
This is a repository copy of Optimizing Depthwise Separable Convolution Operations on
GPUs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174797/

Version: Accepted Version

Article:

Lu, G, Zhang, W and Wang, Z orcid.org/0000-0001-6157-0662 (2021) Optimizing
Depthwise Separable Convolution Operations on GPUs. IEEE Transactions on Parallel
and Distributed Systems. p. 1. ISSN 1045-9219

https://doi.org/10.1109/tpds.2021.3084813

© 2021, IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Optimizing Depthwise Separable Convolution
Operations on GPUs

Gangzhao Lu, Weizhe Zhang, Senior Member, IEEE, and Zheng Wang

Abstract—The depthwise separable convolution is commonly seen in convolutional neural networks (CNNs), and is widely used to

reduce the computation overhead of a standard multi-channel 2D convolution. Existing implementations of depthwise separable

convolutions target accelerating model training with large batch sizes with a large number of samples to be processed at once. Such

approaches are inadequate for small-batch-sized model training and the typical scenario of model inference where the model takes in a

few samples at once. This paper aims to bridge the gap of optimizing depthwise separable convolutions by targeting the GPU

architecture. We achieve this by designing two novel algorithms to improve the column and row reuse of the convolution operation to

reduce the number of memory operations performed on the width and the height dimensions of the 2D convolution. Our approach

employs a dynamic tile size scheme to adaptively distribute the computational data across GPU threads to improve GPU utilization and

to hide the memory access latency. We apply our approach on two GPU platforms: an NVIDIA RTX 2080Ti GPU and an embedded

NVIDIA Jetson AGX Xavier GPU, and two data types: 32-bit floating point (FP32) and 8-bit integer (INT8). We compared our approach

against cuDNN that is heavily tuned for the NVIDIA GPU architecture. Experimental results show that our approach delivers over 2×

(up to 3×) performance improvement over cuDNN. We show that, when using a moderate batch size, our approach averagely reduces

the end-to-end training time of MobileNetV2 and EfficientNet-B0 by 9.7% and 7.3% respectively, and reduces the end-to-end inference

time of MobileNet and EfficentNet by 12.2% and 13.5% respectively.

Index Terms—Performance Optimization, Convolution, Depthwise, Pointwise, Memory Optimization, GPU Utilization

✦

1 INTRODUCTION

IN recent years, deep neural networks (DNNs) have made
astonishing success in solving a wide range of tasks

[1], [2], [3], [4], [5], [6]. One of the most successful DNN
architectures is the convolutional neural network (CNN)
that is widely used in tasks like image classification [1], [2],
object detection [3], [4] and semantic segmentation [5], [6].
CNN models are typically trained and run on GPUs due to
their computation requirements.

The depthwise separable convolution (DSC) is widely
used in modern CNN models for accelerating model com-
putation time [7], [8], [9], [10]. This operation can process
both the spatial dimensions (e.g., the width and the height of
an image) and the depth dimension (e.g., the RGB channels
of an image) of an input. It achieves this by splitting a
convolution kernel into two separate kernels that perform
two convolutions: a depthwise convolution and a pointwise
convolution. The former applies a single convolutional filter
for each input channel, and the latter uses a 1×1 kernel to it-
erate through every single point of the input (e.g., the kernel
has a depth of however many channels the input image has).
Compare to a classical 2D convolution that operates on a 2D
input of channels × height × width, the DSC reduces the
number of multiplication operations as well as the number
of parameters needed for the convolution filter (and hence
the chance of model over-fitting) as well as computation

• G. Lu and W. Zhang are with the School of Cyberspace Science at Harbin
Institute of Technology, Harbin 150000, China.
E-mail:{lugangzhao,wzzhang}@hit.edu.cn

• Z. Wang is with the School of Computing at University of Leeds, United
Kingdom.
E-mail: z.wang5@leeds.ac.uk

time by having fewer arithmetic operations. For this reason,
the DSC is widely used in latency-sensitive scenarios, such
as using a trained CNN on embedded devices or perform-
ing distributed, on-device learning on resource-constrained
systems [11].

A wide range of optimization techniques have been
proposed to perform convolutions [12], [13], [14], [15], [16],
[17], [18], [19]. Among these techniques, the fast fourier
transform (FFT) [15], winograd (Winograd) [16] and general
matrix multiplication (GEMM) [17], [18], [19] are broadly
adopted. However, FFT and Winograd offer little benefit for
depthwise convolutions compared to standard 2D convo-
lution. This is because FFT and Winograd are designed to
optimize arithmetic computation [20], [16], but not memory
accesses. However, the memory access latency often domi-
nates the execution time of depthwise convolution [21] due
to its lower arithmetic operations compared to a standard
2D convolution. Both methods are also ill-suited for point-
wise convolutions (that apply a 1 × 1 kernel) because FFT
is designed to operate on a large filter and Winograd works
best when the filter size is 3× 3.

While GEMM is a good fit for pointwise convolution
(that is also adopted by cuDNN [22]), the current imple-
mentation of GEMM for CNNs can lead to poor GPU
performance during model deployment. A typical GEMM
implementation uses a fixed tile size to distribute work
across parallel threads, without taking into consideration
the amount of computation required. As we will show later
in the paper, such a strategy cannot make effective use of
the GPU parallelism when the batch size (i.e., the number of
samples to be processed at once) is small (e.g., <= 128).
The ineffective use of GPU resources leads to low GPU
utilization and sub-optimal performance. This is a particular

2

problem for two real-life scenarios: when running a trained
model for inferencing - where the model typically only takes
in one or a few samples (and hence a small batch size) - or
performing on-device distributed training on an embedded
device - where the number of training samples is likely to
be small due to resource constraints.

Our work addresses the memory latency and work dis-
tribution issues identified above. By addressing these two
issues together, our approach enables efficient DSC because
it accelerates not only depthwise convolution by reducing
the GPU memory access latency and also pointwise convo-
lution for model inference and small-batch-sized training.

To improve the memory performance of depthwise con-
volution, we introduce two novel optimization techniques
for operations performed on rows and columns. Our ap-
proach reduces the number of memory accesses required
by reusing data. To improve column data reuse, we use the
shuffle instructions (supported by both CUDA and OpenCL
and hence is applicable to mainstream GPUs) to exchange
elements among threads within a GPU warp (or working
group). In this way, we can avoid reloading the same ele-
ments shared among different threads. We also apply shuffle
instructions to converting dynamic indices to static indices
to assist register promotion, an optimization strategy that is
not exploited in previous studies [23], [24]. To increase row
data reuse, we multiply one input row with multiple rows of
a convolutional kernel (or filter) to compute multiple output
elements at the same time. This strategy improves the data
locality of elements within a row, reducing the number of
memory transactions compared with that of the existing
convolution processing pipeline. By reducing the number of
memory accesses, our approach improves the performance
of depthwise convolution.

To overcome the drawback of fixed tile size work par-
tition of a GEMM kernel for pointwise convolution, we
employ a dynamic tile size scheme. Our approach first
adjusts the work assigned to each GPU thread so that we
have a sufficient number of tiles to be distributed to GPU
threads to improve the GPU utilization. A challenge here is
how to assign the right amount of work to GPU threads so
that the global memory access latency can be adequately
hidden through computation. Having too little work per
GPU thread will make the GPU memory access dominates
the execution while having too large work assignment will
lead to low GPU utilization (as only a small number of
GPU threads will receive a tile to work on). To this end, our
dynamic scheme distributes input or filter channels across
threads within a warp to minimize memory latency with im-
proved GPU parallelism. Recent works [18], [25] employ a
heuristic method to maximize parallelism for GEMM. They
achieve this by trying to combine multiple convolutions that
can be computed concurrently into one GEMM kernel. Such
a strategy assumes multiple parallel convolutions can be
performed within a single GEMM kernel. However, this
strong assumption is only valid for some special CNN
structures like the inception layer in GoogleNet [26]. As a
result, these prior methods are not applicable to the more
general case of CNNs where convolution operations must
be performed sequentially due to dependence. Our dynamic
work distribution strategy does not rely on this assumption
and hence is more generally applicable compared to these

prior approaches.
We evaluate our approach by applying it to both depth-

wise and pointwise convolutions with FP32 and INT8 on
two GPU platforms: an NVIDIA RTX 2080Ti GPU and an
embedded NVIDIA Jetson AGX Xavier GPU. We compared
our approach against cuDNN, an industry strengthened
DNN library that is heavily optimized for the NVIDIA GPU
architecture. Experimental results show that our approach
delivers over 3× and 2× faster performance than cuDNN
for depthwise and pointwise convolutions, respectively. We
show that, when the batch size is <= 128, our approach
averagely improves the end-to-end training performance of
MobileNetV2 [27], [7] and EfficientNet-B0 [8] by 11.5% and
7.3% respectively, and improves the end-to-end inference
performance of MobileNetV2 and EfficentNet-B0 by 9.7%
and 11.6% respectively.

This paper makes the following technical contributions:

• It presents two novel algorithms for column and
row reuse (Section 3) for depthwise convolution,
improving the data locality and the memory access
latency for depthwise convolution.

• It describes a novel method for transforming dy-
namic indices into static indices to assist register pro-
motion for performance optimization (Section 3.1.3).

• It presents a dynamic tile size scheme for pointwise
convolution, increasing GPU utilization while mini-
mizing the global memory access latency (Section 4).

This work extends our prior work [28] by proposing a
new dynamic tile size scheme to optimize pointwise con-
volution, which is a key component of depthwise separable
convolution. We also added new experiments performed on
embedded devices and using 8-bit integers for the neural
networks. The new experiments demonstrate the robust-
ness of the proposed approach, showing that it consistently
outperforms cuDNN by delivering the overall best perfor-
mance.

2 BACKGROUND

2.1 GPU Architecture

Deep learning models are often trained and executed on the
GPU. Modern GPUs employ a complex execution pipeline
and memory hierarchy to support concurrent execution
of parallel threads. A typical GPU consists of multiple
Streaming Multiprocessors (SMs). Each SM includes multi-
ple Single-Instruction-Multiple-Thread (SIMT) units, each of
which has multiple lanes of execution. Threads scheduled in
the same SIMT unit are called a warp, which is the smallest
scheduling unit in GPU. Like a modern CPU, a GPU consists
of multiple memory hierarchies. The thread-local registers
are the fastest memory component, having the lowest access
latency (1-2 cycles). The SM local L1 caches and shared
memory provide a larger storage capacity over the thread-
local registers but have modestly higher accessing latency
of around 30 cycles [29], [30]. All the SMs share a unified
L2 cache that provides an accessing latency of about 200
cycles. The off-chip global memory, similar to the RAM in a
CPU system, provides the largest memory storage capacity
on the GPU but has the longest accessing latency of around
500 cycles measured through running micro-benchmarks on

3

12

12

3
5

5
3

× = 8

8
3

(a) Depthwise convolution: three 5 × 5 2D filters are used to

convolve with one 3-channel 12× 12 input and generate one

3-channel 8× 8 output.

8

8
3

1

1 3
× = 8

8
4

(b) Pointwise convolution: four 3-channel 1×1 filters are used

to convolve with one 3-channel 8× 8 input and generate one

4-channel 8× 8 output.

Fig. 1. Demonstration of depthwise and pointwise convolutions.

NVIDIA RTX 2080Ti GPU used in this work. Local memory
resides in global memory and is used to hold variables with
dynamic indexing or too large to fit into registers. It has the
same access latency as global memory. The key to optimiz-
ing memory performance is to make use of the fast memory
sub-systems (i.e., registers and shared memory) and reduce
the number of memory accesses to slower memory. Our
work is designed to provide such capabilities for depthwise
separable convolution operations.

2.2 Depthwise Separable Convolution

Our work targets depthwise separable convolution (DSC)
that is widely used by CNN models to reduce the number of
multiplication operations needed for doing convolution (a
standard operation in CNN). The DSC splits a standard (e.g.,
multi-channeled) 2D convolution kernel into two individual
kernels: a depthwise convolution kernel and a pointwise
convolution kernel.

The depthwise convolution kernel processes one input
channel at a time, and stacks the outputs of all channels
together to form an c×n×n matrix, where n×n is the output
of a depthwise convolution kernel and c is the number of
channels to be processed. Specifically, it takes as input a
feature map and applies a bank of 2D filters (e.g., an N ×N
kernel) on the width and height directions of the input. We
iteratively apply the depthwise convolution kernel to all
channels. Fig. 1a shows an example of depthwise convolu-
tion, where three 5 × 5 2D filters are used to convolve with
the corresponding channel of a 3× 12× 12 feature map and
generate one 3× 8× 8 output.

The output of the depthwise convolution kernel is fed
into a pointwise convolution kernel which uses a 1× 1 filter
to iterate through every single point. This kernel has a depth
of the number of input channels (i.e., c). The DSC reduces
the computation by reducing the number of input transfor-
mations needed when compared to a standard depthwise

0 1 2 3 4 5

Input

6 7

Filter

duplicate

columns

duplicate

rows

thread 0 thread 1 thread 6…….

8 9 10

…….Output

Fig. 2. A working example of performing a depthwise convolution using
a GPU. Here, the filter size is 5 × 5, the input image size is 6 × 11 and
the output size is 2× 7.

convolution. Fig. 1b shows an example of pointwise convo-
lution, where four 3×1×1 filters are used to convolve with
the 3×8×8 feature map iteratively and each filter generates
one channel of the 4× 8× 8 output.

2.3 Roadmap and Notations

We present our approach for optimizing the two convo-
lutional kernels of DSC in Sections 3 and 4. We start by
introducing our methods for improving data locality of
depthwise convolution in Section 3 and then presenting our
approach for using dynamic work distribution to accelerate
small-batch-sized pointwise convolution in Section 4.

Notations. Throughout the paper, we use I , F , and O to
represent the input, the filter, and the output respectively;
we also use N , C , H , and W to denote the batch size, the
channel, the height, and the width, respectively.

3 OPTIMIZING DEPTHWISE CONVOLUTION

In this section, we describe our two optimizations, column
reuse (Section 3.1) and row reuse (Section 3.2), for reducing
the number of GPU memory accesses for depthwise convo-
lution.

3.1 Column Reuse Optimization

Working example. We use the depthwise convolution with
only one channel shown in Fig. 2 as a working example to
explain our column reuse method. In practice, we iterate
the depthwise convolution kernel on each channel in turn
(e.g., the R, G, and B channels of an image). Without loss
of generality, we slide a 5 × 5 filter over a 6 × 11 input
with stride 1 to produce a 2 × 7 output. Our column reuse
method can also be applied to depthwise convolutions with
other stride settings. In this example, each thread calculates
one column of the output. Two parallel threads 0 and 1 will
execute code to slide the filter along the width dimension,
where both threads load two overlapped regions from the
input image (thereby generating four duplicate columns).
Similarly, there will be another thread (thread 6 in this
example) to slide the filter along the height dimension,
which will load two overlapped regions and generates four
duplicate rows.

4

t0 0

1

2

3

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

step 1 step 2 step 3 step 4 step 5

t1

t2

t3

(a) Direct convolution: Each thread

loads 5 input elements from global

memory.

0

1

2

3

2

3

4

5

4

5

6

7

step 1 step 3 step 2

t0

t1

t2

t3

(b) Optimized convolution: each

thread retrieves its third element from

the corresponding thread.

0

1

2

3

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

step 1 step 4 step 3 step 5 step 2

t0

t1

t2

t3

(c) Our approach: each thread re-

trieves its second and fourth elements

from corresponding threads.

Fig. 3. Illustration of direct and optimized convolutions. We use a 5× 5 filter and each thread calculates the convolution for one output element. This
example shows how a thread processes the first 5 corresponding input elements.

3.1.1 Standard convolution

Fig. 3a shows a standard depthwise convolution operation,
operating on a single-channel input on the example shown
in Fig. 2. Here, each thread loads the first corresponding
input element from the GPU global memory. Given that
the indices of these elements are contiguous, i.e., 0, 1, 2,
and 3 in this example, concurrent access to these elements
will be coalesced to form a single memory transaction. As a
result, each step will incur one memory access, five for the
five steps (steps 1-5) as shown in Fig. 3a. After completing
step 5, each pair of adjacent threads will have four duplicate
input elements, corresponding to the duplicate columns in
Fig. 2. Specifically, input elements 1, 2 and 3 loaded in
step 2 would have already been loaded by threads t1, t2
and t3 in the previous step (Fig. 3a). The repeated load
to these elements leads to redundant memory accesses and
unnecessary memory access latency. Even the elements may
be prefetched to the L1 cache before the next step, access to
the L1 cache still takes around 30 cycles on a 2080Ti GPU. To
reduce the memory overhead, we would like to avoid such
redundant memory accesses.

3.1.2 An optimized implementation

To eliminate the redundant loads, we could use the shuffle
instructions supported by both CUDA and OpenCL to ex-
change input elements among different threads. To this end,
we adopt the optimization developed in our prior work [28].
Fig. 3b depicts such an optimization. Specifically, in steps 1
and 2 of Fig. 3b, each thread loads the corresponding first
and fifth input elements from the global memory. In step 3,
each thread utilizes the shuffle instruction to retrieve the
third element from another thread. For example, threads
t0 and t1 could retrieve the third element from threads t2
and t3, respectively, and provide the fifth element (dashed
squares in step 2) for both threads. Similarly, threads t2
and t3 retrieve the third element from threads t0 and t1,
respectively, and provide the first element (dashed squares
in step 1) for threads t0 and t1. Using the CUDA shuffle
instruction, this exchange process can be implemented as
shfl xor(iT emp[i], 2), where iT emp is a thread-local array
used to store the five input elements, and i is the location in
the local array. For our working example, threads t0 and t1
will supply the fifth element, hence i = 4. Similarly, threads
t2 and t3 will provide the first element, thus i = 0.

While this version reduces the redundant memory ac-
cesses compared to a standard convolution implementation,
there is still room for improvement. The problem is that
the shuffle instruction shfl xor(iT emp[i], 2) now becomes
a bottleneck because iT emp is accessed through dynamic in-
dexing. Since the indices and the access pattern to iT emp are
not available at compile-time, the compiler cannot decide
which of the elements in iT emp will be frequently accessed
and has to place iT emp in the local memory which would
still incur an access latency of around 500 cycles. If we can
promote register allocation for iT emp, we can then further
improve the performance of convolution.

3.1.3 Our approach

Our column reuse scheme (Fig. 3c) converts dynamic index-
ing to static array accesses to promote register allocation.
This strategy is described in Algorithms 1 and 2, where the
first algorithm is used for step 3, and the latter is used for
steps 4 and 5. Note that these two algorithms can be used
for different sized convolution kernels, for which we will
discuss in Section 3.1.4.

Fig. 4 gives a working example of Algorithm 1. Here, we
first load the corresponding first and fifth input elements
into iT emp before passing it to Algorithm 1. Then, we
pack two 32-bit elements into a 64-bit variable, exchange,
where iT emp[4] and iT emp[0] are the high and low 32 bits,
respectively (Line 2). As threads t0 and t1 will provide the
fifth element of the data they load, which are the high 32
bits of exchange, we right shift exchange for both threads
by an offset of 32 to place iT emp[4] in the low 32 bits. Now
turning our attention to threads t2 and t3 that will provide
the first element of the data they load. Since the elements are
the low 32 bits of exchange, we right shift exchange in both
threads by an offset of 0. The number of places to be shifted
for each thread is calculated based on the thread ID (Line 3).
Next, we unpack exchange into iT emp[2] (high 32 bits) and
iT emp[1] (low 32 bits) (Line 5). By doing so, we can retrieve
the element a thread needs to supply from a fixed location,
iT emp[1]. Finally, we use the shuffle instruction to exchange
the elements among threads (Line 6).

Using Algorithm 1, we can replace dynamic index i in
shfl xor(iT emp[i], 2) (whose value is unknown at compile
time) with a static index, 1 in shfl xor(iT emp[1], 2), in
our working example. By doing so, we promote register
allocation by allowing the compiler to put all the thread-
local variables into the fast GPU registers (that have access

5

Algorithm 1: RetrieveThirdElement

// iT emp: Buffer for storing input

elements loaded from memory or

generated through shuffle

instructions.

Input: iT emp
Output: iT emp

1 tid← threadIdx.x;
2 mov exchange, {iT emp[0], iT emp[4]};
3 shift← ((tid+ 2)&2) << 4;
4 exchange← exchange >> shift;
5 mov {iT emp[1], iT emp[2]}, exchange;
6 iT emp[2]← shfl xor(iT emp[1], 2);

0

1

2

3

4

5

6

7

iTemp
[0]

4 0

32 bits

iTemp
[4]

5 1

6 2

7 3

exchange

64 bits
high low

4

5

6 2

7 3

exchange

4

5

2

3

6

7

iTemp
[1]

high
32 bits

low
32 bits

iTemp
[2]

pack

>> 32

>> 32

>> 0

>> 0

unpack

replace dynamic indexing with
different shift amounts

t0

t1

t2

t3

Fig. 4. Convert dynamic indexing of array iT emp into static indexing,
allowing iT emp to be allocated in registers instead of the local memory.

latency of 1 to 2 cycles as opposed to 500 cycles when the
data are stored in the local memory). Note that this approach
will not improve the register usage. Since steps 4 and 5
of our implementation (Fig. 3c) adopt a similar procedure
as step 3 in Fig. 3b, we can adapt Algorithm 1 to derive
Algorithm 2 with minor modifications. The main distinction
between the two algorithms comes from how we process
steps 3-5 shown in Fig. 3c. Specifically, we use four threads
to exchange the elements in step 3 for Algorithm 1, but use
only two adjacent threads in steps 4 and 5 for Algorithm
2. To adapt to the change of the number of threads used,
we recalculate the shift offset for each thread (Line 3 of
both algorithms) and change the arguments of the shuffle
instruction (Line 6 in both algorithms).

For our working example, Algorithms 1 and 2 respec-
tively reduce the number of memory accesses from 5 to 2
and 25 to 10 when 5 and 25 input elements are loaded.
This reduction greatly improves the performance of the
depthwise convolution.

3.1.4 Generalize to other filter sizes

So far we have described our approach using a concrete
working example with a pre-defined filter size, but our
algorithms can be generalized to filters with an arbitrary
size. To apply our approach to a filter of size n× n, we will
first divide the filter into several n × 5 sub-filters. Next, we
divide the remaining columns into several n × 3 sub-filters
with some overlap columns. Each n× 5 and n× 3 filters can
then be directly processed by Algorithm 1 and Algorithm 2.

3.2 Row Reuse Optimization

Working example. Consider now the standard convolution
example shown in Fig. 5 as a working example for our
row reuse algorithm. When sliding the filter over the 2D

Algorithm 2: RetrieveSecondElement

Input: iT emp
Output: iT emp

1 tid← threadIdx.x;
2 mov exchange, {iT emp[0], iT emp[2]};
3 shift← ((tid+ 1)&1) << 5;
4 exchange← exchange >> shift;
5 mov {iT emp[0], iT emp[1]}, exchange;
6 iT emp[1]← shfl xor(iT emp[0], 1);

!"#$% &$%#$%'()%*+

rowi0

rowi2

rowi3

rowi4

rowi1 rowf0

rowf1

rowf2

out0

out1

out2

%,+*-./0

Fig. 5. A 3×3 filter is used to slide over the input image along the height
dimension, which produces a column of output elements.

input along the height dimension, it produces a column of
elements as the output.

3.2.1 Standard convolution

Assume we use one thread to calculate one column of
output elements. For the working example given in Fig. 5,
the convolution will be computed as follows:

out0 = rowi0 · rowf0 + rowi1 · rowf1 + rowi2 · rowf2

out1 = rowi1 · rowf0 + rowi2 · rowf1 + rowi3 · rowf2

out2 = rowi2 · rowf0 + rowi3 · rowf1 + rowi4 · rowf2

As can be seen from the above equations, rowi1 and
rowi3 are loaded twice, and rowi2 is loaded three times;
nine rows are being loaded in total. These redundant loads
to the same read-only row thus incur extra memory accesses
and additional overhead.

3.2.2 Our optimization

To remove redundant loads to the same row, we redesign
the execution flow of the standard depthwise convolution.
Specifically, after fetching a row from the input, we compute
the number of output elements that depend on the loaded
row. With this information in place, we use the loaded
row to perform inner products with corresponding rows of
the filter to calculate the output elements whose outcomes
depending on the loaded row. Our approach translates the
execution flow of the working example presented in Fig. 5
to:

load rowi0 : out0 = rowi0 · rowf0

load rowi1 : out0 = out0 + rowi1 · rowf1

out1 = rowi1 · rowf0

load rowi2 : out0 = out0 + rowi2 · rowf2

out1 = out1 + rowi2 · rowf1

out2 = rowi2 · rowf0

load rowi3 : out1 = out1 + rowi3 · rowf2

out2 = out2 + rowi3 · rowf1

load rowi4 : out2 = out2 + rowi4 · rowf2

6

Algorithm 3: RowReuse

Input: row, index, filter, Out
Output: Out

1 if index<FH − 1 then
2 for i← 0 to index+ 1 do
3 Out[i]← Out[i] + row · filter[index− i];
4 else if index ≥ FH − 1 and index<IH − FH + 1 then
5 for i← 0 to FH do
6 oindex ← index− FH + 1 + i;
7 Out[oindex]←

Out[oindex] + row · filter[FH − 1− i];
8 else
9 for i← FH − 1 to 0 do

10 oindex ← IH − FH + 1;
11 Out[oindex]← Out[oindex] + row · filter[FH − i];

sub-block 0

warp 0
sub-block 1

warp 1

processed by lane 0

processed by lane 1

processed by lane 2

processed by lane 3

Output image

Fig. 6. The output is produced by sliding a 3× 3 filter over an 8× 8 input
with one pad. Here, we assume that the warp size is 4 and thus having
laneid = threadid%4.

In this new implementation, we would only issue loads
to five rows to calculate the output elements of our work-
ing example. Compared to the nine loads required by the
standard convolution, we reduce the number of loads to
row elements by nearly half. We note that although the
number of accesses to the output column out is increased,
the overhead is negligible because out is smaller than the
size of multiple rows and often can be stored in registers.

We describe a general solution for row reuse in Algo-
rithm 3, where row denotes the row loaded from the input,
index denotes the index of row, filter denotes the vector
of filter rows and filter[i] means the ith row of the filter.
Pseudo codes at Lines 1-5 process the first FH − 1 rows
(rowi0 and rowi1 in Fig. 5) that are needed by less than
FH output elements. Codes at Lines 6-11 process the rows
needed by exact FH output elements (e.g., rowi2 in Fig. 5).
Finally, codes at Lines 12-17 process the last FH − 1 rows,
which are needed by less than FH output elements (e.g.,
rowi3 and rowi4 in Fig. 5).

Algorithm 3 is designed to eliminate redundant loads to
the same row introduced by sliding a filter over the input
along the height dimension. By loading each row of the
input just once, our approach greatly reduces the number
of memory transactions for convolution operations.

3.3 Putting Together

We now take the widely used 2D convolution as an example
to illustrate how to apply both reuse algorithms on convo-
lution operations.

Algorithm 4: Optimized Depthwise Convolution

Input: I , F , subBlockHeight
Output: O

1 Load the filter into shared memory;
2 Divide columns of the filter into a combination of

3-column and 5-column sub-filters;
3 syncthreads();
4 if blockIdx.x<gridDim.x− 1 then
5 Init thread local register array sum to zero;
6 Calculate the index of the first input element this

thread needs, denoted as inputIndex;
7 for i← 0 to subBlockHeight do
8 foreach sub-filter do
9 Load corresponding input elements from

inputIndex of global memory into iT emp;
10 Call RetrieveThirdElement(iT emp) or

RetrieveSecondElement(iT emp);
11 Call RowReuse(iT emp, i,sub-filter, sum);
12 Write completed element of sum into O;
13 else
14 Divide columns of the last sub-block into multiple

partitions and try to evenly assign those partitions
to threads of a warp. Each thread uses a direct
method to calculate elements of O.;

15 The same method is adopted when processing the
edge elements of O;

To apply our approach to depthwise convolution that
works on a 2D matrix, we first divide the output into sub-
blocks. Each sub-block contains exactly n columns (in this
work, n = 32, which is the default warp size of our GPU
platform). The only exception is the last sub-block, which
may contain less than n columns. If a sub-block contains
more than k rows (k = 56 in this work), we then further
break down the sub-block along the height dimension. The
blocking method implies that our approach can handle
arbitrary input sizes. Each GPU thread block will process
one or multiple sub-blocks, and each warp will compute
one sub-block.

3.3.1 Example

Fig. 6 shows the mapping process of GPU threads to output
elements. In this example, we slide a 3×3 filter over an 8×8
input. To apply a square filter at the edge of the image, we
need to pad the input. To reduce the memory pressure, we
do not allocate GPU memory space for the padded elements.
Instead, we use different methods to calculate the edge and
inner elements of the output. The edge and inner elements
are represented by the shaded and dashed squares in Fig. 6,
respectively.

In this example, we assume each GPU warp contains
four threads. Therefore, we will divide the inner elements
into multiple sub-blocks and each sub-block contains four
columns so that a column can be processed by one of the
four GPU threads within a wrap. In our case, we will have
two sub-blocks, where sub-block 0 contains four columns,
but sub-block 1 only contains two columns. To utilize the
threads within a warp, we divide elements of the last two
columns evenly among the four threads.

3.3.2 Generalization

In Algorithm 4, we describe our generalized solution. Here,
we process the sub-blocks with exactly 32 columns (i.e., the

7

default wrap size of our evaluation GPU) and the last sub-
block in Lines 4-15 and 16-19, respectively. In this way, each
GPU thread calculates one column of the output elements.
This is done through several steps. First, each thread block
loads the filter into shared memory and divides the filter
into a combination of 3-column and 5-column sub-filters.
Next, each thread calculates the address of the first input
element it needs (Line 6). For each output element and
sub-filter, each thread loads corresponding input elements
into iT emp and passes iT emp to Algorithms 1 and 2 to
fill the row vector iT emp (Line 10). Then, each thread
passes the filled vector iT emp to Algorithm 3 to calculate
multiple output elements and store results in the register
array sum (Line 11). Finally, when the calculation of one
output element is completed, we write the corresponding
result in sum into the result array O (Line 13).

4 OPTIMIZING POINTWISE CONVOLUTION

In this section, we explain the workflow of our dynamic
tile size scheme for pointwise convolution. This approach
extends the optimization for convolution operations in our
prior work [28] to pointwise convolution. Our approach
consists of three stages, described as follows.

In the first and second stages, we identify parameters
related to the tile size and determine candidate values for
each parameter (Section 4.1 and Section 4.2). The first and
second stages process input dependent and independent
parameters respectively. In the third stage, as detailed in
Algorithm 5, we iterate over all combinations of parameters
and search for the combination that achieves optimal SM
utilization and data reuse (Section 4.3).

We note that previous studies [31], [32], [33], [34], [35],
[36], [37], [38] have exploited tiling and autotuning for
convolution and GEMM operations. However, these prior
methods are inadequate for pointwise convolutions on
GPUs due to two main drawbacks: they do not consider
SM utilization when choosing the optimal tile size and are
not designed for pointwise convolutions with small inputs.
Our dynamic tile size scheme avoids these two drawbacks.
To improve SM utilization, our approach searches for the
optimal tile size for the output based on the input size
to generate a proper number of tiles to saturate GPU and
maximize data reuse. To optimize pointwise convolution
with small inputs, we distribute channels across threads
within a warp to increase the arithmetic intensity for each
thread.

4.1 Determine Tiling Parameters

In our design, we use a 2-level tiling scheme, as shown in
Fig. 7, to partition the output into block tiles and warp tiles.
Each thread block processes one block tile and each warp
processes one warp tile. The height dimension of the warp
tile is shared among 32 threads of a warp and the width
dimension of the warp tile is distributed across 32 threads
of a warp. Hence, we have two input dependent parameters,
namely the height and width of the warp tile, denoted
as WarpH and WarpW respectively. Now we introduce
how to use the 2-level tiling scheme to determine candidate
values for WarpH and WarpW .

4.1.1 A two-level tiling scheme

To divide the output into block tiles, we utilize two logical
layouts of the output, L1 and L2, as shown in Fig. 7. FN and
IN × IH × IW represent the filter and input dimensions
of the output respectively. Notice that our 2-level tiling
can handle arbitrary input sizes since we do not require
IH = IW . Before partitioning the output, we first select the
layout of the output based on the size of the filter dimension.
The rationale behind choosing the filter dimension instead
of the input dimension can be described as follows. The
number of filters, FN , is fixed once the structure of a CNN
is determined. But the size of the input dimension will be
affected by the batch size, IN , during inference and training.
Therefore, it is easier to design our approach based on the
size of the filter dimension. When FN > 48, we choose
layout L1 and distribute filter channels across threads within
a warp. Otherwise, we choose layout L2 and distribute input
channels. The boundary FN = 48 is determined as follows.
Fig. 7 demonstrates that in layout L2, the maximal value of
FN is 4 × WarpH and WarpH ≤ 12 (explain later in this
section), therefore we have FN ≤ 48 for layout L2.

Since both layouts have the similar procedure, we take
layout L1 as an illustration example and give a brief descrip-
tion of layout L2 at the end of this section. After choosing
the layout based on FN , we partition the output along
the filter dimension. First, we halve the filter dimension if
FN ≥ 512. The reason is that if we let each thread block
process a large number of filters, then each thread needs to
issue more than 15 global memory load instructions, which
may cause MIO (Memory Input Output) instruction queue
throttle and leads to performance degradation. Then, we
halve both dimensions of each block tile and generate 2× 2
warp tiles.

4.1.2 Determine candidates for WarpH and WarpW
Based on the partition method, we know that WarpW can
be calculated with WarpW = FN/4 or WarpW = FN/2.
Thus, we only need to determine candidate values for
WarpH based on the size of the input dimension. In our
design, when WarpH > 12, we need assembly level opti-
mizations like the work in [16], [39] for some configurations
of pointwise convolutions to avoid register spills. But in
this work, we focus on higher level rather than assembly
level optimizations, and thus set WarpH ≤ 12. If the size
of the input dimension is large, we prefer to choose a large
WarpH because using small WarpH will generate many
thread blocks and results in multiple loads of shared filters
[40], [41]. If the size of the input dimension is small, we
prefer to choose a small WarpH because using a large
WarpH will generate a few thread blocks and result in
SM underutilization. Since each thread loads at most 12
input elements (WarpH ≤ 12), we set the upper limit
of large WarpH to 12 and the lower limit to 12/2 = 6.
Therefore, the candidates for large WarpH are WarpH =
{6, 7, 8, 9, 10, 11, 12}. The candidates for small WarpH are
WarpH = {2, 3, 4, 5, 6, 7, 8}. In our experiments, there is no
clear boundary between large and small candidate sets of
WarpH , therefore we let both sets overlap in the middle
values. The boundary between the large and small size
of the input dimension is experimentally determined as
IN × IH × IW = 16× 14× 14.

8

Compared to layout L1, layout L2 swaps the input and
filter dimensions. Hence, WarpH can be calculated with
WarpH = FN/4 or WarpH = FN/2. The candidate values
for large WarpW are WarpW = {6, 7, 8, 9, 10, 11, 12} and
for small WarpW are WarpW = {2, 3, 4, 5, 6, 7, 8}.

4.2 Determine Candidates for Input Independent Pa-

rameters

There are three input independent parameters we need to
consider, namely the number of warps in a thread block
(Warpnum), the number of thread blocks that can run con-
currently on an SM (Blocknum) and the number of channels
to be distributed (Cnum).

4.2.1 Determine candidates for Warpnum and Blocknum
When determining candidates for Warpnum, we need to
consider (1) a small warp number will decrease the op-
portunity to hide the memory access latency at the warp
level, (2) a large warp number will decrease the number
of thread blocks and may lead to SM underutilization. We
empirically set the warp number to be four (Warpnum = 4),
which gives good performance on our pilot study using
microbenchmarks of hand-written pointwise convolution
kernels. For the number of thread blocks, Blocknum, we
use two values, 2 and 4, on our evaluation platforms.
These choices are justified as follows. For Nvidia GPUs,
each GPU thread can use up to 255 registers, and each
SM has 65,536 registers. If we set Blocknum = 1 and
Warpnum = 4 (per our discussion above), each SM will
have Blocknum×Warpnum = 4 wraps. This allows a thread
block to use up to just half of the available registers of
an SM because a thread block under this setting can use
at most 4 (warps in an SM) × 32 (threads per warp) ×
255 (registers per thread) = 32, 640 registers. Therefore,
to utilize the available hardware register, one should set
Blocknum to be greater than one. We also found that
setting Blocknum > 4 during searching offers little ben-
efit and hence we set the Blocknum to be either 2 or 4
(Blocknum = {2, 4}).

4.2.2 Determine candidates for Cnum

When searching for the optimal combination of parameters,
a small tile size may be generated, which may lead to low
arithmetic intensity and can not hide global memory access
latency. For example, we assume that the warp tile size is
WarpH × WarpW = 8 × 64 and has 56 channels, which
means that one warp needs to convolve 8 input elements
with 64 filter elements and accumulates results 56 times to
generate 8× 64 = 512 elements. Since the height dimension
is shared among 32 threads of the warp, each thread loads
8 input elements, and the width dimension is distributed
across 32 threads, each thread loads 2 filter elements. There-
fore, each thread accumulates 56 channels of 8 × 2 = 16
elements. Now we can estimate the arithmetic intensity of
each thread for one iteration as number of multiplications

number of elements
=

8×2

8+2
= 1.6. We can improve arithmetic intensity by dis-

tributing channels across threads, as shown in Fig. 7. We
distribute eight channels (Cnum = 8) of each filter element
across 32 threads of the warp. In that case, each warp can
process Fnum = 32/Cnum = 32/8 = 4 filter elements and

each thread processes Tnum = WarpW /Fnum = 64/4 = 16
filter elements. The arithmetic intensity can be estimated
as WarpH×Tnum

WarpH+Tnum

= 8×16

8+16
= 5.3. Higher arithmetic inten-

sity increases the chance to hide global memory access
latency. To fully utilize a warp, candidate values for Cnum

should be a power of 2. Thus, candidates for Cnum are
Cnum = {1, 2, 4, 8, 16, 32}.

4.3 Search For the Optimal Combination

4.3.1 Hardware resources constraints

When searching for the optimal combination of tiling
and input independent parameters, we focus on combi-
nations that can meet the hardware resources constraints,
including registers and shared memory. In the rest of
this section, we take layout L1 as an illustration example.
Based on Blocknum, we calculate the number of regis-
ters each thread can use (LimitR) and the size of shared
memory each thread block can use (LimitS) with for-
mulas LimitR = TotalR/(Blocknum × Warpnum × 32)
and LimitS = TotalS/Blocknum respectively. TotalR and
TotalS represent the number of registers and the size of
shared memory of an SM, respectively. On RTX 2080Ti,
TotalR = 65536 and TotalS = 64KB while on Jetson AGX
Xavier, TotalR = 65536 and TotalS = 48KB.

In our approach, each warp processes one warp tile
which contains WarpH × WarpW output elements. Each
thread calculates WarpH × Tnum elements and thus needs
Rresult = WarpH × Tnum, Roperand = WarpH + Tnum

registers to store results and operands respectively. The
constraints can be formulated as follows:

Rtmp =
Cnum × 2×WarpW

128
+

Cnum × 2×WarpH
128

Rresult +Roperand +Rtmp + extraR ≤ LimitR (1)

(2×WarpH +2×WarpW)×Cnum× 4× 2 ≤ LimitS (2)

where Rtmp is the number of temporary registers used to
store filter and input elements loaded from global memory.
2×WarpH and 2×WarpW represent the height and width
of the block tile respectively. 128 means each thread block
has Warpnum × 32 = 4 × 32 = 128 threads to load data
from global memory. In Formula 1, extraR is the number of
additional registers allocated by the compiler and its value is
determined through an off-line method. In our experiments,
we set extraR = 40 because the NVIDIA CUDA compiler,
on average, allocates 40 additional registers for each kernel
on our evaluation platforms. These additional registers are
usually used to store temporary variables for utilizing GPU
arithmetic pipelines. In Formula 2, 4 means each element
has 4 bytes and 2 means we use a double buffer method
[33], [42].

4.3.2 Searching workflow

To guide the search for the optimal combination of parame-
ters, we use two metrics named SM utilization (SMutil) and
arithmetic intensity (AI). Two metrics can be calculated as
follows:

Blockcount =
FN

2×WarpW
×

IN × IH × IW
2×WarpH

9

Warp

Tile 0

Warp

Tile 2

Warp

Tile 1

Warp

Tile 3

Partition a

block tile into 4

warp tiles

In this example, each warp calculates 8 channels of

 output elements.

!!
!

8 channels

4 filter or input elements

32 threads

!!!

Output
Layout L1

Output
Layout L2

! !
"
!
"
"
! #

!
!

!!"!""!#

Logical layout

of output

Distribute
channels of

filters

Distribute
channels of

inputs

Block

Tile 0

Block

Tile 1

Block Tile 0

Block Tile 1

Block

Tile 0

Block

Tile 1

Block

Tile 0

Block

Tile 1

Partition output

into block tiles

!
!

!
!!

!!!

!!!

!
!!

!" # $
! % &'(

!" #
$!#

"%

!"
$

%!

!
! "

#$

!"#$!

!"#$!

!"#$!

!"#$!

%

!"#$! %
!"#$"

&

Fig. 7. Workflow of our 2-level tiling and channel distribution methods.

Algorithm 5: Optimized Pointwise Convolution

Input: I , F
Output: O
// below codes are executed on CPU

1 Determine candidates for relevant parameters;
2 foreach parameter combination do
3 if not satisfy constraints of Formula 1 and 2 then
4 continue;
5 Calculate SMutil and AI with Formula 3 and 4;
6 Choose combinations whose SMutil is close to 1;
7 Among chosen combinations, choose the

combination with the maximal AI ;
8 Choose the kernel based on the chosen combination.;
// below codes are executed on GPU

9 Load Cnum channels of a block tile into shared memory
array sharedBuf1;

10 syncthreads();
11 for iter ← 0 to IC By 2× Cnum do
12 Load next Cnum channels into Rtmp;
13 Load channels from sharedBuf1 into Roperand;
14 Accumulate output elements into Rresult;
15 Write Rtmp into sharedBuf2;
16 syncthreads();
17 Repeat above steps but swap sharedBuf1 and

sharedBuf2;
18 Use segmented parallel reduction to get the final

output elements and write the result to O;

SMutil =
Blockcount

Blocknum × SMnum

(3)

AI =
WarpH × Tnum

WarpH + Tnum

(4)

where Blockcount is the number of generated thread blocks,
SMnum is the number of SMs on a GPU. For RTX 2080Ti
and Jetson AGX Xavier, SMnum = 68 and SMnum = 8
respectively.

The whole workflow is described in Algorithm 5. We first
determine candidates for relevant parameters, including
WarpH , WarpW , Warpnum, Blocknum and Cnum, based
on the size of the input and filter (Line 1). Then we iterate
over all combinations of parameters (Line 2), and keep the

combinations that satisfy the constraints LimitR (Formula
1) and LimitS (Formula 2) (Line 3).

Next, we calculate values of SMutil (Formula 3) and AI
(Formula 4) for all satisfied combinations (Line 5) and select
the optimal combination with following steps (Line 6-7):

Step 1 If SMutil ≥ 1 is true for all combinations, we select
the combinations that possess the smallest and close
to the smallest SMutil. The reason is that when
SMutil ≥ 1, all SMs are utilized, in which case
we want to reduce the number of thread blocks to
reduce the number of loads of shared filters or inputs
between multiple thread blocks.

Step 2 If there exists combinations such that SMutil < 1,
we first collect these combinations. Then, among col-
lected combinations, we select the ones that possess
the biggest and close to the biggest SMutil. The
reason is that when SMutil < 1, there are idle SMs,
in which case we want to increase SMutil to fully
utilize SMs. We do not want SMutil to exceed 1
because that will incur more memory operations.

Step 3 Among candidate combinations selected in Step 1
and Step 2, we select the combination with the maxi-
mum value of AI because higher arithmetic intensity
can hide more global memory access latency.

Last, we choose the pointwise convolution kernel based
on the selected combination (Line 8). In this kernel, each
thread block first loads Cnum channels of the corresponding
block tile into shared memory array sharedBuf1(Line 9).
Meanwhile, the thread block loads the next Cnum channels
of the block tile into temporary registers (Line 12). Then,
we load data from sharedBuf1 into registers (Line 13) and
accumulate output elements into registers (Line 14). Next,
we write data in temporary registers into sharedBuf2 (Line
15). The kernel repeats the process until all channels have
been accumulated to output elements. Finally, we use a
warp level segmented parallel reduction to reduce results
of different channels into the final result and write results to
global memory (Line 18).

10

5 EXPERIMENTAL SETUP

5.1 Evaluation Platforms

We apply our approach to two GPU platforms. The first
platform has an NVIDIA RTX 2080Ti GPU (2080Ti), which
integrates 4350 CUDA cores for floating point computation
and 4350 CUDA cores for integer operations. The GPU has
64KB of shared memory. The host machine has a 2.30GHz
Intel Xeon E5-2697 CPU with 252GB memory, running Linux
kernel v4.15.0. We use CUDA Toolkit 11.0 and cuDNN 7.6.5.
The second platform is an embedded GPU platform. It has
an NVIDIA Jetson AGX Xavier GPU (Xavier), which inte-
grates 512 Volta cores and 48KB shared memory. The host
machine has an 1.2GHz 8-core ARM CPU with 32GB mem-
ory, running Linux kernel v4.9.140-tegra. We use CUDA
Toolkit 10.0 and cuDNN 7.6.3.

5.2 Competing Methods

We compare our approach against cuDNN [22] which
supports a wide range of convolution operations, includ-
ing depthwise and pointwise convolutions optimized for
GPUs. Moreover, cuDNN can execute GEMM-, FFT- and
Winograd-based convolutions, allowing us to compare our
techniques with mainstream convolution methods. Tensor-
Flow [43] is one of the mainstream machine learning frame-
works. We also compare our approach against TensorFlow
implementations of depthwise and pointwise convolutions.

5.3 Performance Report

We apply our approach to depthwise and pointwise convo-
lutions of DSC. We run each test case ten times with batch
sizes of 1, 8, 16, 32, 64 and 128 on an unloaded machine and
report the averaged running time. We found little variance
during execution runs, less than 2%. We run convolutions
with two data types, 32-bit floating point (FP32) for normal
CNNs and 8-bit integer (INT8) for quantized CNNs [44].
In our experiments, we utilize data layouts NCHW and
NHWC for FP32 and INT8, respectively, where N,C,H,W
respectively denote the batch size, the number of channels,
the height and the width. CUDA [45] provides 8-bit integer
4-element vector dot product (DP4A) instruction that per-
forms the vector dot product between two 4-element vectors
and accumulates the result in a 32-bit integer. Utilizing the
DP4A instruction, we can group four contiguous channels
of the INT8 data type into a 4-element vector to perform
convolution. Therefore, we utilize NHWC data layout for
the INT8 data type due to its better performance over
NCHW .

In this work, we first test depthwise convolution with
two filter sizes, 3×3 and 5×5, because these are commonly
used filter sizes. Then, we report the performance of point-
wise convolution. Lastly, we apply our optimized depthwise
and pointwise convolutions on the standard and quantized
MobileNetV2 and EfficientNet-B0 to report the performance
of both inference and training.

6 EXPERIMENTAL RESULTS

In this section, we report results for depthwise convolution
(Section 6.1) and pointwise convolution (Section 6.2), as well

TABLE 1
Layer configurations of depthwise convolutions.

LAYER IN IC IH × IW FH × FW S

CONV1 1,8,16,32,64,128 16 112×112 3× 3, 5× 5 2
CONV2 1,8,16,32,64,128 72 56×56 3× 3, 5× 5 2
CONV3 1,8,16,32,64,128 88 28×28 3× 3, 5× 5 1
CONV4 1,8,16,32,64,128 96 28×28 3× 3, 5× 5 2
CONV5 1,8,16,32,64,128 96 14×14 3× 3, 5× 5 1
CONV6 1,8,16,32,64,128 120 14×14 3× 3, 5× 5 1
CONV7 1,8,16,32,64,128 192 14×14 3× 3, 5× 5 1
CONV8 1,8,16,32,64,128 240 14×14 3× 3, 5× 5 2
CONV9 1,8,16,32,64,128 432 7×7 3× 3, 5× 5 1

TABLE 2
Average speedups of four depthwise convolution implementations with

FP32 over GEMM.

3× 3, 2080Ti 3× 3, Xavier 5× 5, 2080Ti 5× 5, Xavier

IMPLICIT 1.1 32.8 1.1 20.0
PRECOMP 1.1 1.2 1.0 1.4
ours 2.2 42.8 3.9 39.4
TensorFlow 1.8 34.6 2.2 25.3

as inference and training of MobileNetV2 and EffcientNet-
B0 (Section 6.3), showing that our approach consistently
outperforms alternative methods by delivering the overall
best performance.

6.1 Depthwise Convolution

6.1.1 Setup

In this experiment, we compare our approach against the
depthwise convolution implementations of cuDNN and
TensorFlow. During the experiments, we have compared
our approach to seven algorithms in cuDNN, including IM-
PLICIT GEMM (IMPLICIT), IMPLICIT PRECOMP GEMM
(PRECOMP), GEMM, FFT, FFT TILING (TILING), WINO-
GRAD and WINOGRAD NONFUSED (NONFUSED). We
found IMPLICIT and PRECOMP give the best performance
in all our test cases. We report the results by comparing our
approach against IMPLICIT, PRECOMP and TensorFlow,
and take GEMM as the baseline in this evaluation. Table 1
gives the layer configurations used in this experiment where
the notations were defined earlier in Section 2.3.

6.1.2 Overall results

FP32 implementation. Fig. 8 shows that our approach gives
the best speedup in nearly all test cases. Table 2 presents
average speedups of IMPLICIT, PRECOMP, our approach
and TensorFlow over GEMM for 3× 3 and 5× 5 filter sizes
on 2080Ti and Xavier.

PRECOMP and GEMM algorithms need extra memory
operations to compute output elements. Consequently, both
algorithms are not suitable for depthwise convolution. Ten-
sorFlow achieves better speedups than IMPLICIT because
it employs several specially designed kernels to increase
the GPU utilization for different input sizes. However, both
TensorFlow and IMPLICIT do not optimize memory per-
formance for depthwise convolution. Compared to Tensor-
Flow, our approach achieves an average speedup of 1.5×
and 1.6× when using a 3 × 3 filter on 2080Ti and Xavier
respectively, and 2.2× and 1.7× when using a 5 × 5 filter

11

1
2

4

1

2

1 8 16 32 64 128

1

2

3

1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3

CONV4 CONV5 CONV6

CONV7 CONV8 CONV9

cuDNN IMPLICIT cuDNN PRECOMP ours TensorFlow

(a) Speedups on 2080Ti for the 3× 3 fitler.

1

4

7

1
2

4

1 8 16 32 64 128

1
2

4

1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3

CONV4 CONV5 CONV6

CONV7 CONV8 CONV9

cuDNN IMPLICIT cuDNN PRECOMP ours TensorFlow

(b) Speedups on 2080Ti for the 5× 5 fitler.

10
25

50

20
40

80

1 8 16 32 64 128
10

50

90

1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3

CONV4 CONV5 CONV6

CONV7 CONV8 CONV9

cuDNN IMPLICIT cuDNN PRECOMP ours TensorFlow

(c) Speedups on Xavier for the 3× 3 fitler.

10
30

60

10

40

80

1 8 16 32 64 128

20

50

100

1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3

CONV4 CONV5 CONV6

CONV7 CONV8 CONV9

cuDNN IMPLICIT cuDNN PRECOMP ours TensorFlow

(d) Speedups on Xavier for the 5× 5 fitler.

Fig. 8. Speedups of IMPLICIT, PRECOMP, our approach and TensorFlow over the baseline implementation (GEMM) for FP32 depthwise convolution
with filters of size 3× 3 and 5× 5 on two platforms.

on 2080Ti and Xavier respectively. Since IMPLICIT is closed
source, we analyze its performance through CUDA Nsight
Compute [46] and present the results in Section 6.1.3. Over-
all, our approach improves IMPLICIT by 2.0× and 1.4×
when using a 3× 3 filter on 2080Ti and Xavier respectively,
and 3.5× and 2.1× when using a 5× 5 filter on 2080Ti and
Xavier respectively.

INT8 implementation. We found using FP32 gives a
speedup of more than 10× over the INT8 version for
depthwise convolution in cuDNN. This is because the INT8
version has the overhead of dequantization (i.e., convert-
ing the results from INT8 to FP32 after convolution) and
can not fully utilize DP4A instruction to accelerate INT8
convolution. We note that TensorFlow does not optimize
depthwise convolution on INT8. Nonetheless, our approach
gives over 10× speedups when using INT8 over cuDNN
and TensorFlow.

6.1.3 Further analysis

Our performance gain is mainly attributed to the reduced
number of memory accesses offered by our column and row
reuse algorithms.

Fig. 9 reports the measured LDG (load from global
memory) instruction counts and SM utilization for the fast
IMPLICIT algorithm and our approach when using a 3 × 3
filter and a batch size of 32 on 2080Ti. Other configurations
follow a similar performance trend. We can see in Fig. 9a
that the IMPLICIT algorithm has an average of 2× higher

SM utilization compared to our approach. The reason our
approach leads to lower SM utilization is explained as
follows. Our row reuse algorithm performs better when
a thread operates on more rows of the output. However,
the more rows a thread computes on, the fewer warps
and thread blocks we can generate. Without enough warps
running on SMs, the SM utilization will degrade. Though
IMPLICIT has high SM utilization, it does not result in
good performance for depthwise convolution. The reason is
that depthwise convolution possesses a low computational
requirement and is more sensitive to memory performance;
hence the focus of performance optimization should be
reducing the memory access latency. If we now look at
Fig. 9b, we see that row and column reuse techniques
reduce memory operations with up to 4.5× lower LDG
instructions to be executed when compared to IMPLICIT.
By reducing the memory access overhead, which dominates
the execution time of depthwise convolution, our approach
thus can lead to better overall performance compared to
cuDNN, despite lower SM utilization.

From Fig. 8 we can observe that speedups of our ap-
proach over IMPLICIT fluctuate in a small range as batch
size increases. Both IMPLICIT and our approach can not
benefit from higher GPU utilization because depthwise
convolution is memory bound, thus IMPLICIT and our
approach grow at the same rate.

12

CONV1
CONV2

CONV3
CONV4

CONV5
CONV6

CONV7
CONV8

CONV9

30

40

50
SM

 U
ti

liz
at

io
n

(%
)

cuDNN IMPLICIT ours

(a) SM utilizations of IMPLICIT and our approach.

CO
NV
1

CO
NV
2

CO
NV
3

CO
NV
4

CO
NV
5

CO
NV
6

CO
NV
7

CO
NV
8

CO
NV
9

1

2

3

4

5

Ra
ti
o

(b) The ratio of executed LDG (load from global mem-

ory) instruction counts given by IMPLICIT over our

approach (ratio = LDG inst counts of cuDNN
LDG inst counts of ours

).

Fig. 9. SM utilizations and ratios of executed LDG instruction counts for
depthwise convolutions with a batch size of 32 and a filter size of 3 × 3

on the NVIDIA 2080Ti GPU.

6.1.4 Summary

By reducing the number of memory accesses, our approach
leads to faster memory access time and overall quick com-
putation time when performing depthwise convolutions.
Compared to the fastest available algorithms in cuDNN,
our approach achieves an average speedup of 2.8× and
1.8× when performing depthwise convolutions on 2080Ti
and Xavier, respectively.

6.2 Pointwise Convolution

6.2.1 Setup

In this experiment, TensorFlow uses cuDNN implementa-
tions as their backend. Therefore, we only compare our
approach against all available pointwise convolution imple-
mentations in cuDNN. The reported execution time of our
approach includes the code running on both the CPU and
the GPU, as described in Algorithm 5. We use the layer con-
figurations from MobileNetV2 and EfficientNet-B0 in this
experiment. Across different layers of the MobileNetV2 and
EfficientNet-B0 models, there are 30 different configurations
for pointwise convolution. We test all these configurations
and report the performance of 20 selected layers. The other
10 layers exhibit similar performance as the selected ones
and hence are omitted for clarity. We report the performance
when batch sizes are set to 1, 8, 16, 32, 64 and 128.

To aid clarify, we compare our approach to the best-
performing alternative scheme - IMPLICIT and PRECOMP

for FP32 and PRECOMP for INT8. When using data type
INT8, PRECOMP performs better than IMPLICIT in 180
out of 180 test cases on 2080Ti and 127 out of 180 test
cases on Xavier. For FP32, we normalize the speedup over
GEMM. For INT8, because GEMM does not support this
data type, we show the speedup over IMPLICIT. Table 3 lists
the layer configurations and parameter values generated for
WarpH , WarpW , Blocknum and Cnum (Warpnum = 4).
The notations can be found at Section 2.3.

Normally, for a given convolution layer configuration,
when the width of the logical layout of the output (Fig. 7) is
small, our scheme tends to choose a small Cnum. This allows
one to generate more warps to utilize the GPU. On the other
hand, our scheme tends to choose a large Cnum to reduce the
number of warps because there are already enough warps
to maximize the utilization of the GPU. A special parameter
tuple (we take parameter tuples generated for 2080Ti as
examples) is the layer configuration CONV9 with IN = 1.
The width of the logical layout of CONV9 is small. Hence
we would like to search for a small Cnum. However, in this
case, Cnum = 32 is large. The reason is that our scheme finds
that different values of Cnum gives similar GPU utilization,
then it tries to maximize AI (Formula 4) and then choose
Cnum = 32 (the relationship of AI and Cnum is detailed in
Section 4.2.2).

6.2.2 Overall results

FP32 implementation. Fig. 10 shows speedups of IMPLICIT,
PRECOMP and our approach for pointwise convolutions on
two platforms. The baseline is GEMM. Average speedups
of IMPLICIT, PRECOMP and our approach on 2080Ti and
Xavier are shown in Table 4. The performance delivered by
our approach translates to an improvement of 2× and 1.5×
over IMPLICIT on 2080Ti and Xavier respectively.

INT8 implementation. Fig. 11 shows speedups of PRE-
COMP and our approach over IMPLICIT for pointwise con-
volution. Table 4 presents average speedups of PRECOMP
and our approach over IMPLICIT on 2080Ti and Xavier.
Overall, our approach obtains 1.3× and 1.5× improvement
over PRECOMP on 2080Ti and Xavier respectively.

6.2.3 Further analysis

Fig. 12 reports the measured SM utilizations and ratios
of executed LDG instruction counts of IMPLICIT to our
approach when using a batch size of 32 on 2080Ti. Other
configurations have a similar performance.

For a specific layer configuration, our approach tries to
find a suitable number of thread blocks to utilize the GPU.
While using a higher number of thread blocks can improve
the GPU utilization, doing so can also incur frequent reloads
of filters or inputs shared between thread blocks. As shown
in Fig. 12b, our approach leads to 2× more LDG instruc-
tions than IMPLICIT in some cases. Although using more
LDG instructions incurs extra memory load overhead, our
approach still gives 2× faster execution time over IMPLICIT
due to our schemes for improving the SM utilization and
hiding memory, elaborating as follows.

Our approach exhibits a much higher SM utilization
than IMPLICIT. Unlike depthwise convolution, improving
SM utilization is key for optimizing pointwise convolution

13

1
2

4

1
2
4

1 8 16 32 64 128

1
2
4

1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3 CONV4 CONV5 CONV6 CONV7

CONV8 CONV9 CONV10 CONV11 CONV12 CONV13 CONV14

CONV15 CONV16 CONV17 CONV18 CONV19 CONV20
cuDNN
IMPLICIT
cuDNN
PRECOMP
ours

1
2
3

1
2
3

1 8 16 32 64 128

1
2
3

1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3 CONV4 CONV5 CONV6 CONV7

CONV8 CONV9 CONV10 CONV11 CONV12 CONV13 CONV14

CONV15 CONV16 CONV17 CONV18 CONV19 CONV20 cuDNN
IMPLICIT
cuDNN
PRECOMP
ours

Fig. 10. Speedups of IMPLICIT, PRECOMP and ours over GEMM for pointwise convolutions with FP32 on 2080Ti (top) and Xavier (bottom).

1
2

4

1

22

1 8 16 32 64 128

1

22

1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3 CONV4 CONV5 CONV6 CONV7

CONV8 CONV9 CONV10 CONV11 CONV12 CONV13 CONV14

CONV15 CONV16 CONV17 CONV18 CONV19 CONV20
cuDNN
PRECOMP

ours

1
22

1

22

1 8 16 32 64 128

1
2
3

1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128
Batch Size

Sp
ee

du
p

CONV1 CONV2 CONV3 CONV4 CONV5 CONV6 CONV7

CONV8 CONV9 CONV10 CONV11 CONV12 CONV13 CONV14

CONV15 CONV16 CONV17 CONV18 CONV19 CONV20 cuDNN
PRECOMP

ours

Fig. 11. Speedups of PRECOMP and ours over IMPLICIT for pointwise convolutions with INT8 on 2080Ti (top) and Xavier (bottom).

14

TABLE 3
Layer configurations of pointwise convolutions (FC = IC , IW = IH and FW = FH = 1) and parameter values of WarpH , WarpW , Blocknum

and Cnum. We use the tuples (WarpH , WarpW , Blocknum, Cnum) and [WarpH , WarpW , Blocknum, Cnum] to represent parameter values
generated for 2080Ti and Xavier respectively.

LAYER IC IH FN IN = 1 IN = 8 IN = 16 IN = 32 IN = 64 IN = 128

(4, 12, 2, 8) (4, 47, 4, 2) (4, 480, 4, 1) (4, 480, 4, 1) (4, 480, 4, 1) (4,1216, 2, 32)
CONV1 16 56 8

[4, 50, 4, 2] [4, 480, 4, 1] [4,1216, 2, 32] [4,1216, 2, 32] [4,1216, 2, 32] [4,1216, 2, 32]
(8, 12, 2, 8) (8, 47, 4, 4) (8, 256, 4, 1) (8, 256, 4, 1) (8, 672, 2, 32) (8, 672, 2, 32)

CONV2 8 56 16
[8, 50, 4, 4] [8, 672, 2, 32] [8, 672, 2, 32] [8, 672, 2, 32] [8, 672, 2, 32] [8, 672, 2, 32]
(12, 36, 2, 8) (12, 36, 4, 4) (12, 36, 4, 4) (12, 36, 4, 4) (12, 36, 4, 4) (12, 36, 4, 4)

CONV3 16 56 72
[12, 36, 4, 4] [12, 36, 4, 4] [12, 36, 4, 4] [12, 36, 4, 4] [12, 36, 4, 4] [12, 36, 4, 4]
(6, 6, 2, 32) (6, 47, 2, 4) (6, 47, 4, 4) (6, 320, 4, 1) (6, 320, 4, 1) (6, 864, 2, 32)

CONV4 72 28 24
[6, 50, 2, 4] [6, 320, 4, 1] [6, 864, 2, 32] [6, 864, 2, 32] [6, 864, 2, 32] [6, 864, 2, 32]
(3, 48, 2, 2) (12, 48, 4, 2) (12, 48, 4, 2) (12, 48, 4, 2) (12, 48, 4, 2) (12, 48, 4, 2)

CONV5 24 28 96
[12, 48, 4, 2] [12, 48, 4, 2] [12, 48, 4, 2] [12, 48, 4, 2] [12, 48, 4, 2] [12, 48, 4, 2]
(6, 2, 2, 32) (6, 12, 2, 16) (6, 24, 2, 8) (6, 47, 2, 4) (6, 47, 4, 4) (6, 320, 4, 1)

CONV6 96 14 24
[6, 13, 2, 16] [6, 50, 4, 4] [6, 320, 4, 1] [6, 320, 4, 1] [6, 864, 2, 32] [6, 864, 2, 32]
(2, 48, 2, 1) (6, 48, 2, 4) (12, 48, 2, 8) (12, 48, 4, 2) (12, 48, 4, 2) (12, 48, 4, 2)

CONV7 24 14 96
[7, 48, 2, 4] [12, 48, 4, 2] [12, 48, 4, 2] [12, 48, 4, 2] [12, 48, 4, 2] [12, 48, 4, 2]
(2, 96, 2, 1) (6, 96, 2, 2) (12, 96, 2, 4) (12, 96, 4, 1) (12, 96, 4, 1) (12, 96, 4, 1)

CONV8 32 14 192
[7, 96, 2, 2] [12, 96, 4, 1] [12, 96, 4, 1] [12, 96, 4, 1] [12, 96, 4, 1] [12, 96, 4, 1]
(12, 2, 2, 32) (12, 12, 2, 32) (12, 24, 2, 16) (12, 47, 2, 8) (12, 47, 4, 2) (12, 160, 4, 1)

CONV9 192 14 48
[12, 13, 2, 32] [12, 50, 4, 2] [12, 160, 4, 1] [12, 480, 2, 32] [12, 480, 2, 32] [12, 480, 2, 32]
(10, 2, 2, 32) (10, 12, 2, 32) (10, 24, 2, 16) (10, 47, 2, 8) (10, 47, 4, 4) (10, 192, 4, 1)

CONV10 96 14 40
[10, 13, 2, 16] [10, 50, 4, 2] [10, 192, 4, 1] [10, 544, 2, 32] [10, 544, 2, 32] [10, 544, 2, 32]
(2, 60, 2, 1) (6, 60, 2, 2) (12, 60, 2, 4) (12, 60, 4, 2) (12, 60, 4, 2) (12, 60, 4, 2)

CONV11 40 14 120
[7, 60, 2, 4] [12, 60, 4, 2] [12, 60, 4, 2] [12, 60, 4, 2] [12, 60, 4, 2] [12, 60, 4, 2]
(8, 2, 2, 32) (8, 12, 2, 16) (8, 24, 2, 8) (8, 47, 2, 4) (8, 47, 4, 4) (8, 256, 4, 1)

CONV12 120 14 32
[8, 13, 2, 16] [8, 50, 4, 4] [8, 256, 4, 1] [8, 256, 4, 1] [8, 672, 2, 32] [8, 672, 2, 32]
(2, 120, 2, 1) (6, 120, 2, 1) (12, 120, 2, 4) (12, 120, 4, 1) (12, 120, 4, 1) (12, 120, 4, 1)

CONV13 40 14 240
[7, 120, 2, 2] [12, 120, 4, 1] [12, 120, 4, 1] [12, 120, 4, 1] [12, 120, 4, 1] [12, 120, 4, 1]
(2, 32, 2, 2) (2, 32, 2, 2) (3, 32, 2, 2) (6, 32, 2, 4) (12, 32, 2, 8) (12, 32, 4, 4)

CONV14 240 7 64
[2, 32, 2, 2] [7, 32, 4, 8] [12, 32, 4, 4] [12, 32, 4, 4] [12, 32, 4, 4] [12, 32, 4, 4]
(2, 120, 2, 1) (2, 120, 2, 1) (3, 120, 2, 1) (6, 120, 2, 1) (12, 120, 2, 4) (12, 120, 4, 1)

CONV15 64 7 240
[2, 120, 2, 1] [7, 120, 4, 2] [12, 120, 4, 1] [12, 120, 4, 1] [12, 120, 4, 1] [12, 120, 4, 1]
(2, 216, 2, 1) (2, 216, 2, 1) (3, 216, 2, 1) (6, 216, 2, 1) (12, 216, 2, 2) (9, 216, 4, 32)

CONV16 72 7 432
[2, 216, 2, 1] [7, 216, 4, 1] [9, 216, 4, 32] [9, 216, 4, 32] [9, 216, 4, 32] [9, 216, 4, 32]
(2, 56, 2, 1) (2, 56, 2, 1) (3, 56, 2, 1) (6, 56, 2, 4) (12, 56, 2, 8) (12, 56, 4, 2)

CONV17 432 7 112
[2, 56, 2, 1] [7, 56, 4, 4] [12, 56, 4, 2] [12, 56, 4, 2] [12, 56, 4, 2] [12, 56, 4, 2]
(2, 216, 2, 1) (2, 216, 2, 1) (3, 216, 2, 1) (6, 216, 2, 1) (12, 216, 2, 2) (9, 216, 4, 32)

CONV18 112 7 432
[2, 216, 2, 1] [7, 216, 4, 1] [9, 216, 4, 32] [9, 216, 4, 32] [9, 216, 4, 32] [9, 216, 4, 32]
(2, 36, 2, 1) (2, 36, 2, 1) (3, 36, 2, 2) (6, 36, 2, 4) (12, 36, 2, 8) (12, 36, 4, 4)

CONV19 432 7 72
[2, 36, 2, 1] [7, 36, 4, 4] [12, 36, 4, 4] [12, 36, 4, 4] [12, 36, 4, 4] [12, 36, 4, 4]
(2, 256, 2, 1) (3, 256, 2, 1) (6, 256, 2, 1) (12, 256, 2, 1) (8, 256, 4, 32) (8, 256, 4, 32)

CONV20 432 7 1024
[4, 256, 2, 1] [8, 256, 4, 32] [8, 256, 4, 32] [8, 256, 4, 32] [8, 256, 4, 32] [8, 256, 4, 32]

TABLE 4
Average speedups of three pointwise convolution implementations over

GEMM and IMPLICIT for FP32 and INT8 respectively.

FP32, 2080Ti FP32, Xavier INT8, 2080Ti INT8, Xavier

IMPLICIT 1.5 1.3 1.0 1.0
PRECOMP 1.3 1.1 1.3 1.2
ours 3.0 2.0 1.7 1.6

because utilizing more SMs can significantly accelerate the
computation. As can be seen from Fig. 12a, our approach has
an average of 1.9× higher SM utilization compared to IM-
PLICIT. IMPLICIT is optimized for training and large batch-
sized inference. It uses a fixed tile size work distribution
strategy, which fails to utilize SMs efficiently when using a
batch size of 128 or smaller. Our dynamic tile size scheme
(Section 4.1) overcomes this limitation by adaptively deter-
mining the right tile size to use at runtime, which thus leads
to better SM utilization and performance improvement.

To hide the global memory access latency, our approach
employs double buffering and channel distribution tech-
niques as described in Section 4.2. To quantify the benefit

of our memory optimization strategies, consider now Fig.
13 that shows the average number of cycles each GPU warp
spends on waiting for the GPU global memory access oper-
ation to complete. As a baseline, we implemented a simple
pointwise without latency hiding, denoted as simple. We
can see that our approach can significantly reduce the mem-
ory access latency compared to the simple implementation.
Therefore, although our approach incurs a larger number of
LDG instructions, much of the memory access overhead can
be hidden by our memory optimization strategy.

Furthermore, we observe some performance degrada-
tion for pointwise convolutions with the INT8 data type.
When performing pointwise convolutions with INT8, we
use NHWC data format, and four continuous INT8 chan-
nels can be viewed as an INT32 channel. Thus, the size of the
channel dimension is reduced to one-fourth of the original
size. For small channel sizes (IC ≤ 96), the corresponding
reduced channel sizes restrict choices of the number of chan-
nels distributed, which leads to suboptimal performance
compared to original channel sizes. This can be improved
by having a better channel size allocation scheme for INT8.
We leave this as our future work.

15

CONV1
CONV2

CONV3
CONV4

CONV5
CONV6

CONV7
CONV8

CONV9

CONV10

CONV11

CONV12

CONV13

CONV14

CONV15

CONV16

CONV17

CONV18

CONV19

CONV20
10

20

30

40

50

60

70
SM

 U
ti

liz
at

io
n

(%
)

cuDNN IMPLICIT ours

(a) SM utilizations of IMPLICIT and our approach.

CO
NV
1
CO
NV
2
CO
NV
3
CO
NV
4
CO
NV
5
CO
NV
6
CO
NV
7
CO
NV
8
CO
NV
9

CO
NV
10

CO
NV
11

CO
NV
12

CO
NV
13

CO
NV
14

CO
NV
15

CO
NV
16

CO
NV
17

CO
NV
18

CO
NV
19

CO
NV
20

1

2

Ra
ti
o

(b) Ratios of executed LDG (load from global memory)

instruction counts of IMPLICIT to our approach (ratio =
LDG inst counts of cuDNN
LDG inst counts of ours

).

Fig. 12. SM utilizations and ratios of executed LDG instruction counts for
pointwise convolutions with a batch size of 32 on 2080Ti.

From Figs. 10 and 11, we see that our approach is more
noticeable on small batch sizes. This is because that point-
wise convolution is more sensitive to the GPU utilization.
A larger batch size tends to use more warps, which alone
can improve the GPU utilization and further improve the
performance of cuDNN. For example, the speedups of our
approach over cuDNN when IN = 128 are much smaller
than the speedups when IN < 128. By contrast, when the
batch size is smaller, the resulting warps alone is insufficient
in utilizing the GPU where our dynamic tile size scheme can
help.

6.2.4 Summary

Our approach uses a dynamic tile size method to improve
SM utilization and double-buffering and channel distribu-
tion to hide memory access latency. With the help of both
methods, we achieve an average speedup of 2× and 1.5×
over IMPLICIT on 2080Ti and Xavier, respectively.

6.3 End to End Performance for Inference and Training

6.3.1 Setup

In this experiment, we apply our depthwise and pointwise
convolutions to MobileNetV2 and EfficientNet-B0 and re-
port the end-to-end performance of inference and training
with ImageNet dataset [47].

Inference. For inference, we test standard and quantized
MobileNetV2 and EfficientNet-B0 with batch sizes of 1,
8, 16, 32, 64 and 128 on both platforms and report the
respective inference time. For quantization, the input and
filter are converting from FP32 to INT8, and the results are
converted back to FP32 as the model output. As cuDNN
performs poorly for depthwise convolutions with INT8, we
do not apply quantization to depthwise convolutions for fair
comparisons.

Training. For training, we test MobileNetV2 and
EfficientNet-B0 with batch sizes of 16, 32, 64 and 128 on
2080Ti and report the average training time of one training
iteration, including the forward and the back-propagation
phases.

Workload and performance report. We use the open-source
MobileNetV2 and EfficientNet-B0 implemented using the
Caffe framework, but we replace the implementations
of batch normalization and depthwise convolution layers
with the heavily optimized cuDNN implementations. The
cuDNN implementation is denoted as cuDNN and our im-
plementation is denoted as Ours. We report the percentage
of performance improvement of our approach compared to
cuDNN implementations, denoted as Improved.

6.3.2 Overall results

Table 5 reports the measured inference time. For Mo-
bileNetV2 with FP32, our approach improves the perfor-
mance of inference by 12.2% and 13.5% on average com-
pared to IMPLICIT on 2080Ti and Xavier, respectively.
For MobileNetV2 with INT8, we obtain 8.5% and 11.7%
improvements on average over PRECOMP on 2080Ti and
Xavier, respectively. For EfficientNet-B0 with FP32, our ap-
proach improves IMPLICIT by 14.4% and 12.3% on average
on 2080Ti and Xavier, respectively. For EfficientNet-B0 with
INT8, we obtain 9.9% and 9.6% improvements on average
over PRECOMP on 2080Ti and Xavier, respectively. Table
6 shows that our approach averagely reduces the training
time of MobileNetV2 and EfficientNet-B0 by 9.7% and 7.3%
compared to IMPLICIT on 2080Ti, respectively. The results
show that our approach can significantly reduce both the
model inference and training time by speeding up DSC
operations.

7 RELATED WORK

Numerous efforts have been dedicated to optimizing convo-
lution operations. As previously mentioned, GEMM-, FFT-
and Winograd-based convolutions are broadly adopted con-
volution algorithms.

GEMM-based convolution is the first attempt to opti-
mize convolution. Chellapilla et al. [48] developed an un-
rolling convolution algorithm called the im2col convolution
algorithm. Abdelfattah et al. [33] use a simple pruning
strategy to search for the optimal tiling size. However, their
method is inadequate for depthwise separable convolution
because they ignore SM utilization and arithmetic intensity
when searching for the optimal tiling size. Our approach
avoids this problem by dynamically adjusting the tiling size.

A wide range of techniques on auto-tuning GEMM
kernels have been proposed. Among these, the FFT- and

16

CONV1
CONV2

CONV3
CONV4

CONV5
CONV6

CONV7
CONV8

CONV9
CONV10

CONV11
CONV12

CONV13
CONV14

CONV15
CONV16

CONV17
CONV18

CONV19
CONV20

0

2

4

6

8
Cy

cl
es

cuDNN IMPLICIT
ours
simple

Fig. 13. The average number of cycles each warp spends on waiting for the global memory access to complete.

TABLE 5
Inference time of MobileNetV2 and EfficientNet-B0 with FP32 and INT8 on 2080Ti and Xavier.

MobileNetV2 EfficientNet-B0

Batch 1 8 16 32 64 128 1 8 16 32 64 128

2080Ti
(FP32)

cuDNN (ms) 7.5 8.8 9.7 14.4 19.1 28.7 10.1 13.7 18.1 25.0 36.4 52.3
Ours (ms) 6.1 7.1 8.0 12.0 16.9 26.3 7.9 11.3 15.3 21.9 32.6 47.6
Improved (%) 18.6 19.3 17.5 16.7 11.5 8.4 21.8 17.5 15.5 12.4 10.4 9.0

Xavier
(FP32)

cuDNN (ms) 16.6 22.3 32.1 52.6 84.2 140.1 19.3 27.4 38.3 57.2 94.0 157.8
Ours (ms) 13.2 18.9 27.8 44.7 76.1 130.0 15.5 23.2 32.1 50.7 87.3 151.1
Improve (%) 20.5 15.2 13.4 15.0 9.6 7.2 19.7 15.3 16.3 11.4 7.1 4.2

2080Ti
(INT8)

cuDNN (ms) 6.3 7.4 7.7 11.2 14.6 20.2 8.0 9.5 13.3 18.7 26.8 38.3
Ours (ms) 5.5 6.6 6.8 10.3 14.0 19.7 6.8 8.2 11.8 16.9 25.3 36.6
Improved (%) 12.7 10.8 11.7 8.0 4.1 2.5 15.0 13.7 11.3 9.6 5.6 4.4

Xavier
(INT8)

cuDNN (ms) 13.3 18.0 27.0 42.6 64.8 103.7 16.1 21.0 33.7 52.8 80.3 127.5
Ours (ms) 11.7 15.4 22.7 38.8 58.3 94.4 14.2 18.8 30.3 48.2 73.2 117.7
Improved (%) 12.0 14.4 16.0 8.9 10.0 9.0 11.8 10.5 10.1 8.7 8.8 7.7

TABLE 6
Training time of MobileNetV2 and EfficientNet-B0 with FP32 on 2080Ti.

MobileNetV2 EfficientNet-B0

Batch 16 32 64 128 16 32 64 128

cuDNN (ms) 16.6 27.6 43,4 75.4 33.5 49.3 74.7 116.2
Ours (ms) 14.5 24.1 39.9 71.3 30.0 45.1 69.6 112.4
Improved (%) 12.7 12.7 8.1 5.4 10.4 8.5 6.8 3.3

Winograd-based convolutions are the dominating methods
because they can reduce computational complexity and
improve convolution performance. Mathieu et al. [49] pro-
posed an FFT-based convolution to compute convolutions
as pointwise products in the Fourier domain and reuse
the transformed input data, which significantly reduces the
complexity of the convolution. However, FFT-based convo-
lution is more suitable for large filters than for small ones.
Because padding the filters to the same size as the input data
is necessary, and the latter (e.g., 3 × 3 filters) needs more
memory than the former. Lavin et al. [50] used Winograd’s
minimal filtering algorithm to accelerate the convolution on
GPU. This algorithm can reduce the arithmetic complexity
of convolution by up to four times compared with direct
convolution. However, Winograd’s algorithm is only suit-
able for small filters due to its numerical instability. Zhen
et al. [12] extended Winograd’s algorithm to support any
filter size. However, the traditional and extended Winograd-
based algorithms need to transform the input and filter
before performing matrix multiplication, and both require
more operations than the FFT algorithm.

Transforming the input and filter before performing ma-
trix multiplication incurs a large memory overhead, which
can outweigh the performance gains obtained through low-
ering the computational complexity. Therefore, recent stud-
ies have looked into minimizing the memory overhead
of the transformation phases. Cho et al. [51] reduced the

memory overhead of GEMM-based convolutions using a
compact lowering scheme to reduce the redundancy in the
lowered matrix and then performed multiple small matrix
multiplications in parallel. However, this algorithm still
needs to transform the input and filter tensors into lowered
matrixes to compute the convolution. Iandola et al. [52] re-
duced memory communication of 2D convolutions on GPU.
They also prefetched the image regions to the registers.
While their method uses fewer threads, each thread operates
on a larger number of data items. As a result, their method
does not reduce the number of global memory transactions.
Unlike [52], our approach promotes register use and can
significantly reduce the number of memory accesses.

The work presented in [53] splits larger batches into
smaller batch sizes to mitigate computation resources re-
strictions of large batch size. Li et al. [54] explore the impact
of data layout on convolution operations. Zhang et al.
[55] design a method to map computation to FMA (fused
multiply-add) units and focus on maximizing arithmetic
intensity. Unlike our approach, none of these methods ex-
plicitly considers SM utilization, which is vital for achieving
good performance for DSC on GPUs. The work presented in
[24] also targets column and row reuse. However, there are
two main drawbacks in their approach. First, 32 threads of
a warp in their approach will generate 28 output elements
for a 5 × 5 filter. Our column reuse method ensures that 32
threads of a warp generate 32 output elements for any filter
sizes, thus our approach needs fewer warps and is more ef-
ficient than their approach. Second, their approach will load
all needed input elements into registers to avoid reloading
shared input elements, while our approach loads one input
element each time and calculate all output elements that
depend on the loaded input element. Thus, our approach
uses less registers and can execute more warps on one SM
concurrently.

17

8 CONCLUSION

We have presented two novel approaches to optimize
memory performance and SM utilization for depthwise
and pointwise convolutions respectively. Our approach im-
proves the data locality for convolutional operations per-
formed on the row and column directions to reduce the
memory access. Our techniques utilize the common GPU
shuffle operations supported by mainstream GPU program-
ming models, including CUDA and OpenCL, and do not
require hardware modifications. For pointwise convolution,
the main problem is low SM utilization because cuDNN
uses a fixed tile size for all pointwise convolutions. We
design a dynamic tile size method and meanwhile hide the
memory access latency. We evaluate our approach for FP32
and INT8 on NVIDIA RTX 2080Ti and Jetson AGX Xavier
GPUs. We compare our approach against a wide range
of heavily optimized convolution algorithms. Experimental
results show that our approach consistently outperforms the
competing methods by delivering the best overall perfor-
mance for depthwise and pointwise convolutions.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research and Development Program of China under grant
agreement 2017YFB0202901, the Key-Area Research and De-
velopment Program of Guangdong Province under grant
agreement 2019B010136001, the National Natural Science
Foundation of China (NSFC) under grant agreements
61672186 and 61872294, and the Shenzhen Technology
Research and Development Fund under grant agreement
JCYJ20190806143418198. Professor Zhang is the correspond-
ing author.

REFERENCES

[1] D. Zoran, M. Chrzanowski, P.-S. Huang, S. Gowal, A. Mott, and
P. Kohli, “Towards robust image classification using sequential
attention models,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 9483–9492.

[2] C. Yang, Z. An, H. Zhu, X. Hu, K. Zhang, K. Xu, C. Li, and
Y. Xu, “Gated convolutional networks with hybrid connectivity
for image classification.” in AAAI, 2020, pp. 12 581–12 588.

[3] S. Wang, Y. Gong, J. Xing, L. Huang, C. Huang, and W. Hu,
“Rdsnet: A new deep architecture forreciprocal object detection
and instance segmentation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12 208–12 215.

[4] B. Chen, G. Ghiasi, H. Liu, T.-Y. Lin, D. Kalenichenko, H. Adam,
and Q. V. Le, “Mnasfpn: Learning latency-aware pyramid architec-
ture for object detection on mobile devices,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 607–13 616.

[5] Z. Zhong, Z. Q. Lin, R. Bidart, X. Hu, I. B. Daya, Z. Li, W.-S.
Zheng, J. Li, and A. Wong, “Squeeze-and-attention networks for
semantic segmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 13 065–13 074.

[6] H. Tokunaga, Y. Teramoto, A. Yoshizawa, and R. Bise, “Adaptive
weighting multi-field-of-view cnn for semantic segmentation in
pathology,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 12 597–12 606.

[7] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for
mobilenetv3,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 1314–1324.

[8] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[9] D. Haase and M. Amthor, “Rethinking depthwise separable con-
volutions: How intra-kernel correlations lead to improved mo-
bilenets,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 14 600–14 609.

[10] R. Zhang, F. Zhu, J. Liu, and G. Liu, “Depth-wise separable
convolutions and multi-level pooling for an efficient spatial cnn-
based steganalysis,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 1138–1150, 2019.

[11] L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, and M. Michalski,
“Seed rl: Scalable and efficient deep-rl with accelerated central
inference,” 2019.

[12] J. Zhen, A. Zlateski, F. Durand, and L. Kai, “Optimizing n-
dimensional, winograd-based convolution for manycore cpus,” in
Acm Sigplan Symposium on Principles & Practice of Parallel Program-
ming, 2018.

[13] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, “Optimizing
cnn model inference on cpus,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019, pp. 1025–1040.

[14] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger,
“Adaptive sparse matrix-matrix multiplication on the gpu,” in
Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, 2019, pp. 68–81.

[15] Z. Li, H. Jia, Y. Zhang, T. Chen, L. Yuan, L. Cao, and X. Wang,
“Autofft: a template-based fft codes auto-generation framework
for arm and x86 cpus,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2019, pp. 1–15.

[16] D. Yan, W. Wang, and X. Chu, “Optimizing batched winograd
convolution on gpus,” in Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2020,
pp. 32–44.

[17] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel
convolution using general matrix multiplication,” in IEEE Interna-
tional Conference on Application-specific Systems, 2017.

[18] X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, “A coordinated tiling and
batching framework for efficient gemm on gpus,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel Program-
ming, 2019, pp. 229–241.

[19] D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. San Miguel, “ugemm:
unary computing architecture for gemm applications,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA). IEEE, 2020, pp. 377–390.

[20] A. Zlateski, Z. Jia, K. Li, and F. Durand, “The anatomy of efficient
fft and winograd convolutions on modern cpus,” in Proceedings
of the ACM International Conference on Supercomputing, 2019, pp.
414–424.

[21] NVIDIA, CUDA C++ Best Practices Guide.
[Online]. Available: https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html

[22] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cudnn: Efficient primitives for deep
learning,” CoRR, vol. abs/1410.0759, 2014.

[23] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A GPU performance
evaluation,” in 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[24] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka,
“A versatile software systolic execution model for gpu memory-
bound kernels,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–81.

[25] B. Pourghassemi, C. Zhang, J. H. Lee, and A. Chandramowlish-
waran, “On the limits of parallelizing convolutional neural net-
works on gpus,” in Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, 2020, pp. 567–569.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[28] G. Lu, W. Zhang, and Z. Wang, “Optimizing gpu memory trans-
actions for convolution operations,” in 2020 IEEE International

18

Conference on Cluster Computing (CLUSTER). IEEE, 2020, pp. 399–
403.

[29] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, 2016.

[30] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting
the nvidia volta gpu architecture via microbenchmarking,” arXiv
preprint arXiv:1804.06826, 2018.

[31] D. E. Tanner, “Tensile: Auto-tuning gemm gpu assembly for all
problem sizes,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2018, pp. 1066–
1075.

[32] V. Kelefouras, A. Kritikakou, I. Mporas, and V. Kolonias, “A high-
performance matrix–matrix multiplication methodology for cpu
and gpu architectures,” The Journal of Supercomputing, vol. 72, no. 3,
pp. 804–844, 2016.

[33] A. Abdelfattah, S. Tomov, and J. Dongarra, “Fast batched matrix
multiplication for small sizes using half-precision arithmetic on
gpus,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2019, pp. 111–122.

[34] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra, “Implementation
and tuning of batched cholesky factorization and solve for nvidia
gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 7, pp. 2036–2048, 2015.

[35] L. Jiang, C. Yang, and W. Ma, “Enabling highly efficient batched
matrix multiplications on sw26010 many-core processor,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 17,
no. 1, pp. 1–23, 2020.

[36] P. Tillet and D. Cox, “Input-aware auto-tuning of compute-bound
hpc kernels,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2017, pp.
1–12.

[37] H. Lan, J. Meng, C. Hundt, B. Schmidt, M. Deng, X. Wang, W. Liu,
Y. Qiao, and S. Feng, “Feathercnn: Fast inference computation with
tensorgemm on arm architectures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 3, pp. 580–594, 2019.

[38] Y. Zhang and F. Mueller, “Autogeneration and autotuning of 3d
stencil codes on homogeneous and heterogeneous gpu clusters,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 3,
pp. 417–427, 2012.

[39] D. Yan, W. Wang, and X. Chu, “Demystifying tensor cores to
optimize half-precision matrix multiply,” in 2020 IEEE International
Parallel and Distributed Processing Symposium, IPDPS, 2020, pp. 20–
24.

[40] L. Jia, Y. Liang, X. Li, L. Lu, and S. Yan, “Enabling efficient fast con-
volution algorithms on gpus via megakernels,” IEEE Transactions
on Computers, 2020.

[41] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework
for tensor computation on heterogeneous system,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 859–873.

[42] D. Nichols, N.-S. Tomov, F. Betancourt, S. Tomov, K. Wong, and
J. Dongarra, “Magmadnn: towards high-performance data analyt-
ics and machine learning for data-driven scientific computing,” in
International Conference on High Performance Computing. Springer,
2019, pp. 490–503.

[43] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), 2016, pp.
265–283.

[44] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling, “Data-free
quantization through weight equalization and bias correction,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1325–1334.

[45] NVIDIA, CUDA Toolkit Programming Guide.
[Online]. Available: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[46] ——, NVIDIA Nsight Compute. [Online]. Available: https:
//developer.nvidia.com/nsight-compute

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 2009, pp.
248–255.

[48] K. Chellapilla, S. Puri, and P. Simard, “High performance convo-

lutional neural networks for document processing,” Tenth Interna-
tional Workshop on Frontiers in Handwriting Recognition, 2006.

[49] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolu-
tional networks through ffts,” arXiv preprint arXiv:1312.5851, 2013.

[50] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4013–4021.

[51] M. Cho and D. Brand, “Mec: memory-efficient convolution for
deep neural network,” in Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 815–
824.

[52] F. N. Iandola, D. Sheffield, M. J. Anderson, P. M. Phothilimthana,
and K. Keutzer, “Communication-minimizing 2d convolution in
gpu registers,” in IEEE International Conference on Image Processing,
2014.

[53] Y. Oyama, T. Ben-Nun, T. Hoefler, and S. Matsuoka, “Accelerating
deep learning frameworks with micro-batches,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2018, pp. 402–412.

[54] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing
memory efficiency for deep convolutional neural networks on
gpus,” in SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2016, pp.
633–644.

[55] J. Zhang, F. Franchetti, and T. M. Low, “High performance zero-
memory overhead direct convolutions,” in International Conference
on Machine Learning, 2018, pp. 5776–5785.

Gangzhao Lu received the B.S. degree in com-
puter science and engineering from Harbin In-
stitute of Technology, China, in 2014. He is
currently working toward the Ph.D. degree in
the School of Cyberspace Science, Harbin In-
stitute of Technology. His research interests in-
clude performance modeling, parallel optimiza-
tion, auto-tuning.

Weizhe Zhang (Senior Member, IEEE) received
B.Eng, M.Eng and Ph.D. degree of Engineering
in computer science and technology in 1999,
2001 and 2006 respectively from Harbin Institute
of Technology.

He is currently a professor in the School of
Computer Science and Technology at Harbin
Institute of Technology, China, and director in
the Cyberspace Security Research Center, Peng
Cheng Laboratory, Shenzhen, China. His re-
search interests are primarily in parallel com-

puting, distributed computing, cloud and grid computing, and computer
network. He has published more than 100 academic papers in journals,
books, and conference proceedings.

Zheng Wang is an associate professor with the
University of Leeds. His research focuses on
parallel computing, compilation and systems se-
curity.

