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A refined two-scale model for Newtonian and non-Newtonian fluids in

fractured poroelastic media

Tim Hageman, René de Borst∗

Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK

Abstract

A refined model is presented which numerically resolves the fluid flow within a fracture inside a saturated
poroelastic material. At the discontinuity, the mass balance of the fluid is solved using the velocity profile
inside the fracture, with the velocity profile being determined numerically from the momentum balance in
the integration points at the discontinuity. The resolution of the mass balance and the velocity profile in the
integration points at the discontinuity is coupled to surrounding poroelastic material model in a two-scale
approach. The resulting monolithic scheme allows for complex fluid behaviour to be included, which is
demonstrated via the inclusion of the fluid inertia and the use of a Carreau fluid. The governing equations
are discretised using T-splines, while the fracture is represented by spline-based interface elements, and
an implicit time discretisation scheme is used. Mesh refinement studies are carried out for a typical case,
which contains a pressurised and propagating fracture. A coarse macro-scale mesh is sufficient to obtain
the correct propagation velocities, but a finer mesh is needed to prevent pressure oscillations. Time step
refinement studies show the capabilities of the model to capture pressure waves within the fracture. Finally,
it is shown that if inertial effects are limited and a Newtonian fluid is used, a fracture scale discretisation
using a single element is sufficient. However, for a Carreau fluid or when the problem is inertia-dominated,
smaller elements are needed to correctly represent the velocity profile.

Keywords: Poroelasticity, fracture, sub-grid model, isogeometric analysis, non-Newtonian fluids

1. Introduction

Simulating fracture propagation in poroelastic materials is a complex problem, requiring not only to
accurately include the interaction between the interstitial fluid and the porous material, but also a physically
correct description of the behaviour of the fluid inside the pressurised fracture. Recently, the effects of the
fluid inertia and acceleration-driven fluid flow in the porous material were demonstrated [1]. The inclusion5

of these terms can cause a stick-slip like behaviour for shear fractures, whereas the fracture propagation is
continuous without these terms. Similar ”physics-induced” stepwise propagation has also been claimed to
occur for pressurised fractures [2, 3, 4, 5]. However, the origin of the latter stepwise propagation and the
accompanying pressure oscillations are unclear [6], and few finite element simulations have replicated this
behaviour [7]. To study this phenomena, and to obtain more realistic results for simulations of pressurised10

fractures, it is interesting to include fluid inertia inside the fracture.
Currently, there exists a range of fracture flow models through which the fluid flow inside the fracture can

be included [8, 9]. One of the easiest to use and most common fracture flow models is the cubic law [10, 11].
By assuming a fully developed Poiseuille flow within the fracture, this model describes the fluid flow within
the fracture through an effective permeability, allowing similar equations to be used for the porous domain15

and the fracture itself [12, 13]. Due to the ease of use of this formulations, it has been successfully applied
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in a large range of applications, for instance impermeable natural fractures [14] and pressurised fractures
[15, 16, 17], and in methods ranging from phase-field formulations [18, 19] to extended finite element methods
[20, 21]. Another way to include the fracture flow based on the cubic law is to distribute the fluid transport
inside the fracture over the element in which it is contained, removing the need to separately model the20

fracture [22, 23, 24, 25].
While models based on the cubic law are simple to use, their disadvantage is that they cannot be used

to reconstruct the behaviour of the fluid within the fracture. In contrast, methods such as the continuous
pressure model [26, 27] and the discontinuous pressure model [28, 29] are directly based on analytically
obtained velocity profiles within the fracture. This allows these models to reconstruct the fluid velocity25

within the fracture through post-processing. Due to their direct dependence on this velocity profile, complex
fluid behaviour such as non-Newtonian fluids [30, 31] or multiphase fluid interactions [32, 33] can be included
as long as an analytical expression for the velocity profile is available. However, an analytical expression
for the velocity profile is not always available, which limits the applicability to certain fluid rheologies and
prohibits the inclusion of inertial effects.30

These disadvantages are removed by Direct Numerical Simulation of the flow in the interior of the
fracture. This has been done using Darcy flow for the porous material, while solving the Stokes equations
within the fracture [34, 35, 36], and using Brinkman flow for both the porous material and the fracture
[37, 38]. Since these methods solve the fluid flow within the fracture numerically, there is no limitation on
the fluid rheology or the inclusion of other physically relevant effects. However, the interior of the fracture35

needs to be discretised using a sufficiently fine mesh and has to be remeshed upon fracture propagation,
making these methods less feasible for large-scale fracture propagation.

Herein, we describe a fracture flow model which couples a numerically resolved velocity profile to the
mass conservation used in a discontinuous pressure model. This allows the advantages of a discontinuous
pressure model to be retained, while partly obtaining the added advantage of directly simulating the fracture40

flow. The result is a scheme which does not need an analytical expression for the velocity profile, and does
not need the interior of the fracture to be fully discretised. Based on previous results that inertial effects of
the fluid may be physically relevant, the scheme will include these effects, resulting in a detailed description
of the fluid velocity within the fracture. To show the capabilities to represent different fluid rheologies, we
will derive the subgrid model for Newtonian and Carreau fluids.45

In the remainder, we will first describe the governing equations for the macro scale. Next, the subgrid
model for a Newtonian fluid is described, and extended to Carreau fluids in Section 4. Time and mesh
refinement studies for the macro and the fracture scale meshes are carried out in Section 5. Finally, the
effect of including inertial terms is given in Section 6. For completeness, the discretised equations used for
the simulations are given in Appendix A.50

2. Governing macro scale equations

A two-dimensional domain with a discontinuity is considered, as shown in Figure 1. The displacements
in the porous material are described using a Cosserat continuum [39, 40, 41], with in two dimensions
u = [ux uy ωz]

T , ux and uy being the displacements, and ωz the Cosserat microrotation. While no
plasticity is used here, a Cosserat continuum allows a straightforward combination of the models used here55

with (non-associated) plasticity [1, 42].
For the interstitial fluid, we will adhere to the standard displacement-pressure formulation [43, 44],

describing the state of the fluid through the interstitial fluid pressure p. Finally, the fracture inflow has been
modelled using a discontinuous pressure model [8, 29, 45], which allows for a discontinuous pressure across
the discontinuity, and features an additional degree of freedom pd at the discontinuity which describes the60

fluid pressure inside the fracture.
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Figure 1: Overview of the fracture problem at the global and subgrid scale, including the global and the local coordinate
systems

2.1. Porous medium

The porous material is described through the combined momentum balance of the solid and fluid at
t+∆t:

LT
(

σt+∆t
s − αpt+∆tm

)

− ρüt+∆t − ρfI
T
c

(

1

θ∆t

(

qt+∆t − qt
)

+

(

1− 1

θ

)

q̇t

)

= 0 (1)

and the mass balance:
1

M
ṗt+∆t + α∇ ·

(

Icu̇
t+∆t

)

+∇ · qt+∆t = 0 (2)

in which a θ-scheme has been used to discretise the fluid flux terms in time. Please note that this formulation
allows for the inclusion of acceleration driven fluid flow in the pressure-displacement formulation [1]. In the
momentum balance, only the convective momentum transport terms (ρfI

T
c (q ·∇)q) is neglected, whereas

separate inertia terms for the solid and the fluid are retained. These equations use the volume-averaged
density ρ = (1− nf )ρs + nfρf , the time step size ∆t, the Biot coefficient α, the Biot modulus M , and the
matrices:

LT =







∂
∂x 0 0 0 ∂

∂y 0 0

0 ∂
∂y 0 ∂

∂x 0 0 0

0 0 0 −1 1 ℓc
∂
∂x ℓc

∂
∂y






m = [1 1 1 0 0 0 0]T

ρs =





ρs 0 0
0 ρs 0
0 0 Θ



 ρf =





ρf 0 0
0 ρf 0
0 0 0



 Ic =

[

1 0 0
0 1 0

]

with ρs and ρf the density of the solid and the fluid respectively, ℓc being the Cosserat length scale, and
Θ = 2ρsℓ

2
c/(1 + ν) being the rotational inertia [40]. Finally, the Darcy fluid flux term in Eqs. (1)-(2) is

determined using the momentum balance of the fluid combined with Darcy’s law:

q = −k

µ

(

∇p+ ρf

(

Icü+
1

nf
q̇

))

(3)

Applying a θ-scheme for the time discretisation of the fluid flux at t+∆t gives:

qt+∆t =

(

1 +
ρfk

nfµθ∆t

)

−1(

−k

µ
∇pt+∆t − kρf

µ
Icü

t+∆t − kρf
µnf

(

(1− 1

θ
)q̇t − 1

θ∆t
qt

))

(4)

using the intrinsic permeability k, the porosity nf , and the fluid viscosity µ. The fluid flux qt and the change
in fluid flux q̇t at t are used as history variables, which are updated at the end of each time step. Eq. (4)
is substituted in Eqs. (1)-(2) to remove the dependence of these Equations on the fluid flux, describing the65

poroelastic material using a standard pressures-displacement formulation.
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2.2. Discontinuity

The tractions at the discontinuity are given in a fracture-local coordinate system:

τd = τs − pdn (5)

with n the normal vector and τs the interface traction related to the solid displacement, determined by a
traction-separation law. Regarding the total interface tractions it is assumed that the shear stresses at the
walls of the fracture due to fluid flow inside the fracture are small compared to the fluid pressure. This is a70

reasonable assumption since the shear stresses scale with the fracture opening height, whereas the normal
stresses scale with the fracture length.

The description of the fluid flow at the discontinuity starts from conservation of mass in the interior of
the fracture. In the local (xd, yd) coordinate system the later is given as:

∂v

∂xd
+

∂w

∂yd
+

1

Kf
ṗd = 0 (6)

using the tangential velocity v, the normal velocity w, and the bulk modulus of the fluid Kf . Integrating
over the fracture height h and using the interface permeability ki to govern the fracture flow at the walls
results in:

ki

(

p+
t+∆t

+ p−
t+∆t − 2pt+∆t

d

)

+
∂

∂x
qx + ḣt+∆t +

h

Kf
ṗt+∆t
d = 0 (7)

in which the fracture height h is given by:

h = h0 + n · JuK (8)

using the displacement jump JuK and the normal vector n. qx is the fluid flux inside the fracture, obtained
through the subgrid model. The term h0 introduces an offset to the fracture opening height, which can
be used to impose an initial fracture opening height without actually requiring the opening height to be75

reflected in the spatial discretisation or the initial deformation state of the domain. Initial opening heights
are often encountered in pre-existing fractures or when using notched specimens to trigger propagation at a
set location [6, 46, 47, 48, 49].

The temporal discretisation has been carried out using a combination of a θ-scheme for the interstitial
pressure and the discontinuity pressure, and a Newmark scheme for the displacements. The spatial discreti-80

sation using T-splines [50, 51] is cast into a traditional finite element framework using Bézier extraction
[52, 53]. The discontinuity is included using isogeometric interface elements [54, 55, 56, 57], and propagated
along a C0 continuity line to remove the need for remeshing upon fracture propagation [42], see Appendix
A for details on the discretisation. It is noted that although T-splines are used for the discretisation, the
subgrid model described in the next section is independent of the spatial discretisation method used for the85

macro scale and is applicable in conjunction with any discretisation method.

3. Fracture subgrid model

The fluid flux qx is computed using a separate model for flow in the fracture. It gives the fluid flux as
a function of the current fracture opening height h and the pressure gradient ∂pd/∂xd. For this subgrid
model to be fully integrated in the macro-scale formulation, and to preserve quadratic converging [58], the90

derivative of qx with regard to the pressure gradient and the fracture opening height are also needed.
To obtain the fluid flux within the fracture, we start with the momentum balance in the xd-direction:

ρf
∂v

∂t
+ ρfv

∂v

∂xd
+ ρfw

∂v

∂yd
= −∂pd

∂xd
+ µ

∂2v

∂y2d
(9)

assuming a no-slip condition at the walls of the fracture:

v(h/2) = v(−h/2) = 0 (10)
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Figure 2: Examples of the interpolants used for the velocity profile discretisation.

To keep the formulation localised within an integration point, we assume the effects of convective momentum
transport (the terms ρfv

∂v
∂xd

and ρfw
∂v
∂yd

) to be small compared to the viscosity and pressure-related terms.
Furthermore, since the fracture has a small opening height, we can assume the flow to locally be one-
dimensional in the xd-direction, with the vertical flux obtained through the macro-scale mass conservation95

from Eq. (7).
The time derivative of the velocity inside the fracture is discretised in the same manner as the fluid flux

inside the porous material, i.e. using a θ-scheme:

∂v

∂t
=

1

θ∆t
(vt+∆t − vt) + (1− 1

θ
)v̇t (11)

which allows the horizontal momentum balance to be discretised in time as follows:

ρf

(

1

θ∆t
(vt+∆t − vt) + (1− 1

θ
)v̇t
)

+
∂pd
∂x

− µ
∂2vvt+∆t

∂y2
= 0 (12)

Since the velocity depends on the history of the velocity, vt and v̇t, it is not possible to obtain an explicit
expression for the velocity profile as was done in [26]. Instead, the velocity profile at the integration point
is represented through Bézier extracted NURBS N el

v in a standard finite element format as:

v =

nel
∑

el

N el
v vel (13)

with the total height of these elements being defined in parametric (ξ, v) space to remove the dependence
of the discretisation on the fracture opening height. The parametric coordinate ξ is mapped to the local
coordinate through a linear mapping yd = h/2 ξ. Since the discretisation itself is independent of the opening
height of the fracture, the same discretisation can be used to determine the fluid flux in all the integration100

points at the macro-scale. The no-slip boundary conditions are directly imposed by removing the non-zeros
spline at the top and bottom, as shown in Figure 2. This discretisation is used for the new and old velocity,
as well as for its time derivative at t. It is emphasised that, while NURBS are used for the discretisation
to obtain a smooth velocity profile, the discretisation could also have been done using Lagrangian-based
interpolants.105

Using the discretisation from Eq. (13), the weak form of the momentum balance is given by:

h

2

∫ 1

−1

ρfN
T
v

(

1

θ∆t
(Nvv

t+∆t −Nvv
t) + (1− 1

θ
)Nvv̇

t

)

+NT
v

∂pd
∂xd

− 4µ

h2

(

∂Nv

∂ξ

)T
∂Nv

∂ξ
vt+∆tdξ = 0 (14)
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which can be rewritten as:

ρfh
2

4µ
C

(

1

θ∆t
vt+∆t − 1

θ∆t
vt + (1− 1

θ
)v̇t

)

+
h2

4µ

∂pd
∂xd

w +Dvt+∆t = 0 (15)

using the definitions:

C =

∫ 1

−1

NT
v Nvdξ (16)

D =

∫ 1

−1

(

∂Nv

∂ξ

)T
∂Nv

∂ξ
dξ (17)

w =

∫ 1

−1

NT
v dξ (18)

These matrices are constant throughout the simulation and independent of the integration point. Therefore,
they only need to be calculated once and can thereafter be used to obtain the velocity for all the integration
points. This results in an explicit expression for the velocity, solely dependent on the macro-scale degrees
of freedom and on the history variables at the subgrid (fracture) scale:

vt+∆t = Q−1

(

ρfh
2

4µ
C

(

1

θ∆t
vt − (1− 1

θ
)v̇t

)

− h2

4µ

∂pd
∂xd

w

)

(19)

with:

Q =
ρfh

2

4µθ∆t
C +D (20)

Finally, the velocity profile is integrated over the fracture height to obtain the flux term required for the
integration of the interface element:

qx =
h

2
wTvt+∆t = wTQ−1

(

ρfh
3

8µ
C

(

1

θ∆t
vt − (1− 1

θ
)v̇t

)

− h3

8µ

∂pd
∂xd

w

)

(21)

This fluid flux is used in the macro-scale formulation of Eq. (7), which gives the coupling between the
velocity profiles determined in each integration point on the discontinuity and the interstitial pressures
within the porous material.

If the velocity profile is approximated using a single quadratic interpolant (the velocity profile when
negligible effects of inertia are present), this identity reduces to (C = 4/15 I, D = 2/3 I, wT = 2/3 i with
I the 1× 1 identity matrix and i an array filled with 1):

qx =

(

ρfh
2

10µ∆t
+ 1

)

−1(
ρfh

3

30µ

(

1

θ∆t
vt − (1− 1

θ
)v̇t

)

− h3

12µ

∂pd
∂xd

)

which, in the case of negligible inertia (ρf = 0) reduces to the cubic law, qx = − h3

12µ
∂pd

∂xd
.

The derivatives of Eq. 21 with regard to h and ∂pd/∂xd are required for the global tangential matrices,
see also Eqs (A.20)-(A.21). They read:

∂qx

∂ ∂pd

∂xd

= −h3

8µ
wTQ−1w (22)

and

∂qx
∂h

=wTQ−1

(

3ρfh
2

8µ
C

(

1

θ∆t
vt − (1− 1

θ
)v̇t

)

− 3h2

8µ

∂pd
∂xd

w

)

−wTQ−1

(

ρfh

2µθ∆t
C

)

Q−1

(

ρfh
3

8µ
C

(

1

θ∆t
vt − (1− 1

θ
)v̇t

)

− h3

8µ

∂pd
∂xd

w

) (23)

These derivatives allow the subgrid (fracture scale) model to be fully integrated in a monolithic scheme110

formulated at the macro scale, resulting in an optimal (quadratic) convergence rate for a Newton-Raphson
scheme.
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4. Extension to non-Newtonian fluids

The ability of the model to represent more complex fluids will now be demonstrated at the hand of a
Carreau fluid [59]. In this model the effective viscosity is a function of the shear rate γ̇, as follows:

µeff = µ∞ + (µ0 − µ∞)
(

1 + a2c γ̇
2
)(n−1)/2

(24)

with n being the non-Newtonian fluid index, where n < 1 for shear-thinning fluids and n = 1 for Newtonian
fluids. Different from other non-Newtonian fluids, for instance the power-law fluid model, a Carreau fluid115

introduces an upper and a lower limit for the effective viscosity at low and high shear rates, µ0 and µ∞,
respectively, and transitions smoothly between these limit values. This smooth transition is preferable to
avoid convergence issues that can occur for non-smooth functions. The factor ac indicates when the transition
from µ0 starts, with higher values for ac delaying this transition until a higher shear rate is achieved. The
shear rate γ̇ is defined within the fracture as γ̇ = ∂v/∂yd, and approximated inside the porous material as120

γ̇ = |q|/(c
√
k) [60, 61, 62] with the coefficient c a factor which represents the small-scale geometry of the

porous material.

4.1. Porous medium & discontinuity

The discretised balances of mass and momentum in the porous material, Eqs (2) and (1), and the mass
conservation at the discontinuity, Eq. (7), continue to be valid for non-Newtonian fluids. The only difference
in the description of the porous medium is the expression fo qt+∆t, which, instead of Eq. (4), is now given
by:

−∇pt+∆t − ρfIcü
t+∆t +

ρf
nfθ∆t

qt − ρf
nf

(1− 1

θ
)q̇t =

(

µ0 − µ∞

k

(

1 +
a2c
c2k

(

qt+∆t
)T

qt+∆t

)

n−1
2

+
µ∞

k
+

ρf
nfθ∆t

)

qt+∆t

(25)

The discretised form of this identity and the iterative procedure to obtain the new fluid flux qt+∆t are given
in Appendix A.1.125

4.2. Fracture scale model

For a Carreau fluid the momentum balance in the xd-direction is given by:

ρf
θ∆t

(

vt+∆t − vt
)

+ρf

(

1− 1

θ

)

v̇t+
∂pt+∆t

d

∂xd
− ∂

∂y







µ∞ + (µ0 − µ∞)

(

1 + a2c

(

∂vt+∆t

∂yd

)2
)

n−1
2





∂vt+∆t

∂yd



 = 0

(26)
After discretisation this can be written in a form similar to Eq. (15):

ρfh
2

4µ∞

C

(

1

θ∆t
vt+∆t − 1

θ∆t
vt + (1− 1

θ
)v̇t

)

+
h2

4µ∞

∂pd
∂x

w +

(

D +
µ0 − µ∞

µ∞

Dnn

)

vt+∆t = 0 (27)

with C, D, and w as in Eqs. (16)-(18). The additional, non-linear term representing the behaviour of the
Carreau fluid, is given by:

Dnn =

∫ 1

−1

(

∂Nv

∂ξ

)T
(

1 +
4a2c
h2

(

∂Nv

∂ξ
vt+∆t

)2
)

n−1
2

∂Nv

∂ξ
dξ (28)

This equation is solved iteratively to obtain the fluid velocity associated with the control points using:

Qnn∆vt+∆t
j+1 = −ρfh

2

4µ∞

C

(

1

θ∆t
vt+∆t
j − 1

θ∆t
vt + (1− 1

θ
)v̇t

)

− h2

4µ∞

∂pd
∂xd

w −
(

D +
µ0 − µ∞

µ∞

Dnnj

)

vt+∆t
j

(29)
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with the tangential matrix given by:

Qnn =

(

ρfh
2

4µ∞θ∆t
C +D +

µ0 − µ∞

µ∞

∂Dnnv
t+∆t

∂vt+∆t

)

(30)

where:

∂Dnnv
t+∆t

∂vt+∆t
= Dnn +

∫ 1

−1

4a2c(n− 1)

h2

(

1 +
4a2c
h2

(

∂Nv

∂ξ
vt+∆t

)2
)

n−3
2 (

∂Nv

∂ξ
vt+∆t

)2(
∂Nv

∂ξ

)T
∂Nv

∂ξ
dξ

(31)
Once a converged velocity profile has been obtained, the profile is integrated over the fracture height using
Eq. (21) and coupled to the macro-scale models through Eq. (7). The derivatives of these equations (for
use in the monolithic solver) are given as:

∂qx

∂
∂pt+∆t

d

∂xd

= − h3

8µ∞

wTQ−1
nnw (32)

∂qx
∂h

=
1

2
wTvt+∆t − h

2
wTQ−1

nn

(

2ρfh

4µ∞

C

(

1

θ∆t
vt+∆t − 1

θ∆t
vt + (1− 1

θ
)v̇t

)

+
2h

4µ∞

∂pt+∆t
d

∂xd
w +

µ0 − µ∞

µ∞

∂Dnn

∂h
vt+∆t

) (33)

with

∂Dnn

∂h
= −4a2c(n− 1)

h3

∫ 1

−1

(

∂Nv

∂ξ

)T
(

1 +
4a2c
h2

(

∂Nv

∂ξ
vt+∆t

)2
)

n−3
2 (

∂Nv

∂ξ
vt+∆t

)2
∂Nv

∂ξ
dξ (34)

the derivative of the nonlinear diffusion matrix with respect to the height h.
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Figure 4: Mesh used for the mesh refinement study (4 layers of refinement).

5. Mesh and time step sensitivity

A typical case is now considered [2, 49], consisting of a 80 × 160 m domain with an initial 0.5 m
horizontal fracture, shown in Figure 3. This fracture has an initial opening height h0 = 0.05 mm, with130

the discontinuous solid interpolants used to set this initial opening height for the larger part of the initial
fracture, and smoothly becoming zero at the fracture tip to avoid issues relating to a jump in the fracture
opening height between elements. The solid is characterised by a Young’s modulus E = 15 GPa, a Poisson
ratio ν = 0.2, a density ρs = 2500 kg/m3, a Cosserat length scale ℓc = 10 mm, a Cosserat shear modulus
Gc = 4 GPa, an intrinsic permeability k = 10−14 m2, a porosity nf = 0.2, a Biot coefficient α = 1.0, and135

a bulk modulus Ks = 30 GPa. A (water-like) Newtonian fluid with viscosity µ = 1 mPa · s, fluid density
ρf = 1000 kg/m3, and bulk modulus Kf = 1 GPa has been used, as well as a shear-thinning Carreau fluid
with n = 0.6, µ0 = 103 mPa · s, µ∞ = 10−3 mPa · s, ac = 108 s and c = 1.0. At the discontinuity the
interface permeability ki = 10−10m/Pa · s has been used, and the normal traction for fractured elements
is derived from an exponential traction-separation law, with a tensile strength ft = 0.1 MPa and fracture140

energy Gf = 0.1kN/m. The temporal discretisation used β = 0.4, γ = 0.75, θ = 1.0, resulting in an implicit
Euler scheme for the interstitial and discontinuity pressures, and a Newmark scheme with added damping
for the displacements.

The coarsest mesh of the mesh refinement study is shown in Figure 4. The smallest elements have an
element size dx = dy = 0.125 m near the interface, with larger elements further away from the discontinuity145

resulting in 4 layers of refinement. For the finer meshes additional refinements are added near the discon-
tinuity, resulting in a 5-layer mesh (dx = 62.5 mm), a 6-layer mesh (dx = 31.25 mm), and a 7-layer mesh
(dx = 15.625 mm). To facilitate remeshing due to fracture propagation, a C0 continuity line is inserted
ahead of the initial fracture and the crack is only allowed to propagate along this line. A time refinement
study has been carried out using time step sizes ∆t = 100 ms, ∆t = 10 ms, ∆t = 1 ms, ∆t = 0.1 ms, and150

∆t = 0.01 ms. Finally, the mesh refinement study at the fracture scale discretises the fracture height using
2 linear elements (Figure 11a), 1 quadratic element (Figure 2a), 1 quartic element (Figure 11b), 5 quartic
elements (Figure 2b), and 20 quartic elements (Figure 11c). All simulations have been performed for a total
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Figure 5: Fracture length resulting from mesh refinement using ∆t = 1 ms

time span of 10 s, except for of the cases using ∆t = 0.1 ms, ∆t = 0.01 ms, and the 7-layer mesh, which
were only simulated up to the point where they coincided with the results from simulations using coarser155

time steps or meshes.

5.1. Mesh refinement

The mesh refinement study uses ∆t = 1 ms and 20 quartic elements in the subgrid model for the
discretisation of the height of the fracture. The computed fracture propagation is shown in Figure 5. Small
propagation steps are observed for all meshes, which is caused by the combination of a small time step and160

the element-wise propagation associated with the use of interface elements. While the magnitude of these
steps decreases upon mesh refinement, they are still present for the finest mesh since either no element or
only one element fractures within a single time step for these small time steps. This stepwise propagation
does not influence the overall fracturing behaviour, and only small differences are observed between the
different meshes.165

However, large differences are observed for the pressure inside the discontinuity at the inlet, see Figure
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Figure 6: Discontinuity pressure at the inlet (x = 0) resulting from mesh refinement using ∆t = 1 ms

6. For the 4-layer mesh, large pressure oscillations occur for the shear-thinning fluid, with the peaks of
these oscillations within 2-3 time steps from the fracture propagating. A single small oscillation occurs
for the Newtonian fluid, corresponding to the onset of fracture propagation. Upon mesh refinement, these
oscillations disappear for the Newtonian fluid, and strongly reduce for the Carreau fluid. This suggests that170

the pressure oscillations are caused by the sudden increase in fracture length and the accompanying sudden
increase in volume inside the fracture, and therefore disappear once smaller elements are used.

5.2. Time step refinement

Motivated by the results of the previous subsection, a time step refinement has been carried out using
the 6-layer mesh. This mesh has been shown to be sufficiently fine to resolve the fracture propagation and175

the spike in the pressure. The time step size did not alter the fracture propagation, with the same fracture
length after 10 seconds for all time steps, both for the Newtonian and the Carreau fluids (not shown).

The influence of the time step size on the inlet pressure is shown in Figure 7. For the Newtonian fluid
only small differences are seen between the two largest time step sizes, and smaller time steps do not alter the
computed pressures. However, the Carreau fluid shows pressure oscillations, which increase upon refinement180
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Figure 7: Pressure in the discontinuity at the inlet (x = 0) using the 6-layer mesh
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Figure 8: Pressure in the discontinuity and fracture length using the 6-layer mesh for a Carreau fluid (n=0.6) at the onset of
the simulations
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Figure 10: Pressure inside the discontinuity using the 6-layer mesh and ∆t = 0.01 ms around the moment of fracture propagation

of the time step. These oscillations correspond to the onset of the simulation and the first few propagation
steps, as shown in Figure 8, and originate from the element-wise fracture propagation and initial conditions.

The oscillations which originate from the initial conditions are shown in Figure 9 for the complete dis-
continuity. Starting from the initial condition pd = 0, the pressure quickly increases at the inlet to overcome
the fluid inertia. The pressure decreases once the fluid starts moving and inertial effects are less relevant.185

This creates a pressure peak which travels through the fracture, while decreasing in magnitude due to fluid
diffusion and numerical damping. It is noted that we observe smaller oscillations ahead of this pressure
peak. They are most likely caused by the sharp pressure gradients and the inability of the discretisation to
properly resolve the steep gradients. Due to the inclusion of the fluid inertia, these oscillations travel along
the discontinuity, while dissipating slowly.190

Similar pressure oscillations occur upon fracture propagation, as shown in Figure 10. The extra length
and volume which is suddenly created by the extending fracture causes a large drop in pressure at the
fracture tip, while sending a pressure wave towards the inlet. However, this sudden pressure drop is an
effect of the element-wise fracture propagation method, and is unlikely to occur with a continuous and
smooth propagation velocity.195

While some of these pressure oscillations are caused by the element-wise fracture propagation, they show
the magnitude of pressure oscillations that can occur inside the fracture due to initial conditions or sudden
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Figure 11: Discretisation used for the fracture height
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Figure 12: Fluid velocity profile at x = 0.25 m, t = 5 s

changes in the volume within the fracture. Even though the sub-grid model interacts solely through the
discontinuity pressure with the other integration points at the macro-scale, this coupling appears sufficient
to simulate propagating waves. These oscillations span multiple time steps and persist upon refinement of200

the time step, indicating that even though their origin may not be physically correct, their behaviour, once
created, is.

5.3. Sensitivity to mesh refinement at the fracture scale

We now analyse the effect of the discretisation used for the subgrid model. The 6-layer mesh with
∆t = 1 ms is used for all simulations, while for the subgrid model the following discretisations have been205

employed: 2 linear elements (Figure 11a), 1 quadratic element (Figure 2a), 1 quartic element (Figure 11b),
5 quartic elements (Figure 2b), and 20 quartic elements (Figure 11c).

The velocity profile inside the fracture at x = 0.25 m is shown in Figure 12a for a Newtonian fluid.
Since the effects of inertia are negligible, the velocity profile can be represented exactly using a single
quadratic polynomial and all discretisations therefore correspond to this solution, except for the linear210

discretisation. Also the pressure in the discontinuity, Figure 13a, therefore coincide, except for that resulting
from the linear discretisation. Based on this velocity profile, the shear stress at the wall is calculated as
τf = µ ∂v/∂yd = 8 Pa. Since this is several orders of magnitude lower than the stress that derives from the
traction-separation law and the fluid pressure, which are both O(MPa), the assumption made in Section 2.2
to neglect the fluid shear stress on the wall is justified.215
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Figure 13: Discontinuity pressure at t = 5 s

The velocity profile for a Carreau fluid is no longer a parabola and therefore small differences are seen
between the quadratic and quartic discretisations, Figure 12b. Small differences also occur between the
discretisations with a single and with five quartic elements, but there is no difference anymore between the
five and twenty element discretisations. However, the effects of the discretisation on the pressure in the
discontinuity is similar as for Newtonian fluids, as shown in Figure 13b. There is a difference in velocity220

profile, but the effect on the pressure is limited due to the integration over the height. This indicates that
an approximation of the velocity profile is sufficient to accurately include the effects of the fracture flow on
the macro-scale system, while a finer subgrid scale discretisation is needed to obtain correct velocity profiles
within the fracture when inertial effects are negligible.

6. Effect of inertia: Initial opening height h0225

We now study the importance of the fluid inertia for a Newtonian fluid by varying the initial opening
height between h0 = 0 mm, h0 = 0.05 mm, h0 = 0.5 mm, and h0 = 5 mm. Since the response time of the
fluid approximately scales with ρfh

2/µ, these opening height cover the whole range between no influence
of inertia to inertia-dominated fracture flow. As in the previous section, the 6-layer mesh is used for the
spatial discretisation with ∆t = 1 ms, and the velocity profile inside the discontinuity is resolved using 20230

quartic elements.
The development of the velocity profile inside the discontinuity is shown in Figure 14 for the two largest

initial opening heights. While for h0 = 0.5 mm the velocity profile closely resembles a parabola, this no
longer holds for h0 = 5 mm. These profiles show a clear influence of the fluid inertia, and rather tend to a
square shape. Evidently, a much finer discretisation is required to accurately represent this velocity profile235

with the steep gradients near the fracture walls.
The effect of the initial opening height on the fracture propagation is shown in Figure 15a. While the

discontinuity starts to propagate sooner for a larger value of the initial opening height, the difference in
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Figure 14: Evolution of the fluid velocity profile at x = 0.25 m.

fracture length is small and disappears over time, yielding similar values for the length of the discontinuity
for all cases after only 1.5 s. The effect on the inlet pressure, Figure 15b, is larger. In the absence of an240

initial height, the pressure at the inlet approximates the analytical solution for a simplified problem [63].
The high initial pressure is caused by the high pressure required to open the discontinuity enough to allow
the fluid to flow towards the fracture tip. Even though large differences were seen in the velocity profiles
between h0 = 0.5 mm and h0 = 5 mm, the differences in the fracture length and in the pressure in the
discontinuity are small, indicating that the increased inertial effects for larger opening heights do not alter245

the fracture propagation, and are limited to the velocity profile within the discontinuity.

7. Concluding remarks

We have presented a fracture (subgrid) scale model capable of including complex fluid behaviour such
as inertial effects and non-Newtonian fluid rheologies without the need to fully discretise and solve for the
flow in the interior of the fracture. The velocity profile and the fluid flux are numerically resolving at each250

integration point at the discontinuity, which is then coupled to the macro-scale equations through the mass
conservation at the discontinuity. This allows velocity profiles for which no analytical solution exists to be
represented within the framework of a discontinuous pressure model in a crack.

The versatility and possibilities of this fracture scale model have been shown for Newtonian and for
Carreau fluids through the simulation of a typical pressurised and propagating fracture. It shows that255

coarse meshes and large time steps are sufficient to capture the propagation correctly, but that smaller time
steps are required to fully resolve the pressure inside the discontinuity. For yet smaller steps, the model is
even capable of simulating travelling pressure waves within the discontinuity, indicating that even though the
subgrid models in the integration points are solely linked through the gradient of the discontinuity pressure,
this is sufficient to properly capture inertial effects.260

For the discretisation which is required for the velocity profile in the subgrid model it has been shown
that a single quadratic element is sufficient for Newtonian fluids when inertial effects are irrelevant, and
only a more refined discretisation is required once inertial effects start to dominate. For Carreau fluids,
the same coarse discretisation suffices to resolve the fracture propagation accurately, while a slightly finer
discretisation is needed to resolve the velocity profile within the fracture.265

Finally, simulations with different initial opening heights have been carried out to assess the relevance of
inertial effects. While a clear effect of the fluid inertia on the velocity profile inside the fracture was observed,
the effects on the fracture propagation appeared limited. Similarly, increasing the fracture opening height,

16



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0.5

1

1.5

2

2.5

3
F

ra
c
tu

re
 l
e
n
g
th

 [
m

]

h = 0 mm

h = 0.05 mm

h = 0.5 mm

h = 5 mm

(a) Fracture length

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

0.5

1

1.5

2

In
le

t 
p
re

s
s
u
re

 [
M

P
a
]

h = 0 mm

h = 0.05 mm

h = 0.5 mm

h = 5 mm

(b) Inlet discontinuity pressure

Figure 15: Effect of varying the initial opening height on the fracture length and inlet pressure.

and therefore the fluid inertia, did not significantly alter the pressure at the inlet of the discontinuity.
Therefore, for a typical fracture propagation case as presented here, inertial terms alter the velocity profile270

and are able to cause small duration pressure oscillations, but their effect on the overall fracture propagation
is very limited.
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Appendix A. Macro-scale discretisation

For the interstitial fluid pressure, the fluid pressure in the discontinuity, and the Cosserat microrotation
cubic T-splines are used, while quartic T-splines are used for the displacements to avoid pressure oscillations
[64, 65]. Bézier extracted T-splines are used to discretise the pressures and displacements:

u =

nel
∑

el=1

N el
s uel p =

nel
∑

el=1

N el
f pel pd =

niel
∑

iel=1

N iel
df pd

iel (A.1)

using cubic T-splines Nf related to the elements for the interstitial pressure. The T-splines Ndf are related
to the interface elements for the discretisation of the pressure in the discontinuity. The interpolants for
the displacements are composed of the quartic T-splines Nx and Ny for the displacement and the cubic
T-splines Nω for the Cosserat rotation:

Ns =





Nx 0 0

0 Ny 0

0 0 Nω



 (A.2)

The time discretisation is performed using a Newmark scheme for the displacements and a θ-scheme for
the interstitial pressure and the pressure in the discontinuity:

u̇t+∆t =
γ

β∆t

(

ut+∆t − ut
)

−
(

γ

β
− 1

)

u̇t −
(

∆tγ

2β
−∆t

)

üt (A.3)

üt+∆t =
1

β∆t2
(

ut+∆t − ut
)

− 1

β∆t
u̇t −

(

1

2β
− 1

)

üt (A.4)

ṗt+∆t =
1

θ∆t

(

pt+∆t − pt
)

+

(

1− 1

θ

)

ṗt (A.5)

ṗd
t+∆t =

1

θ∆t

(

pt+∆t
d − ptd

)

+

(

1− 1

θ

)

ṗd
t (A.6)

Using these discretisations, the momentum balance from Eq. (1) becomes:

fext − fint − fd = 0 (A.7)

with the external force vector defined in a standard manner as:

fext =

∫

Γt

NT
s τdΓ (A.8)

and τ the external traction imposed on the boundary of the domain. The internal force vector is given by:

fint =

∫

Ω

BTσt+∆t
s − αBTmNfp

t+∆t dΩ +

∫

Ω

NT
s ρNs
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(A.9)

using B = LNs and the fluid flux in the integration points given by:

qt+∆t =

(

1 +
ρfk

nfµθ∆t
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−1
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− k
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(A.10)
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Finally, the forces related to the discontinuity are obtained from:

fd =

∫

Γd

NT
s RT (τd)

t+∆t dΓd (A.11)

with R the rotation matrix at the discontinuity.
The mass balance from Eq. (2) is discretised as:

qext − qint − qd = 0 (A.12)

with the external fluxes defined as:

qext = ∆t

∫

Γq

NT
f q dΓ (A.13)

using the fluid flux imposed on the boundary q. The internal flux vector is given as:

qint = −
∫
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(A.14)

with the fluid flux in the integration points again obtained from Eq. (A.10). The fluxes due to the discon-
tinuity are given as:

qd = ki∆t

∫

Γd

NT
f

(

Ndfp
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d −Nfp

t+∆t
)

dΓ (A.15)

The mass balance for the discontinuity, which is resolved for all interface elements, is given as:

qd,ext − qd,int − qsg = 0 (A.16)

using the external flux vector:

qd,ext =

∫

∂Γd

NT
dfQtip d∂Γ (A.17)

with the fluid flux imposed at the fracture tips Qtip. The internal fluid flux vector is given by
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)
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(A.18)

with the matrix Nds defined such that JuK = Ndsu. Finally, the fluid flux vector coupling the large scale
interface elements to the small scale fracture flow model is given by:

qsg =

∫

Γd

(∇Ndf )
T
qt+∆t
x dΓ (A.19)

with the fluid flux inside the fracture qx determined at the integration points through the fracture scale280

model.
Equations (A.7), (A.12) and (A.16) are resolved in a single monolithic scheme. Due to the nonlinearity

of the fracture flow an iterative Newton-Raphson method is used to obtain converged pressures and displace-
ments at the new time. To obtain a well-converging scheme, it is important to use correct tangential matrices
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to perform the iterations [58]. These matrices are straightforward for the interior of the porous material.
However, the matrices for the mass balance from Eq. (A.16) are less trivial due to their dependence on the
fracture scale flow model in Eq. A.19 . They are given by:

∂qsg
∂pd

=

∫

Γd

(∇Ndf )
T ∂qt+∆t

x

∂ ∂pd

∂xd

∇Ndf dΓ (A.20)

∂qsg
∂u

=

∫

Γd

(∇Ndf )
T ∂qt+∆t

x

∂h
nT

d Nds dΓ (A.21)

Therefore, for a subgrid model for the fracture fluid flux to be fully incorporated into the monolithic scheme
it not only needs to provide qx, but also (an approximation of) its derivative with regards to the pressure
gradient and the fracture opening height in all integration points of the interface elements.

Appendix A.1. Non-Newtonian fluid flux285

The equivalent of Eq. A.10, the discretised fluid flux inside the porous material, is given for a Carreau
fluid as:

−∇Nfp
t+∆t − ρfIcNs

(

1

β∆t2
(

ut+∆t − ut
)

− 1

β∆t
u̇t −

(

1

2β
− 1

)

üt

)

+
ρf

nfθ∆t
qt − ρf

nf
(1− 1

θ
)q̇t

=

(

µ0 − µ∞

k

(

1 +
a2c
c2k

(

qt+∆t
)T

qt+∆t

)

n−1
2

+
µ∞

k
+

ρf
nfθ∆t

)

qt+∆t

(A.22)

This equation for the fluid flux is non-linear, and is therefore solved iteratively for each integration point
inside the porous material:

∂RHS

∂qt+∆t
∆qt+∆t

j = LHS −RHSj (A.23)

using the definitions:

LHS = −∇Nfp
t+∆t − ρfIcNs

(

1

β∆t2
(

ut+∆t − ut
)

− 1

β∆t
u̇t −

(

1

2β
− 1

)

üt

)

+
ρf

nfθ∆t
qt − ρf

nf
(1− 1

θ
)q̇t

(A.24)

RHSj =

(

µ0 − µ∞

k

(

1 +
a2c
c2k

(

qt+∆t
j

)T
qt+∆t
j

)

n−1
2

+
µ∞

k
+

ρf
nfθ∆t

)

qt+∆t
j (A.25)

∂RHS

∂qt+∆t
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qt+∆t
j

)T
qt+∆t
j

)
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2

+
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k
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I2

+ (n− 1)
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(
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j
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j

)

n−3
2

qt+∆t
j qt+∆t

j

T

(A.26)

with I2 the 2× 2 identity matrix, ∆qt+∆t
j the fluid flux update increment (added after each iteration), and

the initial guess qt+∆t
0 based on the previous fluid flux in the integration point. The converged fluid fluxes

in the integration points are used to construct the internal force and flux vectors, Eqs. (A.9) and (A.14).
The derivatives required to consistently include this fluid flux into the global Newton-Raphson solver are
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given by:

∂qt+∆t

∂pt+∆t
=

(

∂RHS

∂qt+∆t

)

−1

(−∇Nf ) (A.27)

∂qt+∆t

∂ut+∆t
=

(

∂RHS

∂qt+∆t

)

−1(

− ρf
β∆t2

IcNs

)

(A.28)

using the new fluid flux in the integration points to obtain ∂RHS/∂qt+∆t.
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