of Hitting Set problem where U = [n], and F =462

{F1, . . . , Fm}. Now, we are ready to describe the construction.463

Construction: For every i ∈ [m], we create a vertex ui and assign L(ui) =464

Fi. Let D = {u1, . . . , um}. In addition, we create a clique C with n − k vertices465

{v1, . . . , vn−k}. Moreover, for every j ∈ [n−k], we set L(vj) = U and for all i ∈ [n−k]466

and j ∈ [m], let (ui, vj) be an edge. This completes the construction, which takes467

polynomial time. We denote the obtained graph by G. It remains to show that the468

two instances are equivalent.469
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12 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTRÖM

Towards showing the forward direction, let (U,F , k) be an yes-instance. Then,470

there is a set X of at most k elements from U such that for every Fi ∈ F , X ∩Fi 6= ∅.471

Using the elements present in X, we can color D as follows. We pick an element472

arbitrarily from every Fi ∩ X, and color the vertex ui using that color. After that,473

we provide different colors to different vertices in C that are different from the colors474

used in D as well. Hence, we can color G by n colors.475

Towards showing the backwards direction, suppose that G has a proper list col-476

oring. Note that all vertices of C have to get different colors. Hence, the vertices of477

D must be colorable using only k colors. Suppose that X is the set of k colors used478

to color the vertices of D. Note that the colors respect the list for every vertex in D479

where the list represents the sets in the family. Hence, X is a hitting set of size k.480

Note that the reduction also shows that if List Coloring with Clique Modula-481

tor could be solved in time O(2ǫknO(1)) for some ǫ < 1, then Hitting Set could be482

solved in time O(2ǫ|F||U |O(1)), which in turn would imply that any instance I with483

universe U and set family F of the well-known Set Cover problem could be solved484

in time O(2ǫ|U ||F|O(1)). The existence of such an algorithm is open, and it has been485

conjectured that no such algorithm is possible under SETH (the strong exponential-486

time hypothesis); see Cygan et al. [15]. Thus, up to the assumption of this conjecture487

and SETH, the algorithm for List Coloring with Clique Modulator given in488

Theorem 3.5 is best possible w.r.t. its dependency on k.489

4. Polynomial kernel for Pre-Coloring Extension with Clique Mod-490

ulator. In the following let (G,D, k, λP , X,Q) be an instance of Pre-Coloring491

Extension with Clique Modulator, let C = G−D, let DP be the set of all pre-492

colored vertices in D, and let D′ = D \DP . W.l.o.g., we can assume that |Q| ≥ |C| as493

otherwise the instance is a trivial no-instance. In the following, we will assume that494

the instance will be updated with the introduction of every reduction rule, i.e., we495

will assume that all already introduced reduction rules have already been exhaustively496

applied to the current instance.497

Reduction Rule 1. Remove any vertex v ∈ D′ that has less than |Q| neighbors498

in G.499

The proof of the following lemma is obvious and thus omitted.500

Lemma 4.1. Reduction Rule 1 is safe and can be implemented in polynomial time.501

Note that if Reduction Rule 1 can no longer be applied, then every vertex in D′ has502

at least |Q| neighbors, which because of |Q| ≥ |C| implies that every such vertex has503

at most |D| ≤ k non-neighbors in G and hence also in C. Let CN be the set of all504

vertices in C that are not adjacent to all vertices in D′ and let C ′ = C − CN . Note505

that |CN | ≤ |D||D| ≤ k2.506

We show next how to reduce the size of CN to k. Note that this step is optional507

if our aim is solely to obtain a polynomial kernel, however, it allows us to reduce508

the number of vertices in the resulting kernel from O(k2) to O(k). Let J be the509

bipartite graph with partition (CN , D) having an edge between c ∈ CN and d ∈ D if510

{c, d} /∈ E(G). Our next reduction rule can be seen as a crown reduction rule that511

uses a crown decomposition of J with crown A and head NH(A); a similar rule has512

been employed previously in [3, Reduction Rule 2].513

Reduction Rule 2. If A ⊆ CN is an inclusion-wise minimal set satisfying |A| >514

|NJ(A)|, then remove the vertices in D′ ∩NJ(A) from G.515

Note that after the application of Reduction Rule 2, the vertices in A are implicitly516
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removed from CN and added to C ′ since all their non-neighbors in D′ (i.e. the vertices517

in D′ ∩NJ(A)) are removed from the graph.518

Lemma 4.2. Reduction Rule 2 is safe and can be implemented in polynomial time.519

Proof. It is clear that the rule can be implemented in polynomial-time. Towards520

showing the safeness of the rule, it suffices to show that G has a coloring extending λP521

using only colors from Q if and only if so does G\(D′∩NJ(A)). Since G\(D′∩NJ(A))522

is a subgraph of G, the forward direction of this statement is trivial. So assume that523

G\(D′∩NJ(A)) has a coloring λ extending λP using only colors from Q. Because the524

set A is inclusion-minimal, we obtain from Proposition 2.1, that there is a (maximum)525

matching, say M , between NJ(A) and A in J that saturates NJ(A). Moreover, it526

follows from the definition of J that every vertex in A is adjacent to every vertex in527

G apart from the vertices in NJ(A). Therefore, the colors in λ(A) can only reappear528

in DP ∩ NJ(A). We can now use the matching M to reshuffle the colors in A in529

such a way that the colors of vertices in A that are matched by M to a vertex in D′530

appear exactly once in the graph; or in other words we reshuffle the colors in A such531

that all colors that also appear in DP ∩NJ(A) are assigned to vertices in A that are532

matched by M to vertices in DP . That is, let A
′ be the set of all vertices a in A with533

λ(a) ∈ λ(DP ∩NJ(A)) such that a is matched by M to a vertex in D′. Similarly, let534

AP be the set of all vertices a in A with λ(a) /∈ λ(DP ∩NJ(A)) such that a is matched535

by M to a vertex in DP . Note that |AP | ≥ |A′| and therefore there is a bijection536

α : A′ → A′
P from A′ to a subset A′

P of AP . Now, let λ′ be the coloring obtained from537

λ by setting λ′(a) = λ(α(a)) for every a ∈ A′, λ′(a) = λ(α−1(a)) for every a ∈ A′
P ,538

and λ′(a) = λ(a) otherwise. Then, the color λ′(a) appears exactly once for every539

a ∈ A that is matched by M to a vertex in D′. Therefore, we can extend λ′ into a540

coloring λ′′ for G by coloring the vertices in D′∩NJ(A) according to the matching M .541

More formally, let λD′∩NJ (A) be the coloring for the vertices in D′ ∩NJ(A) obtained542

by setting λD′∩NJ (A)(v) = λ′(u) for every v ∈ D′ ∩NJ(A), where {v, u} ∈ M . Then,543

we obtain λ′′ by setting: λ′′(v) = λ′(v) for every v ∈ V (G) \ (D′ ∩ NJ(A)) and544

λ′′(v) = λD′∩NJ (A)(v) for every vertex v ∈ D′ ∩NJ(A).545

Note that because of Proposition 2.1, we obtain that there is a set A ⊆ CN with546

|A| > |NJ(A)| as long as |CN | > |D|. Moreover, since NJ(A) ∩D′ 6= ∅ for every such547

set A (due to the definition of CN ), we obtain that Reduction Rule 2 is applicable as548

long as |CN | > |D|. Hence after an exhaustive application of Reduction Rule 2, we549

obtain that |CN | ≤ |D′| ≤ k.550

We now introduce our final two reduction rules, which allow us to reduce the size551

of C ′.552

Reduction Rule 3. Let v ∈ V (C ′) be a pre-colored vertex with color λP (v).553

Then remove λ−1
P (λP (v)), i.e., all vertices colored with the same color (λP (v)) as v,554

from G and λP (v) from Q.555

Lemma 4.3. Reduction Rule 3 is safe and can be implemented in polynomial time.556

Proof. Because v ∈ V (C ′), it holds that only vertices in DP can have color λP (v),557

but these are already pre-colored. Hence in any coloring for G that extends λP , the558

vertices in λ−1
P (λP (v)) are the only vertices that obtain color λP (v), which implies559

the safeness of the rule.560

Because of Reduction Rule 3, we can from now on assume that no vertex in C ′561

is pre-colored. Note that the only part of G, whose size is not yet bounded by a562

polynomial in the parameter k is C ′. To reduce the size of C ′, we need will make use563
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of Proposition 2.2. Let P = λP (DP ) and H be the bipartite graph with bi-partition564

(C ′, P ) containing an edge between c′ ∈ C ′ and p ∈ P if and only if c′ is not adjacent565

to a vertex pre-colored by p in G.566

Reduction Rule 4. Let M be a maximum matching in H and let CM be the567

endpoints of M in C ′. Then remove all vertices in CM := C ′ \ CM from G and568

remove an arbitrary set of |CM | colors from Q \ λP (X). (Recall that λP : X → Q.)569

In the following let CM and CM be as defined in the above reduction rule for an570

arbitrary maximum matching M of H. To show that the reduction rule is safe, we571

need the following auxiliary lemma, which shows that if a coloring for G reuses colors572

from P in C ′, then those colors can be reused solely on the vertices in CM .573

Lemma 4.4. If there is a coloring λ for G extending λP using only colors in574

Q, then there is a coloring λ′ for G extending λP using only colors in Q such that575

λ′(CM ) ∩ P = ∅.576

Proof. Let CP be the set of all vertices v in C ′ with λ(v) ∈ P . If CP ∩ CM =577

∅, then setting λ′ equal to λ satisfies the claim of the lemma. Hence assume that578

CP ∩ CM 6= ∅. Let N be the matching in H containing the edges {v, λ(v)} for every579

v ∈ CP ; note that N is indeed a matching in H, because CP is a clique in G. Because580

of Proposition 2.2, there is a matching N ′ in H[CM ∪P ] such that N ′ has exactly the581

same endpoints in P as N . Let CM [N ′] be the endpoints of N ′ in CM and let λA be582

the coloring of the vertices in CM [N ′] corresponding to the matching N ′, i.e., a vertex583

v in CM [N ′] obtains the unique color p ∈ P such that {v, p} ∈ N ′. Finally, let α be584

an arbitrary bijection between the vertices in (V (N) ∩C ′) \CM [N ′] and the vertices585

in CM [N ′] \ (V (N) ∩ C ′), which exists because |N | = |N ′|. We now obtain λ′ from586

λ by setting λ′(v) = λA(v) for every v ∈ CM [N ′], λ′(v) = λ(α(v)) for every vertex587

v ∈ (V (N) ∩ C ′) \ CM [N ′], and λ′(v) = λ(v) for every other vertex. To see that λ′588

is a proper coloring note that λ′(C ′) = λ(C ′). Moreover, all the colors in λ(C ′) \ P589

are “universal colors” in the sense that exactly one vertex of G obtains the color and590

hence those colors can be freely moved around in C ′. Finally, the matching N ′ in H591

ensures that the vertices in CM [N ′] can be colored using the colors from P .592

Lemma 4.5. Reduction Rule 4 is safe and can be implemented in polynomial time.593

Proof. Note first that the reduction can always be applied since if Q \ λP (X)594

contains less than |CM | colors, then the instance is a no-instance. It is clear that the595

rule can be implemented in polynomial time using any polytime algorithm for finding596

a maximum matching [29]. Moreover, if the reduced graph has a coloring extending597

λP using only the colors in Q, then so does the original graph, since the vertices in598

CM can be colored with the colors removed from the original instance.599

Hence, it remains to show that if G has a coloring, say λ, extending λP using600

only colors in Q, then G \ CM has a coloring extending λP that uses only colors in601

Q′ := Q \ QM , where QM is the set of |CM | colors from Q \ λP (X) that have been602

removed from Q.603

Because of Lemma 4.4, we may assume that λ(CM )∩ P = ∅. Let B be the set of604

all vertices v in G−CM with λ(v) ∈ QM . If B = ∅, then λ is a coloring extending λP605

using only colors from Q′. Hence assume that B 6= ∅. Let A be the set of all vertices606

v in CM with λ(v) ∈ Q′. Then λ(A) ∩ λP (X) = ∅, which implies that every color in607

λ(A) appears only in CM (and exactly once in CM ). Moreover, |λ(A)| ≥ |λ(B)|. Let608

α be an arbitrary bijection between λ(B) and an arbitrary subset of λ(A) (of size |B|)609

and let λ′ be the coloring obtained from λ by setting λ′(v) = α(λ(v)) for every v ∈ B,610

λ′(v) = α−1(λ(v)) for every v ∈ A, and λ′(v) = λ(v), otherwise. Then λ′ restricted611
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to G − CM is a coloring for G − CM extending λP using only colors from Q′. Note612

that λ′ is a proper coloring because the colors in λ(A) are not in P and hence do not613

appear anywhere else in G and moreover the colors in λ(B) do not appear in λ(CM ).614

Note that after the application of Reduction Rule 4, it holds that |C ′| = |CM | ≤ |P | ≤615

|DP | ≤ |D| ≤ k. Together with the facts that |D| ≤ k, |CN | ≤ k, we obtain that the616

reduced graph has at most 3k vertices.617

Theorem 4.6. Pre-Coloring Extension with Clique Modulator admits618

a polynomial kernel with at most 3k vertices.619

5. Polynomial kernel and Compression for (n − k)-Regular List Col-620

oring. We now show our polynomial kernel and compression for (n − k)-Regular621

List Coloring, which is more intricate than the one for Pre-Coloring Exten-622

sion with Clique Modulator. Let (G, k, L) be an input of (n−k)-Regular List623

Coloring. We begin by noting that we can assume that G has a clique-modulator624

of size at most 2k.625

Lemma 5.1 ([3]). In polynomial-time either we can either solve (G, k, L) or626

compute a clique-modulator for G of size at most 2k.627

Henceforth, we let V (G) = C ∪ D where G[C] is a clique and D is a clique628

modulator, |D| ≤ 2k. Let T =
⋃

v∈V (G) L(v). We note one further known reduction629

rule for (n − k)-Regular List Coloring. Consider the bipartite graph HG with630

bi-partition (V (G), T ) having an edge between v ∈ V (G) and t ∈ T if and only if631

t ∈ L(v).632

Reduction Rule 5 ([3]). Let T ′ be an inclusion-wise minimal subset of T such633

that |NHG
(T ′)| < |T ′|, then remove all vertices in NHG

(T ′) from G.634

Note that after an exhaustive application of Reduction Rule 5, it holds that |T | ≤635

|V (G)| since otherwise Proposition 2.1 would ensure the applicability of the reduction636

rule. Hence in the following we will assume that |T | ≤ |V (G)|.637

With this preamble handled, let us proceed with the kernelization. We are not638

able to produce a direct ‘crown reduction rule’ for List Coloring, as for Pre-639

Coloring Extension (e.g., we do not know of a useful generalization of Reduction640

Rule 2). Instead, we need to study more closely which list colorings of G[D] extend641

to list colorings of G. For this purpose, let H = HG − D be the bipartite graph642

with bi-partition (C, T ) having an edge {c, t} with c ∈ C and t ∈ T if and only if643

t ∈ L(c). Say that a partial list coloring λ0 : A → T is extensible if it can be extended644

to a proper list coloring λ of G. If D ⊆ A, then a sufficient condition for this is that645

H−(A∪λ0(A)) admits a matching saturating C\A. (This is not a necessary condition,646

since some colors used in λ0(D) could be reused in λ(C \ A), but this investigation647

will point in the right direction.) By Proposition 2.1, this is characterized by Hall648

sets in H − (A ∪ λ0(A)).649

A Hall set S ⊆ U in a bipartite graph G′ with bi-partition (U,W ) is trivial if650

N(S) = W . We start by noting that if a color occurs in sufficiently many vertex651

lists in H, then it behaves uniformly with respect to extensible partial colorings λ0652

as above.653

Lemma 5.2. Let λ0 : A → T be a partial list coloring where |A ∩ C| ≤ p and let654

t ∈ T be a color that occurs in at least k + p lists in C. Then t is not contained in655

any non-trivial Hall set of colors in H − (A ∪ λ0(A)).656

Proof. Let H ′ = H− (A∪λ0(A)). Consider any Hall set of colors S ⊂ (T \λ0(A))657
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and any vertex v ∈ C \ (A ∪NH′(S)) (which exists assuming S is non-trivial). Then658

S ⊆ T \L(v), hence |S| ≤ k, and by assumption |NH′(S)| < |S|. But for every t′ ∈ S,659

we haveNH(t′) ⊆ NH′(S)∪(A∩C), hence t′ occurs in at most |NH′(S)∪(A∩C)| < k+p660

vertex lists in C. Thus t /∈ S.661

In the following, we will assume that n ≥ 11k.2 This is safe, since otherwise662

(by Reduction Rule 5) we already have a kernel with a linear number of vertices and663

colors. We say that a color t ∈ T is rare if it occurs in at most 6k lists of vertices in664

C.665

Lemma 5.3. If n ≥ 11k, then there are at most 3k rare colors.666

Proof. Let S = {t ∈ T | dH(t) < 6k}. For every t ∈ S, there are |C| − 6k “non-667

occurrences” (i.e., vertices v ∈ C with t /∈ L(v)), and there are |C|k non-occurrences668

in total. Thus669

|S| · (|C| − 6k) ≤ |C|k ⇒ |S| ≤
|C|

|C| − 6k
k = (1 +

6k

|C| − 6k
)k,670

where the bound is monotonically decreasing in |C| and maximized (under the as-671

sumption that n ≥ 11k and hence |C| ≥ 9k) for |C| = 9k yielding |S| ≤ 3k.672

Let TR ⊆ T be the set of rare colors. Define a new auxiliary bipartite graph H∗673

with bi-partition (C,D ∪ TR) having an edge between a vertex c ∈ C and a vertex674

d ∈ D if {c, d} /∈ E(G) and an edge between a vertex c ∈ C and a vertex t ∈ TR675

if t ∈ L(c). Let X be a minimum vertex cover of H∗. Refer to the colors TR \ X676

as constrained rare colors. Note that constrained rare colors only occur on lists of677

vertices in D ∪ (C ∩ X). Let T ′ = T \ (TR \ X), V ′ = (D \ X) ∪ (C ∩ X), and set678

q = |T ′| − |C \X|. Before we continue, we want to provide some useful observations679

about the sizes of the considered sets and numbers.680

Observation 1. It holds that:681

• |X| ≤ |D|+ |TR| ≤ 5k,682

• |V ′| ≤ |D|+ |X| ≤ 7k,683

• q ≤ |T | − |C| + |C ∩ X| ≤ |D| + |X| ≤ 7k; this holds because |T | ≤ |V | =684

|C|+ |D|.685

Lemma 5.4. Assume n ≥ 11k. Then G has a list coloring if and only if there is686

a partial list coloring λ0 : V
′ → T that uses at most q = |T ′| − |C \X| colors from T ′.687

Proof. The number of colors usable in C \ X is |T ′| − p where p is the number688

counted above (since constrained rare colors cannot be used in C \ X even if they689

are unused in λ0). Thus it is a requirement that |T ′| − p ≥ |C \ X|. That is,690

p ≤ |T ′| − |C \X| = q. Thus necessity is clear. We show sufficiency as well. That is,691

let λ0 be a partial list coloring with scope V ′ = (C ∩X)∪ (D \X) which uses at most692

q colors of T ′. We modify and extend λ0 to a list coloring of G.693

First let H0 be the bipartite graph with bi-partition (V, TR \ X) and let M0 be694

a matching saturating TR \X; note that this exists by reduction rule 5. We modify695

λ0 to a coloring λ′
0 so that every constrained rare color is used by λ′

0, by iterating696

over every color t ∈ TR \X; for every t, if t is not yet used by λ′
0, then let vt ∈ M0697

and update λ′
0 with λ′

0(v) = t. Note that the scope of λ′
0 after this modification is698

contained in (C ∩X) ∪D. Next, let M be a maximum matching in H∗. We use M699

2The constants 11k and 6k in this paragraph are chosen to make the arguments work smoothly.
A smaller kernel is possible with a more careful analysis and further reduction rules.
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to further extend λ′
0 in stages to a partial list coloring λ which colors all of D and700

uses all rare colors. In phase 1, for every color t ∈ TR ∩X which is not already used,701

let vt ∈ M be the edge covering t and assign λ(v) = t. Note that M matches every702

vertex of X in H∗ with a vertex not in X, thus the edge vt exists and v has not yet703

been assigned in λ. Hence, at every step we maintain a partial list coloring, and at704

the end of the phase all rare colors have been assigned. Finally, as phase 2, for every705

vertex v ∈ D ∩X not yet assigned, let uv ∈ M where u ∈ C; necessarily u ∈ C \X706

and u is as of yet unassigned in λ. The number of colors assigned in λ thus far is at707

most |X|+ |D| ≤ |TR|+2|D| ≤ 7k, whereas |L(u)∩L(v)| ≥ n− 2k ≥ 9k, hence there708

always exists an unused shared color that can be mapped to λ(u) = λ(v). Let λ be709

the resulting partial list coloring. We claim that λ can be extended to a list coloring710

of G.711

Let A be the scope of λ and let H ′ = H − (A∩ λ(A)). Note that A∩C ⊆ V (M),712

hence |A∩C| ≤ |D|+|TR| ≤ 5k. Thus by Lemma 5.2, no non-trivial Hall set in H ′ can713

contain a rare color. However, all rare colors are already used in λ. Thus H ′ contains714

no non-trivial Hall set of colors. Thus the only possibility that λ is not extensible is715

that H ′ has a trivial Hall set, i.e., |T \ λ(A)| < |C \ A|. However, every modification716

after λ′
0 added one vertex to A and one color to λ(A), keeping the balance between717

the two sides. Thus already the partial coloring λ′
0 leaves behind a trivial Hall set.718

However, λ′
0 colors precisely C ∩X in C and leaves at least |T ′| − q colors remaining.719

By design this is at least |C \ X|, yielding a contradiction. Thus we find that H ′720

contains no Hall set, and λ is a list coloring of G.721

Before we give our compression and kernelization results, we need the following aux-722

iliary lemma.723

Lemma 5.5. T ′ contains at least |T ′|−|V ′|k colors that are universal to all vertices724

in V ′.725

Proof. The list of every vertex v ∈ V ′ misses at most k colors from T ′. Hence all726

but at most |V ′|k colors in T ′ are universal to all vertices in V ′.727

For clarity, let us define the output problem of our compression explicitly.728

729

Input: A graph G, a set T of colors, a list L(v) ⊆ T for every v ∈ V (G), and
a pair (T ′, q) where T ′ ⊆ T and q ∈ N.

Problem: Is there a proper list coloring for G that uses at most q distinct colors
from T ′?

Budget-Constrained List Coloring

730

731

Theorem 5.6. (n− k)-Regular List Coloring admits a compression into an732

instance of Budget-Constrained List Coloring with at most 11k vertices and733

O(k2) colors, encodable in O(k2 log k) bits.734

Proof. If |V (G)| ≤ 11k, then G itself can be used as the output (with a dummy735

budget constraint). Otherwise, all the bounds above apply and Lemma 5.4 shows736

that the existence of a list coloring in G is equivalent to the existence of a list coloring737

in G[V ′] that uses at most q colors from T ′. Since |V ′| ≤ 7k, it only remains to738

reduce the number of colors in TR ∪ T ′. Clearly, if |T ′| < |V ′|k + q, then |TR ∪ T ′| ≤739

3k+(7k)k ∈ O(k2) and there is nothing left to show. So suppose that |T ′| ≥ |V ′|k+q.740

Then, it follows from Lemma 5.5 that T ′ contains at least q colors that are universal741

to the vertices in V ′ and we obtain an equivalent instance by removing all but exactly742
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q universal colors from T ′, which leaves us with an instance with at most |TR|+ q ≤743

3k + 7k2 ∈ O(k2) colors, as required. Finally, to describe the output concisely, note744

that G[V ′] can be trivially described in O(k2) bits, and the lists L(v) can be described745

by enumerating T \ L(v) for every vertex v, which is k colors per vertex, each color746

identifiable by O(log k) bits.747

Note that the compression is asymptotically essentially optimal, since even the748

basic 4-Coloring problem does not allow a compression in O(n2−ε) bits for any749

ε > 0 unless the polynomial hierarchy collapses [24]. For completeness, we also give750

a proper kernel, which can be obtained in a similar manner to the compression given751

in Theorem 5.6.752

Theorem 5.7. (n − k)-Regular List Coloring admits a kernel with O(k2)753

vertices and colors.754

Proof. We distinguish two cases depending on whether or not |T ′| < |V ′|k+ q. If755

|T ′| < |V ′|k + q, then |T | ≤ |TR|+ |T ′| < 3k + |V ′|k + q ≤ 3k + (7k)(k + 1) ∈ O(k2).756

Since a list coloring requires at least one distinct color for every vertex in C, it holds757

that |C| ≤ |T | ≤ 3k+(7k)(k+1) and hence |V (G)| ≤ (3+7k)k+2k ∈ O(k2), implying758

the desired kernel.759

If on the other hand, |T ′| ≥ |V ′|k + q, then, because of Lemma 5.5 it holds that760

T ′ contains a set U of exactly q colors that are universal to the vertices in V ′. Recall761

that Lemma 5.4 shows that the existence of a list coloring in G is equivalent to the762

existence of a list coloring in G[V ′] that uses at most q = |T ′|−|C \X| colors from T ′.763

It follows that the graph G[V ′] has a list coloring using only colors in (TR \X) ∪ U764

if and only if G has a list coloring. Hence, it only remains to restore the regularity765

of the instance. We achieve this as follows. First we add a set TN of |(TR \X) ∪ U |766

novel colors. We then add these colors (arbitrarily) to the color lists of the vertices767

in V ′ such that the size of every list (for any vertex in V ′) is |(TR \ X) ∪ U |. This768

clearly already makes the instance regular, however, now we also need to ensure that769

no vertex in V ′ can be colored with any of the new colors in TN . To achieve this770

we add a set CN of |TN | novel vertices to G[V ′], which we connect to every vertex771

in (C ∩ X) ∪ CN and whose lists all contain all the new colors in TN . It is clear772

that the constructed instance is equivalent to the original instance since all the new773

colors in TN are required to color the new vertices in CN and hence no new color774

can be used to color a vertex in V ′. Moreover, D is still a clique modulator and775

the number k′ of missing colors (in each list of the constructed instance) is equal to776

|D|+ |C ∩X| ≤ 2k + 5k because the instance is (n− |D| − |C ∩X|)-regular. Finally,777

the instance has at most |V ′ ∪CN | ≤ 7k+3k+7k = 17k ∈ O(k) vertices and at most778

2(|TR|+ |U |) ≤ 2(3k + 7k) = 20k ∈ O(k) colors, as required.779

6. Saving k colors: Pre-coloring and List Coloring Variants. In this780

section, we consider natural pre-coloring and list coloring variants of the “saving k781

colors” problem, defined as:782

783

Input: A graph G with n vertices and an integer k.
Problem: Does G have a proper coloring using at most n− k colors?

(n− k)-Coloring parameterized by k

784

785
This problem is known to be FPT (it even allows for a linear kernel) [12], when786

parameterized by k. Notably the problem provided the main motivation for the787

introduction of (n− k)-Regular List Coloring in [3, 2].788
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We consider the following (pre-coloring and list coloring) extensions of (n − k)-789

Coloring.790

791

Input: A graph G with n vertices and a pre-coloring λP : X → Q for X ⊆
V (G) where Q is a set of colors.

Problem: Can λP be extended to a proper coloring of G using only colors from
Q?

(n− |Q|)-Pre-Coloring Extension parameterized by n− |Q|

792

793
794

Input: A graph G on n vertices with a list L(v) of colors for every v ∈ V (G)
and an integer k.

Problem: Is there a proper list coloring of G using at most n− k colors?

List Coloring with n− k colors parameterized by k

795

796
Note that the following variant seems natural, however, is trivially NP-complete797

even when the parameter k is equal to 0, since the problem with an empty pre-coloring798

then corresponds to the problem whether G can be colored by at most |Q| colors.799

800

Input: A graph G with n vertices, a pre-coloring λP : X → Q for X ⊆ V (G)
where Q is a set of colors, and an integer k.

Problem: Can λP be extended to a proper coloring of G using at most |Q| − k
colors from Q?

(|Q| − k)-Pre-Coloring Extension parameterized by k

801

802
Interestingly, we show that (n − |Q|)-Pre-Coloring Extension is FPT and803

even allows a linear kernel. Thus, we generalize the above-mentioned result of Chor804

et al. [12] (set Q = [n − k] and X = ∅). However, List Coloring with n − k805

colors is easily seen to be NP-hard (even for k = 0) using a trivial reduction from806

3-Coloring.807

Theorem 6.1. (n−|Q|)-Pre-Coloring Extension (parameterized by n−|Q|)808

has a kernel with at most 6(n− |Q|) vertices and is hence fixed-parameter tractable.809

Proof. Let G′ be the graph obtained from G after applying the following reduction810

rules:811

Reduction Rule 6. If u and v are two distinct vertices in G \ X such that812

λP (NG(u)) ∪ λP (NG(v)) = Q, then we add an edge between u and v in G.813

This rule is safe because u and v cannot be colored with the same color.814

Reduction Rule 7. If u is a vertex in G\X that is adjacent to a vertex v ∈ X,815

then we can safely add all edges between u and every vertex in λ−1
P (λP (v)).816

This rule is safe because u cannot be colored by λP (v).817

Reduction Rule 8. If u and v are two distinct vertices in X such that λP (u) 6=818

λP (v), then we can again safely add an edge between u and v.819

This rule is safe because u and v cannot be colored with the same color.820

Let M be a maximal matching in the complement of G′. Note that if |M | ≤821

n − |Q|, then V (M) is a clique modulator for G′ of size at most 2(n − |Q|) and we822

obtain a kernel with at most 6(n−|Q|) vertices using Theorem 4.6. Thus assume that823
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|M | ≥ n− |Q|. In this case we can safe |M | ≥ n− |Q| colors by giving the endpoints824

of every edge in M the same color. Namely, let {u, v} ∈ M , then:825

• if u, v /∈ X, then it follows from Reduction Rule 6 that there is a color q ∈ Q826

that can be given to both vertices,827

• if u /∈ X and v ∈ X, then it follows from Reduction Rule 7 that we can color828

u with color λP (v),829

• if u, v ∈ X, then by Reduction Rule 8 we have that λP (u) = λP (v).830

Note that after coloring the edges in M with the same color, removing V (M) from831

G′, and removing the colors used for the edges in M from Q, the number of colors in832

the remaining instance is equal to the number of vertices in the remaining instance,833

implying that the remaining instance can be properly colored.834

7. Conclusions. We have shown several results regarding the parameterized835

complexity of List Coloring and Pre-Coloring Extension problems. We836

showed that List Coloring, and hence also Pre-Coloring Extension, parame-837

terized by the size of a clique modulator admits a randomized FPT algorithm with a838

running time of O∗(2k), matching the best known running time of the basic Chro-839

matic Number problem parameterized by the number of vertices. This answers840

open questions of Golovach et al. [23]. Note that also that List Coloring is already841

W[1]-hard parameterized by vertex cover [23], i.e., modulator to an independent set,842

which excludes even quite simple generalizations of our result to, e.g., a modulator843

to a disjoint union of cliques. Additionally, we showed that Pre-Coloring Exten-844

sion under the same parameter admits a linear vertex kernel with at most 3k vertices845

and that (n − k)-Regular List Coloring admits a compression into a problem846

we call Budget-Constrained List Coloring, into an instance with at most 11k847

vertices, encodable in O(k2 log k) bits. The latter also admits a proper kernel with848

O(k2) vertices and colors. This answers an open problem of Banik et al. [3].849

One obvious open question is whether it is possible to derandomize our algorithm850

for List Coloring. This seems, however, very challenging as it would require a851

derandomization of Lemma 2.4, which has been an open problem for some time. It852

might, however, be possible (and potentially more promising) to consider a different853

approach than ours. Another open question is to optimize the bound 11k on the854

number of vertices in the (n − k)-Regular List Coloring compression, and/or855

show a proper kernel with O(k) vertices. Finally, another set of questions is raised856

by Escoffier [19], who studied the Max Coloring problem from a “saving colors”857

perspective. In addition to the questions explicitly raised by Escoffier, it is natural858

to ask whether his problems Saving Weight and Saving Color Weights admit859

FPT algorithms with a running time of 2O(k) and/or polynomial kernels.860
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