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ABSTRACT

Context. Magnetic arcades in the solar atmosphere, or coronal loops, are common structures known to host magnetohydrodynamic
(MHD) waves and oscillations. Of particular interest are the observed properties of transverse loop oscillations, such as their fre-
quency and mode of oscillation, which have received significant attention in recent years because of their seismological capability.
Previous studies have relied on standard data analysis techniques, such as a fast Fourier transform (FFT) and wavelet transform (WT),
to correctly extract periodicities and identify the MHD modes. However, the ways in which these methods can lead to artefacts re-
quires careful investigation.
Aims. We aim to assess whether these two common spectral analysis techniques in coronal seismology can successfully identify
high-frequency waves from an oscillating coronal loop.
Methods. We examine extreme ultraviolet images of a coronal loop observed by the Atmospheric Imaging Assembly in the 171 Å
waveband on board the Solar Dynamics Observatory. We perform a spectral analysis of the loop waveform and compare our observa-
tion with a basic simulation.
Results. The spectral FFT and WT power of the observed loop waveform is found to reveal a significant signal with frequency
∼2.67 mHz superposed onto the dominant mode of oscillation of the loop (∼1.33 mHz), that is, the second harmonic of the loop. The
simulated data show that the second harmonic is completely artificial even though both of these methods identify this mode as a real
signal. This artificial harmonic, and several higher modes, are shown to arise owing to the periodic but non-uniform brightness of the
loop. We further illustrate that the reconstruction of the ∼2.67 mHz component, particularly in the presence of noise, yields a false
perception of oscillatory behaviour that does not otherwise exist. We suggest that additional techniques, such as a forward model of a
3D coronal arcade, are necessary to verify such high-frequency waves.
Conclusions. Our findings have significant implications for coronal seismology, as we highlight the dangers of attempting to identify
high-frequency MHD wave modes using these standard data analysis techniques.
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1. Introduction

Coronal loops are often observed to vacillate in the plane of the
sky. In particular, transverse coronal loop oscillations are one of
the most widely studied phenomena in the solar atmosphere. To
date, substantial efforts involving theory, simulations, and obser-
vations have been made to extract the inaccessible yet impera-
tive physical properties of the loops by magnetohydrodynamic
(MHD) seismology. The commonly accepted model describes
the transverse perturbations as the free, instantaneous, and non-
axisymmetric (kink) eigenmodes of a cylindrical waveguide
(e.g., Roberts et al. 1984). However, alternative frameworks con-
sisting of an entire magnetic arcade also exist (Hindman & Jain
2014, 2015, 2018). A recent review of MHD waves and oscilla-
tions can be found in Nakariakov & Kolotkov (2020).

Initially, the spatially resolved motion of coronal loops
was discovered by the Transition Region and Coronal Explorer
(TRACE) in extreme ultraviolet (EUV) wavelengths as periodic
displacements induced by flaring activity (Aschwanden et al.
1999). Since then, further studies have shown that these
periodicities range from a few to several tens of minutes
(Aschwanden et al. 2002) and are found to be strongly correlated

⋆ Movie associated to Fig. 1 is available at
https://www.aanda.org

with the length of the loop (Goddard et al. 2016). However, their
excitation mechanism is debated. Hudson & Warmuth (2004)
suggested that a fast-mode shock wave expelled from a flaring
epicentre may be important. In a more recent observational cat-
alogue of 58 events, Zimovets & Nakariakov (2015) found that
the majority (57 events) of transverse oscillations are perturbed
from an equilibrium by nearby impulsive eruptions, instead
of shock waves. Zimovets & Nakariakov (2015) also reported
that 53 of these events were associated with flares, which may
imply a relationship between these two types of magnetic activ-
ities. Although it is agreed that flares play an important role in
the excitation of loop oscillations, why certain periodicities are
enhanced over others remains unknown.

In addition to impulsive loop oscillations, observational
efforts have revealed ambient, small-amplitude oscillations
that persist in the absence of any (obvious) driver with-
out a significant decay (Wang et al. 2012; Nisticò et al. 2013;
Anfinogentov et al. 2015; Duckenfield et al. 2018). Their peri-
ods of oscillation are similar to the impulsive regime and differ-
ent segments of the loop, from the footpoints to the apex, have
been shown to oscillate in phase (Anfinogentov et al. 2013).
Even though it is agreed that their source of oscillation must
be small scale and likely broad band (Hindman & Jain 2014),
their precise excitation mechanism is also unknown and several
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theories have been proposed. Nakariakov et al. (2016) consid-
ered small-amplitude oscillations as self-oscillatory processes
due to the interaction between quasi-steady flows at the loop
footpoints. Afanasyev et al. (2020) suggested that a broadband
frequency-dependent driver at the loop footpoints can lead to
the excitation of several waveguide modes. A recent and com-
prehensive 3D MHD simulation by Kohutova & Popovas (2021)
demonstrated that a harmonic footpoint driver is not a prerequi-
site for the excitation of loop oscillations.

Both regimes of transverse loop oscillations are found to pre-
dominantly exhibit the fundamental mode, that is, with nodes at
the footpoints of the loop and an anti-node at its apex. Higher-
order modes can also be excited; however, their presence is
rare in comparison (e.g., Verwichte et al. 2004). The primary
interest in understanding the mode of oscillation of a loop lies
in its seismological capability when used in tandem with 1D
models (Andries et al. 2005). Often, the approach is to compute
the ratio of a loop’s observed fundamental period P1 to its nth
overtone, that is P1/nPn (Duckenfield et al. 2018, 2019). For a
dispersion-less oscillation, it is believed that any deviation of
this period ratio from unity may suggest a plasma density strat-
ification within the loop (Andries et al. 2009). On the contrary,
Jain & Hindman (2012) demonstrated using sensitivity kernels
for a cylindrical waveguide that this period ratio only contains
broad spatial averages of the wave speed and is highly insensi-
tive to the loop density. Jain & Hindman (2012) suggested that it
is necessary to obtain inversions of several frequency modes and
additional non-seismic observations are needed to infer about the
density.

A clear verification of the existence of higher-order modes
however can be difficult to detect from observations. It is well
understood that the emission from coronal plasmas in EUV
wavelengths is optically thin. Observationally, this means that
a particular coronal loop is preferentially illuminated owing to
a superposition of intensities along the line of sight from local
heating processes. This unfortunate property of coronal wave-
lengths introduces a particularly challenging task of disentan-
gling the emission from nearby loops with fidelity, including for
mode verification (De Moortel & Pascoe 2012). To date, obser-
vational studies of transverse loop oscillations have excluded
the high frequencies in favour of the signal whose intensity is
brightest in the image foreground for seismological purposes
with 1D models (e.g., Nakariakov & Ofman 2001). Two com-
mon techniques for separating a dominant periodic signal from
its background include filtering frequencies within the data spec-
trum (e.g., Terradas et al. 2004; Morton et al. 2012) and track-
ing the peak intensity as a function of time (Li et al. 2017). The
foreground signal is calculated by creating a time series of the
maximum intensity of a loop (typically modelled as a Gaussian)
within a time-distance map and is often interpreted as the reso-
nant kink modes of a 1D isolated waveguide (e.g., Pascoe et al.
2016, 2020).

However, there are now multiple lines of evidence that
show oscillations are not only confined to the visible loop
and therefore a propagation of waves across the magnetic
arcade must be present (e.g., Jain et al. 2015; Allian et al.
2019; Conde et al. 2020). Noting the cross-field propagation
from observations, Hindman & Jain (2014, 2015) argued that
the true nature of a coronal loop wave cavity is multidi-
mensional, and an examination of the power spectrum of the
waveform is imperative for understanding the origin of signals
from observational data. In particular, Hindman & Jain (2014)
demonstrated that the presence of ambient, high-frequency sig-
nals from a coronal arcade may be indicative of a stochastic

excitation mechanism. Within their 2D framework, a source con-
sisting of a broad range of frequencies embedded in the back-
ground can excite fast MHD waves, which are trapped standing
waves longitudinal to the field, while propagating perpendicular
to the arcade. Moreover, Hindman & Jain (2014) postulated that
an observed impulsive waveform is therefore a superposition of
waveguide modes from an ambient background source and an
impulsive driver. Thus, in principle, the power spectrum of an
observed coronal loop time series contains seismic information
about the excitation mechanism and the arcade waveguide.

In a broader context, several studies have also revealed
that the power spectrum of dynamical processes in the solar
corona can follow a power-law distribution (Aschwanden 2011;
Auchère et al. 2014; Ireland et al. 2015; Kolotkov et al. 2016).
Aschwanden (2011) initially proposed that the power-law
behaviour of random processes in solar time series could be
due to the superposition of several small energy deposition
events. Auchère et al. (2014) analysed 917 events of EUV inten-
sity pulsations and found power laws with frequencies rang-
ing from 0.01−1 mHz. Similarly, Ireland et al. (2015) revealed
power-law properties from active regions in the 171 Å and 193 Å
wavebands. These authors argued that the power-law spectra
of coronal time series must be considered for the automation
of detection algorithms, the correct interpretation of the under-
lying physical processes and coronal seismological inferences.
Ireland et al. (2015) also cast doubt on how frequencies can
be extracted from data due to the unknown efficacy of a pri-
ori defined background noise models. While much attention has
been given to the power-law distribution of solar time series
and their associated noise models, a careful investigation into
how the standard analysis techniques may lead to artefacts in
the context of coronal seismology remains to be satisfactorily
addressed.

The hypothesis of our study is as follows: if a coronal loop
is observed to oscillate with a single frequency, then diminish-
ing the strength of that signal should accentuate the presence
of ambient wave frequencies, if they exist. We test this by per-
forming a spectral analysis on the waveform of an observed
coronal loop oscillating with a single frequency and compare
our results with a synthetic loop embedded in a background
of noise. We show that the identification of wave frequencies
from an observed oscillating loop is non-trivial and the shape
of the waveform indirectly influences the detected frequencies.
In Sect. 2 we provide an observational overview and describe
our data analysis techniques. In Sect. 3 we present our results.
Finally, we discuss the implications of our findings and sum-
marise key results in Sect. 4.

2. Data and analysis methods

2.1. Observational overview

For our study, we utilise the same observational event as in
Allian et al. (2019). In their work, the authors developed a novel
spatio-temporal analysis method to examine the periodicities of
faint and bright transverse loop oscillations. Allian et al. (2019)
found periodicities ranging from 9 to 13 min between loops in
proximity, which was later confirmed by Pascoe et al. (2020).
Pascoe et al. (2020) also reported the absence of a higher fre-
quency component from these loops. In this work, we use a
combination of spectral techniques to investigate whether such
high-frequency oscillations exist.

The coronal loop of interest, also referred to as Slit 1
in Allian et al. (2019), was observed on 2014 January 27 off
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Fig. 1. Top panel: snapshot of our region of interest observed by
SDO/AIA at 01:00:12 UT. The origin of our slit corresponds to (x, y) =
(−1111,−366) arcsec. Bottom panel: time-distance map of a bright
coronal loop exhibiting clear transverse oscillations with a dominant
periodicity of ∼13 min. The dashed green lines highlight the two pixel
locations used for further analysis.

the southeastern limb of the Sun with the Atmospheric Imag-
ing Assembly (AIA; Lemen et al. 2012) on board the Solar
Dynamics Observatory (SDO; Pesnell et al. 2012). Our analysis
utilises AIA 171 Å data, with a spatial resolution of 0.6′′ pixel−1

(≈0.435 Mm) and temporal cadence of 12 s. This dataset was
chosen due to the high-quality and well-contrasted observable
conditions of a bright coronal loop in the image foreground. A
nearby M1.0 class flare initiated around 01:05:12 UT and per-
turbed the apex of several loops. The top panel of Fig. 1 shows
the region of interest in which transverse oscillations took place
at the arcade apex and the slit (white line) used to create the
time-distance map. The resultant time-distance map we use for
our study is shown in the bottom panel of Fig. 1. Prior to the flare
onset, the loop appears as a compact shape with non-uniform
brightness, which spans a projected distance of approximately
3 Mm within the slit. Thereafter, the loop exhibits a clear trans-
verse oscillation with a dominant periodicity of ∼13 min.

2.2. Spectral methods

Our aim is to investigate the frequency content of the raw data
in search of a high-frequency component superposed onto the
bright loop shown in the bottom panel of Fig. 1. To do this,
we firstly employed a fast Fourier transform (FFT) of the time-
distance map. The data is apodized in time and space with a cos2

curve to mitigate frequency leakage before computing the FFT
along each dimension. Other window functions were tested for
verification and produced similar results; which, for brevity, is
omitted. The power spectrum is then calculated as the magnitude
squared of the FFT spectrum and is normalised with respect to
the signal variance, σ0

2 (Torrence & Compo 1998). It is worth
noting that, apart from the standard procedure outlined above,

no detrending or smoothing is applied to the data. Time-distance
maps of loop oscillations are often averaged within neighbour-
ing pixels to increase the signal-to-noise ratio of the data (e.g.,
Pascoe et al. 2016), and therefore any high-frequency signal is
decimated, causing bias in the interpretation of the power spec-
trum. In this work, we do not perform any smoothing and the
full cadence and pixel resolution of the original data is retained
to obtain any fine-detail intensity variation of waves that may
be present. This data has temporal (νmax) and spatial Nyquist
(kmax) frequencies of approximately 41.67 mHz and 1.15 Mm−1,
respectively.

To assess the significance of wave components in the FFT
spectrum, we carefully selected an appropriate background noise
model. The theoretical study of Hindman & Jain (2014) demon-
strated that a white noise source can excite fast MHD waves,
which travel throughout the arcade waveguide. As the aim of
our study is to isolate such background frequencies, which
are likely to have a constant amplitude for all frequencies, we
use a null hypothesis test based on a theoretical white noise
spectrum and calculate the 5% significance threshold (95% con-
fidence level) from the data (Torrence & Compo 1998). Fre-
quencies with power greater than the significance threshold are
identified as real signals from waves traversing the coronal loop.
Further justification for choosing such a background noise model
is corroborated with a basic simulation, which is described in
Sect. 3.2.

Furthermore, we validate our initial FFT analysis and
account for any non-stationary signals that may be present within
the data by performing a wavelet analysis (Torrence & Compo
1998). This technique is often preferred over a traditional FFT
analysis in coronal seismic studies owing to its ability to distin-
guish both the frequency and temporal content of a given signal
(e.g., Duckenfield et al. 2019; Pascoe et al. 2020). We also relax
the assumption of a white noise background in our wavelet anal-
ysis to account for any frequency dependence from the data and
estimate the corresponding 95% confidence levels of the wavelet
power.

3. Results

3.1. Observed waveform

The top panel of Fig. 2 shows the resultant 2D FFT power
spectrum of the oscillating coronal loop data as a function of
temporal frequency, ν, and spatial frequency, k. As expected,
the peak power occurs at the fundamental temporal frequency
ν1 ≈ 1.33 mHz, corresponding to that of the dominant period
of the loop (∼13 min). Surprisingly, we also find power at fre-
quencies greater than the fundamental mode of the loop fol-
lowing a near-linear ridge, suggesting that the observed 13 min
waveform is almost dispersion-less. The relatively low power
of the flare-induced high frequencies (ν & 10 mHz) is currently
unclear and has been previously reported (Liu et al. 2011). One
obvious possibility is that the signals produced by the flaring
driver at these frequencies exist, but are much weaker in strength.
Hindman & Jain (2014) demonstrated that the presence of ambi-
ent power at high frequencies can be attributed to fast MHD
waves propagating across finer spatial structures of a coronal
arcade, and could be due to ambient stochastic sources embed-
ded within the background.

The log-log FFT power of each pixel domain and their mean
is shown in the bottom panel of Fig. 2. The distribution of power
in each pixel appears flat at high frequencies. Noticeably, the
peak frequencies are equidistant with decreasing strength, as we
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Fig. 2. Top panel: two-dimensional FFT power spectrum of the time-
distance map shown in the bottom panel of Fig. 1 as a function of spa-
tial frequency, k, and temporal frequency, ν. The power is normalised
with respect to the variance of the time series signal within each pixel.
The peak power occurs at a fundamental frequency of ν1 ≈ 1.33 mHz,
corresponding to the dominant 13 min period of the loop. Signatures
of high-frequency components are also present at ν > ν1 with decreas-
ing power. Bottom panel: log-log plot of the FFT power as a function
of frequency. The black dots represent the distribution of spectral power
within each pixel domain. The solid black line indicates the mean power
and the dashed line indicates the 95% confidence level estimated from
the theoretical white-noise spectrum. The shaded red region highlights
a secondary significant frequency band with a peak at ∼2.67 mHz.

would expect to observe from a signal whose harmonics have
been excited. This pattern is seen more clearly in the inset plot
of Fig. 2, showing the mean power distribution as a function
of a frequency ratio (normalised with respect to ν1). Evidently,
the power peaks at several integer multiples of the fundamen-
tal frequency. Pascoe et al. (2020) state that they found no evi-
dence of a higher frequency component in search for overtones
from these loops. However, we can clearly see that signatures
of such high-frequency harmonics exist within the raw data. A
white noise hypothesis test supports our initial claim that the sec-
ond harmonic (∼2.67 mHz) is significant and present within the
waveform, based on the estimated 95% confidence level. At this
initial stage of analysis, it could be possible to identify this fre-
quency as the higher-order overtone of the loop. A more thor-
ough treatment, of course, requires a multitude of time-distance
maps spanning the projected loop in search of a clear phase dif-
ference. From this method, we were also unable to find con-
vincing evidence of phase change from this loop. As shown in
this work, however, the intensity variations corresponding to the
harmonics of an oscillating loop cannot be easily distinguished
within coronal time series.

To study the observed waveform shown in the bottom panel
of Fig. 1 in greater detail, we considered two cases: a pixel
located on the bright loop where the transverse oscillations
appeared most prominent, and another located away from the
loop where the transverse oscillations were not as visible. Our
objective is to isolate any high-frequency waves that may be
superposed on the bright loop. We now describe the first case.
Following the oscillation start time at approximately 01:10:12
UT, the bright loop exhibits a contraction that causes it to drift off
the slit before beginning its dominant 13 min cycle. As a result,
we extracted a shorter time series (x = 18 Mm) of ∼40 min dura-
tion starting from 01:20:12 UT, where the loop appeared most
stable for three cycles before decaying and examined the raw

AIA waveform. This is also motivated by our expectation of the
relatively short-lived duration of high-frequency waves, whose
presence can go unnoticed within longer duration time series.
The top left panel of Fig. 3 shows the extracted waveform, which
is normalised with respect to the standard deviation (σ0) of the
signal. In addition to the pronounced 13 min waveform, there
is a clear presence of ambient, high-frequency jitter embedded
within three cycles of the flare-induced waves (see Allian et al.
2019). The wavelet power of the observed waveform is shown
in the middle of Fig. 3 as a function of frequency and time.
We find that the wavelet transform (WT) of this time series also
results in two statistically significant frequencies at ∼1.33 mHz
and its second harmonic (∼2.67 mHz), in accord with our initial
FFT analysis. At present, we posit that the ∼2.67 mHz frequency
component with relatively low power is either due to the pres-
ence of an ambient stochastic driver superposed onto the dom-
inant flare-induced waves or a weak signature of the overtone
of a neighbouring loop. In an attempt to isolate the ∼2.67 mHz
component, we applied a bandpass filter to the raw AIA wave-
form between 2–4 mHz. The bottom left panel of Fig. 3 presents
the filtered signal that we suspect to be embedded within the
loop, which is over plotted to provide a comparative visuali-
sation relative to the total observed waveform. Clearly, these
∼2.67 mHz (6 min) oscillations permeate throughout the coronal
loop, however, their presence within the raw data is practically
indiscernible as a result of the high-power contribution from the
dominant ∼1.33 mHz component. A similar waveform is shown
in the right panel of Fig. 3 for the faint region case (x = 23 Mm)
in the same duration. Signatures of ∼2.67 mHz frequencies are
still present in the wavelet power; however, this component falls
below the 95% confidence interval likely because of the rela-
tively poor signal-to-noise ratio of the waveform. The frequency
content for all pixels can also be inferred by assessing the distri-
bution of FFT power shown in the bottom panel of Fig. 2.

The amplitude of the reconstructed signal from the bright
loop is approximately 25% of the total intensity. We estimated
the uncertainty of this reconstructed signal by calculating the
expected noise level of our observed waveform. Following
Yuan & Nakariakov (2012), the noise level in the 171 Å wave-
band is calculated according to Poisson statistics to be (0.06I +
2.3)1/2, where I is the overall intensity in units of DN. For typi-
cal intensity values within the bright loop (∼150 DN), this yields
an error of ±3 DN. This value is around ±0.1σ0 in the standard-
ized units of intensity. The intensity of the reconstructed signal is
around two to three times higher than this estimated noise level,
and we are left to believe that the 2.67 mHz component repre-
sents some real mechanism. However, as we demonstrate with a
basic simulation in the following section, this component is an
artefact that arises because of the non-uniform brightness of the
observed coronal loop.

3.2. Synthetic waveform

Now that we have carefully examined the spectral content of the
observed waveform, we perform a basic simulation of a coro-
nal loop oscillating with a single periodicity. Our goal is to bet-
ter understand the presence of the harmonics observed in the
raw AIA data. To this end, we synthesised a time-distance map
of a coronal loop oscillating with a single periodicity (13 min)
observed at the AIA cadence and pixel resolution. The loop is
simulated in a 45 × 400 domain, which represents a 25 Mm
long slit observed for a duration of 80 min, respectively. For
simplicity, we assume that the loop cross-sectional brightness
is Gaussian across the slit and that the amplitude and width of
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Fig. 3. Analysis of the observed waveforms from the bright loop (left) and the faint oscillatory region (right) highlighted by the green lines in
the bottom panel of Fig. 1. The top panels show the raw waveforms normalised with respect to the standard deviation. Ambient signatures of
high-frequency signals are present in addition to the dominant 13 min oscillations. The middle panels shows the wavelet power of the raw signals.
For the bright loop, two statistically significant oscillatory frequencies are present at approximately 1.33 mHz and 2.67 mHz, which is highlighted
by the blue contours. The bottom panels show the 2–4 mHz bandpass filtered signals (red) overlaid onto the observed waveforms (grey). There are
signatures of ∼6 min periodic signals superposed on the raw waveforms.

the loop are constant throughout its lifetime. The loop oscillates
sinusoidally with a single frequency as

y(t) = ξ0 cos(2πνt + φ)e−t/τ + trend, (1)

where ξ0 is the displacement amplitude of the loop, ν is the fre-
quency of oscillation, and φ is the phase offset. The sinusoid is
modulated with an exponential decay term with a decay time τ,
as is commonly expected for flare-induced transverse waves. A
linear trend is also included across the slit to account for the
observed growth in the time-distance map in Fig. 1, perhaps
resulting from a change in the magnetic field topology from
the flare. Finally, we include a constant background intensity
that consists of contributions from both Poisson noise and arti-
ficial white noise at their expected levels. The former is added
to mimic photon noise within each AIA pixel and the latter to
account for any additional broadband source that may be present
(Hindman & Jain 2014).

Figure 4 demonstrates the hierarchical process we used
to infer about the waveform of the synthetic loop. The top
panel shows the time-distance map of a loop oscillating with
a single periodicity embedded within a uniform background of
noise. The displacement amplitude of the loop is 5 Mm with a
13 min periodicity that suddenly oscillates. The loop displace-
ment decays with an e-folding time of 45 min. The middle panel
shows the 2D FFT power spectrum of the synthesised time-
distance map. We immediately find that the synthetic power
spectrum reflects a striking resemblance to that of the observed
loop in Fig. 2. Similarly, the bottom panel of Fig. 4 shows
the log-log plot of the FFT power as a function of tempo-
ral frequency, where there is a significant power enhancement
around 2.67 mHz in addition to the expected 1.33 mHz. The
high-frequency tail of the power spectrum is also uniformly dis-
tributed, reinforcing our claim that the observed waveform is

likely to be dominated by a white-noise source. A close inspec-
tion of the bottom panel in Fig. 4 reveals that the FFT power
decreases as ν−1.5 for at least three harmonics before tending to
a more uniform distribution at higher frequencies, suggesting a
power-law model might be appropriate within the low-frequency
range. This is particularly suspect since the synthetic waveform
was created with only a dominant white-noise source contribu-
tion. Hence, the overall shape of a 1D FFT spectrum can be dic-
tated indirectly by the observed shape of the waveform itself.
Nevertheless, it is clear that the ∼2.67 component of the syn-
thetic waveform is also significant and requires further investi-
gation.

We now proceed to analyse the time series of the synthetic
waveform of the bright loop in the same manner as described
in Sect. 3.1. The top panel of Fig. 5 shows the raw synthetic
waveform in which both noise sources are included. The green
lines overlaid onto the raw waveform represents that of the noise-
free loop. The wavelet power in the middle panel of Fig. 5
shows a significant power enhancement at ∼2.67 mHz through-
out the duration of the time series, and the corresponding band-
pass filtered signal in the bottom panel also shows signatures
of ∼2.67 mHz signals embedded within the loop waveform. We
reiterate that no wave frequency other than the 1.33 mHz com-
ponent was included in our set-up.

The presence of the high-frequency harmonics in Fig. 4
and Fig. 5 can be explained as follows. Consider the wave-
form within a single pixel, such as that in the top left panel of
Fig. 5. Since the loop has a non-uniform width that is defined
by its brightness, or density inhomogeneity, then the time series
from a single pixel contains information about the loop period-
icity and the lifetime of brightness within that pixel. In other
words, we may think of the resultant waveform as convolution
with a Dirac comb spaced every ∼13 min in time and a Gaussian
shape that is defined by the loop of width σx traversing a single
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Fig. 4. Basic simulation of a coronal loop that suddenly oscillates with a
single periodicity of 13 min, embedded within a uniform background of
noise. Top panel: synthetic time-distance map of a loop oscillating with
a single periodicity that exhibits a slow exponential decay and linear
drift along the slit. Poisson noise and white noise sources have been
included. Middle panel: two-dimensional FFT power of the simulated
waveform shown in the above panel. The pattern of frequencies is akin
to the observed waveform shown in Fig. 2, that is the power peaks at
1.33 mHz and at several of its harmonics. Bottom panel: log-log plot of
the FFT power of the synthetic waveform. The symbols and colours are
the same as in Fig. 2.

pixel. Therefore, the power spectrum of such a waveform yields
another Dirac comb with a frequency of ν1 ≈ 1.33 mHz mul-
tiplied by another Gaussian of width proportional to σ−1

x and
the spectral power of the time series decreases like a Gaus-
sian (further discussed in Appendix A). As a result, frequencies
greater than ν1 are essentially aliases of this mode. In reality, an
observed coronal waveform contains more time-dependent fea-
tures that are non-trivial to simulate and may cause further dif-
ficulty in interpreting the frequency content, for instance, from
a change in width or periodicity of the structure. The wavelet
power of the waveform contains only up to the second harmonic,
as opposed to the FFT spectrum, which is primarily due to the
resolution of the wavelet filter itself (see Torrence & Compo
1998).

3.3. Comparison of the two waveforms

It is now instructive to return to the observed and synthetic
waveforms to better visualise the high-frequency oscillatory
behaviour (or lack thereof) in the entire spatial domain. Figure 6
shows a comparison of the 95% significant 2–4 mHz signals
from the observed (top) and synthetic (bottom) data. Visibly,
the dominant 13 min component of the loop is still present in
both cases despite diminishing its strength. This reinforces our
previous claim that frequencies greater than the dominant mode

Fig. 5. Same as Fig. 3 but for the synthetic loop waveform. The green
line overlaid in the top panel represents the 13 min synthetic wave-
form in the absence of any noise. The presence of the second harmonic
(∼2.67 mHz component) in the wavelet power is artificial and arises as
a result of the periodic but non-uniform (Gaussian) brightness of the
loop.

Fig. 6. Reconstructed coronal loop waveforms (2–4 mHz) of the
observed (top) and synthetic data (bottom). The dominant oscillatory
(1.33 mHz) pattern is still visible despite diminishing its frequency. Sig-
natures of small-scale oscillatory behaviour are also present. In both
cases, these oscillations are completely artificial and arise owing to the
non-uniform brightness of the loop in the presence of noise.

(ν > ν1) of the loop are essentially aliases and arise as a result of
the periodic but non-sinusoidal shape of the coronal loop wave-
form. This result has severe consequences for coronal seismol-
ogy, as we demonstrated with unambiguous examples that one
can only confidently infer about the dominant frequency of a
given signal. Moreover, attempts of isolating or filtering a speci-
fied frequency band of a coronal waveform can lead to artificially
enhanced oscillations and cannot be used as evidence of high-
frequency behaviour. The presence of high-frequency oscilla-
tions can be supported by examining the 2D power spectrum
as a function of k and ν. This is because a high-frequency com-
ponent of a coronal loop results in a shift in spatial frequency
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that is not evinced within a 1D spectrum (see Appendix B). To
re-emphasise, our results suggest that these frequencies are arte-
facts that arise because of the inability of the spectral techniques
to distinguish periodic but non-sinusoidal signals.

4. Discussion and conclusions

We have performed a spectral analysis of an observed coro-
nal loop oscillating with a dominant periodicity of 13 min
(∼1.33 mHz) in search of a high-frequency component. Using
a combination of FFT and wavelet analysis, we ‘found’ evi-
dence of a significant second harmonic component (∼2.67 mHz)
embedded within the dominant mode of oscillation of the loop.
A basic simulation of the loop revealed that this component,
including frequencies greater than the fundamental component,
is artificial. These high-frequency harmonics arise as a result
of periodic but non-sinusoidal oscillations, the shape of which
is defined by the non-uniform brightness of the coronal loop
itself. We argued that, with just these techniques alone, high-
frequency signals from an oscillating loop cannot be identified
with fidelity. We demonstrated that the power spectrum of an
observed coronal waveform and its frequency dependency may
be better understood by inspecting the 2D spectrum as a func-
tion of spatial and temporal frequency. In reference to our initial
hypothesis, it is now clear that diminishing the strength of the
dominant frequency cannot confidently reveal the existence of
high-frequency waves. Despite using two common and indepen-
dent analysis techniques in coronal seismology, and adjusting
our background noise assumption, these signals are still iden-
tified as real signals from both methods. In the following sub-
sections, we explore the plausibility of detecting high-frequency
oscillations and the implications for coronal seismology.

4.1. High frequencies from a coronal loop: Real or artificial

Our observed results presented in Sect. 3.1 demonstrates ambient
signatures of the second harmonic (∼2.67 mHz) of a coronal loop
superposed onto the dominant mode of oscillation of the loop,
using two independent analysis techniques in coronal seismol-
ogy. The FFT and wavelet spectrum identified this component as
a ‘real’ signal from their corresponding 95% confidence levels.
Only by examining the 2D FFT spectrum together with a basic
simulation (see Sect. 3.2) were we able to rule out the possibility
of a genuine signal being present. However, interestingly, the peri-
odicity of this signal (∼6 min) and its persistence is comparable to
that of the loop several hours before the impulsive flare, which was
shown to exhibit small-amplitude 9 min oscillations and may indi-
cate a stochastic driver (see Allian et al. 2019). Our interpretation
is similar to that of Nisticò et al. (2013) who derived an empiri-
cal model of transverse loop oscillations as the response to two
distinct drivers: a continuous non-resonant source and an impul-
sive driver. A more rigorous mathematical framework developed
by Hindman & Jain (2014) suggested that fast MHD waves ema-
nating from a stochastic (white) source can excite the resonant
modes of an arcade waveguide (see Fig. 8 of Hindman & Jain
2014). Within the 2D model of Hindman & Jain (2014), the pri-
mary role of the flare is to enhance the power of frequencies that
are already present within the background of the arcade. Although
the FFT and wavelet power of this component from the observed
loop waveform (left panel of Fig. 3) is slightly more enhanced than
that of the synthetic waveform (Fig. 5), we believe insufficient evi-
dence remains to suggest the presence of a continuous, resonant
source superposed on the bright loop within the duration of the
flaring activity.

It is also natural to question whether these artificial harmon-
ics arise owing to the basis functions (complex sinusoids) of
the FFT and, by extension, the WT. It is well known that the
FFT suffers from the distortion of non-sinusoidal signals. We
speculate that a more suitable approach of analysing solar coro-
nal waveforms could be accomplished using the adaptive (and
basis independent) empirical mode decomposition (EMD) algo-
rithm, which only a handful of studies previously have explored
(e.g., Huang et al. 1998; Terradas et al. 2004; Morton et al.
2012; Kolotkov et al. 2016). For instance, Terradas et al. (2004)
employed EMD filtering on TRACE observations of coronal
loops oscillations to obtain the spatial distribution of propagat-
ing and standing waves of periods 5 and 10 min, respectively.
Terradas et al. (2004) suggested that the intensity fluctuation of
the EMD filtered 10 min period may be indicative of the radial
overtone of the loop being excited. While we demonstrate in this
work that filtering a frequency band of an observed waveform
can result in artificial frequencies, even with appropriate signifi-
cance testing, it is clear that further work is needed to explore the
applicability of the EMD algorithm in solar applications. This
could be the subject of future work.

4.2. Implications for coronal seismology

The discussion of Sect. 4.1 explores whether the background
oscillatory signals of an observed waveform are genuine or
not. To date, seismological inferences have heavily relied upon
the standard FFT and WT techniques to extract the frequen-
cies of oscillating coronal loops. Our results highlight the dan-
gers of over-interpreting signatures of high frequencies from
observed coronal waveforms and add to the complexity of their
nature reported in previous works. Ireland et al. (2015) high-
lighted the importance of incorporating the power-law distri-
bution of coronal waveforms including appropriate background
noise models for the correct seismological inference and the
automation for oscillatory detection algorithms. While our work
has focussed on large-amplitude oscillatory signals, Ireland et al.
(2015) analysed quiet-sun regions, including loop footpoints.
However, several studies have shown the prevalence of small-
amplitude oscillations that persist from the loop footpoints to
their apex in quiet-sun regions (Anfinogentov et al. 2013, 2015).
Recent high-resolution observations have also revealed fine-
scale coronal loop strands from the Hi-C instrument, which
are almost unresolvable by SDO/AIA (see Aschwanden & Peter
2017; Williams et al. 2020a,b) and, as a result, the emission from
nearby strands are likely to contribute to the overall emission of
what we perceive as the visible coronal loop. From our results
presented in this work, it is now clear that the power spectrum
of signals from coronal structures may consist of artefacts, such
as higher harmonics and power-law behaviour solely from the
width of the observed loop waveform. Although the power spec-
trum of small-amplitude oscillations is almost comparable to the
background noise, we believe they can contribute to the over-
all spectrum and can result in biases, particularly when applying
image processing techniques or any non-linear manipulation of
the raw data. However, as we have demonstrated, it is possible to
rule these frequencies out by consulting the 2D FFT and wavelet
power of the waveform in tandem with a basic simulated model.
We also note that while our work has focussed on the oscilla-
tion of a coronal loop, our inference applies to any transversely
oscillating structure that consists of a non-uniform brightness.

While our basic simulation has successfully elucidated the
presence of high-frequency components from the observed data,
a more realistic set-up is required to model how the emission of
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EUV plasmas evolve in space and time. We suggest that a for-
ward modelling approach of an entire 3D coronal arcade may
be prudent to account for more complex configurations (e.g.,
Peter et al. 2006). Similarities from the observed and 3D mod-
elled waveforms may then be revealed, for instance, using cross-
correlation analysis. A significant improvement in the spatial and
temporal resolutions of the detector may also be necessary to
convincingly identify high-frequency modes from observations.

Finally, we comment on the validity of searching for
loop overtones from observations (e.g., Pascoe et al. 2016;
Duckenfield et al. 2019). Such studies extract the dominant (fore-
ground) signal before conducting a spectral analysis using either
FFT or WTs by estimating the position of peak brightness as a
function of time where the projected loop exhibits a clear phase
difference (also see Verwichte et al. 2009). From this, we find non-
negligible signatures of up to the artificial second harmonic of the
loop due to the sampling from its non-uniform brightness in the
FFT power. On the other hand, the wavelet power retains the fun-
damental mode but generally smooths out the presence of the arti-
ficial second harmonic. Thus, from this approach, a wavelet anal-
ysis with appropriate significance testing can be suitably used in
seismic studies as others have envisioned.
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Appendix A: Two-dimensional power spectrum a

synthetic coronal loop oscillating with a single

frequency

The purpose of this appendix is to demonstrate an ambiguity
of identifying frequencies, and in particular harmonics, within
observations of coronal loop oscillations. We show the presence
of these frequencies, and the overall distribution of the power
spectrum, is indirectly influenced by the non-uniform brightness
of the loop.

Figure A.1 shows the time-distance maps of synthetic loops
(top) and their 2D power spectrum (bottom). The loop in the left
panel has a full width at half maximum (FWHM) of 3.0 Mm and
the right panel has a width of 1.5 Mm. Both loops oscillate sinu-
soidally with a single frequency of 1.33 mHz. It can be deter-
mined that the spectrum of a bright loop oscillating with one
frequency also contains power at several integer multiples of the
fundamental mode. However, these harmonics are artificial and

can be explained as follows: Since the synthetic loop is mod-
elled to have a width that is Gaussian at an instant in time, then
its Fourier transform yields another Gaussian in the frequency
domain. A time series of the perturbed loop then contains peri-
odic, Gaussian-like oscillations. Indeed, as the Gaussian widths
are related in the spatial and frequency domains as σxσk ∝ 1
(e.g., Hartmann 2007), then the spectrum of a thin loop shows
more pronounced peaks at higher harmonics (shown in the bot-
tom panel Fig. A.1). The relative power of each harmonic con-
tains information about the overall spatial width of the loop.
Hence, as a result of the non-uniform brightness of an oscil-
lating loop (modelled as a Gaussian here), its frequency spec-
trum contains power at every integer multiple of the fundamental
mode, which decreases like a Gaussian. More succinctly, power
at integer multiples of the fundamental mode arises because
of the periodic but non-sinusoidal waveform of the intensity
time series of a loop, the shape of which is defined by its
width.
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Fig. A.1. Simulated, noise-free time-distance maps (top) and their 2D power spectrum (bottom). Left panel: a thick (FWHM = 3.0 Mm) coronal
loop oscillating at a single frequency of 1.33 mHz. Right panel: equivalent to the left panel but for a thin (FWHM = 1.5 Mm) loop. The relative
increase in power at high frequencies, compared to the thick loop, arises due to the Fourier transform of a narrow Gaussian. In both cases, the
harmonics arise owing to the periodic but non-sinusoidal waveform of the loop.
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Appendix B: Signatures of high-frequency

oscillations

Figure B.1 shows a faint loop, superposed onto the bright loop,
oscillating with a frequency 4 mHz, that is at the third harmonic
of the bright loop. The intensity of the background loop is 50%
of the foreground loop. Signatures of high-frequency oscillations
are clearer in the 2D FFT spectrum, but barely within the 1D
spectrum.

Fig. B.1. Same as Fig. 4 but for a faint background loop superposed onto
the bright loop. The fundamental frequency of the faint loop (4 mHz) is
3 times that of the bright loop. The 1D FFT spectrum is almost identical
to that of the single loop in Fig. 4. However, the 2D spectrum shows
deviations at different k from the expected single loop, suggesting a
high-frequency signal may be present.
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