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We report the observation of a nontrivial emergent state in a chain of nonidentical, heterogeneously coupled

oscillators where a set of weakly coupled oscillators becomes phase synchronized while the strongly coupled

ones remain drifting. This intriguing “weak-winner” synchronization phenomenon can be explained by the

interplay between nonisochronicity and the natural frequency of the oscillator, as coupling strength is varied.

Furthermore, we present sufficient conditions under which the weak-winner phase synchronization can occur for

limit cycles as well as chaotic oscillators. Employing a model system from ecology as well as a paradigmatic

model from physics, we demonstrate that this phenomenon is a generic feature for a large class of coupled

oscillator systems. The realization of this peculiar, yet quite generic weak-winner dynamics can have far-reaching

consequences in a wide range of scientific disciplines that deal with the phenomenon of phase synchronization,

including synchronization of networks. Our results also highlight the role of nonisochronicity (shear) as a

fundamental feature of an oscillator in shaping emergent dynamical patterns in complex networks.

DOI: 10.1103/PhysRevResearch.3.023144

I. INTRODUCTION

Interactions play a fundamental role in nature since many

functions, for instance, sensory or information processing,

rely on collective tasks, involving an exchange of matter or

energy, rather than on individual entities. One of the oldest

examples of such collective behavior has originated from

the physics of coupled pendulum clocks, which are able to

synchronize their motion in time through a weak mechanical

coupling [1]. Since its discovery, synchronization has been

observed and studied in many areas of science with problems

ranging from collective behavior of a large population of

chemical oscillators [2] as well as spiking and bursting of

neurons in neural networks [3,4] to coupled superconducting

Josephson arrays [5] and information transfer in neural sys-

tems [6], among others (see Ref. [7] and references therein).

Mutual synchronization implies the emergence of coherence

in the system through the adjustment of internal rhythms of

individual entities without the presence of any central point of

control. Several interesting classifications of this broad phe-

nomenon have emerged through extensive research done in

the last few decades, namely, complete synchronization (CS)

[8], generalized synchronization (GS) [9], and phase syn-

chronization (PS) [10]. CS implies that the coupled systems
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remain in step with each other for all times after transients.

However, CS can only occur in a system of coupled identical

units. By contrast, GS is a state where the coupled elements

maintain a functional relationship with each other for all times

after transients. Note that GS can be realized for systems

where nonidentical units are coupled. In this paper our focus is

on the phenomenon of phase synchronization (PS) in coupled

systems, which is characterized by oscillators keeping their

phases in step with each other while showing no correlation

between their amplitudes [10]. It is one of the most ubiq-

uitous phenomena in coupled oscillator systems, pervading

both the natural and technological world (see Ref. [11] and

references therein). One of the central problems concerning

PS is to explain the mechanism(s) behind its emergence for

different dynamical behaviors such as limit cycle oscillations,

quasiperiodicity, and chaos and also for different coupling

topologies such as ring, star, and small-world networks [12].

The contemporary approach essentially relies on the fact that

PS emerges out of the complex interplay between coupling

and frequency detuning [13–15]. However, in this paper we

present an intriguing type of PS which cannot be explained

by the aforementioned approach. This state, which we call

“weak winner,” is an emergent dynamical pattern in a chain of

heterogeneously coupled oscillators where the weakly linked

part of the chain exhibits phase synchrony while the strongly

coupled part remains incoherent. Furthermore, we suggest a

mechanism utilizing the concept of nonisochronicity [16–22]

to explain the emergence of this nontrivial state of PS.

Formally, two coupled oscillators can be considered phase

synchronized if �ϕ = |ϕ1 − ϕ2| < const for sufficiently long

periods of time. Here, ϕ1 and ϕ2 are the phases of the two

2643-1564/2021/3(2)/023144(12) 023144-1 Published by the American Physical Society
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FIG. 1. A brief summary of the essence of the weak-winner phenomenon and how it can manifest in progressively larger networks.

(a) depicts the two distinct routes to phase synchronization in a pair of coupled oscillators. One is the classic monotonic decay (blue curve) in

phase difference, and the other is anomalous phase synchronization with nonmonotonic decay (red curve) of the phase difference [16–20,36] as

coupling is increased. (b) shows how “weak-winner” synchronization emerges in a chain of three heterogeneously coupled oscillators. For three

coupled oscillators, there are at least two links, and one of them could be a weaker one; the weakly linked pair of oscillators synchronize their

phases, while the other pair with stronger coupling strength remains drifting (details discussed in Sec. III). This phenomenon, where a subset

of the network with weakly linked nodes synchronizes their phases while the rest of the network with strongly linked nodes remains drifting,

is termed “weak winner.” (c) shows some examples of weak-winner phase synchronization as the network size is increased. The coupling

strength between oscillators is reflected by the edge thickness. The oscillators colored blue are in phase synchrony. Sync, synchronization.

oscillators, and the constant, for the purpose of our study,

is, say, 2π . Conversely, phase synchrony breaks down when-

ever one of the oscillators advances its phase at least a full

2π cycle ahead of the other [23]. In general, increasing the

coupling strength between several oscillators synchronizes

their phases. Nonetheless, we show here that surprisingly, the

phase synchronization can also appear in the weakly coupled

part of the network while the strongly coupled part remains

desynchronized (see Fig. 1).

We first demonstrate this using a minimalistic setup with

three coupled oscillators. One of the oscillators (say, oscilla-

tor 2) is coupled bidirectionally to the two other oscillators

(say, oscillators 1 and 3) with coupling parameters D12 and

D23, respectively, and there is no direct coupling between

oscillators 1 and 3 (see Fig. 2). This linear chain setup has

been studied, for example, in the context of Rössler systems

[24] and chaotic lasers [25] forced by two sinusoidal signals,

three coupled Rössler systems exhibiting partial phase syn-

chronization [26] and competing synchronization [27], and

three coupled semiconductor lasers as well as three neurons

displaying relay synchronization [28].

We observe both competing and relay PS [29,30] in our

three-oscillator system and, in addition, a counterintuitive

type of phase synchronization. The latter happens for cer-

tain regions in the D12-D23 parameter space, where the two

weakly coupled oscillators do stay in phase synchrony with

each other while the two strongly coupled oscillators do

not. This unexpected behavior, which we call “weak-winner

phase synchronization,” can be understood as a result of

the complex interplay between shear (nonisochronicity) and

the natural frequency of individual oscillators as the cou-

pling strength is varied. We also present sufficient conditions

under which a coupled oscillator system can exhibit weak-

winner PS. Furthermore, we claim that this phenomenon is

a generic feature of a large class of coupled nonlinear os-

cillator systems and provide examples which validate our

claim.

II. MODEL AND FIRST OBSERVATIONS

To demonstrate the variety of possible applications of

weak-winner PS, we first use an example from theoretical

ecology to discuss the case of chaotic PS.

Chaotic oscillator model. We consider three coupled

chaotic oscillators (i = 1, 2, 3), each of which represents a

food chain with three trophic levels at a particular spatial

location (patch). This model was originally developed to

demonstrate phase synchronization in population dynamics

[31]. Each of the three population patches consists of nutrients

(vegetation) xi, prey (herbivores) yi, and predators (carnivores)

zi as species. The coupling between the patches accounts for

023144-2
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FIG. 2. Parameter space plots showing, as indicated by the labels (and colors), regions of D12 and D23 values for oscillator pairs in phase

synchrony or not, with (a) b2 = 1.00, (b) b2 = 1.03, and (c) b2 = 1.1.

possible migration of herbivores and carnivores. Hence the

dynamics of the entire system is given as

ẋi = aixi −
ǫ1xiyi

(1 + k1xi )
, (1a)

ẏi = −biyi +
ǫ1xiyi

(1 + k1xi )
− ǫ2yizi +

3
∑

j=1

Di j (y j − yi ), (1b)

żi = −ci(zi − ζi ) + ǫ2yizi +
3

∑

j=1

Di j (z j − zi), (1c)

where ai represents the vegetation growth rate and bi and

ci represent the herbivore and carnivore mortality rates in

the absence of interspecies interactions, respectively. The

terms
ǫ1xiyi

(1+k1xi )
, denoting vegetation-herbivore interaction (prey

growth rate), and ǫ2yizi, describing herbivore-predator inter-

action, are the standard Holling type II and Lotka-Volterra

functions, respectively. The parameter ζi accounts for the

availability of food for the predator in addition to its pre-

ferred prey [32]. Parameters Di j = D ji represent the coupling

strength between patches i and j representing the migra-

tion of herbivores and carnivores between the patches. For

this study, we assume that the three patches are connected

in a linear chain, which results in a coupling matrix D =

(
0 D12 0

D12 0 D23

0 D23 0
). We fix the parameters at a1 = a2 = a3 =

1.0, b1 = b2 = b3 = 1.0, c1 = c2 = c3 = 10.0, ǫ1 = 0.25,

ǫ2 = 1.0, k1 = 0.05, and ζ1 = ζ2 = ζ3 = 0.006, unless speci-

fied otherwise. For this parameter set, the population densities

exhibit chaotic oscillations which resemble those of the

Rössler system [33] with phase coherent dynamics.

This means that the trajectory oscillates chaotically around

a fixed center of rotation, and on a two-dimensional projection

of the attractor, an instantaneous phase can be defined as the

increasing angle between an arbitrarily fixed reference axis

and the radius of the trajectory [34].

All numerical simulations presented here were performed

with the Dormand-Prince (DOPRI5) adaptive step size al-

gorithm [35]. To detect 1 : 1 phase synchrony between

oscillators i and j, we compute their unwrapped instantaneous

phases ϕi(t ) and ϕ j (t ) and check for

δϕi j = std(|ϕi(t ) − ϕ j (t )|) < 2π, ∀t > ttrans, (2)

where std(·) is the standard deviation and the transient time

ttrans is taken to be 106 arbitrary time units. The choice of using

standard deviation as opposed to phase locking value (|ϕi(t ) −
ϕ j (t )|) for measuring phase synchrony is purely arbitrary, and

we have also validated all our results with fixed (< 2π ) phase

locking value.

To study how the coupling strengths (migration rates)

affect the phase dynamics among the three oscillators, we

generate plots in coupling parameter space indicating different

synchronous behaviors (Fig. 2). The values of D12 and D23

vary in the range between 0.00 and 0.06. We keep b1 =
b3 = 1.00 in all three plots and use b2 = 1.00, b2 = 1.03,

and b2 = 1.1 in Figs. 2(a), 2(b), and 2(c), respectively, indi-

cating that environmental conditions for the herbivores are

identical in the outer two patches but differ in the central

one. In fact, a small increase in the prey mortality parameter

bi causes a slight increase in the intrinsic frequency of the

ith oscillator. Figure 2(a), representing the case of three cou-

pled identical oscillators, conspicuously displays five different

parameter regions characterized by different states of phase

synchrony among oscillators: (i) synchronous behavior be-

tween oscillators 1 and 2 only, labeled “1-2” (shown in blue),

(ii) synchronous behavior between 2 and 3 only, labeled “2-3”

(shown in green), (iii) no synchronization between any pair

of oscillators, labeled “None” (shown in gray), (iv) relay syn-

chronization between the two outer oscillators 1 and 3, labeled

“1-3” (shown in yellow), and (v) phase synchronization of all

three oscillators, labeled “All” (shown in black).

The size and location of the synchronization regions

change when we increase the b2 value to 1.03 [Fig. 2(b)]. We

now see that the None synchronized region is enlarged at the

expense of complete synchronization, while the 1-2 and 2-3

synchronized regions are not significantly affected.

The original phase structure [Fig. 2(a)] gets some dis-

tortion while still maintaining its symmetry. Note that relay

synchronization disappears completely in this case. As we

advance the b2 value further to 1.1 [Fig. 2(c)], all five dif-

ferent parameter regions found in Fig. 2(a) are also present,

with two regions of particular interest. Notice in the upper

left quadrant the 1-2 synchronized (blue) region for weak

D12 coupling and strong D23 coupling. Due to the stronger

D23 coupling, this parameter region would be expected to

generate 2-3 phase synchronization, not 1-2 as it does. Anal-

ogously, due to the symmetry in our setup we find a 2-3

phase synchronization region with strong D12 and weak D23
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FIG. 3. (a) Variation of mean frequency with coupling strength

D12 for b2 = 1.1. Corresponding to (a), (b) represents the variation

of mean relative frequency for oscillator pairs 1-2 and 2-3, as labeled,

with D12 for a fixed value of D23 = 0.01 [along the horizontal dashed

line in Fig. 2(c)]. For comparison, curves 1∗ and 2∗ correspond to the

case when D23 = 0.

coupling. We call this phenomenon a weak-winner phase

synchronization.

This seemingly counterintuitive PS, where the weak cou-

pling wins over the strong coupling for synchrony, can be

corroborated by observing how the mean frequencies of the

oscillators 〈 f1〉, 〈 f2〉, and 〈 f3〉 and their mutual differences,

��i j = |〈 fi〉 − 〈 f j〉|, vary with changes in the coupling

strength. To be specific, we fix D23 = 0.01 and vary D12 in the

interval [0, 0.06], as indicated by the horizontal dashed line

in Fig. 2(c). The mean frequencies are depicted in Fig. 3(a)

by the curves labeled 1, 2, and 3, respectively, corresponding

to the case exhibiting weak-winner PS [Fig. 2(c)]. Initially

separated and distinct, the curves evolve for increasing values

of D12, showing a tendency for 〈 f1〉 and 〈 f2〉 to decrease and

for 〈 f3〉 to remain about constant, corresponding to the case

of weak and constant D23 = 0.01 with growing D12. When

〈 f2〉 and 〈 f3〉 become equal, weak-winner phase synchrony

appears. Interestingly, systems 1 and 2 synchronize more

easily when system 3 is coupled to system 2, as opposed

to the case when D23 = 0 denoted by curves 1∗ and 2∗. In

fact, system 3 works as a catalyst, causing systems 1 and 2 to

synchronize earlier, i.e., for smaller D12 values compared with

the case when system 3 is not part of the process.

So far, we have observed that due to some interplay be-

tween coupling and frequency mismatch, one could get a

very unexpected synchronized state—the weak-winner phase

synchronization. At first sight, the emergence of weak-winner

PS might appear to be the consequence of a phenomenon

known as short-wavelength bifurcation (SWB) [36]. However,

this is not the case as explained in Appendix D. Instead, we

can explain the mechanism of the emergence of such a syn-

chronized state as a result of the existence of anomalous phase

synchronization (APS) [16,18–21,37,38]. To demonstrate this

in detail, we recall briefly the concept of APS. For a system of

two coupled oscillators, APS is a state wherein the frequency

difference between the oscillators shows a nonmonotonic

behavior with respect to the coupling strength [39–42]. In-

stead of monotonically decreasing, the frequency difference

increases for a certain coupling range before its inevitable

decay with increasing coupling strength (see Appendix C for

the intuitive understanding behind APS).

This nonmonotonic relationship between coupling and the

spread of frequencies occurs when Cov(ωi, qi ) > 0, where

Cov(ωi, qi ) = (ωi − 〈ωi〉)(qi − 〈qi〉) (3)

and ωi and qi are the natural frequency and shear (non-

isochronicity) of the ith oscillator [16]. Now, for our system

[Eqs. (1a)–(1c)], we do see the signatures of APS as shown

in Fig. 3(b), where the frequency difference of oscillator pair

1-2 varies nonmonotonically with coupling. However, to fully

analyze the system, one must have a clear definition of shear

in the system. Generally, both shear q and natural frequency ω

are functions of the system parameters, and in order to check

the Cov[ω, q], these functions need to be determined. While

it is possible to approximate these functions numerically for

any nonlinear oscillator, we find it more convincing to study

a paradigmatic system which has both shear and natural fre-

quency explicitly present in the governing equations as system

parameters.

III. MECHANISM: A PARADIGMATIC

MODEL APPROACH

To explore the mechanism of the emergence of weak-

winner PS, we turn to a simpler model which is known to

exhibit APS and which also contains frequency and shear as

system parameters.

Limit cycle model. Here, we are going to use the same

coupling structure as before but with individual oscillators

represented by complex Stuart-Landau equations. The Stuart-

Landau equation represents a generic mathematical equation

describing the behavior of any nonlinear oscillator close to

the onset of oscillations. Therefore, in this system the oscilla-

tors exhibit only limit cycles when uncoupled and no chaotic

oscillations. Interestingly, the extension of the Stuart-Landau

equation to spatial domains is given by the complex Ginzburg-

Landau equation, which is one of the most widely studied

nonlinear equations in the physics community, describing a

plethora of phenomena ranging from superconductivity [43]

and Bose-Einstein condensation [44] to nonlinear waves and

chemical oscillations [45].

The governing dynamics of the Stuart-Landau system is

determined by

ż j = z j[1 + i(ω j + q j ) − (1 + iq j )|z j |2]+
3

∑

k=1

D jk (zk − z j ),

(4)

where z j = ρ je
iθ j and j = 1, 2, 3. Here, ω j represents the

intrinsic frequency of the oscillator j, and q j is the de-

gree of nonisochronicity (or shear), which is basically a

measure of the dependence of the frequency on the amplitude

of the oscillator. In this model, shear and frequency are system
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parameters. In order to understand the phase dynamics of the

system, we reduce Eq. (4) to a pure phase equation that is valid

in the weak coupling limit, given by

θ̇ j = ω j + q j

3
∑

k=1

D jk +
3

∑

k=1

D jk[sin φ jk − q j cos φ jk], (5)

where φmn = θn − θm is the relative phase between oscillators

m and n. Equation (5) can be further represented in terms of

the evolution of relative phases as

φ̇12 = C1 − A1 sin (φ12 + α) − B1 sin (φ32 + β ), (6)

φ̇32 = C2 − A2 sin (φ12 + β ) − B2 sin (φ32 + α), (7)

with the constants C1 = �ω + D12�q + D23q2, C2 = �ω +
D23�q + D12q2, A1 = D12

√

4 + (�q)2, B1 = D23

√

1 + q2
2,

A2 = D12

√
1 + q2

2 , B2 = D23

√

4 + (�q)2, α = tan−1 (
�q

2
),

β = tan−1 (q2), and, finally, �q = q2 − q1 = q2 − q3 and

�ω = ω2 − ω1 = ω2 − ω3. Note that Eqs. (6) and (7) repre-

sent the Adler equation in two variables [46]. Since we are

interested in finding the behavior of frequency vs coupling, we

first assume that oscillators 2 and 3 are phase entrained, i.e.,

φ̇32 ≈ 0; then the beat frequency, 2π (
∫ 2π

0

dφ12

φ̇12
)
−1

, between

oscillators 1 and 2 is given by

�12 = {[�ω(1 + κD12) − sin φ32D23]2

− 4D2
12(1 + κ2�ω2)}1/2. (8)

Now, in order to test our hypothesis that a nonmono-

tonic dependence of the frequency difference on the coupling

strength, arising due to a positive covariance of natural

frequency and shear, is responsible for the emergence of

weak-winner PS, we define q j = κω j, j = 1, 2, 3, where κ

is just a scaling constant. This relation ensures that there is

a positive covariance between ω and q when κ > 0, which

is needed for APS to manifest. Substituting q j = κω j and

D23 = 0.024 into Eq. (8), it can be shown that �12 is a

nonmonotonic function of D12 if and only if κ > 0 (see Ap-

pendix A), which is further confirmed by a numerical solution

[Figs. 4(c) and 4(d)]. Note that the numerically obtained phase

diagram of the complex Stuart-Landau system [cf. Figs. 4(a)

and 4(b)] represented by Eq. (4) looks very similar to that

of the population dynamical system [cf. Fig. 2(a) and 2(c)]

represented by Eqs. (1a)–(1c). For a negative covariance, i.e.,

κ < 0, we find all the regimes [Fig. 4(a)] which are also

present in Fig. 2(a) including relay synchronization. However,

for positive covariance, i.e., κ > 0, we obtain quite prominent

regions of weak-winner PS [Fig. 4(b)]. This demonstrates

clearly that the presence of APS leads to weak-winner phase

synchronization.

IV. IMPLICATION FOR NETWORKS

As demonstrated earlier, the weak-winner phenomenon is

quite generic with respect to the nature of the dynamics of the

individual oscillators. However, one might be tempted to think

about another aspect of generality, which is topology. In other

words, does this phenomenon hold true for (a) a larger num-

ber of oscillators and (b) more complex network topologies?

FIG. 4. (a) and (b) Parameter space plots for Stuart-Landau equa-

tions showing, as indicated by the labels (and colors), regions of

D12 and D23 values for oscillator pairs in phase synchrony or not.

(c) and (d) show the variation of mean relative frequency of pairs

1-2 and 2-3, as labeled (and colored), with D12 for a fixed value of

D23 = 0.024 [along the horizontal dashed line in Fig. 4(a)]. Here,

ω1,3 = 1.2, ω2 = 0.949, and [(a) and (c)] κ = −5 or [(b) and (d)]

κ = 5.

Though the full answer to these questions is beyond the scope

of this paper, we present here the first step in this direction

by discussing a number of weak-winner patterns that would

emerge in larger networks.

Specifically, we construct a setup of four coupled oscilla-

tors arranged in such a way that the new setup can be treated

as a combination of our old three-oscillator system plus an

external fourth oscillator coupled to it, as depicted in the

sketch shown in Fig. 5.

In this setup, our three-oscillator system (shaded region in

Fig. 5) can serve as a network motif, and the fourth oscillator

encapsulates the mean-field contribution of a larger network.

To demonstrate the validity of weak-winner phase synchro-

nization in the presence of an external coupling, D24 in our

case, we simulate the system composed of four Stuart-Landau

oscillators arranged in the setup shown in Fig. 5. For this setup

the observed distinct weak-winner patterns are sketched in

Fig. 6(b), which shows that for larger networks, not only a

pair of weakly linked oscillators can synchronize but also a

subset of all weakly linked oscillator pairs can synchronize.

For the four-oscillator setup, regions of these distinct weak-

winner patterns in the three-dimensional coupling space are

presented in Fig. 7. The blue-colored region corresponds

to a single pair of oscillators exhibiting weak-winner phase

synchronization, while the red-colored region corresponds to

a chain (of length 3) of oscillators exhibiting weak-winner

phase synchronization.

With even larger networks, the number of ways in which

weak-winner phase synchronization can manifest would
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FIG. 5. Sketch for realizing the weak-winner phenomenon in

complex networks where our original three-oscillator system (shaded

region) is acting as a network motif and the fourth oscillator is acting

as a mean-field contribution from the rest of the network.

increase further, giving rise to a wide range of interesting

synchronization patterns.

V. DISCUSSION AND CONCLUSION

The current approach to the phenomenon of phase synchro-

nization in coupled oscillator systems focuses essentially on

the interplay of coupling and frequency detuning between the

oscillators. However, this approach often overlooks the crucial

role played by nonisochronicity (shear)—an intrinsic property

of an individual oscillator—in shaping the emergent collective

FIG. 6. Distinct number of weak-winner phase synchronization

patterns that are observed with a network of (a) three oscillators and

(b) four oscillators. Nodes of the same color (shaded in yellow) are

phase synchronized, while the other nodes are desynchronized.

dynamics of the system. For instance, the mechanism behind

the emergence of the counterintuitive weak-winner PS cannot

be explained through the current approach. In this context,

our study not only offers the underlying mechanism behind

weak-winner PS but also sheds some light on the generic

question, How does shear influence the phase dynamics? The

emergence of weak-winner PS is a phenomenon for which we

anticipate potential applications to a large class of problems

where phase synchrony is desirable or in some cases undesir-

able. For example, in the case of the three-patches-of-wildlife

equations we used, the coupling strengths correspond to the

migration rate of predator and prey species and can be inter-

preted as movement corridors connecting different patches of

wildlife [47]. As a conservation strategy, the design of move-

ment corridors should be such that we are able to control the

migration intensity of species so that it does not become too

low to risk local extinction or too high to risk global extinction

due to synchronization of populations [48–50]. However, the

presence of a weak-winner phenomenon could easily make

the design of control strategies more difficult as increasing

the migration between two patches could induce synchrony

among the other patches with weaker migration, which is

clearly an undesirable consequence.

Although we have shown in Sec. IV that the emergence

of weak-winner PS in larger complex networks could dis-

play several interesting patterns of phase synchrony, we have

barely scratched the surface of potential applications or prob-

lems that might come up. One particularly important problem

that we could envisage is related to oscillator networks with

shear diversity [51]. The heterogeneity in shear and frequency

can induce frustration in the oscillatory system, and this could

result in metastable states (weak-winner-like) similar to that

of spin-glass systems [52–55].

Furthermore, this study is just an initial step in under-

standing the role of nonisochronicity (shear) in shaping the

synchronization behavior of coupled oscillators. For fur-

ther analysis, we need a better understanding of the precise

functional relationship between system parameters and the

resulting nonisochronicity, i.e., How is shear determined by

the system parameters of an oscillator? Additionally, although

having derived sufficient conditions which help in identify-

ing the regions of the parameter space where one observes

weak-winner phase synchronization, it still leaves us with a

huge parameter space to explore. To address this in more

detail, it would be an interesting and challenging task to derive

necessary conditions as well.

In summary, we disclose an intriguing type of phase syn-

chronization in a chain of three coupled oscillators in which

the weakly coupled oscillators achieve synchrony while the

strongly coupled ones do not. Three key ingredients are

needed for weak-winner phase synchronization to manifest

itself: (a) a set of coexisting weak links and strong links

implying heterogeneity in the coupling, (b) a set of oscilla-

tors having different natural frequency implying heterogeneity

in the oscillator dynamics, and (c) nonmonotonic behavior

of the oscillators’ phase difference with coupling implying

the presence of anomalous phase synchronization. Further-

more, we have shown how the emergence of this unexpected

kind of synchronous behavior can be explained in terms of

anomalous phase synchronization, arising from a complex
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FIG. 7. Regions of weak-winner phase synchronization in a four-oscillator setup (as shown in Fig. 5) with our original three oscillators

acting as a network motif. As D24 is varied, two distinct regions of weak-winner PS (blue and red colors) are manifested over a significant

range of D24 values, as shown by parallel planes each corresponding to a fixed value of D24.

interplay between shear and natural frequencies of the oscil-

lators. The fact that shear and natural frequency are intrinsic

properties of every oscillator makes the manifestation of the

weak-winner phenomenon quite generic. We have validated

it by considering oscillators exhibiting different dynamical

behaviors such as limit cycle and chaotic dynamics. Some

potential applications of weak-winner phase synchronization

could include, among others, lasers [25,56], communication

systems [57], and neuronal systems [58,59]. Lastly, we believe

that the mechanism underlying the weak-winner phenomenon

would open up a new direction of thinking about the role of

nonisochronicity (shear) as a fundamental feature in shaping

the emergent dynamics of any coupled oscillator system.

The data used to produce our results is available through

GitHub [60].
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APPENDIX A: BEHAVIOR OF THE FREQUENCY

DIFFERENCE �12 AS A FUNCTION OF D12

In this Appendix, we demonstrate the existence of

anomalous phase synchronization (APS) in our model sys-

tem [Eq. (4)] by establishing the nonmonotonic behavior

of �12 as a function of D12. We start by expanding

Eq. (8) as

�12 =
√

[2κ�ω(�ω − D23 sin φ32)]D12 − 4D2
12 + [�ω2 − 2�ω sin φ32D23 + (sin φ32D23)2]. (A1)

In deriving Eq. (8), we assumed φ̇32 ≈ 0, which holds true

for an interval [D1
12, D2

12] [see Fig. 4(d)]. Therefore, for this

interval, sin φ32 becomes a constant. Also, since we are in-

terested in finding the behavior of �12 as D12 is varied, we

keep D23 fixed at a value of 0.024 [as shown by the horizontal

dashed line in Fig. 4(b)]. Rearranging all the constant terms

yields

�12 =
√

−4D2
12 + μD12 + ν, (A2)

where μ = 2κ (0.063 − 0.006 sin φ32) and ν = (0.063 −
0.012 sin φ32) + 0.0006 sin2 φ32. Since the function of the

relative frequency is quadratic in coupling strength, we

can check if an extremum exists in the interval [D1
12, D2

12],

which would confirm the presence of nonmonotonicity.

Therefore the problem now reduces to finding the extremum

of g(D12) = −4D2
12 + μD12 + ν, which gives us D12 = μ

8
.

Observe that the value of D12 is positive (valid solution) if
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FIG. 8. Parameter space plots showing, as indicated by the la-

bels (and colors), regions of D12 and D23 values for oscillator pairs

in phase synchrony or not. Parameters are a = (1, 1, 1) and b =
(1.0, 0.92, 1.0).

and only if μ > 0, which holds true when κ > 0, and this

validates our claim that APS exists only for κ > 0.

APPENDIX B: COUPLED VAN DER POL OSCILLATORS

Here, we present the phase diagram of three cou-

pled van der Pol oscillators exhibiting limit cycle oscil-

lations. The coupling setup used here is the same as

in the model of chaotic oscillators given by Eqs. (1a)–

(1c) in the main text. The governing equations are thus

represented by

ẋi = yi +
3

∑

i=1

Di j (x j − xi ), (B1a)

ẏi = ai

(

1 − x2
i

)

yi − b2
i xi +

3
∑

i=1

Di j (y j − yi ). (B1b)

To observe the weak-winner phenomenon, we set ai =
κbi with κ = 4.0 ∀i = 1, 2, 3 and b = [1, 0.92, 1]. Islands of

weak-winner solutions (green and blue regions) can be clearly

seen in Fig. 8.

APPENDIX C: INTUITION BEHIND ANOMALOUS

PHASE SYNCHRONIZATION

The aim of this Appendix is to promote an intuitive un-

derstanding of anomalous phase synchronization (APS). First

we introduce the concept of the isochron (shear), which is

essentially the dependence of rotation speed on amplitude.

Formally, isochrons are defined as a family of curves in phase

space where all points on each curve represent a unique phase

[61]. To demonstrate this, we take the Stuart-Landau oscillator

given by

ż = z[1 + i(ω + q) − (1 + iq)|z|2], (C1)

FIG. 9. (a) Isochron and (b) frequency variation with amplitude

ω(r), of a Stuart-Landau oscillator [Eq. (C1)] for positive (blue),

negative (green), and zero shear (red) as drawn on polar coordinates

(r, θ ). The black curve represents the limit cycle solution of the

oscillator with r = 1.

which in polar coordinates becomes

ṙ = r(1 − r2), (C2)

θ̇ = ω + q(1 − r2). (C3)

This oscillator has a stable limit cycle solution at r = 1.

The phase can be defined in the neighborhood of the limit

cycle attractor as [62] φ = θ − q ln r, which on the limit cy-

cle becomes just “θ” as r = 1. Therefore a typical isochron

representing a constant phase (φ∗) is described as

Iφ∗ = φ∗ = θ − q ln r. (C4)

When q = 0, the isochron has no radial component, which

means that rotation speed is independent of the position in

the neighborhood of the limit cycle. In Fig. 9(a), we show

how isochrons change as shear is introduced in the system.

For positive shear (q > 0), the oscillator’s instantaneous fre-

quency increases (decreases) as we move radially inwards

(outwards) from the limit cycle. This change in frequency is

captured by �ω = q(1 − r2) as shown in Fig. 9(b). However,

for negative shear (q < 0), the system gets slower (faster) as it

moves inwards (outwards) from the limit cycle. Note that fast

and slow are always relative to the case of zero shear (q = 0),

where the frequency is independent of amplitude.

Now, we extend this picture to two diffusively coupled

Stuart-Landau oscillators having frequencies ω1 and ω2, re-

spectively, with ω1 < ω2. Furthermore, we set qi = κωi for

i = 1, 2, so that Cov[q, ω] can be positive, negative, or zero

depending on the values of κ . As before, the relative change

in the frequency of the oscillator due to shear is measured by

�ωi(ri ). However, in this setup, shear for an oscillator is not

just a constant but depends on its natural frequency ω. To

illustrate the effect of shear on the resulting behavior of the

coupled system, we consider the three following cases:

(1) κ = 0 (shearless). This is a trivial case where neither

oscillator experiences any shear. Here, the diffusive coupling

would have a trivial impact on the dynamics; that is, increas-

ing the coupling would slow down the fast oscillator and

speed up the slow one until both oscillators lock to a common

frequency and start oscillating synchronously.

(2) κ > 0 (positive shear). In this case, both oscillators

experience different shear (q1,2 = κω1,2). Since ω1 < ω2, we

have q1 < q2. The frequency variation for both oscillators

is shown in Fig. 10 marked by their respective colors. For
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FIG. 10. Frequency variation with amplitude for two diffusively

coupled Stuart-Landau oscillators for positive (κ > 0) and negative

(κ < 0) shear as drawn on polar coordinates (r, θ ). The instantaneous

frequency curves corresponding to fast and slow oscillators are repre-

sented by green and blue colors, respectively. The red one represents

the shearless case. The black curve represents the limit cycle solution

with r = 1 for the uncoupled oscillator.

positive shear, both oscillators speed up but by different

amounts (�ω1 < �ω2) when they move inwards, away from

the limit cycle. It is worth noting here that due to coupling

the oscillators are always pushed inwards as shown by the

variation of mean amplitude as a function of coupling strength

(Fig. 11).

Therefore, for lower coupling strengths, the oscillators are

almost always inside the limit cycle, and then the shear comes

into play, which in this case widens their initial frequency

difference. Eventually, for high enough coupling, the oscilla-

tors are pulled back to follow the limit cycle where the effect

of shear vanishes and they manage to synchronize. This is

essentially the mechanism behind APS.

(3) κ < 0 (negative shear). The explanation for the case of

negative shear is quite similar to that of positive shear except

here the frequency variation (Fig. 10, right panel) is such that

both the oscillators slow down, with the faster one slowing

down by a larger amount than the slow one.

Therefore, in contrast to the previous case of positive shear,

the weak coupling would shrink their initial frequency differ-

ence. This means that negative shear synchronizes the system

at a coupling strength even lower than that of zero shear.

FIG. 11. Variation of amplitudes (left, r1; right, r2) with coupling

strength for two diffusively coupled Stuart-Landau oscillators. The

natural frequencies of the oscillators are [0.95, 1.2] and κ = 5. Red

points indicate mean values, and error bars (blue) represent the stan-

dard deviation.

(a)

(b)

FIG. 12. Variation of the average frequency difference (blue

curve) and the root-mean-square deviation (Zsync, red curve) with the

coupling strength for two diffusively coupled oscillators. (a) Coupled

limit cycle oscillators [Eq. (D1)]. (b) Coupled chaotic food web

model [Eqs. (D2a)–(D2c)]. The green-shaded areas depict the range

of coupling strengths considered in this paper.

APPENDIX D: CONNECTION TO

SHORT-WAVELENGTH BIFURCATION

One might suspect that weak-winner phase synchroniza-

tion arises as a consequence of a short wavelength bifurcation

(SWB) of the type discovered for diffusively coupled oscilla-

tors [36]. Briefly, SWB is a bifurcation of the synchronized

dynamics residing on the invariant synchronization manifold

in a system of coupled identical oscillators, where upon in-

creasing coupling strength, the system loses synchrony. It

occurs when the eigenvalue corresponding to the smallest

spatial Fourier mode becomes positive. As a consequence of

this bifurcation, the system can only be synchronized for a

bounded range of coupling strengths.

At first, this could suggest an explanation of weak-winner

PS due to the fact that in a system with mixed coupling

strengths, the weaker coupling is still in the intermediate

range (where synchrony is possible) while the stronger cou-

pling is already beyond that range. However, via numerical
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simulations we demonstrate below that the pairs of coupled

limit cycle and chaotic oscillators never lose synchroniza-

tion after its onset, within the investigated range of coupling

strengths.

(1) Limit cycle case.

ż j = z j[1 + i(ω j + q j ) − (1 + iq j )|z j |2] + D(zk − z j ).

(D1)

(2) Chaotic food web case.

ẋ j = a jx j −
ǫ1x jy j

(1 + k1x j )
, (D2a)

ẏ j = −b jy j +
ǫ1x jy j

(1 + k1x j )
− ǫ2y jz j + D(yk − y j ), (D2b)

ż j = −c j (z j − ζ j ) + ǫ2y jz j + D(zk − z j ), (D2c)

where j, k = 1, 2 ( j �= k) and D is the coupling strength. The

system parameters for the limit cycle case are ω1 = 0.949,

ω2 = 1.2, and q1,2 = κω1,2 with κ = 4.0; for the chaotic

oscillator case, they are a1 = a2 = 1.0, b1 = 0.9, b2 = 1.3,

c1 = c2 = 10.0, ǫ1 = 0.25, ǫ2 = 1.0, and ζ1 = ζ2 = 0.006.

We would like to emphasize here that the system parameters

of both oscillators are such that there is a slight detuning in the

natural frequencies of the oscillators, which essentially means

that they are nonidentical in contrast to the case considered by

Pecora and Carroll in their master stability approach [36].

For both the systems [Eqs. (D1) and (D2a)–(D2c)], we

observe the following quantities as the coupling between the

oscillators is varied:

(1) Average frequency difference. This is 〈 f1 − f2〉t , where

f1 and f2 represent the instantaneous frequencies of oscillators

1 and 2, respectively. The average of the frequency difference

is taken over time “t steps” after transients have settled. When

this quantity approaches zero, we have phase synchronization

between oscillators.

(2) Root-mean-square deviation. This quantity measures

the extent of complete synchronization in the system. Mathe-

matically, it is given by

Zsync =

√

√

√

√

1

NT

T
∑

t=1

N
∑

i=1

‖(Xi(t) − 〈X(t)〉i )‖2,

where 〈·〉i is the average over the number of oscillators N , ‖ · ‖
is the Euclidean norm, and 1 < t < T is the time interval after

transients have settled. In the case of complete synchroniza-

tion, i.e., X1 = X2 = · · · = XN ∀ t , Zsync → 0 asymptotically.

The simulation results are presented in Fig. 12, and there

are several things to be noted here:

(i) For the complete range of coupling strengths used in this

paper (green-shaded regions in Fig. 12), the system composed

of two oscillators never loses phase synchrony (indicated by

the blue curve) once established, as the coupling is increased.

This clearly rules out the involvement of SWB for both limit

cycle and chaotic oscillators.

(ii) For coupling strengths beyond our studied window,

we anticipate that as coupling is increased, the oscillator’s

amplitude will also tend to synchronize, which is reflected

by a decrease in Zsync. In the case of the limit cycle system

[Fig. 12(a)], upon increasing coupling further, the system

does not lose its synchrony. However, for the chaotic coupled

oscillator case [Fig. 12(b)], the system undergoes a loss of

synchrony upon increasing coupling strength, which might be

a signature of SWB. Please note that this happens at coupling

values much higher than the ones used in this paper.

(iii) Moreover, while the SWB reported by Pecora and

Carroll [36] was found for identical oscillators and identical

coupling strengths, the weak-winner PS that we present here

emerges only when oscillators are detuned sufficiently and the

coupling strengths are not identical.
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