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Guidelines to inform the generation of clinically-relevant and realistic blast 
loading conditions for primary blast injury research 

 

Abstract  

Introduction 

‘Primary’ blast injuries (PBIs) are caused by direct blast wave interaction with the human 

body, particularly affecting air-containing organs. With continued experimental focus on PBI 

mechanisms, recently on blast traumatic brain injury, meaningful test outcomes rely on 

appropriate simulated conditions. 

Methods 

Selected PBI predictive criteria (grouped into those affecting the auditory system, pulmonary 

injuries and brain trauma) are combined and plotted to provide rationale for generating 

clinically-relevant loading conditions. Using blast engineering theory, explosion 

characteristics including blast wave parameters and fireball dimensions were calculated for a 

range of charge masses assuming hemispherical surface detonations and compared to PBI 

criteria.  

Results 

While many experimental loading conditions are achievable, this analysis demonstrated 

limits that should be observed to ensure loading is clinically relevant, realistic and practical. 

For PBI outcomes sensitive only to blast overpressure, blast scaled distance was 

demonstrated to be a useful parameter for guiding experimental loading regime design as it 

permits flexibility for potential experimental setups. This analysis revealed that blast waves 

should correspond to blast scaled distances 1.75<Z<6.0 to generate loading conditions 

found outside the fireball and of clinical relevance to a range of PBIs. Blast waves with 

positive phase durations (2-10ms) are more practical to achieve through experimental 

approaches, while representing realistic threats such as IEDs (i.e. 1-50kg TNT equivalent). 

Conclusions 

These guidelines can be used by researchers to inform the design of appropriate blast 

loading conditions in PBI experimental investigations. 
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levels 
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Key messages  

 At present, there are no guidelines specifically for the design or specification of 

appropriate blast wave parameters within experimental primary blast injury (PBI) 

studies. 

 Through analysis of PBI criteria and theoretical blast wave calculations, zones of 

blast parameters are proposed to guide experimental designs. 

 The range of blast conditions of relevance to PBI research is limited, prompting 

reason for researchers to consider whether loading conditions are appropriate. 

 While many experimental loading conditions are achievable, this analysis 

demonstrated limits that should be observed to ensure loading is clinically relevant, 

realistic and practical.  

 To simulate loading conditions found outside the fireball and of clinical relevance to 

PBIs, generated blast waves should correspond to blast scaled distances 

1.75<Z<6.0.  

 Blast waves with positive phase durations (2-10ms) are typically more practical to 

achieve, while representing realistic threats such as IEDs (i.e. 1-50kg TNT 

equivalent). 
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1. Introduction  

Blast injuries are a complex type of physical trauma resulting from direct or indirect exposure 

to an explosion, caused by a combination of mechanisms (shock wave transmission, 

penetrating fragments and blunt impacts etc.). So-called ‘primary’ blast injuries (PBIs) are 

those specifically caused by exposure to blast overpressure.[1] PBIs particularly affect air-

containing organs such as the lungs, gastro-intestinal tract and ears due to rapid pressure 

gradients induced within tissues.[2] Recent PBI research has focussed on blast traumatic 

brain injury (bTBI),[3] and despite the diagnostic ambiguities, bTBI has been described as 

the ‘signature injury’ of the wars in Iraq and Afghanistan.[4] 

PBI studies typically replicate injuries in the laboratory using in vitro and in vivo models 

exposed to blast waves generated by explosive testing or simulated conditions using 

laboratory equipment. Explosive testing is expensive and traditionally involves full-scale 

arena trials at specialist facilities, so researchers often simulate blast using equipment such 

as shock tubes.[5] 

Blast injury is predominantly a clinically-driven field although evidence suggests it would 

benefit from engineering input to ensure the conditions applied are realistic and clinically 

relevant.[6] Blast loading for PBI research is simulated experimentally using ultrasound (i.e. 

shock wave lithotripsy),[7] microwaves [8] and lasers [9], but the resulting shockwaves do 

not replicate the physical properties of a blast or the injury features observed in people 

exposed to real-life blast events.[10] Furthermore, even when considering more conventional 

blast simulation methods (e.g. shock tubes), different setups and incomplete reporting of 

blast wave parameters hinder comparison between studies.[11]  

Current guidance includes pressure instrumentation setup, the importance of pressure 

sensor calibration, data acquisition and interpretation of measured pressure-time 

profiles.[6,11] Recognising the experimental issues in this field, “reproducing blast 

exposures in the laboratory” was specifically defined as a work package by the NATO 

Human Factors and Medicine Research Task Group.[12] This resulted in guidelines to 

describe common blast-wave generation platforms, blast measurement best practice and 

reporting standards.[5] However, at present there is no guidance to inform ranges of blast 

wave parameters that are appropriate for PBI experiments. As a result, prior studies 

demonstrate limited rationale for the explosion context such as scale and proximity to the 

fireball, with generated blast conditions influenced by facility and equipment capabilities.  

For clinical relevance, blast conditions should correspond to predictive PBI criteria to ensure 

pressures initiate the injury without causing certain fatality. While multiple combinations are 

possible, current guidance does not specify appropriate ranges of blast wave parameters for 

PBI research. Existing criteria to predict injury and fatality from PBIs are fragmented, 

contested,[13] and limited to specific anatomical regions. This makes it challenging to 

understand the range of blast conditions responsible for the full spectrum of possible PBIs 

(e.g. mild hearing loss through to severe lung injury or risk of fatality). With a vast range of 

potential explosive scenarios and loading conditions achievable in laboratories, broad 

comparison between PBI criteria is needed to establish appropriate ranges of blast 

pressures. 

Considering realism, generated blast conditions should also correspond to explosive threats 

or battlefield operational conditions, while considering proximity to the fireball. The fireball 

contributes a significant thermal injury hazard, with temperatures estimated between 2000-

4200K following detonation of TNT.[14] Importantly, the medium inside the fireball is 

multiphase (air and detonation products) so the shock structure and loading profile is 
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complex to characterise, sensitive to the charge shape, blast wave curvature and difficult to 

measure.  

Considering practicality, testing such ‘near-field’ loading conditions remain challenging to 
predict and exhibit low repeatability, and therefore considered a non-ideal regime to conduct 

controlled blast testing.[5] The fireball dimensions therefore have important practical 

implications for experimental studies when specifying stand-off distances. 

Without rationale or guidance, there is the potential for unrealistic loading regimes to be 

generated leading to less meaningful clinical interpretations of PBI research. Overall, there is 

a need for more robust guidance on the range of blast parameters appropriate for PBI 

studies, acknowledging both the clinical relevance and blast physics of the equivalent 

explosive threat being simulated. This article presents the development of guidelines to 

inform the generation of appropriate experimental blast loading regimes for PBI research.  

2. Methodology 

Theoretical PBI guidelines were developed by combining two main methodologies: 

a) compilation of existing PBI criteria affecting the ear, lung and brain; 

b) calculation of explosion characteristics including air blast wave parameters and maximum 

fireball radius for a range of idealised surface burst detonations. 

Primary Blast Injury (PBI) Criteria 

A range of PBI criteria have been developed and contested since the 1960s. For this study, 

PBI criteria take the form of blast overpressure thresholds and overpressure-duration curves 

assuming human exposure to idealised blast waves. PBI criteria selected for this study were 

informed by a separate review,[13] and grouped into: (1) auditory system; (2) pulmonary 

injury & lethality; and (3) brain-related PBI (Table 1).  

Table 1: Summary of primary blast injury criteria analysed with respect to idealised blast wave 

parameters. 

Blast Injury Area Criteria Description 

Auditory System 
(Ears) 

Peak Overpressure Thresholds 

 35 kPa [15] - Threshold for eardrum rupture 

 103 kPa [15] - 50% probability of eardrum rupture 
 202 kPa [16] - 100% probability of eardrum rupture  

Pulmonary Injury 
& Lethality 

Peak Overpressure-Positive Phase Duration Functions 

Bowen curves [17] for pulmonary (lung) blast injuries assuming a 70kg man 
stood near a wall, including:  

 Threshold for pulmonary blast injury 
 1%, 50% and 99% probability of fatality from pulmonary blast injury 

Brain-related PBI 
Peak Overpressure Thresholds 

 144 kPa [18] - 50% risk of mild brain haemorrhage  

 

For the auditory system, PBI criteria include blast overpressure levels to predict the onset 

(threshold) and probabilities (50% and 100%) of eardrum rupture (Table 1; Fig. 1, grey 

lines).  

Pulmonary injury criteria utilise the Bowen overpressure-time curves,[17] including the 

threshold (onset) and probabilities (1%, 50% and 99%) of fatality (Table 1; Fig. 1, red lines). 
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Overpressure levels for lung injury and lethality have been proposed by some researchers 

although these were not included as dependence on the blast duration has been 

demonstrated [17,19,20]. Due to a lack of consensus on how to extend Bowen’s pulmonary 

injury criteria to an open-field scenario, [13] this analysis considered a 70kg person stood 

near a reflective wall (Table 1; Fig. 1, red lines).  

Brain-related PBI criteria were developed more recently than other injury areas; this study 

analyses an overpressure threshold representing the 50% risk of mild brain haemorrhage 

criteria developed by Rafaels et al. [18] (Table 1; Fig. 1, black line). Moderate brain 

haemorrhage and risk of fatality were excluded as overpressure-time functions exceed the 

99% probability of fatality from pulmonary injury.  

Calculating Blast Characteristics 

Following an explosive detonation, a violent expansion of gases force surrounding air 

outwards at supersonic speeds, forming a layer of propagating, compressed air known as a 

blast wave. Blast waves are characterised by an instantaneous increase in pressure to the 

‘peak overpressure’ (above atmospheric), which decreases over a time known as the 

‘positive phase duration’ (t+) (Fig. 2). In an ideal scenario, blast waves propagating in 

unobstructed, free-air theoretically exhibit a waveform known as the Friedlander function 

[21]:  𝑃𝑖(𝑡) = 𝑃𝑖 [1 − 𝑡 − 𝑡𝑎𝑡+ ] 𝑒𝑥𝑝 ⌊−𝐴(𝑡 − 𝑡𝑎)𝑡+ ⌋                          (1) 

where Pi(t) is the incident overpressure at time t (kPa); A is the decay coefficient 

(dimensionless); and ta is the arrival time (ms). 

At a given point, blast wave overpressure and duration depend on the mass of the explosive 

charge, W (kg) and the distance from the detonation, or ‘stand-off distance’, R (Fig. 2). Blast 

wave parameters also depend on position of the detonation relative to the ground. When 

explosions occur at the ground surface, incident and reflected shock waves merge 

effectively instantaneously, forming a single hemispherical shock front with approximately 

twice the energy of a spherical above-ground detonation (Fig 2). Many real-world explosions 

occur at the ground so can be modelled as surface bursts. 

Due to differing explosive materials, it is common practice in blast engineering to relate the 

stored energy of any explosive charge/threat to an equivalent mass of Trinitrotoluene (TNT) 

based upon the ratio of the energy densities of the explosive materials (Table A -

supplementary information).  

Blast Wave Calculations 

Extensive air-blast experimentation has been used to derive equations to calculate blast 

wave properties. In this study, incident blast wave parameters were calculated assuming 

idealised surface detonation scenarios involving hemispherical charges of TNT for a range of 

charge masses scenarios to compare with PBI criteria (Fig. 2). Pi and t+ were calculated as a 

function of stand-off distance, R using the Kingery and Bulmash [22] equations using 

ConWep software [23]. Calculations were performed for regular intervals of charge masses 

ranging from 10g-1000kg, examining different scale explosive threats (i.e. landmines to truck 

bombs) and representing different blast testing capabilities (Table B1-B5 - supplementary 

information).  

Blast Scaling 

With multiple possible combinations of stand-off distances and charge masses, blast scaling 

is an important concept. Hopkinson-Cranz scaling [24] is based on geometrical similarity and 
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can be applied to physical experiments or simulations at different scales. Two explosions are 

expected to produce identical blast waves at distances which are proportional to the cube-

root of the respective energy release. The scaled distance of a blast event is defined as: 𝑍 = 𝑅√𝑊3             (2) 

Importantly, for a given blast scaled distance Z the peak overpressure is constant, making it 

a useful parameter to describe blast conditions arising from different mass charges while 

considering the relative distance from the explosion. Hopkinson-Cranz scaling was used to 

calculate peak blast overpressures at regular blast scaled distances Z=0.5-6.0 to examine 

how they relate to PBI criteria and to further specify appropriate loading conditions.  

Fireball Radius 

A semi-empirical model proposed by Gilbert et al. [25] was used to calculate the maximum 

fireball dimensions resulting from the detonation of different masses of high explosive: 𝐷 = 3.5√𝑊3                     (3) 

where D (m) is the maximum fireball diameter and W is the equivalent mass of TNT (kg). 

While the growth of a fireball evolves in stages, this model predicts maximum fireball 

diameter as a hemisphere on the ground and is applicable to any high explosive [14]. The 

maximum fireball radius, Rf can be expressed as eq. 4 and, through rearrangement and 

inspection of eq. 2, the maximum fireball radius corresponds to a constant blast scaled 

distance of Z=1.75 (eq. 5): 𝑅𝑓 = 1.75√𝑊3        (4) 𝑅𝑓√𝑊3 = 𝑍 = 1.75      (5) 

For each charge mass considered, peak overpressure and duration were calculated at 

stand-off distances such that Z=1.75, thus calculating blast wave parameters expected at 

the maximum fireball radius, permitting analysis with PBI criteria. 

3. Results 

Inspection of combined injury criteria in Fig. 1 suggests that the 99% risk of fatality from 

pulmonary injury represents an upper bound blast conditions for PBI investigation. While 

current PBI criteria do not support a definitive minimum threshold, comparison between 

different criteria (Fig. 1) supports zones of clinically-relevant loading regimes. 

Calculated blast wave parameters were plotted as a series of curves for each charge mass, 

mapping combinations of peak overpressure and positive phase durations experienced at 

different stand-off distances, with the selected PBI criteria overlaid (Fig 3). Curves 

representing the 100g and 10kg charge masses were labelled with stand-off distances at 

regular intervals, showing that as charge mass increases, blast waves with higher positive 

phase durations are generated at injury-relevant peak overpressures. Larger scale 

explosions therefore have the potential to inflict relatively more serious lung injuries as 

tolerance to pulmonary injury reduces with increasing positive phase duration (Fig. 3).  

The spatial variation of expected PBIs at different stand-off distances for different explosive 

charge masses can also be analysed through plotting PBI criteria with blast wave 

parameters (Fig. 3), with examples provided in Table 2.  
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Table 2: Expected PBIs as a function of stand-off distance for 100g and 10kg TNT charge masses. 

Charge Mass, TNT 
equivalent  

Stand-off Distance, R Expected Primary Blast 
Injury 

100g 

R=0.75m ~1% risk of fatality from 
pulmonary blast injury 

R=1.5m No lung injuries expected 
(below pulmonary injury 
threshold) 

~50% risk of ear drum 
rupture 

R=3.0m No PBIs expected* 

10kg 

R≤3.5m ~99% risk of fatality from 
pulmonary injury 

3.5m<R<9.0m Varying risk of pulmonary 
injury 

R≥12.0m No PBIs expected* 

*In the absence of minimum threshold exposure levels for mild brain-related PBI. 

Analysis of Fig. 3 shows that larger charge masses and explosive threats inflict PBIs over a 

larger distance compared to smaller charges. However, for smaller charge masses (i.e. 100g 

TNT), the range of stand-off distances where PBIs are of interest is relatively small (i.e. 0.5-

2m) (Fig. 3).  

Zones of blast wave parameters corresponding to realistic explosive threats are plotted 

against PBI criteria in Fig. 3. based on reported TNT equivalent charge mass (Table A; 

supplementary file), and suggests there is limited relevance in generating blast waves with: 

 positive phase durations below 0.4ms as this corresponds to either very small 

explosive threats (<10g TNT) or larger threats at very close stand-off distances that 

would cause fatality; or  

 positive phase durations over 20ms, as this effectively models very large explosions 

(>100kg TNT equivalent), which occur rarely.  

Analysis of Fig. 4 indicates that loading conditions in PBI experiments should correspond to 

scale distances of 1.75<Z<6.0, to ensure simulation of conditions found outside the fireball 

while generating peak overpressures of sufficient magnitude to induce the lowest reported 

threshold for PBI (i.e. threshold for eardrum rupture). 

4. Discussion 

As expected, an increased probability and severity of PBI or fatality correlates with 

decreasing stand-off distances due to exposure to higher peak overpressures, consistent 

with casualty and forensic reports. Loading from small charge mass detonations have a 

relatively narrow range of stand-off distances such that overpressures are clinically-relevant 

to the injury type of interest, and therefore require careful experimental design. Beyond 

≈10kg TNTeq, pulmonary blast injury criteria converge and intersect with the selected ear and 

brain injury criteria, suggesting different PBIs could occur simultaneously for blast waves 

with increased durations.  

Understanding the expected PBIs at different stand-off distances for a known charge size is 

useful when designing explosive arena tests. The importance of fully reporting both peak 

overpressure and duration parameters was highlighted, as this has implications for the scale 
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of the equivalent explosive threat being simulated, and the nature and severity of PBIs 

expected.  

When injury criteria are sensitive to only overpressure, blast scaled distance is a useful 

parameter as it is applicable to a broad range of experimental setups (various charge mass 

and stand-off distance combinations) and research facility capabilities. For example, scaled 

distances Z=2.0-3.0 approximately correlate to a 50% probability of mild brain haemorrhage, 

irrespective of the blast duration or charge mass.  

Analysis of positive phase durations in Fig. 3 can help inform the experimental approach 

required (e.g. shock tube or conventional blast testing). Generating blast waves with long 

positive phase durations (with sufficient peak overpressures to cause PBIs) presents several 

experimental challenges. As an example, blast waves with positive phase durations >10ms 

and peak overpressures capable of causing PBIs (>34kPa), requires charge masses of 

>100kg TNT (Fig. 3). In context, this represents relatively large explosive threats such as 

vehicle-borne IEDs (Fig 3, Table A). Experimentally, large charge masses (100kg TNT) 

would require targets positioned at relatively large stand-off distances (>9m to avoid 99% 

risk of fatality), thus requiring access to large test sites and potentially unfeasible testing 

costs. Likewise, laboratory-scale shock tubes typically cannot simulate blast wave durations 

over 10ms; higher durations are achieved by increasing the volume of driver gas and length 

of the driven section, requiring additional infrastructure and space. Constrained by facility 

capabilities and expense, positive phase durations <10ms are more practical to achieve, 

while still representing realistic threats such as IEDs (Fig. 3). 

While many experimental loading conditions are achievable, collective analysis of Figs 3-4 

demonstrated that there are limits to ensure that loading is clinically relevant, realistic and 

practical. As such, for PBI research, it is recommended that generated blast wave 

conditions: equate to blast scaled distances 1.75<Z<6.0 with positive phase durations from 

2-10ms (i.e. charge masses of 100g-50kg TNTeq, predominantly IED-scale threats). These 

blast conditions are operationally relevant and can be adjusted to be in the range of a broad 

spectrum of potential PBI types and injury thresholds. Experimentally, these conditions are 

also practical considering the required size for test sites and common laboratory shock tube 

capabilities, while balancing testing practicalities such as the fireball size and stand-off 

distances. 

Limitations 

This study is limited to the assumption of highly-idealised, hemispherical charge surface 

burst detonations. Spherical detonations above ground and different shaped charges will 

give rise to modified blast parameters. Furthermore, while the air-blast calculations adopted 

in this study have been shown to be accurate for geometrically simple ‘far-field’ 
scenarios,[26] definitive experimental validation data is lacking in the extreme ‘near-field’. 
Hence, there is considerable uncertainty on the exact form or magnitude of the blast loading 

profile close to the source of an explosion, which often manifests as low repeatability within 

experiments.[5] The guidelines do not apply to blast scenarios involving obstructions, 

reflections and confinement as these greatly modify loading and lead to complex waveforms. 

Despite the inherent limitations of idealised blast wave assumptions, current experimental 

approaches generally simulate such blast waveforms, so this analysis remains of utility to 

the blast injury research community. 

These guidelines are restricted to predictions of PBI following whole-body exposure to 

idealised blast waves and cannot predict localised injury associated with small charges at 

small stand-off distances. For example, while landmine victims are effectively exposed to 

“extreme near field” blast loading (Z<1.0), they typically experience traumatic amputation 
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(rather than fatality) due to localised injury to the limbs. For PBI research, a minimum blast 

scaled distance of Z=1.75 is advised to examine conditions found outside the fireball, which 

also avoids conditions that lead to localised injury effects. 

Reported PBI criteria analysed in this study assume un-protected human exposure to 

idealised blasts, specifically 70kg males in the case of the Bowen injury criteria. Importantly, 

experiments involving animal models require scaling of blast parameters; in particular, the 

positive phase duration must be compatible with the size and type of target being tested.[6] 

The influence of protective equipment and armour should also be considered where 

necessary. At present, there is no definitive minimum blast exposure threshold for PBI 

although researchers suspect that relatively low, or repeated, blast exposure can contribute 

to mild bTBI. Until more is understood, the minimum reported PBI threshold remains to be 

ear injury at an overpressure of 34kPa. 

While the proposed guidelines are not definitive, new analysis presents ‘zones of interest’ to 
guide and inform the generation of blast loading conditions that are clinically-relevant (to the 

PBI of concern), realistic (corresponding to real-world threats) and practical from a testing 

perspective. Analysis presented in this paper encourages broader, multi-disciplinary 

understanding, raising awareness of how generated blast loading parameters correspond to 

different PBI types, and spatially, where such conditions occur by consideration of equivalent 

idealised blast threats.  

5. Conclusion  

With a continued research focus on bTBI and injury studies involving shock wave 

generation, it remains important that simulated blast loading is appropriate to ensure 

meaningful outcomes. Analysis presented in this paper demonstrates the implications of 

generated loading regimes and provides information to guide appropriate design of loading 

conditions within blast injury studies. Specifically, the resulting guidelines can: 

 Help the community to generate valid, clinically-relevant loading conditions based on 
existing PBI criteria. 

 Acknowledge different scale blasts considering real-world threats, proximity to the 
fireball and typical experimental capabilities. 
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wave parameters. 

Table 2: Expected PBIs as a function of stand-off distance for 100g and 10kg TNT charge 

masses. 

Fig. 1: Combined PBI criteria to inform clinically-relevant blast loading conditions for PBI 

research. 

Fig. 2: Blast wave parameters depend on where the detonation occurs with respect to the 

ground surface. 
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Fig. 3: Guidelines to define injury-relevant blast loading conditions in terms of blast wave 

parameters and stand-off distances for a range of charge masses (assuming hemispherical 

surface detonations). 

Fig. 4: Guidelines for simulating injury-relevant blast loading conditions in terms of blast 

scaled distance, Z for a range of charge masses (assuming hemispherical surface 

detonations). 


