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DIOPHANTINE APPROXIMATION ON CURVES AND THE

DISTRIBUTION OF RATIONAL POINTS: CONTRIBUTIONS

TO THE DIVERGENCE THEORY

V. BERESNEVICH, R.C. VAUGHAN, S. VELANI, AND E. ZORIN

Dedicated to Basil Bernik on his 71st birthday

Abstract. In this paper we develop an explicit method for studying the dis-
tribution of rational points near manifolds. As a consequence we obtain op-
timal lower bounds on the number of rational points of bounded height lying
at a given distance from an arbitrary non-degenerate curve in Rn. This gen-
eralises previous results for analytic non-degenerate curves. Furthermore, the
main results are proved in the inhomogeneous setting. For n ≥ 3, the inho-
mogeneous aspect is new even under the additional assumption of analyticity.
Applications of the main distribution theorem also include the inhomogeneous
Khintchine-Jarńık type theorem for divergence for arbitrary non-degenerate
curves in Rn.

Key words and phrases: simultaneous Diophantine approximation on manifolds, metric the-
ory, rational points near manifolds, Khintchine theorem, Jarńık theorem, Hausdorff dimension,
ubiquitous systems
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1. Introduction and statement of results

In this paper we establish an optimal statement concerning the distribution of
rational points lying close to an arbitrary non-degenerate curve in Rn. As a con-
sequence we obtain a sharp lower bound for the number of such rational points.
Motivated by applications to Diophantine approximation on non-degenerate man-
ifolds, the corresponding results were obtained for planar curves in [5, 9, 11] and
under the extra assumption of analyticity for submanifolds of Rn in [2]. Our
motivation is in line with these previous works and we shall describe the appli-
cations to Diophantine approximation in §1.2 below. Removing the analyticity
assumption within the statements of [2] is non-trivial, requiring new ideas and
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techniques – see Remark 1.2 below. In this paper, we complete this task in full
in the case the manifold is a curve.

Recall that a real connected analytic submanifold of Rn is non-degenerate if
and only if it is not contained in any hyperplane of Rn [17, p. 341]. The main
covering result in [2], implies that for any analytic non-degenerate submanifold
M ⊂ Rn of dimension d and codimension m = n− d:

(1.1) #
{
p/q ∈ Qn : 1 ≤ q ≤ Q, dist(p/q,M) ≤

ψ

Q

}
≥ C1ψ

mQd+1

for all sufficiently large Q and all real ψ satisfying

(1.2) C2Q
−1/m < ψ < 1 .

Here the symbol # stands for ‘cardinality’ and C1 and C2 are positive constants
depending only on the manifold M and the dimension n of the space. Further-
more, it is shown [2, Theorem 7.1] that for analytic non-degenerate curves (1.2)
can be relaxed to

(1.3) C2Q
− 3

2n−1 < ψ < 1 .

It is believed that the above results for analytic non-degenerate manifolds should
hold for arbitrary non-degenerate manifolds. Indeed, this is the case for planar
curves, see [5, 11]. In this paper we obtain complete results for non-degenerate
curves in arbitrary dimensions. Moreover, we obtain an inhomogeneous extension
of (1.1), which to date is only known in the case n = 2, see [9]. It is worth
mentioning that the methods developed in this paper are up to a point applicable
to arbitrary non-degenerate manifolds and we isolate “what needs to be done” to
obtain the desired result beyond curves – see Remark 1.2 below.

Before we proceed with the statement of results, let us recall the definition of
non-degeneracy in the non-analytic case. Firstly, a map f : U → Rn defined on an
open set U ⊂ Rd is called l-non–degenerate at x ∈ U if f is l times continuously
differentiable on some sufficiently small ball centred at x and the partial deriva-
tives of f at x of orders up to l span Rn. The map f is called non–degenerate at
x if it is l-non–degenerate at x for some l; in turn a manifold M ⊂ Rn is said
to be non–degenerate at y ∈ M if there is a neighbourhood of y that can be
parameterised by a map f non-degenerate at f−1(y). In general, non-degenerate
manifolds are smooth sub-manifolds of Rn which are sufficiently curved so as to
deviate from any hyperplane at a polynomial rate, see [1, Lemma 1(c)].

1.1. Results for rational points near manifolds. Throughout, |X| is the
Lebesgue measure of a measurable subset X of R, ‖ · ‖2 is the Euclidean norm
and ‖ · ‖∞ is the supremum norm. In what follows, unless otherwise stated, all
balls will be considered with respect to the supremum norm. Let d,m ∈ N,
n = d +m and f = (f1, . . . , fm) be defined and continuously differentiable on a
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given fixed ball U in Rd. The map f naturally gives rise to the d-dimensional
manifold

(1.4) Mf := {(x,f(x)) ∈ Rn : x = (x1, . . . , xd) ∈ U}

immersed in Rn. By the Implicit Function Theorem, any smooth submanifold
M of Rn can be (at least locally) defined in this manner; i.e. with a Monge
parametrisation. Hence, in what follows, without loss of generality, we will work
with a manifold M as in (1.4).

Given 0 < ψ < 1, Q > 1, a ball B ⊂ U and θ = (λ,γ) ∈ Rd × Rm, consider
the set
(1.5)

R(Q,ψ,B,θ) :=

{
(q, a,b) ∈ N× Zd × Zm :

a+λ
q

∈ B , 1
2
Q < q ≤ Q ,

‖qf
(
a+λ
q

)
− γ − b‖∞ < ψ

}
.

Also we define

(1.6) ∆(Q,ψ,B,θ, ρ) :=
⋃

(q,a,b)∈R(Q,ψ,B,θ)

B(a+λ
q
, ρ),

where B(x, ρ) denotes the ball in Rd centred at x and of radius ρ. Clearly,
elements of R(Q,ψ,B,θ) gives rise to shifted rational points

(1.7)
(
a1+λ1
q

, . . . , ad+λd
q

, b1+γ1
q
, . . . , bm+γm

q

)
∈ Rn

with denominators q in [1
2
Q,Q] that lie within the 2ψ/Q-neighbourhood of

f(B) ⊂ Mf , where f(x) := (x,f(x)). Thus, an appropriate lower bound on
the cardinality of R(Q,ψ,B,θ) would yield (1.1).

The following covering result represents our main result. As we shall see, it
immediately yields a sharp lower bound for the cardinality of R(Q,ψ,B,θ) in
the case the manifold Mf ⊂ Rn is a non-degenerate curve; that is to say d = 1
and m = n−1 in the above general discussion. It also enables us to establish the
divergent part of the inhomogeneous Khintchine-Jarńık type theorem for non-
degenerate curves - this will be the subject of §1.2. In fact, as described in
Remark 1.7 below, it leads to divergent measure theoretic results beyond curves.

Theorem 1.1. Let θ ∈ Rn, f = (f1, . . . , fn−1) be a map of one real variable

such that x 7→ f(x) := (x,f(x)) is non-degenerate at some point x0 ∈ R. Then,

there exists a sufficiently small interval U centred at x0 and constants C0, K0 > 0
(depending on n, f and x0 only) such that for any subinterval B ⊂ U there is a

constant QB, depending on n, f and B, only such that for any integer Q ≥ QB

and any ψ satisfying

(1.8) K0Q
− 3

2n−1 ≤ ψ < 1

we have

(1.9) |∆(Q,ψ,B,θ, ρ)| ≥ 1
2
|B|
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where

(1.10) ρ =
C0

ψn−1Q2
.

Trivially,
∣∣∆(Q,ψ,B,θ, ρ)

∣∣ ≤
∑

(q,a,b)∈R(Q,ψ,B,θ)

∣∣B(a+λ
q
, ρ)
∣∣ ≤ #R(Q,ψ,B,θ) 2ρ

and so the desired counting result is an immediate consequence of the theorem.

Corollary 1.2. Let θ, U , f , x0, B, C0, ψ and Q be as in Theorem 1.1. Then

(1.11) #R(Q,ψ,B,θ) ≥
|B|

4C0

ψn−1Q2 .

Remark 1.1. The constant C0 appearing in the above statements will be defined
within (2.22) below and can be expressed explicitly in terms of certain parameters
associated with f and x0.

Remark 1.2. Lower and matching upper bounds for rational points near non-
degenerate planar curves can be found in [5, 9, 11, 13, 14, 15]. In the homogeneous
case (i.e. when θ = 0), the lower bound given by (1.11) is established in [2] for
analytic non-degenerate curves embedded in Rn. A key outcome of this paper
is thus the removal of the analytic assumption, which is done upon introducing
a new technique for detecting rational points near manifolds. This technique
enables us to perform explicit analysis of the two conditions within the so-call
quantitative non-divergence estimate of Kleinbock & Margulis (see Theorem KM
in Section 3) that underpins the proof of our main result; namely Theorem 1.1.
Note that condition (i) within Theorem KM comes for free if the non-degenerate
manifold is analytic. This is the setup in [2] and thus no attempt is made to
analyse it. Establishing condition (i) for non-degenerate manifolds represents a
significant problem, which is addressed in this paper for curves. Indeed, it is
possible to verify condition (ii) within Theorem KM for arbitrary non-degenerate
manifolds and thus establishing condition (i) is the only barrier to proving our
main results beyond curves.

1.2. Simultaneous Diophantine approximation on manifolds. Given a
function Ψ : (0,+∞) → (0,+∞) and a point θ = (θ1, . . . , θn) ∈ Rn, let Sn(Ψ,θ)
denote the set of y = (y1, . . . , yn) ∈ Rn for which there exists infinitely many
(q,p) = (q, p1, . . . , pn) ∈ N× Zn such that

max
1≤i≤n

|qyi − θi − pi| < Ψ(q) .

If θ = 0 then the corresponding set Sn(Ψ) := Sn(Ψ,0) is the usual homogeneous
set of simultaneously Ψ-approximable points in Rn. In the case Ψ is Ψτ : r → r−τ
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with τ > 0, let us write Sn(τ,θ) for Sn(Ψ,θ) and Sn(τ) for Sn(τ,0). Recall that,
by Dirichlet’s theorem, Sn(τ) = Rn for τ ≤ 1/n.

As an application of our main result (Theorem 1.1) we have the following state-
ment concerning the ‘size’ of the set of simultaneously Ψ-approximable points
restricted to lie on a curve in Rn.

Theorem 1.3. Let θ ∈ Rn and Ψ : (0,+∞) → (0,+∞) be any monotonic

function such that qΨ(q)(2n−1)/3 → ∞ as q → ∞. Let M be any non-degenerate

curve in Rn. Then for any s > 0 we have that

(1.12) Hs
(
Sn(Ψ,θ) ∩M

)
= Hs(M) when

∞∑

q=1

qn
(

Ψ(q)
q

)s+n−1

= ∞ .

Furthermore, on letting

τ(Ψ) := lim inf
q→∞

− log Ψ(q)

log q

we have that

(1.13) dim
(
Sn(Ψ,θ) ∩M

)
≥ min

{
1,

n+ 1

τ(Ψ) + 1
− n+ 1

}
.

Remark 1.3. In the case s < 1 we have that Hs(M) = ∞ and thus Theorem 1.3
represents an analogue of Jarńık’s theorem [18]. When s = 1, Theorem 1.3
represent an analogue of Khintchine’s theorem [19] for curves.

Remark 1.4. Note that for s > 1 we have that Hs(X) = 0 for any X ⊂ R and
(1.12) is trivial. Furthermore, in view of the assumption qΨ(q)(2n−1)/3 → ∞ as
q → ∞ we have that the divergence condition in (1.12) always holds for s ≤ 1

2
.

Thus, for s ≤ 1
2
we unconditionally have that Hs

(
Sn(Ψ,θ)∩M

)
= Hs(M) = ∞

for any approximating function Ψ in question. Thus the most ‘interesting’ case
of Theorem 1.3 is that of 1

2
< s ≤ 1.

Remark 1.5. Note that the condition qΨ(q)(2n−1)/3 → ∞ as q → ∞ imposed on
Ψ implies that τ(Ψ) ≤ 3/(2n− 1) and therefore the lower bound given by (1.13)
is never less than 1

2
.

Remark 1.6. Theorem 1.3 was previously proved for planar curves, see [5, The-
orem 3], [9, Theorem 1] and [11, Theorem 4]. For n > 2, Theorem 1.3 was
previously established in the homogeneous case for non-degenerate curves that
are additionally assumed to be analytic [2, Theorem 7.2]. Most recently, it was
proved in [6], that if the stronger inequality 1/n ≤ τ(Ψ) < 1/(n − 1) holds and
the upper and lower orders of 1/Ψ coincide; i.e.

lim sup
q→∞

− log Ψ(q)

log q
= lim inf

q→∞

− log Ψ(q)

log q
,
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then the lower bound dimension statement (1.13) is valid in the homogeneous
case for arbitrary C2 curves (including degenerate ones) in Rn. To date, the
complementary convergence theory for curves is only known in full when n = 2 –
see [24]. For submanifolds of Rn of dimension ≥ 2, see [10, 16, 23] and references
within for various convergence results and upper bound statements for Hausdorff
dimension. For a general background to previous results and what one expects
to be able to prove, see [8, §1.6].

Remark 1.7. Theorem 1.3 can be extended to sufficiently smooth non-degenerate
submanifolds of Rn of any dimension. This would involve fibering the manifold
into non-degenerate curves using suitable techniques such as those developed by
Pyartly or a suitable generalisation of Sprindžuk’s Fibering Lemma [3, §2.1] to
non-analytic manifolds.

In short, Theorem 1.1 establishes a ubiquitous system of shifted rational points
(1.7) near Mf . Ubiquity [4] is a well developed mechanism for proving diver-
gence statements such as Theorem 1.3 above. In particular, the deduction of
Theorem 1.3 from Theorem 1.1 follows the blue print presented in [5, §3] which
develops an appropriate framework of ubiquitous systems close to a curve in Rn.
Indeed, the homogenous planar curves argument in fully presented in [5, §7].
The necessary modifications (for proving Theorem 1.3 from Theorem 1.1) are
relatively obvious and essentially account for the shift in the numerators of the
rational points to reflect the inhomogeneous nature of the problem under con-
sideration. However, for the sake of completeness, we provide the details of the
proof of Theorem 1.3 in the appendix.

Remark 1.8. Note that the s = 1 case of Theorem 1.3 cannot imply the s < 1 case
via the Mass Transference Principle [7] since the approximating shifted rational
points do not necessarily lie on the manifolds. Thus passing from the s = 1
to the s < 1 case requires sieving out certain shifted rational points and this is
not a built in feature of the Mass Transference Principle. Having said that we
should note that the Mass Transference Principle can be used instead of ubiquity
to establish the s < 1 case of Theorem 1.3 in a similar way as it is used in [6]
to obtain a dimension result. However, this would first require establishing an
appropriate Khintchine type theorem replacing Theorem 4 in [6] and this would
still require exploiting the ubiquity framework as in this paper.

2. Detecting rational points near manifolds

In this section we will not make any assumption concerning the dimension d
of M. Recall, that m := n− d is the co-dimension of M.
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Without loss of generality, we assume that M is given by its Monge parame-
terisation (1.4) and that there exists a constant M > 0 such that

(2.1) max
1≤k≤m

max
1≤i,j≤d

sup
x∈U

∣∣∣∣
∂2fk(x)

∂xi∂xj

∣∣∣∣ ≤M .

With this in mind, define the following m auxiliary functions of x = (x1, . . . , xd) :

(2.2) gj := fj −
d∑

i=1

xi
∂fj
∂xi

(1 ≤ j ≤ m)

and the following (n+ 1)× (n+ 1) matrix

(2.3) G = G(x) :=




g1
∂f1
∂x1

. . .
∂f1
∂xd

−1 0 . . . 0

...
...

. . .
...

...
. . .

...

gm
∂fm
∂x1

. . .
∂fm
∂xd

0 0 . . . −1

x1 −1 . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

...

xd 0 . . . −1 0 0 . . . 0

1 0 . . . 0 0 0 . . . 0




.

Next, given positive c,Q, ψ, let

(2.4) g = g(c,Q, ψ) := diag
{
ψ, . . . , ψ︸ ︷︷ ︸

m

, (ψmQ)−1/d, . . . , (ψmQ)−1/d

︸ ︷︷ ︸
d

, cQ
}

be a diagonal matrix. Finally, define the set

(2.5) G(c,Q, ψ) :=
{
x ∈ U : δ

(
g−1G(x)Zn+1

)
≥ 1
}
,

where for a given lattice Λ ⊂ Rn+1

(2.6) δ
(
Λ
)
:= inf

v∈Λ\{0}
‖v‖∞ .

Given a set S ⊂ Rd and a real number ρ > 0, Sρ will denote its ‘ρ-interior’; that
is the set of x ∈ S such that B(x, ρ) ⊂ S.

Lemma 2.1. Let Q,ψ > 0 be given and satisfy the following inequality

(2.7) ψ ≥ Q− d+2

2m+d .
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Let U be a ball in Rd and let f = (f1, . . . , fm) : U → Rm be a C2 map such that

(2.1) is satisfied for some M > 0. Let c ∈ (0, 1], θ := (λ,γ) ∈ Rd × Rm and

(2.8) ρ :=
1

2c
(ψmQd+1)−1/d .

Then, for any x = (x1, . . . , xd) ∈ G(c,Q, ψ) ∩ Uρ there exists an integer point

(q, a1, . . . , ad, b1, . . . , bm) ∈ Zn+1 such that

2(n+ 1)Q < q < 4(n+ 1)Q,(2.9)

|qxi − ai − λi| <
n+ 1

c
(ψmQ)−1/d (1 ≤ i ≤ d),(2.10)

and ∣∣∣∣qfj
(
a1 + λ1

q
, . . . ,

ad + λd
q

)
− bj − γj

∣∣∣∣(2.11)

<

(
1 +

Md2

2c

)
n+ 1

c
ψ (1 ≤ j ≤ m).

Remark 2.1. The fact that x is restricted to lie in Uρ means that B(x, ρ) ⊂ U and

this ensures that the shifted rational point
(
a1+λ1
q

, . . . , ad+λd
q

)
lies in U . Indeed,

once (2.9) and (2.10) are met, the associated shifted rational point lies in B(x, ρ)
and hence in U . It is not difficult to see from (2.7) that ρ → 0 as Q → ∞
uniformly in ψ and thus considering points x lying in Uρ rather than U is not
particularly restrictive. The homogeneous case of Lemma 2.1 can be viewed as an
explicit generalisation of [2, Theprem 4.5]. It is this explicit nature of Lemma 2.1
that is crucial is removing the analyticity requirement from the results of [2].
Note that the explicit form of the matrix G was introduced in [6, Therorem 4],
although its use was restricted to the homogeneous setup and to establish a
dimension result only.

Proof. Fix any x ∈ G(c,Q, ψ) ∩ Uρ and consider the lattice

Λ := g−1G(x)Zn+1 .

Let µ1, . . . , µn+1 be the successive Minkowski minima of Λ with respect to the
body

B := [−1, 1]n+1.

By definition, µi is the infimum of all x > 0 such that rank(Λ ∩ xB) ≥ i, where
xB := [−x, x]n+1. In particular, we have that µ1 ≤ . . . ≤ µn+1. By Minkowski’s
theorem on successive minima, we have that

2n+1

(n+ 1)!
≤

Vol(B)

covol(Λ)

n+1∏

i=1

µi ≤ 2n+1 .
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Observe, on using (2.3) and (2.4), that the covolume of Λ is c−1 and that the
volume of B is 2n+1. Hence

c

n+1∏

i=1

µi ≤ 1 .

Further, by the assumption that x ∈ G(c,Q, ψ), we have that µ1 ≥ 1. This
follows from (2.5). Hence,

µn+1 ≤ c−1

n∏

i=1

µ−1
i ≤ c−1 .

Therefore there exists a basis of Λ, say v1, . . . ,vn+1, lying in c−1B, that is

(2.12) ‖vi‖∞ ≤ c−1 (1 ≤ i ≤ n+ 1).

Let

ω := (ω0, ω1, . . . , ωn) ∈ Rn+1 ,

where

ω0 := 3(n+ 1)Q ,

(2.13) ωi := λi + ω0xi (1 ≤ i ≤ d)

and

(2.14) ωd+j := γj + ω0fj(x) (1 ≤ j ≤ m) .

Since v1, . . . ,vn+1 are linearly independent, there exist unique real parameters
η1, . . . , ηn+1 such that

(2.15) −g−1G(x)ω =
n+1∑

i=1

ηivi .

Let t1, . . . , tn+1 be any collection of integers, not all zeros, such that

(2.16) |ηi − ti| ≤ 1 (1 ≤ i ≤ n+ 1).

The existence of such integers is obvious. Define

v :=
n+1∑

i=1

tivi .

Since the ti’s are integers and not all of them are zero, we have that v ∈ Λ \ {0}.
Hence, by the definition of Λ, there exists a non-zero integer point p ∈ Zn+1,
which we will write as (q, a1, . . . , ad, b1, . . . , bm)

t, such that

v = g−1G(x)p .

Then, using (2.12), (2.15) and (2.16), we find that
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∥∥g−1G(x)(p+ ω)
∥∥
∞

=
∥∥g−1G(x)p+ g−1G(x)ω

∥∥
∞

(2.17)

=
∥∥v + g−1G(x)ω

∥∥
∞

=

∥∥∥∥∥

n+1∑

i=1

tivi −
n+1∑

i=1

ηivi

∥∥∥∥∥
∞

≤
n+1∑

i=1

|ti − ηi| · ‖vi‖∞

≤ c−1(n+ 1) .

Observe that the last coordinate of the vector

(2.18) g−1G(x)(p+ ω)

is (cQ)−1(q + ω0), which by (2.17) is ≤ c−1(n + 1) in absolute value. Hence
|q + ω0| ≤ (n+ 1)Q and since ω0 := 3(n+ 1)Q, inequalities (2.9) readily follow.

Furthermore, for i ∈ {1, . . . , d} the m+ i coordinate of (2.18) is

(ψmQ)1/d
(
(q + ω0)xi − (ai + ωi)

)
(2.13)
= (ψmQ)1/d

(
(q + ω0)xi − (ai + λi + ω0xi)

)

= (ψmQ)1/d(qxi − ai − λi) .

By (2.17) again, we have that |(ψmQ)1/d(qxi − ai − λi)| ≤ c−1(n + 1), whence
inequalities (2.10) follow.

It now remains to verify (2.11). With this in mind, for j ∈ {1, . . . ,m} the j-th
coordinate of (2.18) equals

ψ−1

(
(q + ω0)gj(x) +

d∑

i=1

(ai + ωi)
∂fj(x)

∂xi
− (bj + ωd+j)

)

and by (2.13) and (2.14) this is equivalent to

ψ−1

(
(q + ω0)gj(x) +

d∑

i=1

(ai + λi + ω0xi)
∂fj(x)

∂xi
−
(
bj + γj + ω0fj(x)

))
.

Now on using the expression for gj(x) from (2.2), we can simplify the above to

ψ−1

(
qgj(x) +

d∑

i=1

(ai + λi)
∂fj(x)

∂xi
− bj − γj

)
.
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Once again, by (2.17) this is ≤ c−1(n+1) in absolute value and so it follows that

∣∣∣∣∣qgj(x) +
d∑

i=1

(ai + λi)
∂fj(x)

∂xi
− bj − γj

∣∣∣∣∣ < c−1(n+ 1)ψ .

Using the expression for gj(x) given by (2.2), we obtain that

∣∣∣∣∣qfj(x) +
d∑

i=1

(ai + λi − qxi)
∂fj(x)

∂xi
− bj − γj

∣∣∣∣∣ < c−1(n+ 1)ψ .(2.19)

We are now ready to establish (2.11). As already mentioned in Remark 2.1, it
follows via (2.9) and (2.10) that for any point x ∈ Uρ

(
a1+λ1
q

, . . . , ad+λd
q

)
∈ U .

Hence, on using Taylor’s expansion to the second order followed by the triangle
inequality, for any j ∈ {1, . . . ,m} we obtain that

∣∣∣∣qfj
(
a1 + λ1

q
, . . . ,

ad + λd
q

)
− bj − γj

∣∣∣∣

=

∣∣∣∣∣q
(
fj(x) +

d∑

i=1

∂fj(x)

∂xi

(
ai + λi
q

− xi

)

+
d∑

i,l=1

∂2fj(x̃)

∂xi∂xl

(
ai + λi
q

− xi

)(
al + λl
q

− xl

))
− bj − γj

∣∣∣∣∣

≤

∣∣∣∣∣qfj(x) +
d∑

i=1

(ai + λi − qxi)
∂fj(x)

∂xi
− bj − γj

∣∣∣∣∣

+

∣∣∣∣∣
1

q

d∑

i,l=1

∂2fj(x̃)

∂xi∂xl
(ai + λi − qxi) (al + λl − qxl)

∣∣∣∣∣

This together with (2.1), (2.10) and (2.19), implies that
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∣∣∣∣qfj
(
a1 + λ1

q
, . . . ,

ad + λd
q

)
− bj − γj

∣∣∣∣

≤ c−1(n+ 1)ψ +
1

q
Md2

(
c−1(n+ 1)(ψmQ)−1/d

)2

(2.9)

≤ c−1(n+ 1)ψ +
Md2

(
c−1(n+ 1)(ψmQ)−1/d

)2

2(n+ 1)Q

(2.7)

≤

(
1 +

Md2

2c

)
c−1(n+ 1)ψ.

This verifies (2.11) and thereby completes the proof of the lemma. �

We will make direct use of the following variant of Lemma 2.1.

Corollary 2.2. Let c ∈ (0, 1],M, Q̃, ψ̃ > 0 be given such that

(2.20) ψ̃ ≥ K0 Q̃
− d+2

2m+d with K0 ≥ (4(n+ 1))
d+2

2m+d

(
1 +

Md2

2c

)
n+ 1

c
.

Let U be a ball in Rd and let f = (f1, . . . , fm) : U → Rm be a C2 map such that

(2.1) is satisfied. Let θ = (λ,γ) ∈ Rd × Rm and let

Q :=
Q̃

4(n+ 1)
, ψ :=

ψ̃(
1 + Md2

2c

)
n+1
c

,(2.21)

ρ :=
1

2c
(ψmQd+1)−1/d = C0(ψ̃

mQ̃d+1)−1/d

where

(2.22) C0 :=
1

2c

((
4(n+ 1)

)d+1
((

1 +
Md2

2c

)n+ 1

c

)m)1/d

.

Then for any ball B ⊂ U , we have that

(2.23) G(c,Q, ψ) ∩ Bρ ⊂ ∆(Q̃, ψ̃, B,θ, ρ) ,

where ∆(Q̃, ψ̃, B,θ, ρ) is defined as in (1.6) .

Proof. First, observe that (2.20) implies (2.7). Then if x ∈ G(c,Q, ψ) ∩ Bρ, it
follows by Lemma 2.1 that there exists an integer point (q, a1, . . . , ad, b1, . . . , bm) ∈

Zn+1 satisfying (2.9)–(2.11). By (2.21), condition (2.9) translates into 1
2
Q̃ < q <
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Q̃; condition (2.11) translates into ‖qf
(
a+λ
q

)
−γ−b‖∞ < ψ̃; and condition (2.10)

together with the fact that q > 1
2
Q̃ imply that x ∈ B(a+λ

q
, ρ). Thus, in view of

(1.5) and (1.6), where Q and ψ are replaced with Q̃ and ψ̃, to complete the proof
of the corollary it remains to show that a+λ

q
∈ B. This is trivially the case since

x ∈ Bρ and x ∈ B(a+λ
q
, ρ). �

Note that within the above corollary ρ depends on the parameters ψ̃ and Q̃
and the constants C0 defined by (2.22), but not on the ball B. Also note that in

view of (2.20), we have that ρ → 0 as Q̃ → ∞ and thus Bρ → B as Q̃ → ∞.
Thus, in light of the above corollary our strategy for proving Theorem 1.1 will
be to find a suitable constant c > 0 and a ball U centred at a given point x0 such
that for any ball B ⊂ U for all sufficiently large Q ∈ N the Lebesgue measure
of G(c,Q, ψ) ∩ Bρ is at least a constant times the Lebesgue measure of B. In
this paper we establish precisely such a statement in the case of non-degenerate
curves.

Theorem 2.3. Let f = (f1, . . . , fn−1) be a map of one real variable such that

x 7→ f(x) = (x,f(x)) is non-degenerate at some point x0 ∈ R. Fix any κ > 0.
Then, there exists a sufficiently small open interval U centred at x0 and constants

c,K0 > 0 such that for any subinterval B ⊂ U there is a constant QB depending

on n, f , κ and B only such that for any integer Q ≥ QB and any ψ ∈ R satisfying

(1.8) we have that

(2.24) |B \ G(c,Q, ψ)| ≤ κ |B| .

Proof of Theorem 1.1 modulo Theorem 2.3. We shall use Corollary 2.2 with the
same f and θ as in the statement of Theorem 1.1. The fact that f is non-
degenerate at x0 implies that f is at least twice continuously differentiable on
a sufficiently small neighborhood U of x0. Hence the existence of the constant
M satisfying (2.1) follows on taking U sufficiently small so that f is C2 on the
closure of U . Shrink U further if necessary and choose c,K0 > 0 such that the
conclusions of Theorem 2.3 hold with κ = 1

3
. In particular, let B ⊂ U be any

subinterval, Q > QB and ψ satisfy (1.8). Then we have that

(2.25) |B \ G(c,Q, ψ)| ≤ 1
3
|B| .

Assuming without loss of generality that K0 is at least as in (2.20), we observe
that Corollary 2.2 is applicable. In particular, by (2.23), we have that

(2.26) |∆(Q̃, ψ̃, B,θ, ρ)| ≥ |G(c,Q, ψ) ∩ B| − |B \Bρ|,

where Q̃, ψ̃ and ρ are defined by (2.21). It follows from the definition of Bρ that
B \Bρ is a union of two intervals, each of length ≤ ρ. Therefore

|B \Bρ| ≤ 2ρ.
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The lower bound in (1.8) implies that ψn−1Q2 > Kn−1
0 Q1/2. Hence, for any

(2.27) Q ≥

(
12 · C0

Kn−1
0 |B|

)2

,

where C0 is defined by (2.22), we have that ρ ≤ 1
12
|B| and consequently

(2.28) |B \Bρ| <
1

6
|B|.

Thus, by (2.25), (2.26) and (2.28), we obtain that

|∆(Q,ψ,B,θ, ρ)| ≥ 1
2
|B|

provided that

Q ≥ Q∗
B := max

{
QB,

(
12 · C0

Kn−1
0 |B|

)2
}
.

This verifies (1.9) and completes the proof of Theorem 1.1 modulo Theorem 2.3.

�

3. Quantitative non-divergence

In what follows we give a simplified account of the theory developed by Klein-
bock and Margulis in [17] by restricting ourselves to functions of one variable.
Let U be an open subset of R, f : U → R be a continuous function and let
C, α > 0. The function f is called (C, α)-good on U if for any open ball (interval)
B ⊂ U the following is satisfied

(3.1) ∀ ε > 0

∣∣∣∣
{
x ∈ B : |f(x)| < ε sup

x∈B
|f(x)|

}∣∣∣∣ ≤ C εα |B|.

Given λ > 0 and a ball B = B(x0, r) ⊂ R centred at x0 of radius r, λB will denote
the ‘scaled’ ball B(x0, λr). Given v1, . . . ,vr ∈ Rn+1 we shall write ‖v∧ . . .∧vr‖∞
for the supremum norm of the multivector v1 ∧ . . . ∧ vr. By definition, this is
the maximum of the absolute values of the coordinates of v1 ∧ . . . ∧ vr in the
standard basis. These coordinates are all the possible r× r minors of the matrix
Γ composed of the vectors vi as its columns, see [21]. Also, given an (n+ 1)× r
matrix Γ, we will write ‖Γ‖∞ for ‖v1 ∧ . . . ∧ vr‖∞, where v1, . . . ,vr are the
columns of Γ.

We will use the following slightly simplified version of [17, Theorem 5.2] due
to Kleinbock and Margulis.

Theorem KM (Quantitative Non-Divergence). Let n ∈ N, C, α > 0 and 0 <
ρ ≤ 1/(n+1) be given. Let B be a ball in R and h : 3n+1B → GLn+1(R) be given.

Assume that for any linearly independent collection of vectors v1, . . . ,vr ∈ Zn+1
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(i) the function x 7→ ‖h(x)v1∧ . . .∧h(x)vr‖∞ is (C, α)-good on 3n+1B, and

(ii) sup
x∈B

‖h(x)v1 ∧ . . . ∧ h(x)vr‖∞ ≥ ρ.

Then for any ε > 0

(3.2)
∣∣∣
{
x ∈ B : δ

(
h(x)Zn+1

)
≤ ε
}∣∣∣ ≤ (n+ 1)C6n+1

(
ε

ρ

)α
|B| ,

where δ(·) is given by (2.6).

We now bring to the forefront the role this theorem plays in establishing The-
orem 2.3. In the case d = 1, m = n − 1 the matrix G given by (2.3) has the
following form:

(3.3) G(x) =




f1 − xf ′
1 f ′

1 −1 0 . . . 0

f2 − xf ′
2 f ′

2 0 −1 . . . 0

...
...

...
...

. . .
...

fn−1 − xf ′
n−1 f ′

n−1 0 0 . . . −1

x −1 0 0 . . . 0

1 0 0 0 . . . 0




.

We define

(3.4) h(x) := D g−1G(x) where D := diag{c1/(n+1), . . . , c1/(n+1)}

and g = g(c,Q, ψ) is as in (2.4). Then, by (2.5) it follows that

(3.5) B \ G(c,Q, ψ) =
{
x ∈ B : δ

(
D g−1G(x)Zn+1

)
< c1/(n+1)

}
.

Therefore, the measure of B \ G(c,Q, ψ) can be estimated via (3.2) subject to
verifying conditions (i) and (ii) of Theorem KM. These conditions involve the
quantity ‖h(x)v1 ∧ . . . ∧ h(x)vr‖∞ which, by definition, is the maximum of the
absolute values of the coordinates of h(x)v1 ∧ . . .∧ h(x)vr in the standard basis.
The coordinates run over all possible r × r minors of the matrix h(x)Γ, where Γ
is composed of the vectors vi as its columns. Hence,

(3.6) ‖h(x)v1 ∧ . . . ∧ h(x)vr‖∞ = max
I={i1,...,ir}⊂{1,...,n+1}

∣∣det
(
hI(x)Γ

)∣∣ ,

where hI(x) stands for the r × (n + 1) matrix formed by the rows i1, . . . , ir of
h(x) and Γ = (v1, . . . ,vr) is an (n+ 1)× r matrix over Z of rank r.
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Remark 3.1. We emphasise that it is possible to verify condition (ii) within The-
orem KM for arbitrary non-degenerate manifolds. We only need to make the
restriction to curves in order to verify condition (i). Thus, as mentioned in Re-
mark 1.2 establishing the latter for manifolds is the only barrier to proving our
main results beyond curves.

Throughout the rest of the paper the set of integer k × r matrices over Z

(respectively, over R) will be denoted by MatZ(k, r) (respectively, by MatR(k, r)).
In turn, the subset of MatZ(k, r) of full rank, that is of rank min{k, r}, will be
denoted by Mat∗Z(k, r), and the subset of Γ ∈ MatR(k, r) with ‖Γ‖∞ ≥ 1 will be
denoted by Mat∗R(k, r). Observe that Mat∗Z(k, r) ⊂ Mat∗R(k, r).

Given I = {i1, . . . , ir} ⊂ {1, . . . , n+1}, let GI(x) denote the r× (n+1) matrix
formed by the rows i1, . . . , ir of G(x). Define the function

φI,Γ(x) := det
(
GI(x)Γ

)
.

Since d = 1, we have that

(3.7) g = diag
{
ψ, . . . , ψ︸ ︷︷ ︸

n−1

, (ψn−1Q)−1, cQ
}
.

Then, for h given by (3.4), we have that

(3.8) det
(
hI(x)Γ

)
= c

r

n+1 · ΦI · φI,Γ(x) ,

where

(3.9) ΦI =





ψ−r if n 6∈ I and n+ 1 6∈ I,

ψn−rQ if n ∈ I and n+ 1 6∈ I,

(c ψr−1Q)−1 if n 6∈ I and n+ 1 ∈ I,

c−1ψn−r+1 if n ∈ I and n+ 1 ∈ I.

In view of (3.8) and (3.9) verifying conditions (i) and (ii) of Theorem KM for
our choice of h is reduced to understanding the functions φI,Γ(x) for all possible
choices of I and Γ. With this in mind we now state the main assertion regarding
φI,Γ(x).

Proposition 3.1. Let f = (f1, . . . , fn−1) be a map of one real variable such that

x 7→ f(x) := (x,f(x)) is non-degenerate at some point x0 ∈ R. Then, there

exists a sufficiently small open interval U centred at x0, l ∈ N and a constant

C > 0 satisfying the following. For any interval B ⊂ U there exists a constant

ρB > 0 such that for any 1 ≤ r ≤ n and any Γ ∈ Mat∗Z(n + 1, r) the following

two properties are satisfied :
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(i) for any I = {i1, . . . , ir} ⊂ {1, . . . , n+ 1} we have that

(3.10) |φI,Γ| is

(
C,

1

2l − 1

)
-good on 3n+1B,

(ii) for some I = {i1, . . . , ir} ⊂
{
1, . . . ,max{r, n− 1}

}
we have that

(3.11) sup
x∈B

|φI,Γ(x)| ≥ ρB.

As we shall see in §6 below, once armed with Proposition 3.1 it is not difficult
to establish the desired Theorem 2.3.

4. Non-degenerate maps and (C, α)-good functions

In this section we collect together several statements regarding (C, α)-good
functions that will be required during the course of establishing Proposition 3.1.
Within this section we will use the notion Rn

1 for the unit Euclidean sphere in
Rn, that is Rn

1 := {u ∈ Rn : |u|2 = 1}.

We begin with the following basic lemma which is a direct consequence of
Lemma 3.1 in [12] (see also [17, Lemma 3.1]).

Lemma 4.1. Let V ⊂ R be open and C, α > 0. If g1, . . . , gm are (C, α)-good
functions on V and λ1, . . . , λm ∈ R, then maxi |λigi| is a (C ′, α′)-good function

on V ′ for every C ′ ≥ C, 0 < α′ ≤ α and open subset V ′ ⊂ V .

The next lemma is a straightforward consequence of the definition of non-
degeneracy.

Lemma 4.2. Let f = (f1, . . . , fn−1) be a map of one real variable such that

x 7→ f(x) := (x,f(x)) is l-non-degenerate at some point x0 ∈ R. Then for

any r indices 1 ≤ i1 < · · · < ir ≤ n − 1 the map x 7→ (x, fi1(x), . . . , fir(x)) is

l-non-degenerate at x0.

We will be interested in three particular classes of functions associated with
the map

(4.1) f(x) := (x,f(x)) = (x, f1(x), . . . , fn−1(x)) .

The first two are

(4.2) F := {u0 + u · f(x) :
n∑

j=0

u2j = 1}
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and

(4.3) F ′ := {u · f ′(x) :
n∑

j=1

u2j = 1} ,

where u = (u1, . . . , un) and the ‘dot’ represents the standard inner product. For
these two classes we will will make use of the following statement.

Proposition 4.3. Suppose that the map x 7→ f(x) is l-non-degenerate at some

point x0 ∈ R. Then there exists a constant C > 0 and a neighbourhood V of x0
such that

(a) every function in F is (C, 1
l
)-good on V ;

(b) every function in F ′ is (C, 1
l−1

)-good on V ;

(c) for any interval B ⊂ V there exists a constant ρB > 0 such that

(4.4) inf
f∈F

sup
x∈B

|f(x)| ≥ ρB and inf
f∈F ′

sup
x∈B

|f(x)| ≥ ρB .

Proof. Parts (a) and (b) appear as Corollary 3.5 in [12]; see also [17, Proposi-
tion 3.4]. For part (c) we choose V sufficiently small so that f is non-degenerate
everywhere on V . Then, note that the map (u0,u) 7→ supx∈B |u0 + u · f(x)|
is continuous and strictly positive. The latter is due to the linear indepen-
dence of 1, x, f1(x), . . . , fn−1(x) over R which in turn is a consequence of the
non-degeneracy of f on B ⊂ V . Then

inf
(u0,u)∈Sn

sup
x∈B

|u0 + u · f(x)| := ρB > 0 ,

since we are taking the infimum of a positive continuous function over a compact
set, namely Sn, which is the unit (Euclidean) sphere in Rn+1. This proves the
first of the inequalities associated with (4.4). The proof of the second is similar
once we make the observations that the non-degeneracy of f at x0 implies the
non-degeneracy of f ′ = (f ′

1, . . . , f
′
n−1) at x0. �

In what follows, given a map g = (g1, g2) of one real variable, the associated
function

(4.5) ∇̃g := g1g
′
2 − g′1g2

will be referred to as the skew gradient of g. This notion was introduced in [12, §4]
and the following statement concerning the skew gradient is a simplified version
of Proposition 4.1 from [12].

Proposition 4.4. Let U be an open interval, x0 ∈ U and let G be a family of C l

maps g : U → R2 such that

(4.6) the family
{
g′i : g = (g1, g2) ∈ G, i = 1, 2

}
is compact in C l−1(U).
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Assume also that

(4.7) inf
v∈S1

inf
g∈G

max
1≤i≤l

|v · g(i)(x0)| > 0 .

Then there exists a constant C > 0 and a neighbourhood V of x0 such that

(a) |∇̃g| is (C, 1
2l−1

)-good on V for all g ∈ G,

(b) for every interval B ⊂ V there exists ρB > 0 such that for all g ∈ G

sup
x∈B

|∇̃g(x)| ≥ ρB .

The third class of functions that we will be interested in, associated with the
map f defined by (4.1), is the class

(4.8) G :=

{(
u1 · f(x), u0 + u2 · f(x)

)
:
u1,u2 ∈ Rn

1 ,
u1 · u2 = 0

}
.

In particular, we will make use of the following statement concerning the skew
gradient of maps in G. It follows on showing that Proposition 4.4 is applicable
to the specific G given by (4.8).

Proposition 4.5. Let U be an open interval, x0 ∈ U , f : U → Rn be l-non-
degenerate at x0 and let G be a family of C l maps g : U → R2 given by (4.8).
Then there exists a constant C > 0 and a neighbourhood V of x0 such that

(a) for every g ∈ G the function |∇̃g| is (C, 1
2l−1

)-good on V ;

(b) for any interval B ⊂ V there exists a constant ρB > 0 such that

(4.9) inf
g∈G

sup
x∈B

|∇̃g(x)| ≥ ρB .

Proof. Since f is l-non-degenerate at x0, there exists an open interval U centred at
x0 such that f is C l on the closure of U . Hence the family of functions within (4.6),
which is simply {u · f ′ : u ∈ Rn

1}, is compact in C l−1(U) due to the compactness
of the unit sphere in Rn. Thus the first hypothesis (4.6) is satisfied.

Next, given g = (u1 · f , u0 + u2 · f) ∈ G and v = (v1, v2) ∈ R2
1, we have that

v · g = u′0 + u′ · f ,

where
(u′0,u

′) = v1(0,u1) + v2(u0,u2) .

Since the vectors u1 and u2 are orthonormal, we have that

‖u′‖22 = v21‖u1‖
2
2 + v22‖u2‖

2
2 = v21 + v22 = 1

and thus (4.7) immediately follows from the l-non-degeneracy of f(x) at x0.
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The upshot of the above is that the desired statements (a) and (b) of Propo-
sition 4.5 now directly follow on applying Proposition 4.4. �

5. Proof of Proposition 3.1

The proof of Proposition 3.1 is split into several lemmas. We will use various
properties of multi-vectors and their relations with linear subspaces, which can
be found in [2, §3], [21] and [22]. We begin with an auxiliary statement that will
be helpful for calculating φI,Γ(x).

Lemma 5.1. Suppose that Γ = (v1, . . . ,vr) ∈ Mat∗R(n+1, r) with 1 ≤ r ≤ n and

v1, . . . ,vr denote the columns of Γ. Let I = {i1, . . . , ir} ⊂ {1, . . . , n + 1} and

Gi1(x), . . . , Gir(x) be the corresponding rows of G(x). Then for any collection

a1, . . . , an+1−r ∈ Rn+1 of linearly independent rows such that aivj = 0 for all

i = 1, . . . , n+ 1− r, j = 1, . . . , r and

(5.1) ‖a1 ∧ . . . ∧ an+1−r‖ = ‖v1 ∧ . . . ∧ vr‖

we have that

|φI,Γ(x)| = ‖Gi1(x) ∧ . . . ∧Gir(x) ∧ a1 ∧ . . . ∧ an+1−r‖(5.2)

= | det
(
Gi1(x), . . . , Gir(x), a1, . . . , an+1−r

)
| .

Furthermore, a1, . . . , an+1−r can be taken to be integer if Γ ∈ Mat∗Z(n+ 1, r).

Proof. Let

(5.3) w := v1 ∧ . . . ∧ vr

and

(5.4) m(x) := Gi1(x) ∧ . . . ∧Gir(x).

Then, by the Laplace identity (see, for example, [2, Equation (3.3)] or [22,
Lemma 5E]) it follows that

φI,Γ(x) = m(x) ·w ,

where the ‘dot’ represents the standard inner product on
∧r(Rn+1). Let w⊥ be

the Hodge dual of w, see [2, §3] for its definition and properties. Since w is
decomposable, so is w⊥. This means that

(5.5) w⊥ = a1 ∧ . . . ∧ an+1−r

for some linearly independent rows a1, . . . , an+1−r which form a basis of the linear
subspace of Rn+1 orthogonal to v1, . . . ,vr. Equation (5.1) is a consequence of the
Hodge operator being an isometry, see [2, §3.2]. Furthermore, it follows from [22,
Lemma 5G] that it is possible to choose ai, for all i = 1, . . . , n + 1 − r, to be
integer vectors in the case Γ is an integer matrix.
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By duality (see [2, Equation (3.10)]), we have that

|φI,Γ(x)| = |m(x) ·w| = |m(x) ∧w⊥|

whence (5.2) follows on substituting (5.4) and (5.5). �

Lemma 5.2. With reference to Proposition 3.1

• Statement (3.10) holds if r = n− 1 and I = {1, . . . , n− 1},

• Statement (3.11) holds if r = n− 1 and I as above.

Proof. Although, in the context of Proposition 3.1 we are ultimately interested
in integer Γ, it will be necessary for the proof of Lemma 5.2 to consider Γ lying
in the larger set Mat∗R(n + 1, r). With this in mind, by Lemma 5.1 there exist
linearly independent row-vectors a1, a2 ∈ Rn+1 such that

|φI,Γ(x)| = |G1(x) ∧ . . . ∧Gn−1(x) ∧ a1 ∧ a2|.

For convenience, and in view of Lemma 5.1 without loss of generality, we take

a1 = (0,u1) and a2 = (u0,u2)

such that u1 ·u2 = 0, u1 ∈ Rn
1 and u2 ∈ Rn, where ui = (ui,1, . . . , ui,n) for i = 1, 2.

Thus, |φI,Γ(x)| is equal to the absolute value of the determinant of the following
(n+ 1)× (n+ 1) matrix:

(5.6) Ψx :=




f1 − xf ′
1 f ′

1 −1 0 . . . 0

f2 − xf ′
2 f ′

2 0 −1 . . . 0

...
...

...
...

. . .
...

fn−1 − xf ′
n−1 f ′

n−1 0 0 . . . −1

0 u1,1 u1,2 u1,3 . . . u1,n

u0 u2,1 u2,2 u2,3 . . . u2,n




,

To proceed, define the following auxiliary (n+ 1)× (n+ 1) matrix

(5.7) ξx :=




1 0 0 0 . . . 0
x 1 0 0 . . . 0
f1 f ′

1 1 0 . . . 0
f2 f ′

2 0 1 . . . 0
...

...
...

...
. . .

...
fn−1 f ′

n−1 0 0 . . . 1




Since det ξx = 1, we have that

(5.8) |φI,Γ(x)| = | detΨx| = | det (Ψxξx) |.
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On the other hand, we have that

(5.9) Ψxξx =




0 0 −1 0 . . . 0

0 0 0 −1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . −1

u1 · f(x) u1 · f
′(x) u1,2 u1,3 . . . u1,n

u0 + u2 · f(x) u2 · f
′(x) u2,2 u2,3 . . . u2,n




,

where as usual f is given by (4.1).

Suppose for the moment that u2 = 0 . Then u0 6= 0 and

|φI,Γ(x)| = |u0u1 · f
′(x)|,

which is a non-zero multiple of the absolute value of a function from the class F ′

defined by (4.3). Thus in this case we can apply Proposition 4.3 (together with
Lemma 4.1) to deduce that |φI,Γ| is (C, 1

2l−1
)-good on V for a suitably chosen

constant C > 0 and neighbourhood V of x0. Now suppose that u2 6= 0 . Then

|φI,Γ(x)| =
∣∣∇̃
(
u1 · f(x), u0 + u2 · f(x)

)∣∣

= ‖u1‖2‖u2‖2
∣∣∇̃
(
‖u1‖

−1
2 u1 · f(x), ‖u2‖

−1
2 u0 + ‖u2‖

−1
2 u2 · f(x)

)∣∣.

Note that (
‖u1‖

−1
2 u1 · f(x), ‖u2‖

−1
2 u0 + ‖u2‖

−1
2 u2 · f(x)

)
∈ G ,

where G is the class of functions defined by (4.8). Hence, we can apply Proposi-
tion 4.5 (together with Lemma 4.1) to deduce that |φI,Γ| is (C,

1
2l−1

)-good on V
for a suitably chosen constant C > 0 and neighbourhood V of x0. This thereby
completes the proof of the first part of the lemma.

We now turn our attention to the second part of the lemma. Since ‖Γ‖∞ ≥ 1,
the vector w defined by (5.3) satisfies ‖w‖2 ≥ 1. By Propositions 4.3 and 4.5, it
follows that for any ball B ⊂ V

(5.10) sup
x∈B

|φI,Γ(x)| = sup
x∈B

|m(x) ·w| = ‖w‖2 sup
x∈B

|m(x) ·w′| > 0 ,

where w′ = w/‖w‖2 is a unit decomposable multivector. Note that the set of
decomposable unit multivectors w′ ∈

∧2(Rn+1) is compact and

w 7→ sup
x∈B

|m(x) ·w|

is strictly positive and continuous (see [2, p. 218]). Then taking the infimum in
(5.10) over w′ implies that the right hand side of (5.10) is bounded away from
zero by a constant ρB > 0. This completes the proof of the lemma. �
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Lemma 5.3. With reference to Proposition 3.1

• Statement (3.10) holds if r ≤ n− 1 and I ⊂ {1, . . . , n− 1},

• Statement (3.11) holds if r ≤ n− 1 for some I ⊂ {1, . . . , n− 1}.

Proof. With in the context of Proposition 3.1, we are given that Γ ∈ Mat∗Z(n +
1, r). The fact that Γ is an integer is absolutely crucial in the proof of Lemma 5.3.
In short, it allows us to make a reduction to a lower dimension statement to which
Lemma 5.2 is applicable.

Fix any multiindex I such that n 6∈ I and n + 1 6∈ I. Recall that the matrix

G(x) is defined by (3.3). Consider the auxiliary (r + 2) × (r + 2) matrix G̃(x)
formed by the rows i1, . . . , ir, n, n+1 and columns 1, 2, i1 +2, . . . , ir +2 of G(x).

Also, consider the matrix Γ̃ formed by the rows 1, 2, i1+2, . . . , ir+2 of the matrix
Γ. Observe that

(5.11) φI,Γ(x) = det G̃Ĩ(x)Γ̃ ,

where Ĩ := {1, . . . , r}. This is because when going from GI to G̃Ĩ we simply

cross out zero columns and so GI(x)Γ = G̃Ĩ(x)Γ̃. Thus the desired properties

of φI,Γ(x) can be investigated via the lower dimensional matrix G̃, which has

exactly the same structure as G. Indeed the matrix G̃ is the analogue of G with
the associated map f replaced by

(5.12) f̃(x) → (x, fi1(x), . . . , fir(x)) .

Note that by Lemma 4.2, the map f̃ is l-non-degenerate at x0. With this in mind
and without loss of generality assuming that φI,Γ is given by (5.11), we are in the
position to prove the lemma.

Suppose to start with that Γ̃ has rank < r. Then, we have that φI,Γ is iden-
tically zero and it follows that |φI,Γ| is (C, α)-good for any choice of C and α.

Now suppose that Γ̃ has rank exactly r, that is Γ̃ ∈ Mat∗Z(r + 2, r). Then, on

applying Lemma 5.2 with f̃ in place of f , Γ̃ in place of Γ, r+1 in place of n, G̃(x)

in place of G(x) and Ĩ in place of I, we complete the proof of the first part of
Lemma 5.3. To verify the second part it remains to note that, since rank Γ = r,

there is always a choice of I = {i1 < · · · < ir} ⊂ {1, . . . , n − 1} such that Γ̃
defined above has rank r. �

Lemma 5.4. With reference to Proposition 3.1

• Statement (3.10) holds if r = n and I = {1, . . . , n},

• Statement (3.11) holds if r = n and I as above.
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Proof. By Lemma 5.1, |φI,Γ(x)| = | detΨx|, where

(5.13) Ψx :=




f1 − xf ′
1 f ′

1 −1 0 . . . 0

f2 − xf ′
2 f ′

2 0 −1 . . . 0

...
...

...
...

. . .
...

fn−1 − xf ′
n−1 f ′

n−1 0 0 . . . −1

x −1 0 0 . . . 0

a0 a1 a2 a3 . . . an




for some non-zero integer vector (a0, . . . , an). With ξx given by (5.7), we obtain
that

Ψxξx =




0 0 −1 0 . . . 0

0 0 0 −1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . −1

0 −1 0 0 . . . 0

a0 + xa1 +
∑n−1

j=1 aj+1fj(x) a1 +
∑n−1

j=1 aj+1f
′
j a2 a3 . . . an




.

Hence

|φI,Γ(x)| = |detΨxξx| = |a0 + xa1 +
n−1∑

j=1

aj+1fj(x)|

is a constant multiple of a function from the class F defined by (4.2). Since
(a0, . . . , an) is a non-zero integer vector, the constant multiple in question is ≥ 1.
Therefore, the lemma readily follows from Proposition 4.3 (parts (a) and (c))
together with Lemma 4.1. �

Lemma 5.5. With reference to Proposition 3.1

• Statement (3.10) holds if r ≤ n, n ∈ I and n+ 1 6∈ I.

Proof. To start with observe that when r = 1, we necessarily have that I = {n}
and thus GI(x)Γ is either identically zero or is a non-zero linear function. In the
former case it easily follows that |φI,Γ| is (C, α)-good for any C and α. In the
latter case, φI,Γ it is a multiple of an element of the class F defined by (4.2) and
so by Lemma 4.1, |φI,Γ| is (C,

1
2l−1

)-good on some neighbourhood of x0.

Without loss of generality, we assume that r > 1. Fix any multiindex I such
that n ∈ I and n+1 6∈ I. Recall that the matrixG(x) is defined by (3.3). Consider
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the auxiliary (r + 1) × (r + 1) matrix G̃(x) formed by the rows i1, . . . , ir, n + 1
and columns 1, 2, i1 + 2, . . . , ir−1 + 2 of G(x). Note that ir = n. Also, consider

the matrix Γ̃ formed by the rows 1, 2, i1+2, . . . , ir−1+2 of the matrix Γ. Observe
that

(5.14) φI,Γ(x) = det G̃Ĩ(x)Γ̃ ,

where Ĩ = {1, . . . , r}. Thus the desired properties of φI,Γ(x) can be investigated

via the lower dimensional matrix G̃, which has exactly the same structure as G.

Indeed the matrix G̃ is the analogue of G with the associated f replaced by

(5.15) f̃(x) → (x, fi1(x), . . . , fir−1
(x)) .

Note that by Lemma 4.2, the map f̃ is l-non-degenerate at x0. With this in mind
and without loss of generality assuming that φI,Γ is given by (5.14), we are in the
position to prove the lemma.

Suppose to start with that Γ̃ has rank < r. Then, we have that φI,Γ is identi-
cally zero and it follows that |φI,Γ| is (C, α)-good for any choice of C and α. Now

suppose that Γ̃ has rank exactly r, that is Γ̃ ∈ Mat∗Z(r+1, r). Then, on applying

Lemma 5.4 with f̃ in place of f , Γ̃ in place of Γ, r+1 in place of n, G̃(x) in place

of G(x) and Ĩ in place of I, completes the proof of Lemma 5.5. �

Lemma 5.6. With reference to Proposition 3.1

• Statement (3.10) holds if r = n and I = {1, . . . , n− 1, n+ 1}.

Proof. By Lemma 5.1, |φI,Γ(x)| = | detΨx|, where

(5.16) Ψx :=




f1 − xf ′
1 f ′

1 −1 0 . . . 0

f2 − xf ′
2 f ′

2 0 −1 . . . 0

...
...

...
...

. . .
...

fm − xf ′
m f ′

m 0 0 . . . −1

1 0 0 0 . . . 0

a0 a1 a2 a3 . . . an




for some non-zero integer vector (a0, . . . , an). With ξx given by (5.7), we obtain
that
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Ψxξx =




0 0 −1 0 . . . 0

0 0 0 −1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . −1

1 0 0 0 . . . 0

a0 + xa1 +
∑n−1

k=1 ak+1fk a1 +
∑n−1

k=1 ak+1f
′
k a2 a3 . . . an




.

Hence

|φI,Γ(x)| = |detΨxξx| = |a1 +
n−1∑

k=1

ak+1f
′
k(x)|

is either identically zero or a constant multiple of a function from F ′. In the latter
case the claim of the lemma readily follow from Proposition 4.3(b) combined with
Lemma 4.1. In the case |φI,Γ(x)| is identically zero the claim is trivial. Indeed,
in that case |φI,Γ| is (C, α)-good for any choice of C and α. �

Lemma 5.7. With reference to Proposition 3.1

• Statement (3.10) holds if r ≤ n, n 6∈ I and n+ 1 ∈ I.

Proof. To start with observe that when r = 1, then we necessarily have that
I = {n+ 1} and thus GI(x)Γ is a constant, hence |φI,Γ| is (C, α)-good for any C
and α.

Without loss of generality, we assume that r > 1. Fix any multiindex I such
that n 6∈ I and n+1 ∈ I. Recall that the matrixG(x) is defined by (3.3). Consider

the auxiliary (r+1)× (r+1) matrix G̃(x) formed by the rows i1, . . . , ir−1, n, n+1
and columns 1, 2, i1+2, . . . , ir−1+2 of G(x). Note that ir = n+1. Also, consider

the matrix Γ̃ formed by the rows 1, 2, i1+2, . . . , ir−1+2 of the matrix Γ. Observe
that

(5.17) φI,Γ(x) = det G̃Ĩ(x)Γ̃ ,

where Ĩ = {1, . . . , r − 1, r + 1}. Thus the desired properties of φI,Γ(x) can be

investigated via the lower dimensional matrix G̃, which has exactly the same

structure as G. Indeed the matrix G̃ is the analogue of G with the associated f

replaced by

(5.18) f̃(x) → (x, fi1(x), . . . , fir−1
(x)) .
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Note that by Lemma 4.2, the map f̃ is l-non-degenerate at x0. With this in mind
and without loss of generality assuming that φI,Γ is given by (5.17), we are in the
position to prove the lemma.

Suppose to start with that Γ̃ has rank < r. Then, we have that φI,Γ is identi-
cally zero and it follows that |φI,Γ| is (C, α)-good for any choice of C and α. Now

suppose that Γ̃ has rank exactly r, that is Γ̃ ∈ Mat∗Z(r+1, r). Then, on applying

Lemma 5.6 with f̃ in place of f , Γ̃ in place of Γ, r+1 in place of n, G̃(x) in place

of G(x) and Ĩ in place of I, completes the proof of Lemma 5.7. �

Completion of the proof of Proposition 3.1. First of all note that Property (3.10)
has already been established in Lemma 5.3 if I ∩ {n, n + 1} = ∅, in Lemma 5.5
if I ∩ {n, n + 1} = {n} and in Lemma 5.7 if I ∩ {n, n + 1} = {n + 1}. If
I ∩ {n, n + 1} = {n, n + 1}, then det (GI(x)Γ) is readily seen to be constant,
which is thus (C, 1/(2l − 1))-good. Therefore, for any 1 ≤ r ≤ n and any
Γ ∈ Mat∗Z(n+ 1, r) Property (i) holds for all choices of I.

Regarding Property (ii) of Proposition 3.1, if r = n then it is established in
Lemma 5.4 and if r < n it is established in Lemma 5.3. �

Remark 5.1. The constants C and ρB that arise from the various lemmas proved
in this section may in principle depend on the choice of I. However, since there
are only finitely many different choices of I both the constants in question can be
made independent of I. Indeed ρB has to be taken as the minimum while C has
to be taken to be the maximum of all the possible values over all different choices
of I. The fact that the maximum choice for C works for all I is a consequence of
Lemma 4.1.

6. Proof of Theorem 2.3

Let h be given by (3.4) and let x0 ∈ R be such that f is non-degenerate
at x0. Then, by (3.6), (3.8), Proposition 3.1 and Lemma 4.1, there exists a
neighbourhood U of x0 such that for any collection of linearly independent integer
points v1, . . . ,vr (1 ≤ r ≤ n) the map

x 7→ ‖h(x)v1 ∧ . . . ∧ h(x)vr‖∞ is (C, 1
2l−1

)-good on 3n+1U

and
sup
x∈B

‖h(x)v1 ∧ . . . ∧ h(x)vr‖∞ ≥ c
r

n+1 ρB min
I

ΦI ,

where the minimum is taken over I = {i1, . . . , ir} ⊂
{
1, . . . ,max{r, n− 1}

}
and

ΦI is given by (3.9). It follows from the definition of ΦI , that for r ≤ n

min
I

ΦI ≥ min{ψ−r, Q}
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and consequently

sup
x∈B

‖h(x)v1 ∧ . . . ∧ h(x)vr‖∞ ≥ c
r

n+1 ρB min{ψ−r, Q} ≥ 1

provided that Q ≥ QB for some sufficiently large QB and ψ ≤ ψB for some
sufficiently small ψB. If r = n+ 1, then trivially the map

x 7→ ‖h(x)v1 ∧ . . . ∧ h(x)vr‖∞ = ‖v1 ∧ . . . ∧ vr‖∞ ≥ 1

is constant and hence (C, α)-good for the same choice of α and some absolute
constant C > 0.

The upshot of the above is that all the conditions of Theorem KM are met for
any ball B ⊂ U , some constants C, α > 0 and ρ = 1/(n+ 1). Therefore, by (3.2)
and (3.5), we obtain that

(6.1) |B \ G(c,Q, ψ)| ≤ (n+ 1)C6n+1

(
c1/(n+1)

1/(n+ 1)

)α
|B| ,

where α = 1
2l−1

. The latter inequality implies (2.24) for a suitably chosen c > 0
that is independent of B. This thereby completes the proof of the theorem.

Appendix A. Deduction of Theorem 1.3 from Theorem 1.1

A.1. Ubiquitous systems close to a curve in Rn . In this subsection we
recall the definitions are facts from [5, §§3.2,3.3]. Let I0 be an interval in R,
n ≥ 2 and R := (Rα)α∈J be a family of ‘resonant’ points Rα of Rn indexed by
an infinite countable set J . Let β : J → R+ : α 7→ βα be a positive function
on J . Thus, the function β attaches a ‘weight’ βα to the resonant point Rα.
Further, let ρ : R+ → R+ denote a function satisfying limt→∞ ρ(t) = 0 and is
usually referred to as the ubiquitous function. Also B(x, r) will denote the ball
(or rather the interval) in R centred at x of radius r.

For a point Rα in R, let Rα,k represent the k’th coordinate of Rα. Thus,
Rα := (Rα,1, Rα,2, . . . , Rα,n). Given a function Φ : R+ → R+, let RC(Φ) denote
the sub-family of resonant points Rα in R which are “Φ–close” to the curve
C = Cf := {(x, f2(x), . . . , fn(x)) : x ∈ I0} where f = (f1, . . . , fn) : I0 → Rn is a
continuous map with f1(x) = x and I0 is an interval in R. Thus,

RC(Φ) := (Rα)α∈JC(Φ) ,

where

(A.1) JC(Φ) := {α ∈ J : Rα,1 ∈ I0, max
2≤k≤n

|fk(Rα,1)−Rα,k| < Φ(βα)} .

We will also denote by R1 the family of first co-ordinates of the points in RC(Φ);
that is

R1 := (Rα,1)α∈JC(Φ) .
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By definition, R1 is a subset of the interval I0. Finally, for t ∈ N let JC(Φ, t) :=
{α ∈ JC(Φ) : βα ≤ 2t} and assume that #JC(Φ, t) is always finite. The following
appears as Definition 3 in [5].

Definition A.1 (Ubiquitous systems near curves). The system (RC(Φ), β) is

called locally ubiquitous with respect to ρ if there exists an absolute constant

κ > 0 such that for any interval B ⊆ I0

(A.2) lim inf
t→∞

∣∣∣
⋃
α∈JC(Φ,t)

(
B(Rα,1, ρ(2

t)
)
∩B)

∣∣∣ ≥ κ |B| .

Next, given an approximating function Ψ̃, let Λ(RC(Φ), β, Ψ̃) denote the set
x ∈ I0 for which the system of inequalities




|x−Rα,1| < Ψ̃(βα)

max
2≤k≤n

|fk(x)−Rα,k| < Ψ̃(βα) + Φ(βα) ,

is simultaneously satisfied for infinitely many α ∈ JC(Φ). The following lemma
is merely a combination of Lemmas 3 and 4 established in [5] with some simpli-
fications.

Lemma A.2. Consider the curve C := {(x, f2(x), . . . , fn(x)) : x ∈ I0}, where

f2, . . . , fn are locally Lipshitz in a finite interval I0. Let Φ and Ψ̃ be approximating

functions. Suppose that (RC(Φ), β) is a locally ubiquitous system with respect to

ρ and let Ψ̃ be such that Ψ̃(2t+1) ≤ 1
2
Ψ̃(2t) for t sufficiently large. Then for any

s ∈ (0, 1] we have that

Hs
(
Λ(RC(Φ), β, Ψ̃)

)
= Hs(I0) if

∞∑

t=1

Ψ̃(2t)s

ρ(2t)
= ∞ .

A.2. Proof of Theorem 1.3. In line with the setup of Theorem 1.3, let θ =
(λ1, γ1, . . . , γn−1) ∈ Rn, Ψ : (0,+∞) → (0,+∞) be any monotonic function such
that qΨ(q)(2n−1)/3 → ∞ as q → ∞. Without loss of generality we may assume
that Ψ(q) < 1 for all q. Let M be a non-degenerate curve in Rn and without
loss of generality we will assume that M = f(I0) for some interval I0 and a
non-degenerate map f = (x, f2, . . . , fn). Fix any point x0 ∈ I0 and let U be
the interval around x0 arising from Theorem 1.1 and K0 and C0 be the constants
arising from Theorem 1.1. Without loss of generality we may assume that U = I0.
Suppose that 0 < s ≤ 1 (as we noted above the case s > 1 is trivial) and suppose
that

(A.3)
∞∑

q=1

qn
(
Ψ(q)

q

)s+n−1

= ∞ .

With reference to §A.1, let

J = {(q, a1, b1, . . . , bn−1) : q ∈ N, a1, b1, . . . , bn−1 ∈ Z},
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Rα =

(
a1 + λ1

q
,
b1 + γ1
q

, . . . ,
bn−1 + γn−1

q

)
and βα = q

when α = (q, a1, b1, . . . , bn−1) ∈ J . Furthermore, for Q ∈ N let Q = 2t, ψ =
1
4
Φ(Q),

ρ(Q) =
C0

(1
4
Ψ(Q))n−1Q2

and

Ψ̃(Q) = Φ(Q) :=
Ψ(Q)

2Q
.

Now let B ⊂ I0 be any interval. Then, in view of (1.5) and (A.1) we have that

R(Q,ψ,B,θ) ⊂ JC(Φ, t)

and so in view of (1.6) we have that

(A.4) ∆(Q,ψ,B,θ, ρ(Q)) ⊂
⋃
α∈JC(Φ,t)

(
B(Rα,1, ρ(2

t)
)
∩ B) .

Now, with the view to applying Theorem 1.1, let Q ≥ QB be sufficiently large
and note that condition (1.8) in our case becomes

(A.5) K0Q
− 3

2n−1 ≤ 1
4
Ψ(Q) < 1 .

This is true in view of our assumptions on Ψ; in particular, the fact that
qΨ(q)(2n−1)/3 → ∞ as q → ∞. Hence, by Theorem 1.1 and (A.4), we get that
(A.2) holds with κ = 1

2
and so (RC(Φ), β) is locally ubiquitous with respect to ρ

given above.

Now we wish to apply Lemma A.2. First of all observe that Ψ̃(2t+1) ≤ 1
2
Ψ̃(2t)

for t since Ψ is monotonically decreasing and Ψ̃(Q) = Ψ(Q)
2Q

. Next observe that

∞∑

t=1

Ψ̃(2t)s

ρ(2t)
= 22−s−2nC−1

0

∞∑

t=1

Ψ(2t)s+n−12(2−s)t .

Since Ψ is monotonic, by Cauchy condensation test, this sum is divergent if and
only if

∞∑

q=1

qn
(
Ψ(q)

q

)s+n−1

=
∞∑

q=1

Ψ(q)s+n−1q1−s = ∞ .

Thus, assuming the divergence condition in (1.12), we have the divergence con-
dition in Lemma A.2 and conclude that

(A.6) Hs
(
Λ(RC(Φ), β, Ψ̃)

)
= Hs(I0) .

It remain to note that Λ(RC(Φ), β, Ψ̃) ⊂ f−1(Sn(Ψ,θ)) and that f is locally bi-
Lipschitz and thus f preserves sets of zero/full/infinite Hausdorff measure. Thus,
(A.6) implies (1.12) and this complete the proof of the main part of Theorem 1.3.
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For the furthermore part of Theorem 1.3, let τ(Ψ) be as in Theorem 1.1 and

s :=
n+ 1

τ(Ψ) + 1 + ε
− n+ 1 ∈ (0, 1)

for arbitrary sufficiently small ε > 0. By the definition of τ(Ψ) we have that

Ψ(q) ≥ q−τ(Ψ)−ε

for infinitely many q ∈ N. Then,
∞∑

q=1

qn
(
Ψ(q)

q

)s+n−1

≥
∞∑

q=1

qn(q−(τ(Ψ)+1+ε)s+n−1 =
∞∑

q=1

q−1 = ∞ .

and hence

Hs(Sn(Ψ,θ) ∩M) = ∞ .

Therefore,

dim
(
Sn(Ψ,θ) ∩M

)
≥ s = min

{
1,

n+ 1

τ(Ψ) + 1 + ε
− n+ 1

}

and on letting ε→ 0 we obtain (1.13). This competes the proof of the theorem.
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deaux 30 (2018), no. 1, 175–193.

[24] R.C. Vaughan, S. Velani, Diophantine approximation on planar curves: the conver-

gence theory. Invent. Math. 166 (2006), no. 1, 103–124.

Victor Beresnevich: Department of Mathematics, University of York,
Heslington, York, YO10 5DD, UK
e-mail: vb8@york.ac.uk

Robert C. Vaughan: Department of Mathematics, Pennsylvania State University
University Park, PA 16802-6401, USA
e-mail: rvaughan@math.psu.edu

Sanju Velani: Department of Mathematics, University of York,
Heslington, York, YO10 5DD, UK
e-mail: slv3@york.ac.uk



DIOPHANTINE APPROXIMATION ON MANIFOLDS 33

Evgeniy Zorin: Department of Mathematics, University of York,
Heslington, York, YO10 5DD, UK
e-mail: evgeniy.zorin@york.ac.uk


