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PARAMETERIZED PRE-COLORING EXTENSION AND LIST
COLORING PROBLEMS*

GREGORY GUTINT, DIPTAPRIYO MAJUMDAR', SEBASTIAN ORDYNIAK#¥, AND
MAGNUS WAHLSTROM'

Abstract. Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the param-
eterized complexity of the following problems parameterized by k: (1) Given a graph G, a clique
modulator D (a cligue modulator is a set of vertices, whose removal results in a clique) of size k for G,
and a list L(v) of colors for every v € V(G), decide whether G has a proper list coloring; (2) Given a
graph G, a clique modulator D of size k for G, and a pre-coloring Ap : X — @ for X C V(G), decide
whether A\p can be extended to a proper coloring of G using only colors from Q. For Problem 1 we
design an O*(2F)-time randomized algorithm and for Problem 2 we obtain a kernel with at most
3k vertices. Banik et al. (IWOCA 2019) proved the following problem is fixed-parameter tractable
and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v)
of exactly n — k colors for every v € V(G), decide whether there is a proper list coloring for G. We
obtain a kernel with O(k2) vertices and colors and a compression to a variation of the problem with
O(k) vertices and O(k?) colors.

1. Introduction. Graph coloring is a central topic in Computer Science and
Graph Theory due to its importance in theory and applications. Every text book
in Graph Theory has at least a chapter devoted to the topic and the monograph
of Jensen and Toft [25] is completely devoted to graph coloring problems focusing
especially on more than 200 unsolved ones. There are many survey papers on the
topic including recent ones such as [13, 22, 31, 33].

For a graph G, a proper coloring is a function A : V(G) — N>; such that for
no pair u,v of adjacent vertices of G, A(u) = A(v). In the widely studied COLORING
problem, given a graph G and a positive integer p, we are to decide whether there is a
proper coloring A\ : V(G) — [p], where henceforth [p] = {1,...,p}. In this paper, we
consider two extensions of COLORING: the PRE-COLORING EXTENSION problem and
the LisT COLORING problem. In the PRE-COLORING EXTENSION problem, given a
graph G, a set Q of colors, and a pre-coloring Ap : X — @, where X C V(G), we are
to decide whether there is a proper coloring A : V(G) — @ such that A(z) = A\p(z)
for every x € X. In the LisT COLORING problem, given a graph G and a list L(u)
of possible colors for every vertex u of G, we are to decide whether G has a proper
coloring A such that A(u) € L(u) for every vertex u of G. Such a coloring A is called
a proper list coloring. Clearly, PRE-COLORING EXTENSION is a special case of LIST
COLORING, where all lists of vertices x € X are singletons and the lists of all other
vertices are equal to Q.

The p-COLORING problem is a special case of COLORING when p is fixed (i.e., not
part of input). When @ C [p] (L(u) C [p], respectively), PRE-COLORING EXTENSION
(LisT COLORING, respectively) are called p-PRE-COLORING EXTENSION (LIST p-
COLORING, respectively). In classical complexity, it is well-known that p-COLORING,
p-PRE-COLORING EXTENSION and LIST p-COLORING are polynomial-time solvable
for p < 2, and the three problems become NP-complete for every p > 3 [28, 31]. In this
paper, we solve several open problems about pre-coloring extension and list coloring
problems, which lie outside classical complexity, so-called parameterized problems.

*A preliminary and shortened version of this paper has been accepted at STACS 2020.

TRoyal Holloway, University of London, UK (gutin@cs.rhul.ac.uk, dip-
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2 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTROM

We provide basic notions on parameterized complexity in the next section. For more
information on parameterized complexity, see recent books [14, 18, 20].

The first two problems we study are the following ones stated by Golovach et al.
[23] (see also [30]) who asked to determine their parameterized complexity. These
questions were motivated by a result of Cai [10] who showed that COLORING WITH
CLIQUE MODULATOR (the special case of PRE-COLORING EXTENSION WITH CLIQUE
MODULATOR when X = ) is fixed-parameter tractable (FPT). Note that a clique
modulator of a graph G is a set D of vertices such that G — D is a clique. When using
the size of a clique modulator as a parameter we will for convenience assume that the
modulator is given as part of the input. Note that this assumption is not necessary
(however it avoids having to repeat how to compute a clique modulator) as we will
show in Section 2 that computing a clique modulator of size k is FPT and can be
approximated to within a factor of two.

LisT COLORING WITH CLIQUE MODULATOR parameterized by k

Input: A graph G, a clique modulator D of size k for G, and a list L(v) of
colors for every v € V(G).
Problem: Is there a proper list coloring for G7

PRE-COLORING EXTENSION WITH CLIQUE MODULATOR parameterized by k

Input: A graph G, a clique modulator D of size k for G, and a pre-coloring
Ap: X = Q for X C V(G) where @Q is a set of colors.
Problem: Can Ap be extended to a proper coloring of G using only colors from

Q7

In Section 3 we show that LiST COLORING WITH CLIQUE MODULATOR is FPT.
We first show a randomized O*(2¥1°8%)-time algorithm, then we improve the running
time to O*(2%) using more refined tools and approaches. Note that all our random-
ized algorithms are one-sided error algorithms having a constant probability of being
wrong, when the algorithm outputs no.

We note that the time O*(2*) matches the best known running time of O*(2")
for CHROMATIC NUMBER (where n = |V (G)|) [6], while applying to a more powerful
parameter. It is a long-open problem whether CHROMATIC NUMBER can be solved
in time O(2°") for some ¢ < 1 and Cygan et al. [15] ask whether it is possible to
show that such algorithms are impossible assuming the Strong Exponential Time
Hypothesis (SETH).

We conclude Section 3 by showing that LisT COLORING WITH CLIQUE MODU-
LATOR does not admit a polynomial kernel unless NP C coNP /poly. The reduction
used to prove this result allows us to observe that if LisT COLORING WITH CLIQUE
MODULATOR could be solved in time O(2%*n®M) for some ¢ < 1, then the well-
known SET COVER problem could be solved in time O(2¢1Y!|F|9M) where U and F
are universe and family of subsets, respectively. The existence of such an algorithm
is open, and it has been conjectured that no such algorithm is possible under SETH;
see Cygan et al. [15]. Thus, up to the assumption of this conjecture (called Set Cover
Conjecture [27]) and SETH, our O*(2F)-time algorithm for LisT COLORING WITH
CLIQUE MODULATOR is best possible w.r.t. its dependency on k.

In Section 4, we consider PRE-COLORING EXTENSION WITH CLIQUE MODULA-
TOR, which is a subproblem of LisST COLORING WITH CLIQUE MODULATOR and prove
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 3

that PRE-COLORING EXTENSION WITH CLIQUE MODULATOR, unlike LisST COLOR-
ING WITH CLIQUE MODULATOR, admits a polynomial kernel: a linear kernel with at
most 3k vertices. This kernel builds on a known, but counter-intuitive property of
bipartite matchings (see Proposition 2.2), which was previously used in kernelization
by Bodlaender et al. [8].

In Section 5, we study an open problem stated by Banik et al. [3]. In a classic
result, Chor et al. [12] showed that COLORING has a linear vertex kernel parameterized
by k = n—p, i.e., if the task is to “save k colors”. Arora et al. [2] consider the following
as a natural extension to list coloring, and show that it is in XP. Banik et al. [3] show
that the problem is FPT, but leave as an open question whether it admits a polynomial
kernel.

(n — k)-REGULAR L1ST COLORING parameterized by k

Input: A graph G on n vertices, an integer k, and a list L(v) of exactly n—k
colors for every v € V(G).
Problem: Is there a proper list coloring for G?

We answer this question in affirmative by giving a kernel with O(k?) vertices and
colors, as well as a compression to a variation of the problem with O(k) vertices,
encodable in O(k? log k) bits. We note that this compression is asymptotically almost
tight, as even 4-COLORING does not admit a compression into O(n?~¢) bits for any
€ > 0 unless the polynomial hierarchy collapses [24].

This kernel is more intricate than the above. Via known reduction rules from
Banik et al. [3], we can compute a clique modulator of at most 2k vertices (hence our
result for L1IsT COLORING WITH CLIQUE MODULATOR also solves (n — k)-REGULAR
LisT COLORING in 2°(%) time). However, the usual “crown rules” (as in [12] and
in Section 4) are not easily applied here, due to complications with the color lists.
Instead, we are able to show a set of O(k) vertices whose colorability make up the
“most interesting” part of the problem, leading to the above-mentioned compression
and kernel.

In Section 6, we consider further natural pre-coloring and list coloring variants
of the “saving k colors” problem of Chor et al. [12]. We show that the known fixed-
parameter tractability and linear kernelizability [12] carries over to a natural pre-
coloring generalization but fails for a more general list coloring variant. Since (n— k)-
REGULAR LiST COLORING was originally introduced in [2] as a list coloring variant
of the “saving k colors” problem, it is natural to consider other such variants. We
conclude the paper in Section 7, where in particular a number of open questions are
discussed.

2. Preliminaries.

2.1. Parameterized Complexity. An instance of a parameterized problem II
is a pair (I, k) where I is the main part and k is the parameter; the latter is usually a
non-negative integer. A parameterized problem is fized-parameter tractable (FPT) if
there exists a computable function f such that instances (I, k) can be solved in time
O(f(k)|I|¢) where |I| denotes the size of I and c is an absolute constant. The class
of all fixed-parameter tractable decision problems is called FPT and algorithms which
run in the time specified above are called FPT algorithms. As in other literature on
FPT algorithms, we will often omit the polynomial factor in O(f(k)|I|¢) and write
O*(f(k)) instead. To establish that a problem under a specific parameterization is
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4 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTROM

not in FPT we prove that it is W[1]-hard as it is widely believed that FPTAWI1].

A reduction rule R for a parameterized problem II is an algorithm A that given an
instance (I, k) of a problem II returns an instance (I’, k') of the same problem. The
reduction rule is said to be safe if it holds that (I, k) € II if and only if (I’,k’) € IL
If A runs in polynomial time in |I| + k& then R is a polynomial-time reduction rule.
Often we omit the adjectives “safe” and “polynomial-time” in “safe polynomial-time
reduction rule” as we consider only such reduction rules.

A kernelization (or, a kernel) of a parameterized problem II is a reduction rule
such that [I'| + k' < f(k) for some computable function f. It is not hard to show that
a decidable parameterized problem is FPT if and only if it admits a kernel [14, 18, 20].
The function f is called the size of the kernel, and we have a polynomial kernel if f(k)
is polynomially bounded in k.

A kernelization can be generalized by considering a reduction (rule) from a param-
eterized problem II to another parameterized problem IT'. Then instead of a kernel we
obtain a generalized kernel (also called a bikernel [1] in the literature). If the problem
I’ is not parameterized, then a reduction from II to I (i.e., (I, k) to I') is called a
compression, which is polynomial if |I'| < p(k), where p is a fixed polynomial in k. If
there is a polynomial compression from II to II’ and II’ is polynomial-time reducible
back to TI, with a reduction I’ — (I,k) such that furthermore k& < |I’/|°1) then
combining the compression with the reduction gives a polynomial kernel for II.

2.2. Graphs, Matchings, and Clique Modulator. We consider finite sim-
ple undirected graphs. For basic terminology on graphs, we refer to a standard
textbook [16]. For an undirected graph G = (V, E) we denote by V(G) the ver-
tex set of G and by E(G) the edge set of G. For a vertex v € V(G), we de-
note by Ng(v) and Ng[v] the open respectively closed neighborhood of v in G, i.e.,
Ng(v) :={u | {u,v} € E(G) } and Ng[v] :== Ng(v) U {v}. We extend this notion in
the natural manner to subsets V' C V(G), by setting Ng(V') := U,c Na(v) and
Ng[V'] := Uyev Na[v]. Moreover, we omit the subscript G, if the graph G can be
inferred from the context. If V' C V(G), we denote by G\ V'’ the graph obtained from
G after deleting all vertices in V' together with their adjacent edges and we denote
by G[V'] the graph induced by the vertices in V', i.e., G[V'] = G\ (V(G) \ V'). We
say that G is bipartite with bi-partition (A, B), if {A, B} partitions V(G) and G[A] as
well as G[B] have no edges.

A matching M is a subset of E(G) such that no two edges in M share a common
endpoint. We say that M is mazimal if there is no edge e € E(G) such that M U{e} is
a matching and we say that M is mazimum if it is maximal and there is no maximal
matching in G containing more edges than M. We denote by V(M) the set of all
endpoints of the edges in M, i.e., the set | J ., e. We say that M saturates a subset
V' CV(G)if V! CV(M). Let H = (V,E) be an undirected bipartite graph with
bi-partition (A, B). We say that a set C is a Hall set for Aor Bif C C Aor C C B,
respectively, and [Ny (C)| < |C]. We will need the following well-known properties
for matchings.

PROPOSITION 2.1 (Hall’s Theorem [16]). Let G be an undirected bipartite graph
with bi-partition (A, B). Then G has a matching saturating A if and only if there is
no Hall set for A, i.e., for every A" C A, it holds that |[N(A")| > |A'].

PROPOSITION 2.2 ([8, Theorem 2]). Let G be a bipartite graph with bi-partition
(X,Y) and let X be the set of all vertices in X that are endpoints of a maximum
matching M of G. Then, for every Y' C Y, it holds that G contains a matching that

This manuscript is for review purposes only.
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 5

covers Y' if and only if so does G[ X UY].

Clique Modulator Let G be an undirected graph. We say that a set D C V(G) is
a clique modulator for G if G — D is a clique. Since we will use the size of a smallest
clique modulator as a parameter for our coloring problems, it is natural to ask whether
the following problem can be solved efficiently.

CLIQUE MODULATOR parameterized by k

Input: A graph G and an integer k
Problem: Does G have a clique modulator of size at most k?

The following proposition shows that this is indeed the case. Namely, CLIQUE
MODULATOR is both FPT and can be approximated within a factor of two. The former
is important for our FPT algorithms and the later for our kernelization algorithms as
it allows us to not depend on a clique modulator given as part of the input.

PROPOSITION 2.3. CLIQUE MODULATOR is fized-parameter tractable (in time
0*(1.2738%) ) and can be approzimated within a factor of two.

Proof. 1t is straightforward to verify that a graph G has a clique modulator of
size at most k if and only if the complement G of G has a vertex cover of size at
most k. The statement now follows from the fact that the vertex cover problem is
fixed-parameter tractable [11] (in time O*(1.2738%)) and can be approximated within
a factor of two [21]. 0

2.3. Polynomial sieving. Algorithms based on polynomial sieving and sim-
ilar algebraic techniques have become an important component of the toolbox for
parameterized and exact algorithms. One of the early examples within the field is
the algorithm for computing CHROMATIC NUMBER in time O*(2") by Bjorklund et
al. [6]. Further developments include techniques such as multilinear detection [206]
(see also [7]). We review only what we need for this paper; for more background and
further techniques, see [15, 26, 7, 5].

For a positive integer p, [p] denotes the set {1,2,...,p}. For a polynomial P, we
denote the coefficient of a monomial T" of P by coef pT.

The following lemma is central to the approach.

LEMMA 2.4. (Schwartz-Zippel [32, 36]). Let P(x1,...,x,) be a multivariate poly-
nomial of total degree at most d over a field F, and assume that P is not identically
zero. Pick r1,...,r, uniformly at random from F. Then Pr{P(ri,...,r,) = 0] <

The general approach is to construct a polynomial whose terms enumerate po-
tential solutions, and then use sieving techniques over the polynomial to ensure that
undesired solutions cancel and only actual solutions remain. As long as the sieved
polynomial can be evaluated in FPT time, this then gives a randomized FPT algo-
rithm using the Schwartz-Zippel lemma, as above. In the case that we are working
over a field of characteristic 2, we will implicitly assume that the field is large enough
to allow an application of the above lemma with good success probability, e.g., by
moving to an extension field or starting with a large enough field GF(2°).

We will use the following simple inclusion-exclusion based sieving technique, pre-
viously used by Wahlstrom [34]. Let P(x1,...,2,) be a polynomial and I C [n] a set
of indices. Define P_j(x1,...,2n) = P(y1,...,Yn), where y; = 0 for i € I and y; = x;
otherwise. Then the following holds. (The variant for a field of characteristic 2 was

This manuscript is for review purposes only.
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6 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTROM

proved by Wahlstrom [34]. The other variant can be proved similarly.)

LEMMA 2.5. Let P(x1,...,%,) be a polynomial over a field of characteristic two
(over reals, respectively), and J C [n] a set of indices. Define

Q(z1,...,xy) = ZP,[(xl,...mn)

ICJ

(Qz1,...,2pn) = Z(_l)mP_I(a:l, ..o, Ty), respectively).
1CJ

Then for any monomial T divisible by 1l;cyx; we have coefgT = coefpT’, and for
every other monomial T we have coefyT = 0.

We will also use the connection between permanents and bipartite matchings. Let
G be a bipartite graph with balanced bi-partition (U, V), i.e., |U| = |V/|. The bipartite
adjacency matrix of G is a matrix A, with rows are indexed by U and columns indexed
by V, such that Afu,v] =1foru e U, v € V if wv € E(G), and Afu, v] = 0 otherwise.
It is well known that the permanent per A enumerates perfect matchings of G, but
that it is hard to evaluate in general. The exception is in fields of characteristic 2,
where it coincides with the determinant, but where we furthermore have to worry
about cancellations due to the characteristic.

In order to work with determinants instead of the permanent, we define the
following. The Edmonds matriz A of G is defined as the bipartite adjacency matrix,
except every non-zero entry Afu,v] = 1 is replaced by a distinct variable Afu,v] =
Yuv- Letting Y = {yu | wv € E(G)}, we see that det A is a polynomial in Y of
degree n = |U|. We extend this to the case when G is a bipartite multigraph. Let
Y = {y. | e € E(G)} as above, and, if G contains d edges es,...,eq between u
and v for u € U, v € V, then we let Afu,v] = Zle Ye,- In both cases, if we view
det A as a polynomial in Y, then the monomials of det A are in bijection with the
perfect matchings of G. Now the Schwartz-Zippel lemma allows us to test for perfect
matchings via a randomized evaluation of det A. Furthermore, given a set of edge
weights w(e) for edges of G, we define the weighted Edmonds matriz in the same way
as the Edmonds matrix, except every occurrence of a variable y, for an edge e € E(G)
is replaced by w(e)ye. In the case where the weights w(e) are themselves polynomials,
in a set of further variables X, this allows us to use Lemma 2.5 with P(X,Y) =det A
to sieve in FPT time for particular kinds of matchings in G. See Theorem 3.1 for an
example.

3. List Coloring with Clique Modulator. We are ready to prove the first
result of this section.

THEOREM 3.1. LisT COLORING WITH CLIQUE MODULATOR can be solved by a
randomized algorithm in time O*(2k108k),

Proof. Let L = {J, ey (¢) L(v) and C' = G — D. We say that a proper list coloring
A for G is compatible with (D, D’) if:
e D={D,...,D,} is the partition of all vertices in D that do not reuse colors
used by A in C' into color classes given by A and
e D' ={D},...,D,} is the partition of all vertices in D that do reuse colors
used by A in C into color classes given by A.
Note that {Ds,...,D,, Di,..., D;} is the partition of D into color classes given by .
For a given pair (D,D’), where each set D; and Dj is independent in G, we will
now counstruct a bipartite multigraph B (with weights on its edges) such that B has a

This manuscript is for review purposes only.
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 7

perfect matching satisfying certain additional properties if and only if G has a proper
list coloring that is compatible with (D, D’). B has bi-partition (CU{D1,...,D,}, L)
and edges as follows. Let ¢ € C and ¢ € L be such that ¢ € L(c). Then B contains
an edge ey between ¢ and ¢. Furthermore, for every j € [t] there is a further edge
ece,; between ¢ and /¢ if and only if £ € (ﬂdeD; L(d)) N L(c) and c¢ is not adjacent to

any vertex in D.. Moreover, B has an edge between a vertex D; and a vertex £ € L
if and only if £ € Nycp, L(d). Finally, if [C| +p > |L| then A cannot exist and we
have a no-instance. Otherwise, we add |L| — |C| — p dummy vertices to the partite
set CU{D1,...,D,} and make the dummy vertices adjacent to all vertices in L.

For weights, we introduce a new set of variables X = {z1,...,2;}, and for every
edge eq ; created above we set w(eq ;) = x;. Every other edge e of B has weight
w(e) = 1. For an illustration of B, see Figure 1.

1, (z5)jeJ)

C
! 1e[ N L(d)]N L), and

c2 O 2 deD;

for any d € D}, c1d ¢ E(G).

C3 O
e o w(ece,j) = T;
L) ={1,2,3}
D, 5
D, @ @6 (M L(d)={3,5,7}
deD,
D; © 7

F1G. 1. Illustration of the construction of B. (1,(x;)jes) means that there are 1 + |J| parallel
edges between c1 and 1 with weights 1,x;,,x;,,.. ST ) where J = {j1,j2,- .- 7j|J\}‘

Note that G has a proper list coloring that is compatible with (D, D’) if and only
if B has a perfect matching F' such that there is a bijection a between [t] and ¢ edges
in F such that for every i € [t], the weight of the edge «(i) is ;. Indeed, we have
w(a(?)) = x; if and only if «(i) = eqp,; for some vertices ¢ and ¢, which in turn implies
that D, U {c} is an independent set in G and ¢ € L(u) for every u € D} U {c}. Along
with the further edges of F' of weight 1, this defines a proper coloring A for G which
is compatible with (D, D’).

Let M be the weighted Edmonds matrix of B with weights w (see Section 2.3),
for simplicity constructed over a field of characteristic 2. Let Y = {y. | e € E(B)}
be the set of further variables introduced in the construction of M. Then det M is
a polynomial in variables X UY, and as discussed in Section 2.3, the monomials of
det M are in bijection with perfect matchings of B; in particular, the latter holds since
every weight w(e) defined above is a single monomial. Furthermore, for every perfect
matching F' of B, the monomial of det M corresponding to F' equals [ ] . w(e)ye.

Now it is not hard to see that det M has a monomial containing H;=1 x; if and
only if B has a perfect matching F' such that there is a bijection « between [¢t] and ¢
edges in F such that for every i € [t], the weight of the edge /(i) is x;, which in turn
is equivalent to G having a proper list coloring that is compatible with (D, D’). Note
that the other |C| — ¢ edges of the form ¢l contribute a factor 1 to the monomial, as
do the edges of the form D;/.
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8 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTROM

Hence, deciding whether G has a proper list coloring that is compatible with
(D,D’) boils down to deciding whether det M has a monomial containing H;=1 xj.
For any evaluation of variables X and Y, we can compute det M in polynomial-
time [9].

Now write y = (y1,-.-,Ym), and let P(x1,...,z:,y) = det M. Define

Q(z1,...,2¢) = Z P_p(x1,...,2,Y).

IC[t]

Note that each of P and @ is of degree at most 2n.

By Lemma 2.5, Q(x1,...,2:) # 0 if and only if det M has a monomial containing
H§:1 xj. Moreover, using Lemmas 2.4 and 2.5 (with P and @ just defined), we can
verify with a single evaluation of @) whether Q(x1,...,2¢) = 0 (i.e. whether det M
contains a monomial containing H;Zl x;) with probability at least 1 — % > 2/3 for
a field F of characteristic 2 such that |F| > 6n. Furthermore, @) can be evaluated in
time O*(2%).

Our algorithm sets ¢ = k and for every pair (D, D’), where DUD’ is a partition of
D into independent sets, constructs the graph B and matrix M. It then verifies in time
O*(2%) whether Q(z1,...,Zt,Y1,-->Ym) = 0, and if Q(x1,..., %4, y1,. ., Ym) # 0 it
returns ‘Yes’ and terminates. If the algorithm runs to the end, it returns ‘No’.

Note that the time complexity of the algorithm is dominated by the number of
choices for (D, D’), which is in turn dominated by O*(By), where By, is the k-th Bell

number. By Berend and Tassa [4], By < (13&9?16) )¥, and thus the total running time

is O*(Bi2h) = O*(2Flogk), 0

3.1. A faster FPT algorithm. We now show a faster FPT algorithm, running
in time O*(2¥). It is a variation on the same algebraic sieving technique as above,
but instead of guessing a partition of the modulator it works over a more complex
matrix. We begin by defining the matrix, then we show how to perform the sieving
step in O*(2F) time.

3.1.1. Matrix definition. As before, let L = {J,cy () L(v) be the set of all
colors, and let C' = G — D. Define an auxiliary bipartite graph H = (Uyg U Vg, Eg)
where initially Uy = V(G) and Vg = L, and where v¢ € Ex for v € V(G), £ € L if
and only if £ € L(v). Additionally, introduce a set L' = {¢/, | d € D} of k artificial
colors, add L' to Vj, and for each d € D connect ¢/, to d but to no other vertex.
Finally, pad Up with |Vg| — |Ug| artificial vertices connected to all of Vir; note that
this is a non-negative number, since otherwise |L| < |V(C)| and we may reject the
instance.

Next, we associate with every edge vf € Ey a set S(vf) C 2P as follows.

o If v € V(C), then S(vf) contains all sets S C D such that the following hold:
1. S is an independent set in G
2. Nv)ynS==0
3. L€ N,eqL(s).
e Ifv € Dand (€ L, then S(vf) contains all sets S C D such that the following
hold:
l.vesS
2. S is an independent set in G

3. L€ N,eqL(s).
e If v or £ is an artificial vertex — in particular, if £ = ¢/, for some d € D — then

S(vl) = {0}.

This manuscript is for review purposes only.
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 9

Finally, define a matrix A of dimensions |Ug| X |V|, with rows labelled by Uy and
columns labelled by Vi, whose entries are polynomials as follows. Define a set of
variables X = {z4 | d € D} corresponding to vertices of D, and additionally a set
Y ={y. | e € Ex}. Then for every edge v¢ in H, v € Uy, £ € Vi we define

P(vl) = Z Hms,

SeS(vl) se€S

where as usual an empty product equals 1. Then for each edge vf € Ey we let Afv, f] =
Yoo P(vf), and the remaining entries of A are 0. We argue the following. (Expert
readers may note although the argument can be sharpened to show the existence
of a multilinear term, we do not wish to argue that there exists such a term with
odd coefficient. Therefore we use the simpler sieving of Lemma 2.5 instead of full
multilinear detection, cf. [14].)

LEMMA 3.2. Let A be defined as above. Then det A (as a polynomial) contains a
monomial divisible by [[,cx x if and only if G is properly list colorable.

Proof. We first note that no cancellation happens in det A. Note that monomials
of det A correspond (many-to-one) to perfect matchings of H, and thanks to the formal
variables Y, two monomials corresponding to distinct perfect matchings never interact.
On the other hand, if we fix a perfect matching M in H, then the contributions of M
to det A equal opr [[.cps yeP(e), where opr € {1,—1} is a sign term depending only
on M. Since the polynomials P(e) contain only positive coefficients, no cancellation
occur, and every selection of a perfect matching M of H and a factor from every
polynomial P(e), e € M results (many-to-one) to a monomial with non-zero coefficient
in det A.

We now proceed with the proof. On the one hand, let ¢ be a proper list coloring of
G. Define an ordering < on V(G) such that V(C) precedes D, and define a matching
M as follows. For every vertex v € V(C'), add ve(v) to M. For every vertex v € D,
add ve(v) to M if v is the first vertex according to < that uses color ¢(v), otherwise
add v, to M. Note that M is a matching in H of |V(G)| edges. Pad M to a perfect
matching in H by adding arbitrary edges connected to the artificial vertices in Ug;
note that this is always possible. Finally, for every edge v¢/ € M with £ € L we
let D,y = D N e 1(0). Observe that for every edge vl in M, D, € S(vf); indeed,
this holds by construction of S(vf) and since ¢ is a proper list coloring. Further let
Poe = HUEDM Zy; thus pye is a term of P(vf). Tt follows, by the discussion in the first
paragraph of the proof, that

[e7op Vs H YveDoe
vle M

is a monomial of det A for some constant o > 0, where o) € {1, —1} is the sign term
for M. It remains to verify that every variable z4 € X occurs in some term p,,. Let
¢ = ¢(d) and let v be the earliest vertex according to < such that c(v) = ¢. Then
vl € M and z4 occurs in p,y. This finishes the first direction of the proof.

On the other hand, assume that det A contains a monomial 7" divisible by [ [ x =,
and let M be the corresponding perfect matching of H. Let T" = a ][, ¢y Yepe for
some constant factor a, where p. is a term of P(e) for every e € M. Clearly such
a selection is possible; if it is ambiguous, make the selection arbitrarily. Now define
a mapping c¢: V(G) — L as follows. For v € V(C), let v£ € M be the unique edge
connected to v, and set ¢(v) = £. For v € D, let v’ be the earliest vertex according
to < such that x, occurs in p,r¢, where v'¢ € M. Set c(v) = £. We verify that ¢ is

This manuscript is for review purposes only.
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a proper list coloring of G. First of all, note that ¢(v) is defined for every v € V(G)
and that ¢(v) € L(v). Indeed, if v € V(C) then ¢(v) € L(v) since ve(v) € Ey; and if
v € D then c(v) € L(v) is verified in the creation of the term p,.(,) in P(vc(v)). Next,
consider two vertices u,v € V(G) with c¢(u) = ¢(v). If u,v € D, then u and v are
represented in the same term p,/.(,) for some v’, hence u and v form an independent
set; otherwise assume u € V(C). Note that u,v € V(C) is impossible since otherwise
the matching M would contain two edges uc(u) and ve(w) which intersect. Thus
v € D, and v is represented in the term p,.(,). Therefore uv ¢ E(G), by construction
of P(uc(u)). We conclude that ¢ is a proper coloring respecting the lists L(v), i.e., a
proper list coloring. 0

3.1.2. Fast evaluation. By the above description, we can test for the existence
of a list coloring of G using 2* evaluations of det A, as in Theorem 3.1; and each
evaluation can be performed in O*(2*) time, including the time to evaluate the poly-
nomials P(vf), making for a running time of O*(4*) in total (or O*(3*) with more
careful analysis). We show how to perform the entire sieving in time O*(2¥) using
fast subset convolution.

For I C D, let us define A_; as A with all occurrences of variables x;, i € I
replaced by 0, and for every edge vf of H, let P(vf)_; denote the polynomial P(vf)
with x;, i € I replaced by 0. Then a generic entry (v,f) of A_; equals

A_qv, ] = yor P-1(v0),

and in order to construct A_ it suffices to pre-compute the value of P_;(vf) for every
edge vl € Ep, I C D. For this, we need the fast zeta transform of Yates [35], which
was introduced to exact algorithms by Bjorklund et al. [6].

LeEMMA 3.3 ([35, 6]). Given a function f: 2N — R for some ground set N and
ring R, we may compute all values of f : 2V — R defined as f(S) = ZAQS f(A)
using O*(2IN1) ring operations.

We show the following lemma, which is likely to have analogues in the literature,
but we provide a short proof for the sake of completeness.

LEMMA 3.4. Given an evaluation of the variables X, the value of P_r(vf) can be
computed for all I C D and all v¢ € Eg in time and space O*(2F).

Proof. Consider an arbitrary polynomial P_j(vf).
Recalling P(vl) = > ge () [ses s, we have:

Pwt)y= > [SnI=0]zs= > [SeS@)]]as

SeS(ve) ses SC(D-I) ses

using Iverson bracket notation.! Using f(S) = [S € S(vf)][[,cg ®s, this clearly fits

the form of Lemma 3.3, with f(D — I) = P_;(vf). Hence we apply Lemma 3.3
for every edge vf € Ey, for O*(2%) time per edge, making O*(2¥) time in total to
compute all values. 0

Having access to these values, it is now easy to complete the algorithm.

THEOREM 3.5. LiST COLORING WITH CLIQUE MODULATOR can be solved by a
randomized algorithm in time O*(2F).

1Recall that for a logical proposition P, [P] = 1 if P is true and 0, otherwise.

This manuscript is for review purposes only.
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 11

Proof. Let A be the matrix defined above (but do not explicitly construct it yet).
By Lemma 3.2, we need to check whether det A contains a monomial divisible by
[I,cx =, and by Lemma 2.5 this is equivalent to testing whether

> (=1)fldet A_; £ 0.

ICD

By the Schwartz-Zippel lemma (Lemma 2.4), it suffices to randomly evaluate the
variables X and Y occurring in A and evaluate this sum once; if G has a proper list
coloring and if the values of X and Y are chosen among sufficiently many values, then
with high probability the result is non-zero, and if not, then the result is guaranteed
to be zero. Thus the algorithm is as follows.

1. Instantiate variables of X and Y uniformly at random from [N] for some
sufficiently large N. Note that for an error probability of € with 0 < e < 1,
it suffices to use N = Q(n?(1/¢)).

2. Use Lemma 3.4 to fill in a table with the value of P_j(v¢) for all T and v¢ in
time O*(2F).

3. Compute

> (=DM det Ay,

ICD

constructing A_; from the values P_;(vf) in polynomial time in each step.
4. Answer YES if the result is non-zero, NO otherwise.
Clearly this runs in total time and space O*(2*¥) and the correctness follows from the
arguments above. ]

3.2. Refuting Polynomial Kernel. In this section, we prove that LisT COL-
ORING WITH CLIQUE MODULATOR does not admit a polynomial kernel. We prove this
result by a polynomial parameter transformation from HITTING SET where the param-
eter is the number of sets, which is known not to have a polynomial kernel [17]. Notice
that HITTING SET parameterized by number of sets is equivalent to SET COVER pa-
rameterized by the universe size.

THEOREM 3.6. LisST COLORING WITH CLIQUE MODULATOR parameterized by k
does not admit a polynomial kernel unless NP C coNP/poly.

Proof. Let us recall the formal definition of the HITTING SET problem.

HiTtTING SET parameterized by m

Input: A universe U of n elements, a family F C 2V of m subsets of U, and
an integer k.

Problem: Is there X C U with at most k elements such that for every F' € F,
it holds that F'N X # (?

Let (U, F,k) be an instance of HITTING SET problem where U = [n], and F =
{F1,...,F,}. Now, we are ready to describe the construction.

Construction: For every i € [m], we create a vertex u; and assign L(u;) =
F;. Let D = {uy,...,un}. In addition, we create a clique C' with n — k vertices
{v1,...,vn—i}. Moreover, for every j € [n—k|, we set L(v;) = U and for all i € [n—k]
and j € [m], let (u;,v;) be an edge. This completes the construction, which takes
polynomial time. We denote the obtained graph by G. It remains to show that the
two instances are equivalent.

This manuscript is for review purposes only.
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Towards showing the forward direction, let (U, F, k) be an yes-instance. Then,
there is a set X of at most k elements from U such that for every F; € F, X N F; # ().

Using the elements present in X, we can color D as follows. We pick an element
arbitrarily from every F; N X, and color the vertex w; using that color. After that,
we provide different colors to different vertices in C that are different from the colors
used in D as well. Hence, we can color G by n colors.

Towards showing the backwards direction, suppose that G has a proper list col-
oring. Note that all vertices of C' have to get different colors. Hence, the vertices of
D must be colorable using only k colors. Suppose that X is the set of & colors used
to color the vertices of D. Note that the colors respect the list for every vertex in D
where the list represents the sets in the family. Hence, X is a hitting set of size k. O

Note that the reduction also shows that if LiST COLORING WITH CLIQUE MODULA-
TOR could be solved in time O(2°*n°M) for some € < 1, then HITTING SET could be
solved in time O(2¢71|U|M), which in turn would imply that any instance I with
universe U and set family F of the well-known SET COVER problem could be solved
in time O(2¢1Y1|F|©MW). The existence of such an algorithm is open, and it has been
conjectured that no such algorithm is possible under SETH (the strong exponential-
time hypothesis); see Cygan et al. [15]. Thus, up to the assumption of this conjecture
and SETH, the algorithm for LisT COLORING WITH CLIQUE MODULATOR given in
Theorem 3.5 is best possible w.r.t. its dependency on k.

4. Polynomial kernel for PRE-COLORING EXTENSION WITH CLIQUE MOD-
ULATOR. In the following let (G, D, k,Ap, X, Q) be an instance of PRE-COLORING
EXTENSION WITH CLIQUE MODULATOR, let C = G — D, let Dp be the set of all pre-
colored vertices in D, and let D’ = D\ Dp. W.l.o.g., we can assume that |Q| > |C| as
otherwise the instance is a trivial no-instance. In the following, we will assume that
the instance will be updated with the introduction of every reduction rule, i.e., we
will assume that all already introduced reduction rules have already been exhaustively
applied to the current instance.

Reduction Rule 1. Remove any vertex v € D' that has less than |Q| neighbors
in G.

The proof of the following lemma is obvious and thus omitted.
LEMMA 4.1. Reduction Rule 1 is safe and can be implemented in polynomial time.

Note that if Reduction Rule 1 can no longer be applied, then every vertex in D’ has
at least |@| neighbors, which because of |Q| > |C| implies that every such vertex has
at most |D| < k non-neighbors in G and hence also in C. Let Cx be the set of all
vertices in C that are not adjacent to all vertices in D’ and let C’ = C — Cy. Note
that |Cy| < |D||D| < k2.

We show next how to reduce the size of C'y to k. Note that this step is optional
if our aim is solely to obtain a polynomial kernel, however, it allows us to reduce
the number of vertices in the resulting kernel from O(k?) to O(k). Let J be the
bipartite graph with partition (Cy, D) having an edge between ¢ € Cy and d € D if
{¢,d} ¢ E(G). Our next reduction rule can be seen as a crown reduction rule that
uses a crown decomposition of J with crown A and head Ny (A); a similar rule has
been employed previously in [3, Reduction Rule 2].

Reduction Rule 2. If A C Cy is an inclusion-wise minimal set satisfying |A| >
|IN;s(A)|, then remove the vertices in D' N N;(A) from G.

Note that after the application of Reduction Rule 2, the vertices in A are implicitly
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PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS 13

removed from Cy and added to C” since all their non-neighbors in D’ (i.e. the vertices
in D' N N;(A)) are removed from the graph.

LEMMA 4.2. Reduction Rule 2 is safe and can be implemented in polynomial time.

Proof. Tt is clear that the rule can be implemented in polynomial-time. Towards
showing the safeness of the rule, it suffices to show that G has a coloring extending Ap
using only colors from @ if and only if so does G\ (D'NN;(A)). Since G\ (D'NN;(A))
is a subgraph of G, the forward direction of this statement is trivial. So assume that
G\ (D'NN;(A)) has a coloring A extending Ap using only colors from Q. Because the
set A is inclusion-minimal, we obtain from Proposition 2.1, that there is a (maximum)
matching, say M, between Nj(A) and A in J that saturates Nj(A). Moreover, it
follows from the definition of J that every vertex in A is adjacent to every vertex in
G apart from the vertices in N;(A). Therefore, the colors in A(A) can only reappear
in Dp N Nj(A). We can now use the matching M to reshuffle the colors in A in
such a way that the colors of vertices in A that are matched by M to a vertex in D’
appear exactly once in the graph; or in other words we reshuffle the colors in A such
that all colors that also appear in Dp N N;(A) are assigned to vertices in A that are
matched by M to vertices in Dp. That is, let A’ be the set of all vertices a in A with
Ma) € A(Dp N Nj(A)) such that a is matched by M to a vertex in D’. Similarly, let
Ap be the set of all vertices a in A with A(a) ¢ A(DpNN;(A)) such that a is matched
by M to a vertex in Dp. Note that |Ap| > |A’| and therefore there is a bijection
a: A" — Al from A’ to a subset A, of Ap. Now, let X' be the coloring obtained from
A by setting N (a) = A(«a(a)) for every a € A’, N(a) = M(a"1(a)) for every a € Alp,
and XN (a) = A(a) otherwise. Then, the color X (a) appears exactly once for every
a € A that is matched by M to a vertex in D’. Therefore, we can extend A into a
coloring A" for G by coloring the vertices in D’NN;(A) according to the matching M.
More formally, let Ap/n,(a) be the coloring for the vertices in D’ N N;(A) obtained
by setting Ap/an, (a)(v) = X (u) for every v € D' N N;(A), where {v,u} € M. Then,
we obtain A’ by setting: A’(v) = M(v) for every v € V(G) \ (D' N N;(4)) and
N'(v) = Apran, (a)(v) for every vertex v € D' N N (A). 0

Note that because of Proposition 2.1, we obtain that there is a set A C Cy with
|A| > |N;(A)] as long as |Cy| > |D|. Moreover, since Nj(A) N D’ # @ for every such
set A (due to the definition of C), we obtain that Reduction Rule 2 is applicable as
long as |Cn| > |D|. Hence after an exhaustive application of Reduction Rule 2, we
obtain that |Cy| < |D’| < k.

We now introduce our final two reduction rules, which allow us to reduce the size
of C".

Reduction Rule 3. Let v € V(C') be a pre-colored vertex with color Ap(v).
Then remove A\p* (Ap(v)), i.e., all vertices colored with the same color (Ap(v)) as v,
from G and Ap(v) from Q.

LEMMA 4.3. Reduction Rule 3 is safe and can be implemented in polynomial time.

Proof. Because v € V(C"), it holds that only vertices in Dp can have color Ap(v),
but these are already pre-colored. Hence in any coloring for G that extends Ap, the
vertices in Ap'(Ap(v)) are the only vertices that obtain color Ap(v), which implies
the safeness of the rule. |

Because of Reduction Rule 3, we can from now on assume that no vertex in C’
is pre-colored. Note that the only part of GG, whose size is not yet bounded by a
polynomial in the parameter k is C’. To reduce the size of C’, we need will make use
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of Proposition 2.2. Let P = Ap(Dp) and H be the bipartite graph with bi-partition
(C’, P) containing an edge between ¢’ € C’ and p € P if and only if ¢ is not adjacent
to a vertex pre-colored by p in G.

Reduction Rule 4. Let M be a maximum matching in H and let Cy; be the
endpoints of M in C'. Then remove all vertices in Cy; := C'\ Cp from G and
remove an arbitrary set of |Cy7| colors from Q\ Ap(X). (Recall that Ap : X — Q.)

In the following let C'y; and C3; be as defined in the above reduction rule for an
arbitrary maximum matching M of H. To show that the reduction rule is safe, we
need the following auxiliary lemma, which shows that if a coloring for G reuses colors
from P in C’, then those colors can be reused solely on the vertices in Cyy.

LEMMA 4.4. If there is a coloring A for G extending Ap using only colors in
Q, then there is a coloring X' for G extending Ap using only colors in Q such that
)\/(Cﬁ) NP = (Z)

Proof. Let Cp be the set of all vertices v in C’ with A(v) € P. If Cp N Cq7 =
(), then setting X equal to X satisfies the claim of the lemma. Hence assume that
CpNCyr # 0. Let N be the matching in H containing the edges {v, A(v)} for every
v € Cp; note that N is indeed a matching in H, because Cp is a clique in G. Because
of Proposition 2.2, there is a matching N’ in H[Cy; U P] such that N’ has exactly the
same endpoints in P as N. Let Cp/[N’] be the endpoints of N’ in Cj; and let A4 be
the coloring of the vertices in Cp/[IN'] corresponding to the matching N’ i.e., a vertex
v in Cps[N’] obtains the unique color p € P such that {v,p} € N’. Finally, let a be
an arbitrary bijection between the vertices in (V(IN) N C’) \ Cp[N'] and the vertices
in Cy[N']\ (V(N)NC"), which exists because |[N| = |N’|. We now obtain X from
A by setting N (v) = Aa(v) for every v € Cp[N'], N(v) = Ma(v)) for every vertex
ve (V(N)NC)\ Cy[N'], and N (v) = A(v) for every other vertex. To see that \
is a proper coloring note that A'(C”") = A(C’). Moreover, all the colors in A(C') \ P
are “universal colors” in the sense that exactly one vertex of GG obtains the color and
hence those colors can be freely moved around in C’. Finally, the matching N’ in H
ensures that the vertices in Cps[N’] can be colored using the colors from P. O

LEMMA 4.5. Reduction Rule 4 is safe and can be implemented in polynomial time.

Proof. Note first that the reduction can always be applied since if Q \ Ap(X)
contains less than |Cy;| colors, then the instance is a no-instance. It is clear that the
rule can be implemented in polynomial time using any polytime algorithm for finding
a maximum matching [29]. Moreover, if the reduced graph has a coloring extending
Ap using only the colors in @, then so does the original graph, since the vertices in
Oz can be colored with the colors removed from the original instance.

Hence, it remains to show that if G has a coloring, say A, extending A\p using
only colors in @, then G \ Cy7 has a coloring extending Ap that uses only colors in
Q' := Q\ Qy7, where Q7 is the set of |Cyz| colors from @ \ Ap(X) that have been
removed from Q.

Because of Lemma 4.4, we may assume that A\(C3;) N P = 0. Let B be the set of
all vertices v in G — Cy; with A(v) € Q7. If B = (), then X is a coloring extending Ap
using only colors from Q’. Hence assume that B # (). Let A be the set of all vertices
v in Cy7 with A(v) € Q'. Then A(A) N Ap(X) = 0, which implies that every color in
A(A) appears only in Cy; (and exactly once in Cy;). Moreover, [A(A)| > |A(B)|. Let
a be an arbitrary bijection between A(B) and an arbitrary subset of A(A) (of size |B|)
and let A’ be the coloring obtained from A by setting X' (v) = a(A(v)) for every v € B,
N (v) = a"t(A\(v)) for every v € A, and X (v) = A(v), otherwise. Then )\ restricted
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to G — Cy7 is a coloring for G — Cy extending Ap using only colors from @Q'. Note
that A’ is a proper coloring because the colors in A(A) are not in P and hence do not
appear anywhere else in G and moreover the colors in A(B) do not appear in A(Cy7).0

Note that after the application of Reduction Rule 4, it holds that |C'| = |Cy| < |P| <
|Dp| < |D| < k. Together with the facts that |D| < k, |Cn| < k, we obtain that the
reduced graph has at most 3k vertices.

THEOREM 4.6. PRE-COLORING EXTENSION WITH CLIQUE MODULATOR admits
a polynomial kernel with at most 3k vertices.

5. Polynomial kernel and Compression for (n — k)-REGULAR LisT CoOL-
ORING. We now show our polynomial kernel and compression for (n — k)-REGULAR
LisT COLORING, which is more intricate than the one for PRE-COLORING EXTEN-
SION WITH CLIQUE MODULATOR. Let (G, k, L) be an input of (n—k)-REGULAR LIST
COLORING. We begin by noting that we can assume that G has a clique-modulator
of size at most 2k.

LEMMA 5.1 ([3]). In polynomial-time either we can either solve (G,k,L) or
compute a clique-modulator for G of size at most 2k.

Henceforth, we let V(G) = C U D where G[C] is a clique and D is a clique
modulator, [D| < 2k. Let T' = (J, ey /() L(v). We note one further known reduction
rule for (n — k)-REGULAR Li1ST COLORING. Consider the bipartite graph Hg with
bi-partition (V(G),T) having an edge between v € V(G) and t € T if and only if
t € L(v).

Reduction Rule 5 ([3]). Let T’ be an inclusion-wise minimal subset of T such
that |Ng, (T")| < |T'|, then remove all vertices in Ny, (T") from G.

Note that after an exhaustive application of Reduction Rule 5, it holds that |7 <
|V (G)] since otherwise Proposition 2.1 would ensure the applicability of the reduction
rule. Hence in the following we will assume that |T'] < |[V(G)|.

With this preamble handled, let us proceed with the kernelization. We are not
able to produce a direct ‘crown reduction rule’ for LisST COLORING, as for PRE-
COLORING EXTENSION (e.g., we do not know of a useful generalization of Reduction
Rule 2). Instead, we need to study more closely which list colorings of G[D] extend
to list colorings of G. For this purpose, let H = Hg — D be the bipartite graph
with bi-partition (C,T) having an edge {c¢,t} with ¢ € C and ¢ € T if and only if
t € L(c). Say that a partial list coloring Ag: A — T is extensible if it can be extended
to a proper list coloring A of G. If D C A, then a sufficient condition for this is that
H—(AUXo(A)) admits a matching saturating C'\ A. (This is not a necessary condition,
since some colors used in A\g(D) could be reused in A(C'\ A), but this investigation
will point in the right direction.) By Proposition 2.1, this is characterized by Hall
sets in H — (AU Ao(A)).

A Hall set S C U in a bipartite graph G’ with bi-partition (U, W) is trivial if
N(S) = W. We start by noting that if a color occurs in sufficiently many vertex
lists in H, then it behaves uniformly with respect to extensible partial colorings Ag
as above.

LEMMA 5.2. Let Ag: A — T be a partial list coloring where |ANC| < p and let
t € T be a color that occurs in at least k + p lists in C. Then t is not contained in
any non-trivial Hall set of colors in H — (AU A\g(A)).

Proof. Let H = H—(AUMXo(A)). Consider any Hall set of colors S C (T'\ A\g(A))
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660
661
662
663
664
665
666
667
668
669

670

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

16 G. GUTIN, D. MAJUMDAR, S. ORDYNIAK, AND M. WAHLSTROM

and any vertex v € C'\ (AU Ng(S)) (which exists assuming S is non-trivial). Then
S C T\ L(v), hence |S] < k, and by assumption |[Ng/(S)| < |S|. But for every t' € S,
we have Ny (') C Ny (S)U(ANC), hence ¢’ occurs in at most | Ny (S)U(ANC)| < k+p
vertex lists in C. Thus ¢ ¢ S. 0

In the following, we will assume that n > 11k.> This is safe, since otherwise

(by Reduction Rule 5) we already have a kernel with a linear number of vertices and
colors. We say that a color t € T is rare if it occurs in at most 6k lists of vertices in

C.
LEMMA 5.3. If n > 11k, then there are at most 3k rare colors.

Proof. Let S = {t € T | dy(t) < 6k}. For every t € S, there are |C| — 6k “non-
occurrences” (i.e., vertices v € C with t ¢ L(v)), and there are |C|k non-occurrences
in total. Thus

lel 6k

S|-(|C| —6k) < |Clk S|I<——k=(14 ——+
SI-(C1 =60 < |k = 18] < 5k = (4 o

)k,

where the bound is monotonically decreasing in |C| and maximized (under the as-
sumption that n > 11k and hence |C| > 9k) for |C| = 9k yielding |S| < 3k. ad

Let Tr C T be the set of rare colors. Define a new auxiliary bipartite graph H*
with bi-partition (C, D U Tg) having an edge between a vertex ¢ € C' and a vertex
d € D if {¢,d} ¢ E(G) and an edge between a vertex ¢ € C' and a vertex t € Tg
if t € L(c). Let X be a minimum vertex cover of H*. Refer to the colors Tr \ X
as constrained rare colors. Note that constrained rare colors only occur on lists of
verticesin DU(CNX). Let T =T\ (Tg\ X), V' = (D\ X)U (CNX), and set
q=|T"| = |C\ X|. Before we continue, we want to provide some useful observations
about the sizes of the considered sets and numbers.

Observation 1. It holds that:
e |X| < |D|+|Tx| < 5k,
o V' <|D| +|X| < Tk,
o g <|T|—|C|+|CNX|<|D|+|X| < Tk; this holds because |T| < |V| =
||+ [D].

LEMMA 5.4. Assume n > 11k. Then G has a list coloring if and only if there is
a partial list coloring Ao: V' — T that uses at most ¢ = |T"| — |C'\ X| colors from T".

Proof. The number of colors usable in C'\ X is |T'| — p where p is the number
counted above (since constrained rare colors cannot be used in C'\ X even if they
are unused in Ag). Thus it is a requirement that |7'| —p > |C' \ X|. That is,
p < |T'| —|C\ X| = g. Thus necessity is clear. We show sufficiency as well. That is,
let Ag be a partial list coloring with scope V' = (CNX)U (D \ X) which uses at most
q colors of T". We modify and extend A\ to a list coloring of G.

First let Hp be the bipartite graph with bi-partition (V,Tg \ X) and let My be
a matching saturating T \ X; note that this exists by reduction rule 5. We modify
Ao to a coloring Aj so that every constrained rare color is used by A{, by iterating
over every color t € Tg \ X; for every ¢, if ¢ is not yet used by Ay, then let vt € My
and update A, with A\{(v) = t. Note that the scope of A after this modification is
contained in (C'N X)U D. Next, let M be a maximum matching in H*. We use M

2The constants 11k and 6k in this paragraph are chosen to make the arguments work smoothly.
A smaller kernel is possible with a more careful analysis and further reduction rules.
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to further extend A{ in stages to a partial list coloring A which colors all of D and
uses all rare colors. In phase 1, for every color t € Tr N X which is not already used,
let vt € M be the edge covering ¢t and assign A(v) = t. Note that M matches every
vertex of X in H* with a vertex not in X, thus the edge vt exists and v has not yet
been assigned in A. Hence, at every step we maintain a partial list coloring, and at
the end of the phase all rare colors have been assigned. Finally, as phase 2, for every
vertex v € D N X not yet assigned, let wv € M where u € C; necessarily u € C'\ X
and u is as of yet unassigned in A\. The number of colors assigned in A thus far is at
most | X |+ |D| < |Tr|+2|D| < 7k, whereas |L(u) N L(v)| > n — 2k > 9k, hence there
always exists an unused shared color that can be mapped to A(u) = A(v). Let A be
the resulting partial list coloring. We claim that A can be extended to a list coloring
of G.

Let A be the scope of A and let H' = H — (AN A(A)). Note that ANC C V(M),
hence |[ANC| < |D|+|Tr| < 5k. Thus by Lemma 5.2, no non-trivial Hall set in H' can
contain a rare color. However, all rare colors are already used in A. Thus H’ contains
no non-trivial Hall set of colors. Thus the only possibility that A is not extensible is
that H' has a trivial Hall set, i.e., |T'\ A(4)| < |C'\ A|]. However, every modification
after A, added one vertex to A and one color to A(A), keeping the balance between
the two sides. Thus already the partial coloring A, leaves behind a trivial Hall set.
However, \{, colors precisely C' N X in C and leaves at least |T”| — g colors remaining,.
By design this is at least |C'\ X|, yielding a contradiction. Thus we find that H’
contains no Hall set, and A is a list coloring of G. ]

Before we give our compression and kernelization results, we need the following aux-
iliary lemma.

LEMMA 5.5. T” contains at least |T"|—|V'|k colors that are universal to all vertices
in V'

Proof. The list of every vertex v € V' misses at most k colors from 7T”. Hence all
but at most |V’|k colors in T” are universal to all vertices in V. O

For clarity, let us define the output problem of our compression explicitly.

BUDGET-CONSTRAINED LIST COLORING

Input: A graph G, a set T of colors, a list L(v) C T for every v € V(G), and
a pair (7", q) where T C T and ¢ € N.

Problem: Is there a proper list coloring for G that uses at most g distinct colors
from T'?

THEOREM 5.6. (n—k)-REGULAR LI1ST COLORING admits a compression into an
instance of BUDGET-CONSTRAINED LIST COLORING with at most 11k vertices and
O(k?) colors, encodable in O(k?logk) bits.

Proof. It |[V(G)| < 11k, then G itself can be used as the output (with a dummy
budget constraint). Otherwise, all the bounds above apply and Lemma 5.4 shows
that the existence of a list coloring in G is equivalent to the existence of a list coloring
in G[V'] that uses at most ¢ colors from T”. Since |V’| < 7k, it only remains to
reduce the number of colors in Tp UT". Clearly, if |T7| < |V'|k + ¢, then |[Tp UT"| <
3k+ (7k)k € O(k?) and there is nothing left to show. So suppose that |T7| > |V'|k+q.
Then, it follows from Lemma 5.5 that T contains at least ¢ colors that are universal
to the vertices in V/ and we obtain an equivalent instance by removing all but exactly
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g universal colors from 7", which leaves us with an instance with at most |Tg| + ¢ <
3k + 7k? € O(k?) colors, as required. Finally, to describe the output concisely, note
that G[V’] can be trivially described in O(k?) bits, and the lists L(v) can be described
by enumerating T \ L(v) for every vertex v, which is k colors per vertex, each color
identifiable by O(log k) bits. 0

Note that the compression is asymptotically essentially optimal, since even the
basic 4-COLORING problem does not allow a compression in O(n?~¢) bits for any
€ > 0 unless the polynomial hierarchy collapses [24]. For completeness, we also give
a proper kernel, which can be obtained in a similar manner to the compression given
in Theorem 5.6.

THEOREM 5.7. (n — k)-REGULAR LisT COLORING admits a kernel with O(k?)
vertices and colors.

Proof. We distinguish two cases depending on whether or not |T7| < |V'|k+q. If
|T'| < |V'|k +q, then |T| < |Tr|+ |T'| < 3k + |V'|k + q < 3k + (Tk)(k + 1) € O(k?).
Since a list coloring requires at least one distinct color for every vertex in C, it holds
that |C| < |T| < 3k+(7k)(k+1) and hence |V (G)| < (3+7k)k+2k € O(k?), implying
the desired kernel.

If on the other hand, |T”| > |V’'|k + ¢, then, because of Lemma 5.5 it holds that
T’ contains a set U of exactly g colors that are universal to the vertices in V’. Recall
that Lemma 5.4 shows that the existence of a list coloring in G is equivalent to the
existence of a list coloring in G[V'] that uses at most ¢ = |T”|—|C'\ X| colors from T".
It follows that the graph G[V’] has a list coloring using only colors in (T \ X) UU
if and only if G has a list coloring. Hence, it only remains to restore the regularity
of the instance. We achieve this as follows. First we add a set Ty of [(Tr \ X) U U]
novel colors. We then add these colors (arbitrarily) to the color lists of the vertices
in V' such that the size of every list (for any vertex in V') is |(Tg \ X) U U|. This
clearly already makes the instance regular, however, now we also need to ensure that
no vertex in V' can be colored with any of the new colors in T. To achieve this
we add a set Cy of [Tn| novel vertices to G[V’], which we connect to every vertex
in (CNX)UCy and whose lists all contain all the new colors in Ty. It is clear
that the constructed instance is equivalent to the original instance since all the new
colors in Ty are required to color the new vertices in Cy and hence no new color
can be used to color a vertex in V’/. Moreover, D is still a clique modulator and
the number &’ of missing colors (in each list of the constructed instance) is equal to
|D| 4 |C N X| <2k + 5k because the instance is (n — |D| — |C' N X|)-regular. Finally,
the instance has at most |V UCy| < Tk + 3k + 7k = 17k € O(k) vertices and at most
2(|Tr| +|U]) < 2(3k + Tk) = 20k € O(k) colors, as required. 0

6. Saving k colors: Pre-coloring and List Coloring Variants. In this
section, we consider natural pre-coloring and list coloring variants of the “saving k
colors” problem, defined as:

(n — k)-COLORING parameterized by k

Input: A graph G with n vertices and an integer k.
Problem: Does G have a proper coloring using at most n — k colors?

This problem is known to be FPT (it even allows for a linear kernel) [12], when
parameterized by k. Notably the problem provided the main motivation for the
introduction of (n — k)-REGULAR L1sT COLORING in [3, 2].
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We consider the following (pre-coloring and list coloring) extensions of (n — k)-
COLORING.

(n — |Q|)-PRE-COLORING EXTENSION parameterized by n — |Q)|

Input: A graph G with n vertices and a pre-coloring Ap : X — @ for X C
V(G) where @ is a set of colors.

Problem: Can Ap be extended to a proper coloring of G using only colors from

Q?

LisT COLORING WITH n — k COLORS parameterized by k

Input: A graph G on n vertices with a list L(v) of colors for every v € V(G)
and an integer k.

Problem: Is there a proper list coloring of G using at most n — k colors?

Note that the following variant seems natural, however, is trivially NP-complete
even when the parameter k is equal to 0, since the problem with an empty pre-coloring
then corresponds to the problem whether G can be colored by at most |@Q| colors.

(|Q] — k)-PRE-COLORING EXTENSION parameterized by k

Input: A graph G with n vertices, a pre-coloring Ap : X — @ for X C V(G)
where @ is a set of colors, and an integer k.

Problem: Can Ap be extended to a proper coloring of G using at most |Q| — k
colors from Q7

Interestingly, we show that (n — |Q|)-PRE-COLORING EXTENSION is FPT and
even allows a linear kernel. Thus, we generalize the above-mentioned result of Chor
et al. [12] (set @ = [n — k] and X = 0). However, LiST COLORING WITH n — k
COLORS is easily seen to be NP-hard (even for k = 0) using a trivial reduction from
3-Coloring.

THEOREM 6.1. (n—|Q|)-PRE-COLORING EXTENSION (parameterized by n—|Q|)
has a kernel with at most 6(n — |Q|) vertices and is hence fixed-parameter tractable.

Proof. Let G’ be the graph obtained from G after applying the following reduction
rules:

Reduction Rule 6. If u and v are two distinct vertices in G \ X such that
Ap(Ng(u)) UAp(Ng(v)) = Q, then we add an edge between u and v in G.

This rule is safe because u and v cannot be colored with the same color.

Reduction Rule 7. Ifu is a vertex in G\ X that is adjacent to a vertexv € X,
then we can safely add all edges between u and every vertex in A\p' (Ap(v)).

This rule is safe because u cannot be colored by Ap(v).

Reduction Rule 8. Ifu and v are two distinct vertices in X such that Ap(u) #
Ap(v), then we can again safely add an edge between u and v.

This rule is safe because v and v cannot be colored with the same color.

Let M be a maximal matching in the complement of G’. Note that if |[M]| <
n — |Q|, then V(M) is a clique modulator for G’ of size at most 2(n — |Q|) and we
obtain a kernel with at most 6(n —|Q|) vertices using Theorem 4.6. Thus assume that
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|M| > n —|Q|. In this case we can safe |[M| > n — |Q| colors by giving the endpoints
of every edge in M the same color. Namely, let {u,v} € M, then:
e if u,v ¢ X, then it follows from Reduction Rule 6 that there is a color ¢ € @
that can be given to both vertices,
o if u ¢ X and v € X, then it follows from Reduction Rule 7 that we can color
u with color Ap(v),
e if u,v € X, then by Reduction Rule 8 we have that Ap(u) = Ap(v).
Note that after coloring the edges in M with the same color, removing V(M) from
G’, and removing the colors used for the edges in M from @, the number of colors in
the remaining instance is equal to the number of vertices in the remaining instance,
implying that the remaining instance can be properly colored. |

7. Conclusions. We have shown several results regarding the parameterized
complexity of LIST COLORING and PRE-COLORING EXTENSION problems. We
showed that LisST COLORING, and hence also PRE-COLORING EXTENSION, parame-
terized by the size of a clique modulator admits a randomized FPT algorithm with a
running time of ©*(2%), matching the best known running time of the basic CHRO-
MATIC NUMBER problem parameterized by the number of vertices. This answers
open questions of Golovach et al. [23]. Note that also that L1sT COLORING is already
W][1]-hard parameterized by vertex cover [23], i.e., modulator to an independent set,
which excludes even quite simple generalizations of our result to, e.g., a modulator
to a disjoint union of cliques. Additionally, we showed that PRE-COLORING EXTEN-
SION under the same parameter admits a linear vertex kernel with at most 3k vertices
and that (n — k)-REGULAR LisT COLORING admits a compression into a problem
we call BUDGET-CONSTRAINED LIsT COLORING, into an instance with at most 11k
vertices, encodable in O(k?logk) bits. The latter also admits a proper kernel with
O(k?) vertices and colors. This answers an open problem of Banik et al. [3].

One obvious open question is whether it is possible to derandomize our algorithm
for LisT COLORING. This seems, however, very challenging as it would require a
derandomization of Lemma 2.4, which has been an open problem for some time. It
might, however, be possible (and potentially more promising) to consider a different
approach than ours. Another open question is to optimize the bound 11k on the
number of vertices in the (n — k)-REGULAR LIST COLORING compression, and/or
show a proper kernel with O(k) vertices. Finally, another set of questions is raised
by Escoffier [19], who studied the MAX COLORING problem from a “saving colors”
perspective. In addition to the questions explicitly raised by Escoffier, it is natural
to ask whether his problems SAVING WEIGHT and SAVING COLOR WEIGHTS admit
FPT algorithms with a running time of 2°®*) and /or polynomial kernels.
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