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Abstract 

In data-driven forensic voice comparison, sample size is an 
issue which can have substantial effects on system output. 
Numerous calibration methods have been developed and some 
have been proposed as solutions to sample size issues. In this 
paper, we test four calibration methods (i.e. logistic regression, 

regularised logistic regression, Bayesian model, ELUB) under 
different conditions of sampling variability and sample size. 
Training and test scores were simulated from skewed 
distributions derived from real experiments, increasing sample 
sizes from 20 to 100 speakers for both the training and test sets. 
For each sample size, the experiments were replicated 100 
times to test the susceptibility of different calibration methods 
to sampling variability. The Cllr mean and range across 

replications were used for evaluation. The Bayesian model and 
regularized logistic regression produced the most stable Cllr 
values when the sample size is small (i.e. 20 speakers), although 
mean Cllr is consistently lowest using logistic regression. The 
ELUB calibration method generally is the least preferred as it 
is the most sensitive to sample size and sampling variability 
(mean = 0.66, range = 0.21-0.59).  
 

Index Terms: likelihood ratio, forensic voice comparison, 
calibration, sample size, sampling variability 

1. Introduction 

1.1. Developing and testing LR-based systems 

In likelihood ratio-based (LR) forensic voice comparison 
(FVC), as well as automatic and semi-automatic speaker 

recognition more generally, analysts rely on databases of 
speakers to estimate empirically the strength of the voice 
evidence. It is then essential to test and empirically validate 
system performance, i.e. how good or bad the system is at 
separating same- (SS) and different-speaker (DS) pairs. 
Normally, this involves two stages (i.e. feature-to-score and 
score-to-LR) [1] requiring three datasets (i.e. training, test and 
reference). At the feature-to-score stage, acoustic data are 

extracted from recordings and used to generate speaker models. 
Pairs of speakers models (both SS and DS) are compared to 
generate LR-like scores which capture the similarity and 
typicality [2] between samples. The scores from the training 
data are then used at the score-to-LR stage (i.e. calibration) to 
convert the test scores to interpretable, calibrated LRs. This 
involves generating a calibration model from the training scores 
and then applying that model to the scores from the test data. 

System validity is evaluated on the basis of the calibrated test 
scores. Many methods for assessing validity are available, with 
the log LR cost function (Cllr) [3] generally considered the most 
appropriate, especially in the forensic context. Forensic experts 
and laboratories are now under increasing national and 

international regulatory pressure to demonstrate system validity 
to the trier of fact.  

1.2. Sample size and sample variability 

Variability in the LRs computed by a system can be introduced 
by different sources (e.g. variability in the relevant population, 
choice of features, statistical modelling) [4] at both stages. This 
can, of course, be problematic in terms of the precision of the 
specific LR in a given FVC case [4] but also in terms of 
misrepresenting the overall performance of the system (both in 

a validation exercise and in research). Sample size can be a 
substantial source of uncertainty in LR computation. This is 
especially true of FVC based on linguistic input features, where 
samples are generally small; many FVC studies use just 20 
speakers in each data set. Numerous studies have investigated 
system validity as a function of sample size and sampling 
variability. For example [4,5] explored the effect of the number 
of reference speakers on system performance, showing that the 

Cllr varies between ca. 0.4 and 0.7 when the number of reference 
speakers varies between 10 and 120. Similarly, [7] explored 
system performance as a function of the number of training, test 
and reference speakers, suggesting that system stability can be 
achieved using minimally 30 training and reference speakers 
and minimally 15 reference speakers. Moreover, [8] showed 
that different configurations of training, test and reference 
speakers also have an effect on overall system performance. 
They replicated the experiments 100 times by randomly 

sampling 25 speakers (from a relevant population) into the 
training, test and reference sets respectively. Results show that 
the Cllr varies between 0.32 and 1.33 across 100 replications. 
Taken together, previous studies show that no matter how many 
or which speakers are used, variability in system performance 
is still inevitable. However, this is especially true when the 
sample size is small, and the density estimation is not well-
supported by the data leading to extrapolation at the tails of the 

distributions. 

1.3. Calibration methods 

Many calibration methods are available and some may provide 
a potential solution to issues of sample size. The choice of 

calibration method is extremely important for system 
evaluation and optimisation because one does not want to 
obtain extreme LRs that over- or underestimate the strength of 
evidence [9]. Different calibration methods (e.g. logistic 
regression [10], pool adjacent violators [11], Bayesian model 
[12], scoring method [13]–[15]) have been developed and the 
performance has been compared. For example, [16] explored 
the effectiveness of three calibration methods (i.e. kernel 

density estimation, logistic regression, pool adjacent violators) 



in dealing with sampling variability with three sizes of the 

training scores. Results show that logistic regression is the least 
sensitive to sampling variability when the sample size of the 
training data is large. However, the size of test data was not 
taken into consideration and only three sets of sample size of 
the training data were considered. Similarly, [17] used 
simulated scores to explore the effectiveness of different 
calibration methods in shrinking LR output and tested the 
generalizability using data from real cases. However, this work 

only compared the effectiveness of different calibration 
methods using scores that follow Gaussian distributions with 
equal variance and did not take skewness into consideration. 
This is, however, important as the score distributions in real 
cases are less likely to follow Gaussian distributions with equal 
variance due to the reasonable limits of sample size in the real 
world.  

1.4. The current study 

The current study uses simulated scores from skewed 
distributions, derived from real data, to investigate the 
effectiveness of four calibration methods (i.e. logistic 
regression [10], empirical lower and upper bound (ELUB) [18], 
Bayesian model [12] and regularised logistic regression [17]) at 

dealing with issues relating to sample size and sampling 
variability. With the exception of logistic regression, the 
calibration methods tested all incorporate uncertainty into the 
LR itself, such that LRs will be closer to 1 when uncertainty is 
high (i.e. when sample size is low). Simulation was carried out 
based on distribution parameters of log scores obtained from an 
empirical study [8] where acoustic-phonetic features extracted 
from the English filled pause (FP) um were used as input. The 

focus of the current study is to investigate overall system 
validity and the stability of the system validity.  
 

2. Method 

2.1. Acoustic features derived from filled pauses 

The simulated score distributions were derived from testing 
conducted with acoustic features extracted from filled pauses 
(FP) um. The original data consisted of 90 Standard Southern 
British English (SSBE) speakers and two samples per speaker 
from the DyViS corpus [19]. The first three formants and F0 of 
the vocalic portion of um were exacted and fitted with quadratic 
polynomial curves. The polynomials coefficients were then 
used for LR computation. 30 speakers were randomly sampled 

into training, test and reference sets, and the experiment was 
replicated 100 times showing that the Cllr varies between 0.13 
and 1.22 across 100 replications. 

2.2. Simulation 

Table 1 shows the distribution parameters of log scores used for 

simulation. The mean, standard deviation, skewness and 
kurtosis values were derived from the original scores 
(somewhat surprisingly, both SS and DS scores were negatively 
skewed, although generally the extent of the skew was limited). 
It is acknowledged that the skewness could vary from case to 
case, but only one set of skewness is used here for the purpose 
of current study (examining the effect of different levels of 
skew is planned for future study).  

 
 
 

Table 1: Distribution parameters for score simulation. 

 

um score Mean SD Skewness Kurtosis 

Log SS 2.6 6.6 -0.7 3.5 
Log DS -78 56.6 -0.7 3.1 

 
Score simulation was carried out based on log scores 

because firstly log scores are normally used for score-to-LR 
computation. Secondly, the raw scores only allow for non-
negative values where the SS and DS score distributions are 
extremely skewed and less symmetric. Both SS and DS raw 
scores are likely to be heavily tailed with the raw DS scores 
stacked between 0 and 1. Therefore, simulating the raw scores 
would further complicate the simulation process and introduce 

more uncertainty.  
Since the SS and DS log scores derived from the real data 

are negatively skewed, the skew-t (ST) distribution [20] was 
considered appropriate for score simulation. The rst() 

function from the R [21] package sn [22] was used. Figure 1 

shows the simulated SS (top panel) and DS (bottom panel) 

score distributions using parameters from Table 1. The dotted 
lines indicate the mean of the simulated SS and DS log scores 
(i.e. 2.6 and -78).  

 
Figure 1: Distributions of simulated SS and DS log scores 

(1000 samples per set). 
 

 
 

Sets of training and test scores were simulated with 
increasing sample sizes from 20 to 100 speakers in 10-speaker 
increasements. This means that the number of SS and DS log 
scores varies from 20 to 100 and 380 to 9900 respectively for 
both the training and test data. The experiment was also 
replicated 100 times within each sample size (i.e. number of 
speakers) using independent samples of scores. In this way, the 
experiments allow us to explore the relationship between 

sampling variability and sample size as well as which 
calibration methods is more or less resistant to sample size and 
sampling variability. Figure 2 shows a schematic representation 
of the simulation process. 

The simulated training scores were then used to train 
calibration models which were applied to the test data, from 
which system validity was evaluated. Overall system 
performance was evaluated using the Cllr mean and range (i.e. 

the difference between the maximum and minimum Cllr values 
across 100 replications). Systems with better performance 
should yield lower Cllr mean and range. A Cllr of 1 is equivalent 
to a system that consistently produces LRs of 1 irrespective of 
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whether they came from SS or DS comparisons. As such, a Cllr 

of less than 1 indicates that the system is capturing useful 
information. 
 

Figure 2: Schematic of the simulation process using score 
distribution parameters, replicated 100 times for each sample 

size. 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

2.3. Calibration 

Four calibration methods were tested, implemented using a set 
of Matlab functions from [17].  
 

2.3.1 Logistic regression and regularised logistic regression 
 
The rationale behind logistic regression [10] and regularised 
logistic regression (rlogistic regression) [17] are similar, i.e. the 
training scores are used to train a logistic regression model and  

the coefficients are then applied to the test scores to generate 
calibrated LRs (equation 1): 
 Calibrated	LR	=	α	+	βs                                                          (1) 
 
where α and β are the shift and scale values that are added and 
multiplied to the test scores (s) to generate calibrated LRs. Both 
logistic regression and rlogistic regression are claimed to be 
robust to violations of assumptions of normality and equal 
variance [23], i.e. both logistic regression and rlogistic 

regression are robust when scores are skewed. The difference 
between logistic regression and rlogistic regression is that the 
weight (κψ) of an uninformative distribution needs to be applied 
in rlogistic regression. Depending on the value of κψ, a smaller 

κψ (≤ 0.1) value deals with the issues of complete separation 

and a larger κψ (≥ 1) value deals with extreme LR outputs [17]. 
In the current study, we follow [17] and use a κψ value of 5 for 
the purpose of reducing the variability of LR outputs.  
 
2.3.2 Bayesian model  

 

The fully Bayesian approach involves the use of priors (i.e. 
hyperparameters) to  reduce the magnitude of the LRs when 
uncertainty is high [12,17]. The fully Bayesian calibration 
models need to be estimated using SS and DS training scores 
respectively. The likelihood of the Bayesian models are then 
evaluated using test scores [12]. Meanwhile, the prior belief and 
the strength of the belief for the mean and variance of the 
training scores need to be specified. However, due to the nature 

of FVC, the ground truth is impossible to know and it has been 
shown that uninformative priors yield more constrained Bayes 
factors than informative priors [24]. We therefore follow [17] 

using the Jeffreys reference priors. The formula for Bayesian 

model estimation can then be simplified to: 
 𝜆! = 𝑡"#$(𝑥|µ:	, "%$"#$𝜎	= &)                                     (2) 

 

where t is a t distribution, n is the sample size, x is the test score, 
μ and σ are the sample mean and pooled variance of the training 

score [17, p.203]. The calculation of Bayes factors is then the 
ratio between the likelihood of the Bayesian models evaluated 
using test scores,                           

log(𝐵𝐹) = logC'!""#!$"%&((*	|	-"". 	,!'#(
!'%(

	01 &)3
'!""#!$"%&((*	|	-$". 	,!'#(

!'%(
	01 &)3D									 																(3)		

where the subscripts ss and ds indicate that the data come from 

the SS and DS training scores respectively and 𝑛F is the sum of 

SS and DS samples divided by 2 [17, p.204].  

 
2.3.3 Empirical lower and upper bounds (ELUB) 

The ELUB [18] method uses empirical data to set maximum 

and minimum values for the LRs that a given system can output 

based on the training set. Then all other LRs produced by the 

test data are limited to within that range. ELUB is claimed to be 

robust to extreme LRs caused by data extrapolation where the 

estimated distribution density is not well supported by the 

observed data at the distribution tails [18]. The rationale behind 

the ELUB calibration method lies in a rule of the thumb that the 

LRs should be smaller than the sample size of the training data 

for the defence hypothesis and no larger than 1 divided by the 

size of training data for prosecution hypothesis [18]. The 

implementation of ELUB is carried out using the expected 

utility ratio (EU ratio; [13, pp. 204]):   

𝐸𝑈𝑟𝑎𝑡𝑖𝑜 = 	 4$										56	78)*9$78)*	56	78)*	:$
!,-".,-)*	#	(

!,-"#(
%78)*×!,-$	/	,-)*#(														

!,-$#(

       (4) 

where the numerator is the neutral system LR that is no larger 

than 1 and the exact value depends on 𝐿𝑅'< (a threshold LR) 

[18]. For the denominator,  𝑛𝐿𝑅= and 𝑛𝐿𝑅> are the number of 

the SS and DS LRs in the training data respectively. The 𝑛𝐿𝑅= ≤ 𝐿𝑅'<	 represents the number of SS LRs that is no larger 

than 𝐿𝑅'<	and 𝑛𝐿𝑅> 	> 	 𝐿𝑅'< represents the number of DS LRs 

that is higher than 𝐿𝑅'<	.  The upper and lower boundaries 

obtained from EUratio are then applied to test data to shrink the 

LR output [17].  

3. Results 

Figure 3 shows the mean (black dots) and range (dashed lines) 
of Cllr values as a function of sample size, across the 100 
replications for each of the calibration methods. The x-axis 
indicates the number of speakers used in training and test data 
respectively and the y-axis represents the Cllr values. 

The Cllr mean and range using different calibration methods 

show different patterns across different sample sizes. Logistic 
regression consistently yields the lowest mean Cllr across 
different sample sizes (varying between 0.37 and 0.38) 
followed by rlogistic regression (0.41 to 0.54), Bayesian (0.54 
to 0.56) and ELUB (0.65 to 0.66). With the exception of 
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Training 
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Calibration 
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rlogistic regression, the mean Cllr values of the other three 

calibration methods are fairly consistent (black dots are fairly 
flat) within each calibration method across different sample 
sizes showing that the mean Cllr does not become lower with 
larger sample sizes. For rlogistic regression, the mean Cllr 

decreases from 0.54 using 20 speakers to 0.41 using 100 
speakers.  
 
Figure 3: Cllr mean and range using different sample size and 

calibration methods. 
 

 
 

In terms of Cllr ranges, the rlogistic regression and Bayesian 
methods appear to be less affected by sample size and sampling 
variability, i.e. the Cllr range remains low (ca. 0.1 or lower) and 
stable regardless of the number of speakers used. Contrastively, 

logistic regression seems to be more sensitive to sampling 
variability when the number of training and test speakers is less 
than 30. The Cllr range using logistic regression reduced from 
0.27 to 0.06 when the number of training and test speakers 
increased from 20 to 100. Among the four calibration methods, 
EULB is most sensitive to sample size and sampling variability, 
and the Cllr range fluctuates considerably. For example, the Cllr 
range is 0.59 using 20 training and test speakers and lowered to 
0.37 using 30; however, it increases to 0.43 when 40 training 

and test speakers are used.  

4. Discussion 

The results of this study have shown that overall system 
performance varies to different extents using different 
calibration methods with different sample sizes. In general, the 
ELUB calibration method is less preferable as it produces 
systems that are more sensitive to sampling variability and 
sample sizes than the other three. Although the Cllr range using 
ELUB reduces when more training and test speakers are 

included, there remains high levels of Cllr variability even with 

large samples; the Cllr range with 100 speakers is equivalent to 

that produced by logistic regression when using only 20 
speakers (Figure 3, bottom panel). Using 1 as an appropriate 
threshold for judging Cllr [25] (i.e. a good system should yield 
a Cllr as close as to 0, and Cllr higher than 1 indicates that the 
system is not giving any useful information), the wide Cllr range 
using ELUB calibration suggests that it is the least effective of 
the four calibration methods as it produces Cllrs of over 1 across 
replications, even with 100 speakers in each set. The Bayesian 

model and rlogistic regression are less affected by sampling 
variability and should generally be preferred, especially when 
sample size is small. The disadvantage, however, is that priors 
or a κψ value need to be pre-selected when using these two 
models. The priors within the Bayesian model need to be 
specified based on the mean and variance of the training data, 
which could be different from case to case in the real world. 
Similarly, different κψ values of the rlogistic regression method 
need to be specified depending on the purpose of calibration, 

i.e. lower κψ values deal with complete separation issues and 
higher κψ values deals with extreme LR output issues [17]. 
Logistic regression should be preferred when the number of 
training and test speakers reaches more than 40 as the Cllr range 
tends to be lower when sample size is larger, and the Cllr mean 
is consistently lower than other three calibration methods.   

In real world FVC, we are often dealing with small sample 
sizes – especially when using linguistic features, given the not 

insignificant challenges around data collection and analysis 
[26]. In our testing, logistic regression yielded lower Cllr mean 
but higher Cllr range than rlogistic regression or the Bayesian 
model when using smaller numbers of training and test speakers 
were used. It is therefore extremely important to understand the 
trade-off between Cllr mean and Cllr range, i.e. how much 
variability is allowed given accuracy (Cllr) and should we aim 
for lower Cllr mean (higher accuracy) as long as the system 

stability (Cllr range) varies within certain range? Ultimately, it is 
our opinion that experts’ decisions should be driven by reducing 
uncertainty, rather than the absolute validity (i.e. the potential 
of a very low Cllr). Although it is difficult to set a generalised 
trade-off framework for all cases in the real world given the 
complexity and uniqueness of each individual case, we suggest 
that systems need to be tested multiple times with different sets 
or configurations of training and test data before applying it in 

real cases.  

5. Conclusion 

In the current study, four calibration methods have been 
compared in relation to sampling variability and sample size. 
Scores were simulated based on skewed distributions which 
provides some novelty in the testing of calibration method in 
LR-bared FVC. Although the results show that the Cllr range is 
relatively low using logistic regression, rlogistic regression and 
Bayesian model when score distributions are skewed, the 
current study only simulated scores using one set of skewness. 

It is likely that the score distributions are much more variable 
in real cases, especially when the sample size is small. In future 
work, we will test the robustness of calibration methods using 
scores derived different distributions.  
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