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Turbulence in the flow of fluid through a pipe can be suppressed by buoyancy forces.
As the suppression of turbulence leads to severe heat transfer deterioration, this is an
important and undesirable phenomenon in both heating and cooling applications. Ver-
tical flow is often considered, as the axial buoyancy force can help drive the flow. With
heating measured by the buoyancy parameter C, our direct numerical simulations show
that shear-driven turbulence may either be completely laminarised or transitions to a
relatively quiescent convection-driven state. Buoyancy forces cause a flattening of the
base flow profile, which in isothermal pipe flow has recently been linked to complete
suppression of turbulence (Kühnen et al., Nat. Phys., vol. 14, 2018, pp. 386–390), and
the flattened laminar base profile has enhanced nonlinear stability (Marensi et al., J.
Fluid Mech., vol. 863, 2019, pp. 50–875). In agreement with these findings, the nonlinear
lower-branch travelling-wave solution analysed here, which is believed to mediate tran-
sition to turbulence in isothermal pipe flow, is shown to be suppressed by buoyancy. A
linear instability of the laminar base flow is responsible for the appearance of the rela-
tively quiescent convection driven state for C & 4 across the range of Reynolds numbers
considered. In the suppression of turbulence, however, i.e. in the transition from turbu-
lence, we find clearer association with the analysis of He et al. (J. Fluid Mech., vol. 809,
2016, pp. 31–71) than with the above dynamical systems approach, which describes bet-
ter the transition to turbulence. The laminarisation criterion He et al. propose, based on
an apparent Reynolds number of the flow as measured by its driving pressure gradient,
is found to capture the critical C = Ccr(Re) above which the flow will be laminarised or
switch to the convection-driven type. Our analysis suggests that it is the weakened rolls,
rather than the streaks, which appear to be critical for laminarisation.

Key words: Heated pipe flow

1. Introduction

Most energy systems rely on fluids to transfer heat from one device to another to
facilitate power generation, provision of heating or production of chemicals. Flows are
often forced through channels or arrays of pipes taking heat away from the surfaces.
In a nuclear reactor, for example, the reactions occur within the fuel pins, which are
cooled by flow of coolant through the channels formed by arrays of fuel pins to maintain
their temperature within a specific limit as well as transferring energy to the steam
generators. In an isothermal flow, the volume flux is driven by an externally applied
pressure gradient, and the flow is referred to as ‘forced’. In a vertical configuration,
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however, buoyancy resulting from the lightening of the fluid close to the heated wall can
provide a force that partially or fully drives the flow, referred to as mixed or natural
convection, respectively. When heat flux is very high, we can have a ‘supernatural’ state
of flow, where the buoyancy is sufficiently strong that a reversed pressure gradient may
be necessary to limit or maintain a constant volume flux. Under certain conditions (e.g.
the Boussinesq approximation) an upward heated flow may be considered equivalent to
a downward flow cooled at the boundary (Appendix A).

Mixed convection is of significant importance to engineering design and safety con-
siderations and as such extensive research has been carried out to develop engineering
correlations (Jackson et al. 1989; Yoo 2013), turbulence models (Kim et al. 2008; Bae
2016) and a better understanding of the physical flows (You et al. 2003). A partic-
ularly interesting physics is that the flow, at a Reynolds number where shear-driven
turbulence is ordinarily observed, in the presence of buoyancy may be partially or fully
laminarised, or becomes a convection-driven turbulent flow (i.e. natural convection, re-
ferred to above). Heat transfer may be significantly impaired under such conditions. He
et al. (2016) (hereinafter referred to as HHS) modelled the effect of buoyancy using a
prescribed body force, with linear or step radial dependence, without solving the energy
equation. They attributed the suppression of turbulence to a reduction in the apparent
Reynolds number of the flow, as measured by the pressure gradient required to drive the
flow. Thus, the forced flow is compared with the unforced “equivalent pressure gradient”
reference flow.

Meanwhile, in ordinary (isothermal) pipe flow, Kühnen et al. (2018), observed relami-
narisation attributed to flattening of the base flow profile. The idea of flattening was first
suggested by Hof et al. (2010) who showed that when two puffs were triggered too close
to each other the downstream puff would collapse due to the flattened streamwise veloc-
ity profile induced by the upstream puff. In the experiments of Kühnen et al. (2018) the
flattening was introduced by a range of internal and boundary flow manipulations and
a full collapse of turbulence was obtained for Reynolds numbers up to 40 000. Marensi
et al. (2019) showed the complement effect, i.e. the enhanced nonlinear stability of the
laminar flow. They found that the minimal seed (smallest amplitude disturbance) for
transition is ‘pushed out’ from the laminar state to larger amplitudes when the base
flow is flattened, thus implying that a flattened base profile is more stable than the
parabolic profile. Here, buoyancy forces also have a flattening effect and turbulence may
be partially or fully suppressed. Furthermore, early experimental observations (Hanratty
et al. 1958; Kemeny & Somers 1962; Scheele & Hanratty 1962) and subsequent linear
(Yao 1987a,b; Yao & Rogers 1989; Chen & Chung 1996; Su & Chung 2000) and weakly-
nonlinear (Rogers & Yao 1993; Khandelwal & Bera 2015) stability analyses suggested
that, for sufficiently large heating, the flow becomes unstable and transitions to a new
non-isothermal equilibrium state characterised by large-scale regular motions. A compe-
tition between different mechanisms – driven by either shear or convection – thus exists
(Su & Chung 2000) and understanding its effect on the nature of the flow is the object
of our study.

In particular, in this work, we are interested in whether a flow is turbulent or laminar
under certain heating conditions and when a turbulent flow may be laminarised or vice
versa under the influence of buoyancy. We address this question for a vertically heated
pipe, initially in the dynamical systems context through linear stability and by investi-
gating how travelling wave solutions are affected by the buoyancy force. Next, the nature
of the laminarisation is considered. In isothermal flow at transitional Reynolds numbers,
the shear-driven state is known to be metastable – the probability of laminarisation fol-
lows a Poisson process with a laminarisation rate that depends on the Reynolds number.
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In any practical setting, where a pipe is of finite length, its length affects the probability
of turbulence surviving to the end of a pipe. Hence a range of Reynolds numbers for
transition are quoted, typically between 2000 and 2300. Therefore, we do not attempt
to quantify the full statistical nature of the transition in the heated case, but instead
we focus on the phenomenological-based ‘equivalent pressure-gradient’ analysis of HHS.
Through the above approaches, i.e. linear stability, nonlinear travelling-wave and ‘equiva-
lent pressure-gradient’ analyses, we aim to elucidate the physical mechanisms underlying
the buoyancy-suppression of turbulence, illustrating the bistability nature of such flows.

1.1. Nonlinear dynamical systems view

In subcritical wall-bounded shear flows, turbulence arises despite the linear stability of
the laminar state (Drazin & Reid 2004; Schmid & Henningson 2001). The implication is
that the observed transition scenario can only be triggered by finite amplitude distur-
bances. In the last 30 years our understanding of transition to turbulence in such flows
has greatly benefited from a fully nonlinear geometrical approach which adopts concepts
from the dynamical systems theory. In this view, the flow is analysed as a huge (formally
infinite-dimensional) dynamical system in which the flow state evolves along a trajectory
in a phase space populated by various invariant solutions, travelling waves (TWs) and
periodic orbits (POs). Nonlinear travelling wave solutions were first discovered numeri-
cally in the early 1990s for plane Couette flows (Nagata 1990) and in the 2000s for pipe
flows (Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Pringle & Kerswell 2007). Since
then, partly thanks to the advances in our computational and experimental capabilities,
a growing amount of evidence has been collected for their dynamical importance (see
reviews Kerswell 2005; Eckhardt et al. 2007; Kawahara et al. 2012; Graham & Floryan
2021). These solutions, often referred to as “exact coherent states/structures” (ECSs),
are believed to act as organising centres (Waleffe 2001) in phase space, in the sense that,
when the flow state approaches them, spatio-temporally organised patterns (streaks and
streamwise rolls) are observed (Hof et al. 2004; Kerswell & Tutty 2007).

ECSs are finite-amplitude non-trivial solutions disconnected from the laminar state and
enter via saddle-node bifurcations as the flow rate is increased. Some solutions, typically
those of higher spatial symmetry, exist at flow rates much below that at which transition
is usually observed (Pringle et al. 2009). ECSs are linearly unstable, although with only
a few unstable directions. They may be divided into ‘upper-branch’ and ‘lower-branch’
states, depending on whether they are associated with a high or low friction factor.
Lower branch solutions are representative of the laminar-turbulent boundary – the so
called “edge of chaos” (Itano & Toh 2001; Schneider & Eckhardt 2006) – which sepa-
rates initial conditions that lead to turbulence from those that decay and relaminarise.
The edge comes closest to the laminar equilibrium at the “minimal seed” for transition
(Kerswell 2018). Lower-branch solutions are believed to mediate the transition to turbu-
lence (Duguet et al. 2008; Schneider et al. 2007), while some upper-branch solutions are
embedded in the turbulent attractor and are representative of the turbulent dynamics
(Avila et al. 2013; Budanur et al. 2017).

Here, we are interested in studying how travelling wave solutions are affected by the
buoyancy force in a vertical heated pipe, and, in analysing their dynamics, we aim to
elucidate the physical mechanisms underlying the buoyancy-suppression of turbulence.
The transition between regimes is first investigated using linear stability in §3.2, followed
by analysis of travelling waves in §3.3.
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Figure 1: (Left) Schematic of the flow configuration A pipe section of length L and radius R is
considered. The pipe is vertically aligned in the gravity field g and the fluid inside it is driven
upwards by an externally applied pressure gradient and by buoyancy. The latter results from
the lightening of the fluid close to the heated wall. We assume that the temperature at the wall
Tw remains constant in the pipe section. (Right) Laminar velocity profiles (2.11) for increasing
values of C, as indicated by the arrows. Red dashed line: C = 0 (isothermal profile). Light grey
to black lines: C = 3, 5, 7.5, 10.

1.2. Equivalent pressure-gradient (EPG) analysis of HHS

Rather than simulating a temperature field, to reduce complexity HHS considered a
fixed radially-dependent axial body force that models the buoyancy force, and applied
this to isothermal flow. Conventionally, heated flows are compared with the isothermal
(unforced) flow at equivalent flow rate (EFR), but HHS observed better comparison with
flows at the equivalent pressure gradient (EPG). In particular, after careful analysis,
they observed that adding the radially-dependent force does not alter the turbulent
viscosity of an unforced flow driven by the same pressure gradient (see figure 10 therein).
The unforced EPG flow is therefore a reference flow for cases with the extra radially-
dependent forcing.

Note that in a fixed mass-flux calculation, the pressure gradient reduces in response
to driving from the buoyancy. Given a heated flow at a particular Reynolds number Re
(defined in terms of the mass flux), to determine the Reynolds number of the EPG flow,
one must split the mass flux into contributions from the pressure gradient and from
the buoyancy. The former component determines the ‘apparent Reynolds number’ Reapp

of the EPG flow. Laminarisation of the body forced flow is observed to occur when its
Reapp is consistent with the Re at which laminarisation occurs in isothermal flow. Further
details of the analysis are provided in §3.4 and HHS prediction is compared with a suite
of simulations in §3.5.

2. Formulation

Consider a vertically aligned circular pipe of diameter D, with the flow of fluid upwards.
We model a short pipe section of length L (figure 1(left)) and let {u(x, t), p(x, t), T (x, t)}
be the velocity, pressure and temperature fields, respectively. The fluid has kinematic
viscosity ν, density ρ, volume expansion coefficient γ and thermal diffusivity κ. Under
the Boussinesq approximation, density variations are ignored except where they appear
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in terms multiplied by the acceleration due to gravity, g ẑ, leading to the governing
equations

∇ · u = 0 , (2.1)

∂u

∂t
+ u · ∇u = −

1

ρ
∇p + ν ∇2

u +
1

ρ
(1 + β) dzP ẑ + γ g (T − Tref ) ẑ , (2.2)

∂T

∂t
+ u · ∇T = κ ∇2T − ǫ , (2.3)

where Tref is a reference temperature defined in the following subsection, and dzP is the
pressure gradient for laminar flow with bulk velocity Ub. We suppose that Ub is fixed,
in which case β(u) adjusts to maintain fixed bulk velocity. We also suppose that the
temperature of the wall Tw and the bulk temperature Tb are fixed. The latter is achieved
by including a uniform heat sink ǫ(t) which adjusts to maintain the fixed bulk value
Tb. For such a flow, we can introduce axial periodicity, so that ǫ(t) may be considered
equivalent to the rate at which heat absorbed by the fluid would otherwise be carried
out of the section of pipe.

For laminar flow, the flow is purely axial so that radial heat transport is purely conduc-
tive. If ǫ0 is the heating rate for the laminar case, then the observed quantity Nu := ǭ/ǫ0

is the Nusselt Number, where the overbar (•) denotes time average.

2.1. Non-dimensionalisation

Given the temperature at the wall Tw and the bulk temperature Tb, we put ∆T =
2(Tw − Tb) and take a reference temperature Tref = Tw − ∆ T = 2Tb − Tw = Tc, where
Tc is the centreline temperature for the case of laminar flow. (The choice for Tref does
not influence the flow, since the constant γ g Tref could be absorbed into the pressure
gradient.) We introduce the dimensionless temperature Θ = (T − Tc)/∆T . Let the pipe
radius R = D/2 be the length scale and the isothermal laminar centreline velocity 2 Ub

be the velocity scale. The corresponding time scale is thus R/(2 Ub). Hereafter, all vari-
ables are dimensionless except ǫ(t) which always appears in the dimensionless ratio ǫ/ǫ0,
i.e. the instantaneous Nusselt number. Non-dimensionalising with these scales, for the
temperature equation we find

∂Θ

∂t
+ u · ∇Θ =

κ

2 UbR
∇2Θ −

ǫR

2 Ub ∆T
. (2.4)

For the laminar case, Θ = Θlam = r2, we find

0 =
κ

2 UbR
· 4 −

ǫ0R

2 Ub ∆T
i.e. ∆T =

ǫ0 R2

4 κ
. (2.5)

Plugging this ∆T back in to (2.4), we obtain the dimensionless temperature equation

∂Θ

∂t
+ u · ∇Θ =

1

Re Pr
∇2Θ −

4

Re Pr

ǫ

ǫ0

, (2.6)

where Re := UbD/ν is the Reynolds number and Pr := ν/κ is the Prandtl number. For
the momentum equation we find

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2

u +
4

Re
(1 + β) ẑ +

γ g ∆T R

(2 Ub)2
Θ ẑ (2.7)

The coefficient of the buoyancy term can be written

γ g ∆T R

4 U2
b

=
1

4

γ g (Tw − Tb) D3

ν2

ν2

U2
b D2

=
1

4
Gr Re−2 , (2.8)
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where Gr := γ g (Tw − Tb) D3/ν2 is the Grashof number. Although the Grashof number
is in common use, from Gr it is difficult to judge the magnitude of the buoyancy force
relative to the pressure gradient of the laminar flow for this particular configuration. We
therefore write the dimensionless momentum equation as

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2

u +
4

Re
(1 + β + C Θ) ẑ , (2.9)

where C measures the buoyancy force relative to the force that drives the laminar isother-
mal shear flow,

C =
Gr/(4 Re2)

4/Re
:=

Gr

16 Re
. (2.10)

The laminar velocity and laminar temperature profiles for this configuration are

Ulam(r) =
(
1 − r2

)
+ C

(
1

3
r2 −

1

4
r4 −

1

12

)

, Θlam(r) = r2 , (2.11)

and the no-slip and fixed-temperature boundary conditions at r = 1 are

u = 0, Θ = 1, (2.12)

respectively, while periodic boundary conditions are applied in the streamwise direction.
The laminar velocity profiles for different C are shown in figure 1(right). The isothermal
pipe flow is recovered for C = 0 (no buoyancy force) and Pr = 0 (temperature diffuses
immediately), with the parabolic laminar profile U0 = 1 − r2.

For a statistically steady flow, Reynolds averaging is both time averaging and cylin-
drical surface averaging, where the latter is denoted as

〈(•)〉(r) :=
1

2πL

∫ L

0

∫ 2π

0

(•) dθ dz . (2.13)

Turbulent fluctuations are calculated as deviations from the mean components of the
flow, i.e. {u′(x, t), Θ′(x, t)} := {u(x, t), Θ(x, t)} − {〈u〉(r), 〈Θ〉(r)}.

2.2. Numerics

Simulations were carried out using the Openpipeflow solver (Willis 2017), modified to
include timestepping of the temperature field and the buoyancy term in the momentum
equation. A variable q(r, θ, z) is discretised using a non-uniform grid in the radial direction
with points clustered near the wall and Fourier decompositions in the azimuthal and
streamwise directions, namely

q(r, θ, z) =
∑

k<|K|

∑

m<|M |
qkm(rn)eiαkz+mpmθ n = 1, ..., N (2.14)

where α = 2π/L is the streamwise wavenumber and mp determines the azimuthal peri-
odicity (mp = 1 for no discrete rotational symmetry). Radial derivatives are evaluated
using central finite differences with a nine-point stencil. At Re = 5300, in a L = 5D
long pipe we use a spatial resolution of (N × M × K) = (64 × 96 × 96), which ensures
a drop of at least 4 orders of magnitude in the spectra. Following the 3/2 dealiasing
rule, variables are evaluated on an N × 3M × 3K grid in physical space. A second-order
predictor-corrector scheme is employed for temporal discretisation, and a fixed timestep
of 0.01 is used. This is sufficient to ensure that the time discretisation error is no larger
than the spatial discretisation error (measured by the corrector and spectra respectively)
and corresponds to a CFL-number of approximately 0.2 − 0.25.

Data for simulations for various Gr = 16 Re C and constant Re = 5300, P r = 0.7 are
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Figure 2: Change in Nu flux, normalised by that for turbulent ‘forced convection’ (C →
0), as a function of Bo = 8 × 104 (8 Nu Gr) / (Re3.425Pr0.8). Data from simulations
at Re = 5300, Pr = 0.7 and various Gr = 16 Re C. The upper and lower branches
correspond to flow in shear-driven and convection-driven states respectively.

shown in figure 2. There is good agreement with numerical data (You et al. 2003) and
experimental data (Steiner 1971; Carr et al. 1973; Parlatan et al. 1996).

2.3. Travelling wave solutions

In order to apply dynamical systems theory, the discretised momentum and temperature
equations are formulated as an autonomous dynamical system (Viswanath 2007; Willis
et al. 2013):

dX

dt
= F(X; p), (2.15)

where X is the vector of dependent variables, here X = (u, Θ), and p is the vector of
parameters of the system, p = (Re, C). The simplest solution is an equilibrium, which
satisfies F(X; p) = 0. For pipe flow, the only equilibrium solution is the laminar solu-
tion. Travelling wave solutions satisfy X(x, t) = g(ct) X(x, 0), where here g(l) applies
a streamwise shift by l, and c is the phase speed. Travelling waves are also known as
‘relative’ equilibrium solutions, as they are steady in a co-moving frame. They therefore
satisfy

G(X(0), l, T ) = g(−l)X(T ) − X(0) = 0 , (2.16)

for some vector (X, l, T ), and hence can be calculated via a root solving method. The
most popular method at present is the Newton–Krylov method. (Note that in addi-
tion to (2.16), two extra constraints are required to match the extra unknowns l, T ;
see Viswanath (2007).) Time-dependent periodic orbits may also be calculated by this
method. Typically periodic orbits originate via a Hopf bifurcation off a travelling wave,
but are not discussed further in this work.

Stability of the solutions is calculated using the Arnoldi method to solve the eigenvalue
problem

eσT dX = g(−l) (X0 + dX)(T ) − X0(0) , (2.17)

where σ is the growth rate and the operator on the right hand side is linearised about
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Figure 3: Energy of the streamwise-dependent component of the flow. Re = 2500, L =
5D, Pr = 0.7 for a range of C (values reported in the legend). Intermediate values of C
destabilise the turbulence, or even cause immediate relaminarisation.

the travelling wave X0 by taking ||dX|| ≪ ||X0||. (Numerical performance is improved
by replacing X0(0) with g(−l) X0(T ) in (2.17).)

The Newton-Krylov and Arnoldi solver, already available as a utility of Openpipeflow

(Willis 2017), were integrated with the time-stepping code described in §2.2 for heated
pipe flow.

3. Results and discussion

All results presented herein pertain to the case Pr = 0.7 and constant volume flux.
This relatively low Prandtl number is a reasonable starting choice for the applications
we are interested in, where most gasses have Pr ≈ 0.7, e.g. CO2. In large scale cooling
applications using liquid metal, Pr is much smaller. Cases where Pr > 1 (e.g. Pr = 7
for water) are more expensive numerically due to a need for higher resolution for the
temperature field.

3.1. Direct Numerical Simulations

Simulations were performed in a pipe of length L = 5D for a range of Reynolds numbers
to study the effect of the buoyancy parameter C. Results are first shown for a relatively
low Reynolds number, Re = 2500. Figure 3 shows complete relaminarisation of transi-
tional turbulence in response to the introduction of buoyancy for intermediate values of
C = O(10−1) − O(1). Relaminarisation events are revealed by monitoring the energy
of the streamwise-dependent component of the flow, denoted E3D, which shows a rapid
decay when the flow relaminarises, E3D → 0 and ε(t)/ε0 → 1. At larger C > O(10),
turbulent fluctuations are not completely suppressed. Instead a convection-driven flow is
set up, which becomes stronger as C is increased.

At Re = 5300 the effect of buoyancy is found to be slightly different – turbulence is
not observed to undergo complete relaminarisation, but instead transitions directly to a
weak convection-driven state. Figure 4 shows simulations with C = O(1) − O(10). The
buoyancy causes suppression of the turbulence and therefore a drop in ε(t)/ε0, so that
the Nusselt number Nu = ε̄/ε0 reduces substantially. The corresponding velocity and
temperature mean profiles, 〈uz〉(r) and 〈Θ〉(r), are shown in bottom graphs of figure 4
together with the laminar profiles at C = 0 for comparison. Cases where turbulence is
suppressed exhibit a flattened base velocity profile.
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Bottom: Snapshots of mean streamwise velocity 〈uz〉(r) and temperature 〈Θ〉(r) pro-
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are omitted for all trajectories and the curves corresponding to C > 12.5 are shifted in
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corresponding to t = 7500 (marked with a grey dot on the corresponding trajectory on
the left). The thick light-grey line on the right corresponds to the laminar streamwise
velocity profile (2.11) with C = 0.
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laminar profile U0 = 1−r2, while plots on the right (e–h) show deviations from the mean
profile 〈uz〉(r). Dark/light regions correspond to slow/fast streaks. Ten contours are used
between the maximum and minimum values, corresponding to (a–d) u−U0 ∈ [−0.4, 0.3],
(e, g) u′ ∈ [−0.2, 0.1] and (f, h) u′ ∈ [−0.1, 0.08]. The arrows in the r−θ cross-sections (c,
d, g, h) indicate the cross-sectional velocity components, multiplied by a factor of 2 for
the shear turbulence (c, g) and 5 for the convective state (d, h), for visualisation reasons
only. The r − θ cross-sections (c, d, g, h) are taken at z = 0 while the r − z sections are
taken at θ = π/2.

The case for C = 7.5 is shown for longer time in figure 5(left). The shear-driven
turbulent state is metastable only, and around t ≈ 2000 turbulence is more suppressed as
there is a switch to the more quiescent convection-driven state. As C is increased further
the buoyancy starts to drive a more turbulent convection-driven state. For these cases
the velocity profile is more ‘M-shaped’ as seen in figure 5(right).

The convective state at Re = 5300 and C = 7.5 is visualised in figure 6 together with
the metastable shear-driven turbulent state. When comparing the deviations from the
isothermal laminar profile (a–d), both the shear and convective states show a deceleration
in the core and acceleration close to the wall, with the convective states showing very
smooth and almost z− and θ−independent contour levels. Deviations from the mean
profile (e–h), however, reveal that the convective state has larger and more elongated
flow structures compared to the shear-driven turbulence. In both types of visualisations
it is clear that the small-scale turbulent eddies are strongly suppressed in the convection-
driven flow.

Figure 7 shows the type of state seen in simulations, laminar flow (L), shear-driven
turbulence (S) and convection-driven flow (C), for a range of Re and C. The initial
condition for each simulation was a previously calculated shear-driven state at similar
Re. (This is except for Re 6 2000 and C > 3, where it is clear that the shear-driven
state decays immediately, i.e. only the convective state could be supported, and hence
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Figure 7: Regions of laminar (L) flow, shear-driven (S) turbulence and convection-driven
(C) flow. Points where multiple behaviours are observed are marked with a slight offset
in Re. Simulations are initiated with a previously calculated shear-driven state at similar
Re, except for the region Re 6 2000 and C > 3 where the shear-driven state decays
immediately and hence simulations are started with a convection-driven state.

the initial condition was of convection type). For each simulation it is relatively easy
to distinguish between the shear- and convection-type flows, since the former shows far
more chaotic time series and higher heat flux. The case for C = 7.5 in figure 5(left) shows
this difference, and also that multiple behaviours are possible at the same parameters for
significant periods of time. The shear-driven state is marked if observed for & 1000 time
units. (It is stable or at least metastable with a long expected lifetime.) A relaminarisation
is marked if the energy of the streamwise component of the flow drops below 10−5.
Overall, figure 7 indicates that as C (or Gr) increases, a larger Re is needed in order
to drive shear turbulence, or, equivalently, as Re increases, shear-driven states persist to
larger C. For C > 4 simulations suggest that a convective instability kicks in, roughly
independently of the Reynolds number over this range. In between, it is possible to
completely relaminarise flow up to Re ≈ 3500, but at larger Re the progression is as in
figure 5 – from a shear-driven turbulent state to a weak convection-driven state, then to
a more turbulent convection-driven state as C is increased.

In the following sections we determine whether the boundaries of stability observed
in figure 7 are consistent with linear stability of the laminar flow, analysis of travelling
wave solutions and the viewpoint of HHS.

3.2. Linear stability analysis

As the transition to shear-driven turbulence in isothermal flow occurs in the absence of
a linear instability, this section relates to the transition to convection-driven flow states,
in particular with respect to loss of stability of the modified laminar base profile (2.11)
for non-zero C. Linear stability of mixed-convection pipe flow has been studied by Yao
(1987a); Su & Chung (2000), where the model differs slightly in the boundary condition
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Figure 8: Linear stability analysis for α = 1.7, k = 1 (L = 1.85D) (solid lines). Main figure:
m = 1. Inset: m = 2. The axisymmetric mode is included in the m = 1 analysis (i.e. m = 0 and
±1), but instability of this mode is not observed. The first branch (for m = 1) is also shown for
the case α = 0.628 (dashed line). The neutral curves delimit regions where the flow is linearly
stable (S) or unstable (U). The dotted vertical line indicates the value of C (C = 5) at which
the growth rate is shown in figure 9 as a function of Re.

and form of the heat sink. Our figure 2 suggests these differences make little difference
to transition, however, we check for consistency with the nonlinear results of §3.1.

As our code uses Fourier expansions in the periodic dimensions, to calculate the eigen-
functions and stability of the base flow (2.11) we need simulate only using a few Fourier
modes. The Arnoldi method is employed to accelerate convergence and to access eigenval-
ues beyond the leading one. Linear stability analysis is performed for azimuthal wavenum-
bers m = 0, 1, 2 and two streamwise wavenumbers α = 0.628 and α = 1.7 (commensurate
with the pipe lengths L = 5D and L = 1.85D used in our DNS study of §3.1 and in the
travelling wave analysis of §3.3).

The neutral curves, where the growth rate ℜ(σ) = 0, are shown in figure 8. As expected
(and as also reported by Yao (1987a); Su & Chung (2000)), the first azimuthal mode is
found to be the least stable, it corresponds to the spatially largest mode and is the only
mode that can exhibit flow across the axis. (The axisymmetric mode m = 0 is included
in the numerical calculations for stability of the m = 1 mode, but we have not observed
instability of m = 0 type.) As shown in figure 8, the m = 1 mode exhibits a fairly complex
dependence on C, while it is only weakly affected by the axial wavenumber. Indeed, the
first branch for α = 0.628 almost coincides with that for α = 1.7 and the other two
branches (not shown) are slightly shifted to the right. Consistent with the linear stability
of isothermal pipe flow, the critical Reynolds number approaches infinity as C → 0 for
any m.

Consistent with the appearance of the convective state found in simulation (figure 7),
at C ≈ 4 a linear instability appears, roughly independent of Re for most of the range
considered. The corresponding laminar profiles for C = 3−10 are shown in figure 1(right).
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Figure 9: Growth rate vs Reynolds number from linear stability analysis at α = 1.7, k = 1
(L = 1.85D), m = 1 and C = 5 (corresponding to the dotted vertical line in figure 8). Insets:
streamwise vorticity (blue/yellow are 30% of the min/max value) close to the two neutral points
(Re ≈ 400 and 6200).

For C > 4 the profiles present an “M-shape” (independent of Re, see (2.11)), which
becomes increasingly more pronounced as C increases. The difference at the centreline is
more than 80% for C = 10. The profile at C = 3 is flatter than the parabolic (isothermal)
profile, with a centreline difference of almost 30%, but does not have any inflection point.
Therefore, in agreement with previous experimental and theoretical studies (Scheele &
Hanratty 1962; Yao 1987a; Su & Chung 2000), our analysis suggests that the linear
instability of buoyancy-assisted pipe flow is linked to the inflectional velocity profiles
ocurring at sufficiently large heating and it is almost independent of Re.

Figure 8 also shows that, for C & 4, a region of restabilisation is observed as Re is
increased. This is also evidenced in figure 9, which shows a region of negative ℜ(σ) for
1450 < Re < 6200 at C = 5. Isosurfaces of streamwise vorticity for the eigenfunctions
corresponding to the two neutral points where ℜ(σ) becomes positive (Re ≈ 400 and
6200) are also shown in the insets of figure 9. For the larger Reynolds number, Re ≈ 6200,
the eigenfunction looks like it is spiralling in the centre and resembles the “spiral” solution
found by Senoo et al. (2012), although their visualised solutions are nonlinear.

3.3. Continuation from TWN4L

To better understand the effect of buoyancy, we perform a nonlinear analysis, starting
from a known TW in isothermal pipe flow (C = Gr = 0) and continuing the solution to
larger values. A vast repertoire of TWs has now been compiled in isothermal pipe flows
(Budanur et al. 2017). For our purpose we decided to focus on a fundamental solution,
labelled TWN4L (Pringle et al. 2009), which is highly-symmetric (satisfying both shift-
reflect and shift-rotate symmetries) and characterised by relatively smooth continuation
branches in order to aid the numerical continuation. In Willis et al. (2013), the lower
branch of this solution was found to lie on the boundary between the laminar state and
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Figure 10: Continuation in C (or Gr) from N4L at Re = 2500. (a) Phase speed c vs C (or Gr),
(b) Nu vs C (or Gr). Filled circles indicate the points along the continuation at which the mean
streamwise velocity and temperature profiles are shown in figure 11.

turbulence in a ‘minimal flow unit’. Localised solutions bifurcate off this class of solutions
(Chantry et al. 2014) and are found to mediate transition in extended domains (Avila
et al. 2013; Budanur & Hof 2017).

Following Willis et al. (2016) we start with the ‘minimal flow unit’ at Reynolds number
Re = 2500 with domain (r, θ, z) = [0, 1]×[0, π/2]×[0, 2π/1.7], i.e. mp = 4 and α = 1.7 in
(2.14). For isothermal flow (C = Gr = 0), the phase speed of TWN4L is c = 0.61925. The
isothermal TW was first reconverged at Pr = 0.7 using the Newton solver. A parametric
continuation in C to non-zero values was then performed (figure 10) for fixed Re, Pr and
α. We were able to continue the isothermal solution from C = 0 around positive C and
find that it connects with the upper branch at C = 0, then beyond to C ≈ −40. (Negative
C corresponds to a downward cooled flow; see Appendix A). As a check, we verified that
the values of c = 0.52575 and Nu = 2.378 at C = 0 on the upper branch, as well as the
mean profiles, matched those of the previously known upper-branch isothermal solution
TWN4U with Pr = 0.7.

In figure 10(right) it is seen that from C = 0 to C = 6 the Nusselt number Nu increases
by approx 0.75. By comparison, along the upper branch, over the large range C = 6 to
C = −40, it increases by only a further 1.25. Relatively speaking, the lower branch is
rapidly pushed back towards the upper branch over the increase in C and is suppressed
altogether for C > 7.5. The mean velocity and temperature profiles at different points
along the continuation are shown in figure 11. Observe that the profile in the near-wall
region, where rolls and streaks occur, is similar at the saddle-node point (SN) to that
of the isothermal upper branch (UB) solution. Figure 12(left) shows these rolls (arrows)
and streaks (contours) in cross sections of the velocity perturbation at the saddle-node
point. The corresponding temperature perturbation field (‘thermal streaks’) is shown on
the right. Similar to its isothermal counterpart, the travelling wave is characterised by
fast streaks located near the pipe wall and slow streaks in the interior. The core shows
a strongly decelerated region relative to the laminar (isothermal) profile and thus the
profile must become steeper at the wall to preserve the mass-flux. The difference from
the isothermal TWN4L, however, is less marked in the near-wall region than it is in the
core.

Continuations were also performed at Re = 2000 and 3000, after reconverging the
isothermal TWN4L at these Reynolds numbers. Results are shown in figure 13. The TW
survives to larger C as the Reynolds number increases (the saddle-node point of each
curve moves to larger C as Re increases). This is consistent with the shear turbulence
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Figure 11: Mean streamwise velocity (left) and temperature (right) profiles at the points along
the continuation from N4L (Re = 2500) marked in figure 10 (SN: saddle node, LB/UB: low-
er/upper branch). The temperature profiles for C = 0 and C = 2 on the lower branch are
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Figure 12: Cross sections of streamwise velocity (left) and temperature (right) perturbations
(deviations from the isothermal laminar flow) for the N4L travelling wave at Re = 2500 and
C = 7.4 (saddle node). Ten contours are used between the maximum and minimum. The arrows
in the left graph indicate the cross-sectional velocities

region in figure 7 persisting to larger C as Re is increased. The saddle-node bifurcations
at each Re occur at much larger values of C than those at which suppression of turbulence
was observed in the DNS. For example, at Re = 2500 the saddle-node bifurcation occurs
at C ≈ 7.5, while in figure 7 shear-turbulence survives only for C . 1. This is not so
surprising, considering that in isothermal pipe flows the lowest Re at which the N4L
travelling-wave solution is found, i.e. Re = 1290 (Pringle et al. 2009), is much below the
commonly observed value for transition in experiments (Re ≈ 1800−2300). Furthermore,
it should be taken into account that only one TW solution is analysed here – it cannot
capture the entire phenomenon of turbulence suppression in a heated pipe flow, although
is found to capture some of the fundamental characteristics.

Figure 14 shows that, while the lower branch solution for Re = 3000 is on the edge of
an attractor for shear-driven turbulence at C = 0, this is no longer the case for C = 4.
Shear-driven turbulence does not survive in the heated case, although shooting in the
upper direction for C = 4 does still produce a short turbulent transient. In particular,
large amplification of the initial disturbance still occurs in the heated case, but the self-
sustaining mechanism appears to be disrupted.
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Figure 14: Times series of (left) total dissipation Dtot (normalised by the laminar isothermal
value D0 = 2πLz| − 2| = 4πLz) and (right) energy of the streamwise-dependent modes E3d for
simulations started from the lower-branch TW solutions at Re = 3000, α = 1.7 with C = 0
and C = 4. The TW is perturbed by adding ∓ 0.001 (w1 + 0.01w2) (denoted as ‘upper’ and
‘opposite’ directions) where w1 and w2 are the first (leading) and second eigenvectors. Shooting
in the ‘upper’ direction leads to turbulence for C = 0, while the flow goes back to laminar when
perturbed in the opposite direction. For C = 4 both directions end up at the laminar point.

To summarise this section, we have observed that a known TW solution of the isother-
mal pipe flow is suppressed by buoyancy and that it is connected to the transition to
turbulence. The observations are consistent with destabilisation of the shear-driven tur-
bulent state, but at this stage another approach is required to forge an approximate
quantitative link with the transition from turbulence.

3.4. Calculation of the apparent Reynolds number of HHS

In §1.2, where we gave a brief overview of HHS, the (isothermal) equivalent pressure
gradient flow (EPG flow) was identified as a useful reference case for heated flows. To
calculate the apparent Reynolds number of the EPG reference flow, one must determine
the contribution to the mass flux from the buoyancy force that would have been induced
in a fixed pressure-gradient flow. Here we summarise the key points of the analysis of
HHS and apply it to a selected example case from our data. (The interested reader is
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referred to sections 3.3 and 3.5 of HHS for a detailed derivation.) In the following section
we relate HHS analysis to the phase diagram determined from the simulations of §3.1.

The analysis starts by decomposing the body-force influenced flow (i.e. the total flow)
into a pressure-driven flow of equivalent pressure gradient (the EPG reference flow) and
a perturbation flow due to the body force,

u(x, t) = u†(x, t) + uf (x, t) (3.1)

where the superscripts † and f denote the EPG and the body-force perturbation driven
flows, respectively. In contrast to the conventional view, HHS observe that adding a non-
uniform (radially-dependent) streamwise body force to a flow initially driven only by a
pressure gradient does not alter its turbulent mixing characteristics and in particular the
turbulent viscosity remains approximately the same. From this point of view, the body-
force influenced flow behaves in the same way as the EPG flow and relaminarisation
occurs when the Reynolds number Reapp of this ‘apparent’ flow drops below a certain
threshold where turbulence cannot be sustained any more. Given the difficulties discussed
in §1 to uniquely define a critical Reynolds number for transition, we decided to follow
HHS and select a nominal value of 2300, as quoted in many engineering textbooks (see e.g.
White 1979). By writing the bulk velocity Ub of the EPG flow as the difference between

that of the total flow and of the body-force perturbation driven flow, i.e. U†
b = 0.5 − Uf

b ,
the above relaminarisation criterion can be expressed as

Reapp := Re
(

1 − 2 Uf
b

)

< 2300 . (3.2)

To determine Uf
b , the following expression was derived by integrating three times the

Reynolds-averaged z-momentum equation of the body-forced perturbation flow:

Uf
b := Re







1

2

∫ 1

0

(1 − r2)f(r) rdr

︸ ︷︷ ︸

I1

+

∫ 1

0

rRf
uv(r) rdr

︸ ︷︷ ︸

I2







(3.3)

where Rf
uv(r) := 〈(u′

zu′
r)f 〉 is the Reynolds shear stress due to the perturbation flow

induced by the body force f(r). The first integral of (3.3), I1 := 1

2

∫ 1

0
(1 − r2)f(r) rdr,

represents the direct contribution of the body force (which is assisting the flow), while

the second integral, I2 :=
∫ 1

0
rRf

uv(r) rdr, corresponds to the turbulent contribution

related to the body-force perturbed flow. The Reynolds stress term Rf
uv of the body-

force perturbed flow is related to that of the total (Ruv) and EPG (R†
uv) flows by using

the decomposition (3.1) and is approximated by introducing the eddy viscosity concept,

R
f
uv(r) = Ruv(r) − R

†
uv(r) =

νt

Re

dUz

dr
−

ν†
t

Re

dU †
z

dr
, (3.4)

where Uz(r) := 〈(uz)〉, U †
z (r) := 〈(uz)†〉 and νt and ν†

t are the eddy viscosities of the

total and EPG flows, respectively. Under the assumption that νt = ν†
t , we obtain

R
f
uv(r) = −

ν†
t

Re

dU f
z

dr
, (3.5)

where the perturbation flow U f
z (r) := 〈(uz)f 〉 due to the imposed body force is obtained

by integrating the Reynolds-averaged z-momentum equation

0 =
1

r

d

dr

[
r

Re

(

(1 + ν†
t )

dU f
z

dr

)]

+ f , (3.6)
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provided that the EPG flow (and hence ν†
t ) is known. Equations (3.5) and (3.6) corre-

spond to equations (3.6) and (3.7) of HHS and the reader is referred their sections 3.3
and 3.5 for a detailed derivation.

Here, we apply the criterion for relaminarisation (3.2) proposed by HHS to our model
for a vertical heated pipe. The radially dependent body-force is f0 = (4C/Re)〈Θ〉(r).
Since the body-force in HHS is zero at the axis, we shift the temperature profile by its
value at the axis 〈Θ〉

∣
∣
r=0

and absorb this constant into the pressure gradient (see figure
15). This leads to the body force

f1(r) = (4C/Re)
[

〈Θ〉 − 〈Θ〉
∣
∣
r=0

]

(3.7)

and a fixed-pressure Reynolds number

Rep = Re
[

(1 + β) + C 〈Θ〉
∣
∣
r=0

]

Initially, we consider the simulation with C = 2 and Re = 3000 for which it is observed
that Rep = 4252.71. By inserting f = f1 in I1 we obtain Re I1 = 0.12. To calculate

I2 we need to evaluate the EPG flow in order to obtain ν†
t (r) and hence the Reynolds

stress term Rf
uv(r) via (3.5) and (3.6). By definition, Re†

p = Rep. In an approach similar

to Willis et al. (2010), summarised in Appendix B, the eddy viscosity ν†
t (r) of the EPG

reference flow is calculated using an expression originally suggested by Cess (1958), see

(B 2). The resulting eddy viscosity is shown in figure 16(left). By substituting ν†
t in (3.6)

we can invert for dU f
z /dr which plugged into (3.5) gives us the Reynolds stress Rf

uv(r)
(see figure 16(right)). Finally, by inserting the latter in the second integral of (3.3) we

obtain Re I2 = 0.0405. Putting everything together, (3.3) gives Uf
b = ReI1 + ReI2 =

0.12 + 0.0405 ≈ 0.16. Then, using (3.2), Reapp = Re
(

1 − 2 Uf
b

)

= 2040 < 2300, i.e. the

flow is expected to relaminarise. This value obtained for the apparent Reynolds number
is reasonable, since relaminarisation occurs after approximately 400 time units (see figure
15 (right)).

3.5. HHS prediction of phase diagram and nonlinear dynamics

We now consider the general case of a flow at Re with heating C, while introducing a
number of approximations to simplify the analysis.

Firstly, the case discussed in §3.4 (C = 2 and Re = 3000) suggests that Re I1 has
a significantly greater contribution than Re I2 in determining the body-force perturba-
tion flow. This is found to be generally true for the cases considered herein, as well as
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Figure 16: Eddy viscosity (left) of the EPG flow and Reynolds shear stress (right) of the body-
force perturbed flow in the case C = 2 and Re = 3000. The eddy viscosity is calculated following
an approach similar to Willis et al. (2010), as summarised in Appendix B. Once ν
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R
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uv(r) is calculated using (3.5), together with (3.6).

those discussed in HHS, and hence we omit the term Re I2 for simplicity below. The
perturbation flow due to the body force can thus be evaluated as

Uf
b ≈ Re I1 =

1

2
Re

∫ 1

0

(1 − r2)f(r) rdr = 2C

∫ 1

0

(1 − r2)
[

〈Θ〉 − 〈Θ〉
∣
∣
r=0

]

dr , (3.8)

where (3.7) has been used for f(r).

Secondly, figure 4(bottom right) shows that the temperature mean profiles are remark-
ably similar in all turbulent shear-driven flows (i.e. ignoring the laminar or convection
driven flow states), as far as the integral part of the right-hand side of (3.8) is concerned,
despite that the values of the Nu (proportional to the gradient at the wall) are necessarily
quite different for different cases. For the case Re = 5300 C = 3.75, for the left-hand side
of (3.8) we obtain Re I1 = 0.164. By applying the above assumption,

Uf
b ≈ Re I1 =

0.164

3.75
C = 0.04 C (3.9)

Let Reapp=2300 to find the critical C for flow laminarisation, that is,

Re(1 − 2Uf
b ) = Re(1 − 0.08 C) = 2300 (3.10)

or

Ccr,1 = 12.5

(

1 −
2300

Re

)

. (3.11)

For C & Ccr,1 we expect to see rapid transition from the shear-driven turbulent state to
the convective state. Noting C = Gr/(16Re), the above can be expressed as a critical
Grashof number:

Grcr,1 = 200(Re − 2300) (3.12)

Let us now consider the opposite scenario in which the flow under heating C is either
laminar or convection driven. Figure 4(bottom right) shows that the temperature profiles
in such flows are significantly different from those in a turbulent shear-driven flow, and
generally with a much thicker thermal boundary layer, and hence a greater buoyancy
force. Consider the extreme case when the radial heat transfer is purely due to conduction
and the temperature distribution is given by 〈Θ〉 = r2. The buoyancy-driven perturbation
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flow is therefore

Uf
b ≈ Re I1 = 2C

∫ 1

0

(1 − r2) r2 dr =
C

6
(3.13)

Then a second critical C = Ccr,2 can be evaluated,

Ccr,2 = 6

(

1 −
2300

Re

)

, (3.14)

below which the flow is expected to transition to the shear-driven turbulent flow. To
put it another way, it is predicted that metastability of the shear-driven turbulent state
should not be observed for C . Ccr,2, so that the turbulent state is stable. Between Ccr,1

and Ccr,2 the shear-driven state is expected to be metastable, so that this or a convective
state may be observed. In terms of the Grashof number,

Grcr,2 = 96(Re − 2300). (3.15)

Equations (3.11) and (3.14) are plotted on the Re − C graph in figure 17 together
with all DNS results already presented in figure 7. The data of figure 7 was obtained
starting from shear-driven turbulent states. Some additional simulations were performed
at Re = 5300 starting from convection-driven states and are reported in figure 17 using
hollow symbols, with a slight offset in Re for visualisation reasons. Note that in a Re−Gr
graph (3.12) and (3.15) are straight lines.

Considering a series of DNS runs for a fixed Re, for example Re = 5300, but increasing
C values (heating) starting from C = 0, equation (3.11) gives the critical C = Ccr,1

above which the flow will be laminarised or switch to convection-driven. On the other
hand, starting from a large C when the flow is laminarised or convective, equation (3.14)
predicts a critical C = Ccr,2 below which the flow will be turbulent when sufficient
disturbances are provided in the DNS. As Ccr,1 is larger than Ccr,2 for a given Re, there
is an overlap in the possible state of flow, and consequently there is a hysteresis region
in which the flow may or may not be laminarised, depending on the initial flow of the
simulation (or experiment). As a result, the Re − C plane can be divided into three
regimes by the curves representing the two equations, i.e., turbulent shear-driven flow
(regime I), convection-driven or laminar flow (regime III) and regime II in which either of
the above may happen dependent on the initial flow. Note that for the Reynolds number
range considered here, the linear stability curve (showed as a dashed grey line in figure
7) is always to the right of Ccr,2, i.e. Ccr,2 < CLS . The two curves cross at Re ≈ 6000
(not shown), which means that, for Re < 6000 the convective flow is always linearly
stable if C < Ccr,2. Hence, below Re ≈ 6000, shear driven turbulence may be observed
for C < CLS .

A plot showing the phase transitions for the fixed Reynolds number Re = 5300 is
provided in figure 18, where the Nusselt number is displayed as a function of C for
simulations started with either shear-driven or convection-driven states. The two critical
C at this Reynolds number, Ccr,1 = 7.1 and Ccr,2 = 3.4, are indicated with vertical
lines in figure 18. Starting from an unheated (C = 0) turbulent flow, applying a low
heating (C / 7), we observe that the flow remains turbulent over the entire period of
simulation (t = 2000). The dynamics thus sits on the upper branch shown in figure
18. As C is increased, the lifetime of shear-turbulence drops below 2000 time units for
C ' 7.5 and turbulence only survives for less than 500 time units at C = 10. It then
switches to the convection-type flow. This behaviour is marked in figure 18 by plotting
the upper-branch curve with a dashed line for C > 7.5 until it crosses the lower-branch
at C = 12.5. At this value of C, indeed, the switch to the convective flow appears to
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Figure 17: Regions of laminar (L) flow, shear-driven (S) turbulence and convection-driven (C)
flow, as in 7, together with equations (3.11) and (3.14) and the linear stability stability curve
(dashed red curve in figure 8). Initial conditions are a shear-driven turbulent state, except for
the hollow symbols at Re = 5300 which are started with a convection driven state, and similarly
cases towards the bottom-right, where it is clear that the shear-driven state decays immediately.

be immediate. Now, starting from this convection-driven flow and applying a lower C,
the flow remains convection-driven turbulent for C > 3.8, or relaminarises for C / 3.8.
This value of C corresponds to the onset of the linear instability, which is responsible for
the kink in Nu as C is decreased. Our previous analysis predicts that for flows on the
left of (3.14), their Reapp is greater than 2300, hence they may be prone to transition to
turbulence subject to sufficient disturbances. Correspondingly, the lower-branch curve in
figure 18 is plotted with a dashed line for C < Ccr,2 = 3.4 to indicate that in practice (e.g.
in a lab experiment) the flow would become shear-driven turbulent again. However, as
previously discussed, at this Reynolds number, Ccr,2 < CLS . Bistability (between shear
or convection driven states) is thus observed for 3.8 / C / 7.5. The latter value is in
very good agreement with the threshold Ccr,1 = 7.1 predicted above.

In figures 19 and 20 the turbulent structures of the isothermal and heated flows at
Re = 5300, C = 0 and 5, are compared to those of the EPG reference flow. The lat-
ter was computed by performing a DNS with fixed pressure gradient such that Re†

p =
Rep = 10898.7. The flow structures - streaks and vortices - are visualised as isosurfaces
of streamwise velocity and streamwise vorticity fluctuations, normalised by the apparent
friction velocity based on the pressure gradient component of the wall shear stress only,
u∗

τp, where the asterisk ∗ denotes a dimensional quantity here. The resulting apparent

friction Reynolds number is Reτp := u∗
τpR∗/ν∗ = Re†

τ = 147.6.
Comparison between the isothermal and heated flows show that the streaks are rel-

atively unaffected, while vortices are significantly weakened. Our interpretation is that
while the streaks are responsible for the saturation of the nonlinearity of the flow, via
nonlinear normality of the mean flow (Waleffe 1995), it is relatively ‘easy’ to produce
streaks. Note that the mean axial flow for these cases is almost identical (figure 4), and
at the end of §3.3 large initial amplifications of disturbances remains possible in the
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Figure 18: Nusselt number vs C for simulations started with shear and convection initial
conditions at Re = 5300. The magenta and cyan vertical lines correspond to the critical
buoyancy parameters Ccr,1 and Ccr,2 given by (3.11) and (3.14), respectively. For values
of C ' Ccr1

(C / Ccr2
) the shear-driven (convection-driven) state is not supported and

correspondingly the upper (lower) branch is plotted with a dashed semi-transparent line.

heated case. It is observed that weaker vortices in the heated case are sufficient to pro-
duce saturated streaks of the same amplitude. Thus, vortices are more important in the
sense that criticality for transition appears to occur when the vortices are too weak.
Comparing now the heated flow with the EPG flow, consistent with the observations of
HHS (see their figure 19), it can be seen that the streaks in the heated flow are typically
stronger than in the EPG flow, while the vortices are of similar strength. In figure 21 we
plot RMS velocity fluctuations. Axial perturbations (a) are not strongly affected by the
heating, while the cross-flow components (b) are significantly suppressed. (The plot for u′

r

is very similar to that shown for u′
θ.) In (c) it is seen that the heated and EPG flow have

very similar cross-components, while axial perturbations in the heated case are slightly
stronger than in the EPG flow. These results are consistent with observations from the
three-dimensional visualisations of figures 19 and 20, and likewise suggest that it is the
weakening of rolls rather than streaks that appear to be responsible for laminarisation.

4. Conclusions

In this paper we have studied the flow of fluid through a vertically-aligned heated pipe
using direct numerical simulations (DNS), linear stability and nonlinear travelling-wave
solution analyses. The flow is driven by an externally applied pressure gradient and aided
by the buoyancy resulting from the lightening of the fluid close to the heated wall. DNS
were performed for a range of Reynolds numbers Re and buoyancy parameters C, where
the latter measures the magnitude of the buoyancy force relative to the the pressure
gradient of the laminar isothermal shear flow, and three different flow regimes were
identified – laminar flow, shear-driven turbulence and convection-driven flow – depending
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Figure 19: Three-dimensional visualisations of low (blue) and high (yellow) speed streaks
in the isothermal (left), heated (middle) and EPG (right) flows. Isosurfaces of turbulent
streamwise velocity normalised by the corresponding apparent friction velocity u′

z/uτp =
±4.

on the flow parameters. At relatively low Re . 3500 turbulence is completely suppressed
(relaminarised) by buoyancy and as C is increased convection starts driving a relatively
quiescent flow. For larger Re, instead, the shear-driven turbulent flow transitions directly
to the convection-driven state. Consistent with the appearance of the convective state
observed in simulations, a linear instability was found at C ≈ 4, roughly independent of
Re for most of the range considered. The result of increasing C can be compared to that
of increasing polymer concentration, or Weissenberg number Wi, which is known to have
a drag reducing effect on turbulent flows (Virk et al. 1967). Similar to our phase diagram
(figure 7), a region of relatively quiescent flow has been reported for a certain range of
Re and Wi (Choueiri et al. 2018; Lopez et al. 2019), although the underlying physical
mechanism (elastoinertial instability) is clearly very different from the one studied here
(convection driven).

Cases where turbulence is suppressed exhibit a flattened mean streamwise velocity
profile. In agreement with recent observations by Kühnen et al. (2018) and Marensi
et al. (2019) on the effect of flattening, we found that states that mediate turbulence
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Figure 20: Three dimensional visualisations of vortical structures in the isothermal (left),
heated (middle) and EPG (right) flows. Isosurfaces of streamwise vorticity fluctuations
normalised by the corresponding apparent friction velocity ω′

z/uτp = ±35.

(lower-branch travelling wave solutions) are “pushed out” from the laminar state, i.e.
as C increases, a larger perturbation amplitude or larger Re are required to drive shear
turbulence until, for sufficiently large C, the travelling wave is suppressed altogether.

Finally, we used the relaminarisation criterion recently proposed by He et al. (2016),
based on an “apparent Reynolds number” of the flow, to predict the critical C = Ccr,1(Re)
above which the flow will be laminarised or switch to the convection-driven type. This
apparent Reynolds number is based on an apparent friction velocity associated with only
the pressure force of the flow (i.e. excluding the contribution of the body force/buoyancy).
Bistability between shear or convection-driven states was found to occur in the region
4 . C . Ccr,1 where the flow may or may not be laminarised depending on the initial
flow of the simulation or experiment.

Comparison of the turbulent flow structures (rolls and streaks) with those of two ref-
erence flows - the flow of equivalent pressure gradient (EPG) and that of equivalent
mass flux (EFR) - suggests that near criticality for relaminarisation the vortices, rather
than the streaks, are more important in the sense that criticality for transition occurs
when the vortices are too weak. This picture is not straight forward to reconcile with the
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Figure 21: RMS velocity fluctuations. (a) u′
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z a measure of ‘streaks’, are little changed. (c) rolls for the C = 5

case correspond closely to its EPG counterpart, while the heated case has slightly stronger
streaks.

interpretation of Kühnen et al. (2018), where relaminarisation is attributed to reduced
ability to produce streaks in the presence of the flattened base profile. In the heated
case, the base velocity profile does not appear to change significantly while shear-driven
turbulece is present. Thus it appears unlikely that transient growth of streaks is affected
by the heating. Indeed, laminarisation occurs despite little suppression of the streaks.
The experiments of Kühnen et al. (2018) are slightly different, however, in that the var-
ious flow manipulations they introduce do change the base profile of the flow. In that
case it is correct that transient growth will be affected, although we conjecture that it is
the suppression of the vortices due to suppression of the streaks that is responsible for
laminarisation in that case. Their numerical experiments in the presence of a force are
very similar to the calculations here and of HHS. In that case we expect the mechanism
we have described to be more clearly responsible for the laminarisation.
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Appendix A. Link between upward-heated and downward-cooled

cases

Consider the axial force from the pressure gradient and buoyancy terms in (2.9). Ig-
noring the factor 4/Re that multiplies all terms, let

1 + β + C Θ = 1 + β̃ + C̃ Θ̃ . (A 1)

with C > 0 for the upward heated case on the left hand side. Let the right hand side
represent the downward cooled case, taking Θ̃ = 1 − Θ so that Θ̃ is coolest on the
boundary (Θ̃ = 1 − r2 for the laminar case). Put C̃ = −C < 0, as buoyancy due to
positive temperature variations oppose the pressure gradient. (Cooling, however, aids
the downward flow.) Substituting in (A 1) we find β̃ = β + C, i.e. the systems differ only
by a known offset in the pressure gradient required to maintain volume flux.

Appendix B. Turbulent base flow and eddy viscosity

The turbulent mean flow profile for a pipe may be written U = U(y)ẑ, where y = 1−r
is the dimensionless distance from the boundary wall and r is the radial coordinate.
Applying the Boussinesq eddy viscosity to model for the turbulent Reynolds-stresses,
the streamwise component of the Reynolds-averaged momentum conservation reads

1

Re

(
1

r
+ ∂r

)

(νT ∂rU) = ∂zP, (B 1)

where the total effective viscosity is νT (y) = 1 + νt(y) and νt is the eddy-viscosity,
normalised such that νT (0) = 1, i.e. the kinematic value is attained at the wall.

To calculate νt it is convenient to use the expression originally suggested for pipe flow
by Cess (1958), later used for channel flows by Reynolds & Tiederman (1967) and then
by many others (Butler & Farrell 1993; Del Alamo & Jimenez 2006; Pujals et al. 2009):

νt(y) =
1

2

{

1 +
κ2R̂2B̂

9

(
2y − y2

)2 (
3 − 4y + 2y2

)2

[

1 − e
−yR̂

√
B̂

A+

]2
} 1

2

−
1

2
. (B 2)

Here, R̂ = Re / 2, B̂ = 2 B, with B = −∂zP being the averaged streamwise pressure
gradient. The parameters A+ = 27 and κ = 0.42 have been chosen to fit the more recent
observations of (McKeon et al. 2005).

For the calculation of §3.4, the (apparent) pressure gradient B and (apparent) Rep are
known. The mass flux Re of (B 1) is not yet known, and we wish to determine νt. An
initial estimate for Re is obtained from the approximation of Blasius (1913), which may
be written

Rep =
0.0791

16
Re1.75 . (B 3)

Then, (B 2) can be used to calculate νt(r), but we must check consistency with (B 1).
The latter equation can be inverted for U(r), and, as it has been non-dimensionalised

with the same scales of section §2.1, the mean velocity Ub = 2
∫ 1

0
U(r) r dr should be 0.5.

It will not be exactly so, as Re (for the given ∂zP ) has only been estimated. A better
estimate is given by Re := (0.5/Ub) Re, so that νt can be recalculated and iteratively
improved.
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