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Abstract 

A novel model, devised to describe spontaneous chirality synchronization in complex 

liquids and liquid crystals, is proposed and studied. Segments of ribbon-like 

molecular columns with left- or right-handed 180 twist lie on the bonds of a 

honeycomb lattice so that three ribbons meet in a vertex of the hexagonal 

honeycomb.  The energy of each vertex is a minimum if the three ribbons have the 

same chirality,  , and is  otherwise, and the ground state is homochiral, i.e. all 

ribbons have the same hand.  The energy levels for two vertices linked by a single 

ribbon are either 2 , 0 and 2 in this vertex model. Monte Carlo simulations 

demonstrate that this model is identical to an Ising spin model on a Kagome lattice, 

for which the site energy structure is quite different.  The equivalence of the ordering 

of the vertex and Ising spin models is also shown analytically.   The energy difference 

between the disordered and ground states, 4J in the spin model, is related to the 

transition temperature for the Kagome lattice using the exact result, Tc=2.14J.  The 

ordering energy difference for a single site is 50% higher for the vertex model.  The 

thermodynamic energy for the vertex model is corrected by a factor of 1/3 due to 

double counting and this makes the specific heat of the vertex model also equal to 

that of the spin model as expected. Other similar models where there is an unusual 

relation between the site and thermodynamic energies are discussed briefly. 

 

 

I Introduction  
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Chirality is ubiquitous in nature as it is built into the molecules that sustain life, such 

as proteins, DNA and carbohydrates, as well as in most modern drugs. For example 

the alpha-helix that form proteins is right handed because natural amino acids are left 

handed. However, even molecules without intrinsic chirality can form uniform helices. 

Most achiral but crystallisable (isotactic, syndiotactic) synthetic polymers crystallize in 

a helical conformation, with long-range helical order sustained by close packing with 

neighbouring chains.1,2 Furthermore, most instantaneous conformations of achiral 

molecules are chiral but time-averaging in a fluid phase renders them achiral. If the 

energy barrier between enantiomeric conformations is relatively high, a small amount 

of a chiral dopant can tip the balance and make one hand prevail. This is known as 

chirality amplification, or the sergeants and soldiers effect.3 It is promoted by helix 

formation either through self-assembly in columns in solution forming a gel 4,5 or in 

non-crystalline but helix-forming polymers with high conformational barriers such as 

poly(phenyl acetylenes).6,7 In both cases the barriers for chiral interconversion of the 

individual  molecule is compounded by close packing in a helical column, making the 

switch in chirality a cooperative process.8,9 If no chiral impurity or chiral surface are 

present, such chirogenic molecules can tip either way, sometimes resulting in 

multidomain samples of random hand,10 often referred to as a “dark conglomerate”11. 

A few years ago, studies of thermotropic (i.e. solvent-free) liquid crystals have 

revealed that one of the two most common bicontinuous cubic phases, the triple-

network phase previously thought to have spacegroup 𝐼𝑚3̅𝑚,12,13 is always chiral and 

optically active, even if it contains only achiral molecules.14 Recent re-examination 

reassigned it to a lower symmetry I23, still retaining the triple network cubic nature 

but with a modified structure (figure 1b,e).15 Conversely the other common cubic, the 

double gyroid 𝐼𝑎3̅𝑑 phase (figure 1a), is never chiral. Another LC phase, known as 

Smectic-Q, has since also been found to belong to the same family of bicontinuous 

phases but is tetragonal and also shows spontaneous chirality in achiral 

compounds.16 rod-like molecules lying normal to the segment axis in rafts of 3 or 4 

(figure 1c). The typical molecules forming these phases consist of a rod-like aromatic 

core with between 1 and 3 flexible chains attached at the ends, typically alkyl or 

oligo(ethylene oxide). To explain the chirality of such bicontinuous phases it was 

proposed that the network segments are ribbon-like and chiral due to the twist in 

molecular orientation, in all cases by 7-9, in successive rafts along the segment 
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(Figure 1d). This twist angle is a compromise between the tendency of the aromatic 

cores of neighbouring molecules to stay parallel and maximize their π-π interaction, 

while avoiding the steric clash between their bulky molten end-chains. To allow for 

smooth convergence and close packing, it is proposed that all three or four ribbon-

like network segments maintain the same twist sense at a network junction, resulting 

in macroscopic homochirality. Incidentally, the reason that the double gyroid phase 

shows no outward chirality is that its two networks have opposite twist sense, 

cancelling each other’s chirality11. Such cancellation is not possible in the triple 

network I23 phase. Furthermore, in the Smectic-Q phase the two networks are of the 

same hand, hence the phase is always optically active. 

Even more surprising than the above finding of spontaneous chirality synchronization 

in bicontinuous LC phases was the discovery that in some of these compounds 

macroscopic chirality and strong optical activity are maintained even in the isotropic 

liquid, which we refer to as Iso[*] phase, above the isotropization temperature Ti of the 

LC. 17  Iso[*] then transforms to the ordinary optically inactive liquid (Iso), typically up 

to 20 K above Ti through a well defined transition at Tc that appears to be second 

order.18 The structure of Iso[*] is uncertain, but since its optical rotation at Ti is similar 

to that of the I23 cubic, it is likely that it also contains networks with twisted segments 

and 3-way vertices, only without the long-range positional order. An overview of a 

significant number of compounds exhibiting the double gyroid and the triple network 

phases, all based on twisted ribbons, is given in 19.  The chiral isotropic phase has 

recently been reported in a number of quite diverse compounds with rod-like 

shape.20,21,22 
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Figure 1. Models of a unit cell of the (a) double network gyroid cubic phase 𝐼𝑎3̅d  and (b) the 

triple network cubic I23. (c) A raft of 3 rod-like molecules; green: aromatic core, black: 

flexible chains. (d) A three-way junction (or vertex) showing how all three segments must 

have the same twist sense in order for the rod-like molecular cores (green) from the three 

segments to merge smoothly. (e) The ribbon representation of the I23 phase where each 

green rib represents a raft (c) of 3-4 molecules lying perpendicular to the ribbon axis. a,b,d,e 

reproduced from 15 by permission of the Royal Society of Chemistry. 

 

We model the Iso*-Iso transition by considering the statistical mechanics of a system 

with three-way planar vertices constrained to lie on a two-dimensional honeycomb 

lattice. In this model we assume that all ribbons connecting two adjoining vertices are 

twisted by ±180 with chirality ±1 and neglect the possibility of energetically costly 

helix reversals within the ribbon segment.  

The vertex energy is favourable,  ,  if the three ribbons meeting at a vertex have 

the same chirality and is unfavourable, with energy  , if the chirality of any one 

ribbon differs from the other two. This condition is the driving force that can cause a 

given ribbon to switch chirality.  This is an interesting statistical system because there 

are clearly more unfavourable states of a single vertex, 6, compared with 2 

(a) 
(b) 

(c) 

(e) (d) 



5 

 

favourable states.  This contrasts with the connecting ribbons that have only two 

states, chirality ±1. A phase transition occurs from a disordered state to a state where 

one chirality dominates and the material becomes uniformly optically active. 

We show that the statistical properties of the vertex model on a honeycomb lattice 

map exactly on to an Ising model on a kagome lattice with the same transition 

temperature with one dramatic difference, namely that the average site energy for the 

vertex model is 50% larger than given for the spin model at high temperatures.  We 

also consider other models where the transition temperature is unrelated to the site 

energy of ordering as is found here. 

II Energetics of the vertex model compared with the spin model 

The ribbons lie on honeycomb lattice vectors as shown in figure 2(a) with vertices at 

the lattice points.  The chirality of each lattice vector is represented by a pseudo-spin 

1    as shown by a red dot in figure 2(a). The blue dots are the three–way 

vertices. If lines are drawn between the red dots in figure 2(a) they form a kagome 

lattice - the dual of the honeycomb lattice.  The magnetic properties of 

ferromagnetically coupled spins on a kagome lattice are exactly solvable by an 

extension to Onsager’s solution, with critical temperature Tc  = 2.1433J 23 .The 

pseudo-spins of the vertex model in two dimensions lie on the kagome lattice but the 

situation differs from the ferromagnetic spin model because the energies of the 

vertices involve three spin interactions. 

 

The site energy corresponding to the five-spin cluster shown in Figure 2(b) takes one 

of three values: 2  if both vertices are in the favourable state, 2  if both vertices 

are in the unfavourable state and 0 if the state of one vertex is favourable and the 

other unfavourable. In Table 1 the energies of the site 0 in the configuration 

1 2 3 4
( )   

0
σ   are compared with those for a spin model with ferromagnetic exchange 

J and spins ±1 shown in figure 2(c).  The multiplicities are given by a factor of 2 by 

reversing all spins and permuting the spins 1-4.  In each case there are 25=32 states.  

We find the average site energy which is the energy the system will reach in the limit 

of high temperatures is  . 
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Figure 2. (a) shows a honeycomb lattice with the vertices as blue dots and the chiral ribbons 

marked with red dots; (b) shows a five pseudo-spin unit centered on spin 0 where the spin-

spin interaction occurs though the energies of the two vertices; (c) a kagome spin model 

where the energy of spin at site 0 is given by -  0 1 2 3 4
J       . 

Table I 

The energies of the five site cluster for the vertex model and the ferromagnetic spin 

model on the kagome lattice  

Configuration 

1 2 3 4
   

0
σ  

Energy 

Vertex Model 

Energy  

Spin Model 

Multiplicity 

+ +  +  + + -2   -4J 2 

+ +  -  + + 2  +4J 2 

+ +  +  - - 0 0 4 

+-  +  + - 2  0 8 

+-  +  + + 0 -2J 8 

+-  -   + + 2  +2J 8 

Total  32  0 32 

Average energy   0  

 

 

               (a)                                                                 (b)                                                      (c) 



7 

 

In spin models the difference between the average energy, always zero, and the 

ground state energy divided by the difference between the highest and lowest energy 

is equal to one half.  The value for the vertex model is ¾.  This may be compared 

with an n-state Potts model where the value is 
1n

n


 so the vertex model might have 

some similarity to the 4-state Potts which is known to have a second order 

transition24,25. 

The distribution of energies and their multiplicities of the central site are shown in 

Figure 3. 

 

 

Figure 3. The energies and multiplicity of the central site for (a) the vertex and (b) the spin 

model. The red and blue lines link the states where transitions occur if the central spin is 

reversed. 

III Monte Carlo simulation of the vertex model 

The simulations are run using a Metropolis algorithm and Glauber dynamics over 

honeycomb lattices of varying size using the energetics given in Table I.  For 

comparison the calculations were repeated for the spin model.  At each temperature 

the routine was run 104 times to establish equilibrium and each measurement was 

the average over 106 iterations.  All the runs were done as the sample was heated 

from low temperature.  Energy changes for different configurations, E(config.1) - 

E(config.2), are shown in Table II for both models.  If the energy change is zero the 
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spin is flipped in the Monte Carlo code with probability ½.   The transitions are shown 

in Figure 3 as red for the larger and blue for the smaller energy. 

Table II  The change in energy after the central spin is reversed in vertex and spin 

models,  EV and  ES 

Configuration1 

 

EV        ES 

Configuration2 

 

EV      ES 

 

 EV 

 

 ES 

+ +  +  + + 

2 4J    

+ +  -  + + 

2 4J   

 

4   

 

- 8J 

+ +  +  - - 

0             0 

+ +  -  - - 

0               0 

 

0 

 

0 

+-  +  + - 

2        0 

+-  -  + - 

2           0 

 

0 

 

0 

+-  +  + + 

0            -2J 

+-  -  + + 

2 2J    

 

2  

 

-4J 

 

The results in Table II show that the energy of configuration 1 minus that for 

configuration 2 are identical for the same change in orientation of the central spin for 

vertex and the spin models provided we choose 2J  .  This means that the results 

for the magnetisation, ( )m T   , the susceptibility, and Binder cumulant will be 

identical for these two models.   

The susceptibility is given by, 

   
,

1
( ) i j i j

i jB

T
k T

        .     [1] 

For systems that have a second order transition the maximum value of the 

susceptibility, max, and lattice size L (sizes of 20, 40, 80, 160 and 320 were used in 

the Monte-Carlo simulations) are related by max~Ly where y= for the spin 

model26. Near the transition the value of susceptibility is highly sensitive to small 

temperature changes hence the temperature steps were reduced to 0.005  in the 

critical region.   
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Plots of the temperature dependence of the susceptibility,  are shown in figure 4(a) 

for the vertex model. In this and in all subsequent figures T is given in units of J. The 

spin and vertex models have identical susceptibilities, hence the purpose of these 

plots is to validate our Monte Carlo procedures and Figure 4(b) shows a log-log plot 

of max as a function of L.  It is seen that the Monte Carlo simulations for the vertex 

model agree extremely well with the known behaviour of the Ising model. The 

exponent p in the expression 
max

~
p

L  is found from the plot in figure 4(b) to be 

p=1.766 which is a little higher than the Ising exponent, /   7/4. 

 

 

 

 

 

 

 

Figure 4. Susceptibility plots for the vertex model to confirm its identity to the spin 

model. (a) temperature dependence of the susceptibility as a function of temperature 

for different lattice sizes L =20,40, 80, 160 (b) plot of logemax as a function of logeL, 

the slope for the spin model is 7/4 =1.75 

The most accurate way to determine the transition temperature is to use a Binder 

cumulant27 that is defined for a lattice of size L by, 

4

2 2
1

3
L

U



 
 

 
  .                                                                                                                          [2] 

 

UL is independent of L at a second order transition.  The approximation for the 

transition temperature is found from the intersections of UL as a function of 

temperature, for different L. The transition temperature for the vertex model is 

  (a) (b) 
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identical to that of the spin model, 2.143317, within the error as illustrated in Figure 5 

bounding it above and below by 2.146 and 2.143 with an error of 0.003 respectively.  

 

 

Figure 5.: The Binder cumulants for the vertex model with L =20, 40, 80,160 (a) over the full 

temperature range and (b), over a restricted temperature range near to 𝑇𝑐. The vertical lines 

indicate the range of possible values of 𝑇𝑐. 

 

So far we have exact agreement beween the vertex and the spin models but the 

energy values show a markedly different story.  The ground state energy, 2 ,  is 

the same in both cases if  =2J.   However the energies in the high temperature limit 

are very different being zero for the spin model but   for the vertex model. The 

difference in energy between the ground and fully disordered states is 3 for the 

vertex model compared to 4 2J  for the spin model.  Values for the site energy as a 

function of temperature for the vertex and spin models are shown in figure 6(a) where 

it is clear the high temperature limits are different.  This apparent discrepancy is 

discussed in more detail in section V. 

 

V A unified formulation for the vertex and spin model  

The site energy for the vertex model may be rewritten in terms of pseudo-spins, 

   1 using the relations that 2

0 1 2
( )     = 9/1 for identical/dissimilar spins. 
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2 2

0 1 2 0 3 4
(site0)= ( ) ( )E A C                   [4] 

The values of the parameters, A and C, are found by requiring that the maximum and 

minimum energies are given by 2 , hence 
4

A


  and 10C   . 

This gives equation [5] which demonstrates the relationship between the vertex and 

the spin model. 

 

2 2

0 1 2 0 3 4

0 1 2 3 4 1 2 3 4

(site0)= ( ) ( ) 10
4

           ( ) ( ) 2
2

E
      

         

        

       
                      [5] 

The site energy for the vertex model, (0)
site

E , clearly differs from that of the spin 

model by the addition of the terms 
1 2 3 4

     .  These do not contribute to the 

change in energy when the spin 0
 is flipped and hence are irrelevant in a Monte 

Carlo calculation.  However they do contribute to the values of < (0)
site

E > as a 

function of temperature as shown below in figure 6a. 

 

 

 

 

 

 

 

Max please replace 6a with fig below and remove red line in fig 6b 

Figure 6. a) A plot of the average site energies E  of both models with a triangle 

representing the spin model and a square the vertex for L =20, 40, 80,160, 360  (b) The 

thermodynamic energy of the vertex model calculated for L =20, 40, 80,160, 360.  

 

  

(a) (b) 
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The thermodynamic energy, U, for the spin model is given by 
1

( )
2

site

n

U E n
N

  where 

the factor ½ is present to prevent the double counting of the correlation functions e.g. 

n n     .  A different correction for multiple counting occurs in the vertex model.  

The correlation functions 
0 1 1 2 2 0

        will be present in three site energies,

(0),  (1) 
site site

E E  and (2)
site

E as can be seen from figure 2(b) and as this will be true for 

all vertices the thermodynamic energy is given by 
1

( )
3

site

n

U E n
N

   for the vertex 

model.  This gives the energy shown in figure 6(b). 

The specific heats of the vertex model and identical to those of the spin model as 

shown in figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 7: Plots of the specific heat as a function of temperature, an increased L gives a 

reduced divergence in C. (a), (b), geometric similarity for both the vertex and spin models, 

for L=40 and 80. 

 

A continuum of models may be defined for  0 1  , 

 0 1 2 3 4 1 2 3 4
(site0) ( ) ( 2)

2
E

                       [7] 

 
 (a) 

  

 

 

 

 

 

 

(b) 
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The energies and degeneracies of this model are shown in figure 8.  The maximum 

and minimum energies are independent of ; however the energy of the fully 

disordered state is at + for the vertex model and at zero for the spin model. 

The thermodynamic energy for this model is given by, 

1
(site )

(2 ) n

U E n
N

 


  . 

All the thermodynamic properties of these models are independent of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The site energies as a function of .  The energies for the spin model are 

at  =0 and for the vertex model at  =1. 

 

VI  Other similar models with an unusual relation between the site energy and 

the thermodynamic energy 
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The site energy for the vertex model given in equation [4] contained terms that did 

not depend on the central site.  These terms contributed to the ordering energy but 

not to the value of Tc. We consider what other models would show this feature. 

A four-way vertex model would map on to a triangular lattice as shown in figure 9.  

The vertex energy would have three values corresponding to the states where all 4 

ribbons have the same chirality, the state where the chirality of one ribbon is different 

and the state where there are equal numbers of each chirality.  

 

 

Figure 9  The vertex model for a 4-way vertex, (a), and the corresponding triangular lattice 

model, (b). 

We chose the vertex energy in this case to be  2

1 2 3 4
        which gives the 

three energies of the vertex to be 16 , 4   and 0.  This would give the ordering 

energy to be as follows: 

   
 

2 2

0 1 2 3 0 4 5 6

0 1 2 3 4 5 6 1 2 2 3 3 1 4 5 5 6 6 4

( 0)

2 ( ) ( ) 8

E site         

                   

          
             

 

[8] 

(a)                                                                   (b) 
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The contributions to the ordering energy at T=0 are 12 from the terms involving spin 

0
 and an equal contribution from the additional terms.  In this case the elimination of 

double counting will require that the relationship between the thermodynamic energy 

and the site energies is given by 4vertex

1
(site )

4 n

U E n
N

  . 

Another way of introducing extra terms is to consider multiple spin interactions28 as in 

the site energy below for a square lattice: 

 0 1 2 3 4 1 2 3 4
( 0) ( )E site J               .      [9] 

The ordering energy for this model is (4 )J   but Monte Carlo simulations  will 

predict that the transition is independent of  The negative fourth order term would 

tend to drive the transition to first order; this occurs for 1/ 3  within mean field 

theory applied to this two dimensional lattice. 

The models described here have simple solutions as they are not frustrated as 

occurs when antiferromagnetic interactions are involved.  Such frustrated models 

have been discussed extensively and include the ice-model and the 8-vertex model 

which may also map on to solvable models29. 

 

VII  Conclusion 

 

A vertex model was developed to describe the ordering of spontaneously chiral liquid 

Iso[*] and network-based bicontinuous liquid crystals in non-chiral compounds where 

the ordering energy arises from chiral ribbons linking in three-way vertices.  The 

centres of the ribbons lie on a kagome lattice and the thermodynamic properties of 

the vertex model were identical to that of the two dimensional spin model even 

though the allowed energies of a single site were radically different from those of the 

spin model on a kagome lattice.  

The theory developed here allows us to estimate the energy difference between 

vertices in Iso[*] for which all three connecting ribbons are and are not identical, 2 .  

Using the Iso[*] – Iso transition at 465K and RTc =2.1433J for the Kagome lattice we 

find that J =0.430 kcal/mol and since  =2J we find  =0.86 kcal/mol. This is likely to 
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be an overestimate for  because it was obtained from the combination of a phase 

transition temperature for a three dimensional system with a two dimensional model.  

The observed transition is indeed second order18 and the energy of the transition 

may be estimated from an integral over the specific heat peak.  This experimental 

result gives an estimate of the ordering energy, U = 1.1kcal/mol which is higher than 

the value of  =0.86 kcal/mol that would be deduced using this model. We conclude 

that the two dimensional model of the three dimensional Iso[*] – Iso transition is 

qualitatively correct although the detailed numbers are subject to error.  However this 

vertex model does have interesting statistical properties in its own right. 
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