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Abstract

Data-driven models in Structural Health Monitoring (SHM) generally require comprehensive datasets, recorded from
systems in operation, which are rarely available. One potential solution to this problem, considers that information
might be transferred, in some sense, between similar systems. As a result, a population-based approach to SHM
suggests methods to both model and transfer this valuable information, by considering different groups of structures
as populations. Specifically, in this work, a method is proposed to model a population of nominally-identical systems,
where (complete) datasets are only available from a subset of members. The framework attempts to build a general
model, referred to as the population form, which can be used to make predictions across a group of homogeneous
systems. First, the form is demonstrated through applications to a simulated population – with a single experimental
(test-rig) member; secondly, the form is applied to data recorded from a group of operational wind turbines.

Keywords: Population-based Structural Health Monitoring; Homogeneous Populations

1 Population-based SHM

Conventionally in Structural Health Monitoring (SHM), a predictive model is learnt using the data recorded from
a single system, and the model is expected to generalise to future measurements from that system in operation.
For a given structure, however, the recorded signals are usually limited; corresponding to only a fraction of the
potential operational, environmental and damaged conditions; additionally, the label set (used to describe what each
of the measured signals represents) might be unavailable or incomplete. In consequence, if a framework can transfer
this missing information between groups of similar structures, it should bring significant advantages to practical
applications of SHM.

This issue of missing information motivates a population-based approach to SHM [1, 2, 3, 4, 5, 6, 7]. The aim of this
new technology is to facilitate the transfer of valuable knowledge between groups of similar systems, i.e. populations.
Intuitively, the type of population is important, as this will define what knowledge can be transferred, and by what
method. This paper focusses on the most obvious (and conceptually basic) type of population, in which all members
within the group can be (informally) considered as nominally-identical [3]; for example, wind turbines within a wind
farm. Such a population is refereed to as homogeneous, and in certain cases, a general model (referred to here as the
population form) can used to represent the behaviour of the entire population, and infer the presence of damage
across the group.

Importantly, this paper is the first in a series [2, 5, 6, 7] introducing various methods for population-based SHM.
While this work focusses on the most uniform case – the application of a population form to model nominally-identical



systems – papers [2, 4, 5] concern more involved technologies, of a different nature. These methods are introduced by
considering (and defining) groups of structures beyond the nominally-identical case; more specifically, heterogeneous
populations. These populations can contain more disparate members - for example, different designs of suspension
bridge. While these structures may still be similar, they are clearly not nominally identical.

The layout of this paper is as follows. Section 2 attempts to (more rigorously) define homogeneous populations,
including the strongly-homogeneous case; the form is also defined, which can be applied in certain realisations.
Section 3 extends a simulated case study (introduced in [3]), to demonstrate the form for the strongly-homogeneous
case. Through applications to measured data from an operational wind farm, Section 4 demonstrates how the
complexity of the from can be increased, to model the population behaviour, even when it no longer represents the
strongly-homogeneous case. Finally, Section 5 discusses the limitations of the form (applied in this work) and suggests
alternative methods (and forms) that could be used represent homogeneous populations as thier behaviour becomes
more complex.

2 Homogeneous populations and forms

A convenient language to define homogeneous (as well as heterogeneous) populations borrows terminology from graph
theory; these ideas are formally introduced in the context of structures in papers [2, 4] of the series. For clarity,
definitions are provided with general terminology here, however, these relate directly to the ideas presented in [2, 4].

An important relation is structural equivalence; briefly, this implies that the graphs used to represent structures are
topologically equivalent, with ground-nodes occurring in the same location – an example of two structurally-equivalent
graphs is presented in Figure 1.

(a) (b)

Figure 1: Two (trivially) topologically-equivalent graphs, that could be used to represent to stucturally-equivalent
wind trubines. Ground nodes are shaded.

This then leads to:

Definition 1. A population of M structures {Si}
M
i=1 is homogeneous if the individual members are pair-wise

structurally equivalent, with material, geometric, and physical parameters Θi (i.e. graph attributes) that can be
considered as random draws from an underlying base-distribution p(Θi).

As a result, the distribution p(Θi) captures the population variance. If any pair of members are not structurally
equivalent, the population is heterogeneous.



2.1 Strongly-homogeneous populations

A further restriction considers the strongly-homogeneous case. In this scenario, the densities p(Θi) associated with
the parameters of the population (attributes from the associated graphs [2]) are considered to be ‘compact’ and
unimodal. In the strictest sense, the associated densities would be Dirac functions over the parameter values, such
that each member is an identical system. A more realistic example, however, considers a population of structures
which are all the same model but subject to manufacturing tolerances. Generally, in this setting, methods from
conventional SHM [8] can be applied to population data, as demonstrated in the first case study, in Section 3 here.

It is important to note, however, that a strongly-homogeneous population represents an ideal-case. Returning to the
wind farm example, while the population is homogeneous in terms of structural equivalence, it is unlikely that the
structures will be strongly-homogeneous. For example, consider the complex distributions that will (inevitably) be
associated with the parameters relating to the boundary conditions at the seabed, or local interactions with the wind,
as well as differences relating to operational practice. In consequence, the second case study (Section 4) demonstrates
one method for moving beyond the strongly homogeneous case.

2.2 The population form

In general terms, the form is some model that can be used to represent a population of homogeneous systems;
therefore, it can be considered as a generic representation of the population; more specifically [3],

Definition 2. The population form is any combination of model and/or feature space that can be used as a
representation of a population of systems, in the context of SHM.

In view of this definition, the model should be validated within the population and chosen feature space, such that it
is capable of representing the variation between individuals. While variation between members is not significant when
applying the form to the strongly-homogeneous case, upon moving to more realistic examples, the form must become
more complex to capture variation between members – as will be demonstrated in the case studies. As a result, a
more diverse set of alternative technologies become relevant.

In the case studies here, a functional (statistical) model of the form (Gaussian process regression [9]) is defined using
the available benchmark normal-condition data. Importantly, these data are incomplete (or absent) from several
members within the population. Through comparisons between future measurements and the form, the model can be
used to inform novelty detection across the entire population, in order to monitor the condition of each member.

2.2.1 Gaussian process regression as a functional representation of the form

As discussed, any suitable combination of model and/or feature space can be used to represent the population
form. In this work, as functional features are used in both case studies, a regression tool is applied – specifically,
Gaussian Process (GP) regression1. Gaussian processes can be used to solve regression problems through a Bayesian
machine learning approach [9, 10]. The GPs exhibit a number of desirable properties for this application: they
are non-parametric, automatically return confidence intervals, and they are capable of modelling data with a low
signal-to-noise ratio. A brief review of the theory is provided here; details can be found in [9, 10].

For a set of N inputs xi, and corresponding outputs yi, (i.e. training data, D = {xi, yi}
N
i=1) GP regression looks to

define the predictive distribution, given a new input x∗ and the available training data D. Specifically, it is assumed
that the observations can be modelled by some noiseless latent function f of the inputs, plus an independent noise
term, ǫ [11],

y = f(x) + ǫ (1)

A zero-mean GP prior is set over the latent functions f , with covariance function k(x,x′), and a Gaussian prior is
placed over the noise term, such that,

f(x) ∼ GP (0, k(x,x′)) , ǫ ∼ N (0, σ2) (2)

1In each case study, a more specific (i.e. parametric) regression model could arguably be applied; however, the focus of this work is
to introduce the concept of the form for population-based SHM; therefore, GPs are used here as a general regression tool, to represent
functional forms.



This expression introduces the first hyperparameter σ2, which specifies the noise variance. To justify the zero-mean
assumption, the data are usually normalised by subtracting the sample mean and dividing by the standard deviation
[9].

The covariance function encodes the degree of coupling between y(x) and y(x′), and therefore determines the properties
of the GP, including the process variance, and smoothness, etc [11]. One of the best-known covariance functions is
the squared-exponential, and it is applied in this work,

k(x,x′) = σ2
0 exp

(

−
1

2l2
(x− x′)

)

(3)

This equation defines two more hyperparameters: the length-scale l, and the process variance σ0. The length scale
determines how fast the correlation between outputs decays across the input space, while the process variance
determines the power of the signal [11]. Collectively, hyperparameters of the model are θ = {l, σ0, σ}.

The joint distribution between the training data D = {xi, yi}
N
i=1 and some unseen observation {x∗, y∗} is a multivariate

Gaussian,

[

y
y∗

]

∼ N

([

0
0

]

,

[

Kxx + σ2IN kx,x∗

kx∗,x k(x∗x∗) + σ2

])

. (4)

where [Kxx]ii′ = k(xi,xi′), [kxi,x∗
]i = k(xi,x∗), and [kx∗,xi

]i = k(x∗,xi). IN is an N × N identity matrix. The
notation [A]ii′ refers to the ith row in column i′ of matrix A, while [a]i is the ith element of vector a [11].

By conditioning the joint distribution in (4) on the observed training data in D, the predictive distributions over y∗
can be defined [9],

p(y∗ | x∗,D) = N (E[y∗],V[y∗]),

E[y∗] = kx∗x

(

Kxx + σ2IN
)−1

y,

V[y∗] = k(x∗,x∗)− kx∗x

(

Kxx + σ2IN
)−1

kxx∗ + σ2 (5)

In order to learn the hyperparameters, θ = {l, σ, σ0}, a Type-II maximum likelihood approach is taken [9]; this is
equivalent to empirical Bayes [12]. As such, the marginal likelihood of the model is maximised, p(y | x, θ); this utilises
the Bayesian Occam’s razor [13, 9], to find the minimally-complex model given the observed training data D. This
optimisation is normally performed as a minimisation over the negative log-marginal-likelihood, for convenience and
numerical stability. Therefore, the hyperparameters are estimated through the following optimisation [12],

θ̂ = argmin
θ

{− log p(y | x, θ)} , (6)

where,

− log p(y | x, θ) =− log N
(

y | 0,Kx,x + σ2IN
)

=
N

2
log (2π) +

1

2
log

∣

∣Kx,x + σ2IN
∣

∣+
1

2

[

y⊤
(

Kxx + σ2IN
)−1

y
]

(7)

3 Case study I: Strongly-homogeneous populations

To demonstrate the form applied to a strongly homogeneous population, 19 structurally-equivalent structures are
simulated, leading to {Si}

19
i=1. As in previous work [3], each member Si is defined as a realisation of an experimental

rig, designed at the Los Alamos National laboratory [8]; the test-rig acts as the 20th member in the population, such



m1 m2 m3 m4 m5 m6 m7 m8
k1 k2 k3 k4 k5 k6 k7 k8

c1 c2 c3 c4 c5 c6 c7 c8

u1(t) z8(t)

Figure 2: The 8-DOF system

that the total group is {Si}
20
i=1. A schematic of the 8-DOF system is shown in Figure 2; ui(t) is the system input

(forcing) on mass i at time t, and yi(t) is the system response (output) of mass i at time t.

The system parameters – mass m, stiffness k and damping c – are identified by minimising a sum-of-squares error
between the simulated and experimental frequency response functions (FRFs). Briefly, this approach involves
simulating the 8DOF test-rig by representing the system equations in state variable form [14, 15]. Following some
initial guesses, m, k and c are iteratively updated, while minimising the sum-of-squares error between the simulated
FRF and the measured FRFs. A constrained optimisation, based on prior knowledge of the experimental rig, leads
to the parameter estimates presented in Table 1. The j index indicates the jth degree of freedom. The first spring
stiffness is set to near zero, to correspond to the rigid-body mode of the rig. The forcing, u1(t), is applied to mass 1,
while the response, denoted z(t), is simulated for all masses and monitored at mass 8, z8(t).

Table 1: System parameters

j 1 2 3 4 5 6 7 8

mj (kg) 0.5707 0.4202 0.4119 0.4197 0.4197 0.4201 0.4200 0.4199
kj (kN/M) 0.000 64.810 58.104 56.474 59.556 65.969 65.275 60.121
cj (Ns/m) 5.43 13.66 11.56 11.71 11.86 13.2 5.55 0.13

3.1 Simulating strongly-homogeneous members

For this simple 8-DOF example, the parameters Θi (that would be associated with each member in the population
Si) can be considered to be,

Θi =
{

m
(i)
j , k

(i)
j , c

(i)
j

}8

j=1
(8)

In order to build a strongly homogeneous-population, as defined in Section 2.1, the densities p(Θi) that describe
the underlying distribution of these parameters (across the population) should be ‘compact’ and unimodal; thus,
Gaussian distributions are placed over each of the parameter estimates from Table 1, such that,

m
(i)
j ∼ N (mj , 0.03×mj)

k
(i)
j ∼ N (kj , 0.01× kj)

c
(i)
j ∼ N (cj , 0.20× cj) (9)

According to Section 2.1, a strongly-homogeneous population can now be generated by randomly drawing parameter
sets Θi from these distributions, to define 19 members.

3.1.1 The Frequency Response Function (FRF) for damage detection

In the context of dynamics-based monitoring, it is generally expected that damage will manifest itself as alterations
in the structural parameters – specifically, a reduction in stiffness [8, 16]. Changes in the structural stiffness will alter
the dynamic characteristics, therefore, frequency domain observations can be used to (indirectly) monitor any physical



changes that could relate to damage (although such features will also be sensitive to confounding influences [8].
Therefore, the frequency response function (FRF) (denoted by H(ω)) is selected as a frequency-domain observation;
this also matches the experimental data recorded at LANL. Specifically, the FRF here is the ratio of the output
acceleration at mass eight z̈8(t), to the spectrum of the input forcing time series at mass one u1(t). As with the
experimental data, the input is a white-noise excitation over 8s, with a sample-rate of 400.25Hz. A Hanning window is
applied to the 8s input and output time series, and the empirical FRF is calculated. The resulting FRF is truncated,
such that there are 1040 bins in the frequency domain, ranging from 0 - 130 Hz. Measurement noise is added to
the outputs to represent the experimental measurements recorded at LANL; the noise assumed to be zero-mean
normally-distributed, with variance leading to a signal-to-noise ratio of 40dB.

Each FRF is considered to be an observation of the system in terms of the SHM strategy, and these observations are
used to inform damage detection. Following the same procedure as the practical experiments [8], the stiffness of k5 is
reduced to imitate damage. Reductions are 7%, 14% and 24% for the simulated members, and a single reduction of
24% for data recorded from the test rig.

The FRF is widely used as a functional feature in the conventional SHM literature [8]; as discussed, such methods
should apply to the population-based approach, in the restricted strongly-homogeneous case.

3.1.2 Dataset summary

The dataset represents a population of twenty 8-DOF systems, 19 are simulated, while the 20th member is the LANL
test-rig. Each system is observed over time, through the FRFs estimated from 8s time-windows. Each FRF in the
dataset has 1040 frequency bins.

Measurements from the simulated members are defined such that:

• For the normal-condition data, there are 20 FRFs from each stucture. These data are shown by black markers
in Figure 3.

• 20 additional normal-condition FRFs are simulated to validate the form. These data are shown by magenta
markers in Figure 3.

• 20 FRFs are generated for each of the three states of damage (7%, 14% and 24%), shown by red markers in
Figure 3.

The experimental data, recorded from the test-rig, includes:

• 8 FRFs — four correspond to the undamaged state, and four were recorded following the introduction of
damage (24% only). In Figure 3, the normal and damaged test-data are also shown by magenta and red markers
respectively.

It should be observed from Figure 3 that, while the normal-condition FRFs are similar, population variation can still
be observed within the associated FRFs.

3.2 Gaussian Process regression of the FRF as the population form

Considering Section 2.2.1, the GP prior is set as zero-mean; therefore, the real and imaginary parts of the FRF (H)
are regressed independently, with two distinct GPs, such that,

f(x) + ǫ = Re
[

H(ω)
]

, x , ω (10)

or,

f(x) + ǫ = Im
[

H(ω)
]

, x , ω (11)

This approach is adopted – rather than regressing the phases and magnitudes – as it is better suited to the proposed,
general formulation of the GP. Modelling the FRF with two regressors fails to capture covariance between the outputs;
in fact, for a linear system, one function completely determines the other [17]; thus, it is only really necessary to
model one output.



Figure 3: FRF data across a population of twenty 8DOF systems, 19 members are simulated and the 20th member is
the experimental rig. For the simulated and experimental systems, normal-condition data are shown by black markers
and magenta markers, while the damaged data are shown by red markers.

Importantly, only systems {S1, . . . , S10} within the population contribute training data to learn the form. The
remaining 10 systems {S11, . . . , S20} (nine simulated systems and the experimental rig) are held-out of the training
process. This choice is made to test the generalisation of the form, when applied to new members within the
strongly-homogeneous case.

To reduce the computational load, the GP regression is trained using a random sub-sample of 5000 inputs and outputs
from the simulated normal-condition data. A more rigorous approach for dealing with large datasets, such as sparse
GPs [18], is being considered for future work. The resulting GP representation of the form, and the data used to
train it, are illustrated in Figure 4.

3.2.1 Novelty detection via the form

The form can now be used to monitor future data and inform damage detection. In this example, test FRF data from
all the members in the population are compared to the form; however, to reiterate, of the twenty members, only
{S1, . . . , S10} contributed to training-set. The MSD is useful in this application, as it considers both the mean and
the variance of the regression. Therefore, the averaged, univariate MSD is defined for the 1000-point random-sample
from each FRF in the test-set, 500 samples from both the real and imaginary parts,

MSDi =
1

V[y∗]
(E[y∗]− ỹi)

2 (12)

MSDFRF =
1

1000

1000
∑

i=1

MSDi (13)

The expected values are defined by the predictive equations of the GP in (5), and the tilde is used to denote the
experimental or simulated output, sampled from the test data.



Figure 4: Gaussian process regression of the FRF as the population-form. Blue markers indicate the training-set.
The red line indicates the mean prediction, E[y∗], and the shaded area indicates 3-σ uncertainty, corresponding to the
variance, V[y∗].

In order to define a detection threshold, which flags an FRF in as either inlying or outlying (i.e. normal or novel),
bootstrap-sampling is used [12, 16]. This defines the threshold by randomly sampling 1000 points from the normal-
condition data used to train the form. The MSDFRF is then calculated according to (12). These steps are repeated
for a large number of trials, and the resulting MSDs are sorted in order of magnitude. The critical value is the
threshold which contains 95.45% (two-sigma) of the MSD values beneath it.

3.3 Results

Results for novelty detection across the population via. the form are shown in Figures 5 and 6; these plots can be
interpreted as a control chart, each sub-figure representing individual member. Figure 5 presents the MSD values
(coresponding to test FRFs) for members {S1, . . . , S10}; these members contributed (a separate set of) normal-
condition data used to train the form, shown in Figure 4. The MSD values for members {S11, . . . , S20} are presented
in Figure 6, including the experimental rig, S20; importantly, these systems were in the hold-out group, that did not
contribute data to train the form.

For the normal-condition test data, relating to the hold-out and training systems, the MSD discordancy measure
generally falls below the detection threshold, for all members in the population. This is expected, as variation in
these data (compared to the form) should mostly relate to measurement noise, as the parameters of the population,
Θi, remain unchanged for each member.

There are some false positives present, corresponding to the normal condition FRFs; for example, S4, S19 and S20.
As well as noise effects, these false-positives are likely to be due to more ‘extreme’ parameter sets being drawn from
the underlying distribution p(Θi) of the homogeneous population. Notably, for the experimental member S20, a
normal condition FRFs is flagged as an outlier, while the rest are close to the threshold. This is unsurprising, however,
considering that this member did not contribute any training data to learn the form; additionally, errors in the
estimated parameters from Table 1 will add to the discordancy.

Observing the MSD values from the damaged-condition FRFs, intuitively, the number of true positives increases as



Figure 5: MSD novelty index for the test-data FRFs, comparing members {S10, . . . , S11} to the form. These members
contributed a separate set of training data, used to learn the form. Damage/normal conditions are separated by
vertical lines. The red line indicates the detection threshold.

.



Figure 6: MSD novelty index for the test-data FRFs, comparing members {S11, . . . , S20} to the form. These members
did not contribute training data to learn the form. Damage/normal conditions are separated by vertical lines. The •
markers are used for simulated members {S11, . . . , S19}, while △ markers are used for the test-rig, member S20. The
red line indicates the detection threshold.

.



the severity of damage increases. Generally speaking, the form fails to highlight 7% damage, with increased sensitivity
to 14% damage, and successfully flagging all 24% damage observations as as outlying. False negatives for 7% damage
likely occur because, at low levels of damage, the variation across the population defined by p(Θ) is similar to (or
more severe than) the the variations due to damage. As a result, with the current model of the form, variations within
the normal-condition training data are masking the variations due to low-level damage. To expose low-level damage,
another definition of the form is required; this can be done by defining an alternative feature-space, an alternative
model, or both.

3.4 Discussion

This case study has demonstrated that the form can be used as a general representation of a strongly homogeneous
population. Given training data from a subset of members, the form is able to model missing information from the
hold-out group, to aid diagnostic decisions.

The success of this initial approach, however, depends greatly on p(Θi), which, in turn, depends on the type of
population. If the underlying density p(Θi) across members is expected to be too dispersed and/or multi-modal
(unlike the Gaussian distributions in this example) it is likely that the population variance will mask changes in
the feature space that are due to damage, leading to false negatives. On the other hand, some of the (less frequent)
population behaviour could fail to be captured in the training-set (and therefore the form) leading to false positives.
As a result, in scenarios where p(Θi) is complex – which, unsurprisingly, proves to be common in practical examples –
conventional SHM can no longer be applied to the population, and more involved techniques should be investigated.
An alternative technique is proposed in the next case study.

4 Case study 2: Beyond strongly-homogeneous – extending the form

In practice, the strongly homogeneous case breaks down for several reasons; for example, variations in the operational
‘mass’ would be expected for offshore structures, such as oil rigs, due to changes in the variable load ; this could
include additional loading from workforce, extracted materials, or helicopter landings. As a result, complex and
multi-modal distributions would be associated with the parameters that define the mass of members across the
population. Alternatively, when monitoring composite structures (such as wind-turbine blades), while the mass might
remain relatively consistent, manufacturing tolerances are likely to lead to complicated distributions over the stiffness
and damping parameters – before considering the potentially inconsistent boundary conditions.

As well as variations that can be described in terms of the structural parameters, the form should be capable of
modelling additional operational variations, that do not relate to damage – in order to prevent unnecessary events
from being flagged as outlying. For example, the data used to learn the form might change significantly upon operator
involvement/control, or during maintenance procedures; while these changes are important, they do not indicate
damage, or important novelty in the data, and should be modelled by the form appropriately.

4.1 Wind turbine population data

Using the measured data from an operational wind farm, a practical example of the form, and the variance that
should be modelled by it, is introduced. The data were recorded from wind turbines owned by Vatenfall, using a
Supervisor Control and Sensory Data Acquisition (SCADA) system [19, 20]. For confidentiality reasons, information
regarding the specific type, location, and number of turbines cannot be disclosed. The data were recorded from a
homogeneous population of systems over a period of 125 weeks [21, 20]. The mean value of the power produced and
the measured wind speed are available over ten minute intervals. Through population-based SHM, the goal is to
determine whether individual wind turbines within the farm are operating in a permitted normal state, or not.

In order to monitor the turbines using the available data, as in previous work [21, 20], the power curve method is
used. Specifically, wind turbines are designed by manufacturers to have a specific relationship between the power
produced and the wind speed; therefore, researchers have found that deviation between measured data and the power
curve can be used to monitor the state of the turbine [21, 20]. As a visual example, power curves that would be
considered normal (i.e. ‘good’) as well as ‘bad’ are presented in Figure 7, provided by Vatenfall [20].

Considering the framework introduced in the first case study, the power curve presents an ideal candidate (functional)



Figure 7: An example of a ‘good’ and ‘bad’ power curve. WTG stands for wind turbine generator. Figure provided
by Vattenfall [20].

.

feature to learn the form, in order to monitor members within a population2. Various methods have been used to
model the power curve in the literature [22, 23]; in line with previous studies [21, 20], as well of the first case study of
this work, a method for GP regression will be used here.

4.1.1 Population variance in the power curve data

As the dataset contains 125 power curves for each turbine in the population (one curve per week), it is infeasible
for an engineer to examine the entire dataset to label data that correspond to the normal operating condition. (In
practice, the monitoring period will be significantly longer than the data presented here, and there may be many more
members in the population.) Therefore, given expert knowledge, it is only possible to extract the normal-condition
power curves from a subset of systems, and use these data to model the general population as a whole – following a
similar procedure to training strategy proposed for the strongly-homogeneous case.

An example of the data that might represent the ideal normal-condition power curves is presented in Figure 8a,
corresponding to a random sample from three members within the population, over three weeks of data. Given the
feature space in Figure 8a, a single GP regression could be learnt (as demonstrated in Case Study I) in the hope that
the resulting model would representative of the general population behaviour and variance. Unfortunately, however,
there are important variations across the population that are not represented in these (ideal) data; in consequence,
such a simple form would result in a large number of false positives – this issue is illustrated in the results.

For example, Figure 8b includes another random sample of data from three additional turbines, over another week of
measurements. Curtailments can now be observed in the power curves of the population; these effects correspond to
the the power-output of the wind turbine being limited or otherwise controlled by the operator. Interventions like this
can occur frequently, and for various reasons – including maintenance or power requirements – they do not (normally)
represent damage. Therefore, while the data in Figure 8b do not represent the ideal power curve, curtailments that
are known to correspond to the normal condition should be included in the form, to prevent similar (future) activity
from being flagged as outlying.

2Conveniently, this functional feature should be more general across the population than the FRF, as it is less sensitive to certain
parameters (such as those associated with the boundary conditions) which introduce (less important) variation between members for the
form.



(a) (b)

Figure 8: Population power curve data. (a) A random sample of ideal data from four turbines over three weeks. (b)
The data in (8a) as well as another sample from three additional turbines, including one extra week of measurements;
these data include curtailments.

4.2 OMGP regression of the power curve as the population form

To model the data in Figure 8b, and to learn the form, an overlapping mixture of GP regressions (OMGP) is applied
[11, 24]. Unlike the single GP, used in case study I, and previous studies, a mixture of regressions can capture the
multi-functional behaviour of the normal-condition data across the population in the feature space; therefore, this
method of modelling the form should be capable of representing more complex population behaviour. A (very) brief
review of the model is provided; further details can be found in [11, 24] and will be discussed in future work.

The overlapping mixture of Gaussian processes (OMGP) assumes that there are K latent functions that describe the
feature space,

{

yk = f (k)(x) + ǫk

}K

k=1
(14)

i.e. each output observation can be found by evaluating one of these functions, with additive Gaussian noise (as with a
single GP (1), where K = 1). The function that generated each observation is unknown, therefore, a binary indicator
matrix Z is introduced (as a latent variable), which defines the specific function associated with each observation:
if the entry [Z]nk is non-zero, this implies that the nth data point was generated by the latent function k. Each
observation can belong to one function only, thus there is only one non-zero term per row in Z [11].

Following a Bayesian framework, the following priors are placed over the latent variables and functions,

p(Z) =

N,K
∏

n=1,k=1

[Π][Z]nk (15)

f (k)(x) ∼ GP
(

0, k(k)(x,x′)
)

, ǫk ∼ N (0, σ2
(k)) (16)

they are a multinomial distribution, which is placed over the indicator matrix [10], a Gaussian distribution over the
noise terms, and independent GP priors over each latent function [9]. As the computation of the posterior distribution
p
(

Z, f (k)(x) | D
)

is intractable, methods for approximate inference must be applied; specifically, a variational inference
and expectation maximisation scheme is used [25]. This strategy iteratively computes the approximate posterior,
and optimises the hyperparameters of the model, while an (improved) lower bound on the marginal likelihood is
maximised [11].
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Figure 9: Gaussian process regression of the power curve as the population form (a) The overlapping mixture of GPs
model (b) conventional GP regression. Shaded area shows three-sigma standard deviation.

To summarise, the OMGP model finds K latent functions, given a set of unlabelled input and output data; this
is achieved using a variational approximation, to construct a (corrected) lower bound on the marginal likelihood,
and then maximising this bound. When modelling the form from the data in Figure 8b, the number of latent
functions is set to K = 2: prior knowledge informs us that there are two key characteristics in the feature space:
data that represent the ideal power curve, and data that (likely) represent an operator limiting the power, leading to
curtailments.

4.3 Results

The OMGP representation of the form is shown in Figure 9a; the model has automatically found two distinct latent
functions, capturing the ‘ideal’ power curve data, as well as the curtailment behaviour – both of which have been
assumed to represent (acceptable) normal conditions. For comparison, a conventional (single) GP was learnt for the
same data, shown in Figure 9b; clearly, such a model of the from could mask variations due to damage, leading to
numerous false negatives during the monitoring regime; additionally, data corresponding power curtailments (which
are assumed to represent an acceptable normal condition) are likely to be indicated as outliers. To reiterate, only a
subset of turbines contributed data to learn the form shown in Figure 9a.

To introduce the use of the OMGP to model the form for novelty detection, the mixture is compared to test-data
from all turbines within the population, assessed via the MSD discordancy measure (12) as in case study I (the MSD
corresponds to the most likely latent function). For the 125 (weekly) power curves from all wind turbines (other
than those used for training) the distances were ranked, and the ten most similar and most dissimilar weeks were
extracted from the corresponding turbines. Figure 10 plots two power curves, each extracted from a single turbine,
sampled at random from each group of these groups.

An example of data that appear significantly different to the from are shown in Figure 10a; clearly these data are
outlying, and most likely correspond to inactive turbines. Power curve data that gave a low MSD index are shown in
Figure 10b – intuitively, compared to Figure 8a, these data are more representative of the ideal power curve.

5 Concluding Remarks

The concept of the form, used to represent a population of homogeneous systems, has been introduced for structural
health monitoring. In two case studies, a statistically-modelled form was used to achieve damage detection across
a simulated population, and measured data recorded from an operational wind farm. In these examples, Gaussian
process models were used to learn functional features as the form; however, the choice of model (and feature space) is
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Figure 10: Examples of power curves (weekly) that were (a) similar to the OMGP modelled form (b) significantly
different to the OMGP form.

flexible and application dependent. Importantly, the form is trained using various normal-condition data generated
by subsets of members from the population only – this information is used in an attempt to learn a shared model,
to represent the general population behaviour. Novelty detection was achieved through comparisons between each
member in the population to the form, through the Mahalanobis squared-distance, for both the simulated and
operational data.

The forms defined in this work (modelled by a standard Gaussian process, as well as a mixture of Gaussian process
regressors) are just two methods to model shared information between structures. Alternative methods are being
investigated within the same general framework (as well as alternative approaches to population-based SHM), for
future work.
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