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Abstract

Controlling crowd simulations typically involves

tweaking complex parameter sets to attempt to reach

a desired outcome, which can be unintuitive for non-

technical users. This paper presents an approach to

control pedestrian simulations in real time via sketch-

ing. Users are able to create entrances/exits, barriers to

block paths, flow lines to guide pedestrians, waypoint

areas, and storyboards to specify the journeys of crowd

subgroups. Additionally, a timeline interface can be

used to control when simulation events occur. The

sketching approach is supported by a tiled navigation

mesh (navmesh), based on the open source tool RE-

CAST, to support pedestrian navigation. The navmesh

is updated in real time based on the user’s sketches and

the simulation updates accordingly. A comparison be-

tween our navmesh approach and the more often used

grid-based navigation approach is given, showing that

the navmesh approach scales better for large environ-

ments. The paper also presents possible solutions to

address the question of when pedestrians should react

to real-time changes to the environment, whether or

not these changes are in their field of vision. The ef-

fectiveness of the system is demonstrated with a set of

scenarios and a practical application which make use

of a 3D model of an area of a UK city centre created
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1 Introduction

Crowds are present in quotidian activities such as

walking to work, taking a train, shopping and attend-

ing a football match, and are simulated for numerous

computer applications such as in entertainment, urban

planning, safety and military training. Such crowd

simulations are commonly modelled using an agent-

based approach. However, controlling such simula-

tions can be challenging, since many parameters must

be tuned by the user. With commercial systems such as

SIMWALK
1, MASSMOTION

2, MASSIVE
3, LEGION

4

and EXODUS [GOL96]5, the user needs to be famil-

iarised with the system and must know which parame-

ters to change to obtain a desired outcome. Editing the

environment can also be an issue. For instance, to cre-

ate an obstacle such as a barrier in MASSMOTION, the

simulation must be terminated and started again after

adding the obstacle.

This paper presents a real-time, sketch-based con-

trol approach, where non-expert users are able to in-

teract with the simulation by creating entrances/exits

to define the spawning and goal positions for pedes-

trians, barriers to block paths, flow lines to guide

pedestrians, waypoint areas, and storyboards to con-

trol the journey of groups or the entire crowd. In ad-

dition, users can simulate events through the day us-

1http://www.simwalk.com
2http://www.oasys-software.com/products/

engineering/massmotion.html
3http://www.massivesoftware.com/
4http://www.legion.com/legion-software
5http://fseg.gre.ac.uk/exodus/index.html

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 16(2019), no. 3

ing a timeline interface. We use a microscopic mod-

elling approach based on agents and a tiled navigation

mesh (navmesh [Sno00]) as the navigation approach

to guide the agents through the environment.

Modifying the environment in real time using

sketching raises the question of when an agent should

become aware of the changes. Should it be when the

agent sees the change, or when the agent hears about

the change through some communication medium,

e.g. an announcement on the radio, or after a certain

amount of time has elapsed and the change has be-

come common knowledge? This question appears to

be unanswered in previous research work. Our paper

addresses this issue by giving agents different types of

knowledge of the environment for a particular scenario

and discussing the performance implications.

Sketching approaches to control crowd simula-

tions have been presented before [JXW+08, OO09,

PvdBC+11, HOC14, GM17]. However, this paper

presents six novel contributions. First, sketching is

used to update a navmesh in real time, rather than

using a grid-based approach. This includes the abil-

ity to draw barriers, unlike previous work where a list

of points was used to add an obstacle to a navmesh

[Kal05], which is less intuitive for the user. Second,

flow lines can be sketched and the cost of traversing

each flow line can be individually changed. Third, ar-

eas can be sketched onto an environment, similar to

[HOC14], but with explicit control being given over

the percentage of agents visiting each (waypoint) area.

Fourth, storyboards can be created to define the jour-

neys of subcrowds. Fifth, a timeline interface can be

used to control events during a simulation of a 24-hour

period. Last, we identify the issue of agents becoming

aware of and reacting to dynamic environments and

propose solutions.

The remainder of the paper is organised as fol-

lows. Section 2 gives an overview of related work

and offers a classification of the existing graphical ap-

proaches to control pedestrian simulations. Section 3

describes the implementation of the system. Section 4

presents a range of scenarios and a practical appli-

cation. Section 5 gives a detailed comparison be-

tween a grid-based approach and our navmesh-based

approach. Section 6 discusses when the agents should

become aware of the environment modifications. Fi-

nally, Section 7 concludes the paper.

2 Related Work

Agent-based modelling is the most common approach

to simulate virtual crowds. Each agent calculates

its own movement based on a set of rules or be-

haviours. Reynolds’s seminal work [Rey87] demon-

strated how to control a bird flock with three simple

rules, and his later work [Rey99, Rey00] implemented

new steering behaviours such as seek and pursuit.

Other work has shown how the movement of agents

could be determined by ‘social forces’ produced by

agent-agent interaction and agent-environment inter-

action [Hel91, HM95]. More recent work has shown

how psychological aspects can be taken into account

when modelling agents [SBPO05, PAB07, YCP+08,

UT01, UT02, RCL+11]. Sociological factors have

also been modelled [MT97, PHDL07, YT07].

Two levels of control can be observed in pedes-

trian simulations. Local motion defines the short range

motion of the agents considering their immediate sur-

roundings. This level relates to the previously men-

tioned work using rules, behaviours and other fac-

tors. Global navigation guides the agents through en-

vironments where pedestrians could get stuck in lo-

cal minima when using local rules. Several techniques

have been proposed for global path planning. These

methods include flow fields and navigation meshes.

Reynolds [Rey99] was the first to propose the idea

of flow fields. The environment is mapped to a two-

dimensional grid where each cell contains a force vec-

tor. This is a grid-based approach. In our paper, we

use a navigation mesh. Our sketch-based interface for

graphical control of the simulation is implemented on

top of this.

2.1 Navigation Mesh (Navmesh)

[Sno00] introduced the term navigation mesh, a de-

composition of a 3D environment into a mesh of con-

vex polygons to represent walkable areas. He called

this a navmesh, Several techniques have been pro-

posed to generate navmeshes from the geometry of the

environment. [vTCG11] employed a medial axis to

create a navmesh for a multilayered environment, and

then extended this work to support dynamic updates

[vTCG12]. [KBT04] represented a 2D environment

using a constrained Delaunay triangulation. In sub-

sequent work, [Kal05] added obstacles in real time.

[HYD08] created a 2D navmesh by dividing the en-

vironment into a grid. Square regions are seeded and

grown in every direction until obstacles are found to

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037
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form the polygons. This work was later extended to

work with 3D environments [HY09]. [OP11] repre-

sented the environment as a single polygon that may

have holes in it. Their later work used GPUs to au-

tomatically generate a navmesh from a 3D environ-

ment [OP13]. [AG13] proposed an approach to cre-

ate a navmesh based on images. [BKF16] created a

navmesh based on the curvature of the original mesh.

There is also an open source software to create a

navmesh: RECAST is used in video games to gener-

ate navmeshes for a given environment. Section 3.1

will give more details about the use of RECAST in this

paper.

2.2 Graphical Control

Graphical tools for the control of crowd simulations

make it possible for a user to interact with a simulation

in an intuitive way, eliminating the time-consuming

task of parameter tuning. We identify five categories

to describe the different graphical control approaches:

Navigation Graph, Map, Patch, Direct Interaction and

Sketching. A visual illustration of the different ap-

proaches is given in Figure 1.

Sketching

Navigation Graph Map Patch

Direct Interaction

Figure 1: Graphical control approaches for crowd sim-

ulations.

In the first category, Navigation Graph, a graphical

interface is used to manipulate graphs to control crowd

movement. [YMDHC+05] created a graph from a pre-

defined environment and allowed the user to assign

nodes as goals for the pedestrians.

The second category, the Map approach, attaches

extra information to the environment by drawing maps

on top of it. Agents use this information to influ-

ence their behaviour. [SGC04] added ‘situations’ to

the environment using a painting interface. [MR05]

set environmental attributes such as height using maps.

Similarly, [MMHR16] defined areas such as obstacles

and exits with a painting tool. [JCC+15] specified the

crowd density and direction by drawing maps on top

of the environment.

In the third category, Patch, large and complex en-

vironments are created by connecting small prede-

fined patches or blocks. [Che04] presented Flow Tiles,

which are small blocks with predefined forces. These

tiles are connected to move agents around the envi-

ronment. [YMPT09] developed Crowd Patches with

flows and animation attached. This work was extended

by [JPCC14] where the patches could be deformed or

combined to fit the environment. Another approach

called ‘motion patches’ [LCL06] includes motion data

to animate characters within the patch. This concept

was used by [KHHL12] to model a simulation with

characters interacting with each other.

In the fourth category, Direct Interaction, a crowd is

directly controlled to change its behaviour – the agents

themselves are directly targeted. [UCT04] create and

modify agents and their behaviour using brush tools.

[KLLT08] created a graph from an existing animation

of characters, which is then user-deformable to create

a new animation. A similar method was presented by

[KSKL14]. Here, the existing animation can be ma-

nipulated in space and time. Furthermore, [KHKL09]

permits the user to change the position and direction

of a group of characters with spatial and temporal con-

straints. Different input approaches have also been ex-

perimented with [HSK12, SHW+18].

The final category includes work that interacts with

the simulation by Sketching. This could be by mod-

ifying the environment or by controlling the path or

actions of a group. [JXW+08] controlled pedestrian

movement by drawing arrows in the environment.

These sketches update the underlying vector field re-

sponsible for guiding the agents. [OO09] allowed the

user to specify the spawning location and trajectory of

pedestrians by sketching lines. [PvdBC+11] created a

navigation field to direct the crowd based on flow lines

drawn by the user.

[HOC14] presented a sketch-based approach to pop-

ulate environments initially based on an image. These

environments cannot be used in automatic navigation

mesh generation tools. Thus, the user first defines the

boundaries of the navigation mesh and the borders of

the obstacles (e.g. buildings) in an offline process us-

ing sketching. The mesh is triangulated to obtain a

navigation graph. Then, users are able to dynami-

cally use sketching to add waypoints, select pedestri-

ans, create a path, and define behaviour areas where

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037
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agents perform a certain action. This work is the only

approach that uses sketching on top of a navmesh.

However, unlike our paper, the navmesh is not up-

dated in real time based on user input. In our work,

the navmesh itself is changed in response to sketches

that change the environment, such as sketching bar-

riers and flow lines. [GM17] developed an interface

where users are able to specify the agent spawning

position and draw obstacles and flow lines to control

the simulation in real time. The underlying grid-based

navigation is updated according to the user’s actions.

The creation of crowd formations is a popular ap-

plication of sketching interfaces. [TYK+09] con-

trolled formations taking into account agent adjacency.

[GD11] define a formation with user-sketched lines.

This work was subsequently extended to give more op-

tions to specify the formation and to allow the sketch-

ing of trajectories [GD13]. Similarly, [APKM15] cre-

ate and move formations with sketches but offer the

extra feature of subgroup control. [XJY+08] pre-

sented a flock simulation constrained by a user-defined

shape. The user can define fixed positions over time

and the path followed by the flock. In [XWY12],

the user specifies the source and target formations.

[XWY+15] created a similar crowd formation trans-

formation model but using different criteria to assign

the final positions. Subgroups are formed to main-

tain the cohesion of the group. [ZZC+14] suggested a

method to create formations based on geometry which

does not require collision avoidance algorithms. A

similar approach was presented by [ZLD15]. The user

is able to specify the density of the formation and the

final formation by importing an image or by sketching

the shape. [HAMB+14] proposed a flocking algorithm

to represent user-defined shapes within a robot swarm.

A drawing interface is provided where static shapes or

animations can be made by the user.

The approach implemented in this work falls into

the Sketching category, using a navmesh as the en-

vironment discretisation method and controlling the

agent behaviour by modifying the environment. Ta-

ble 1 summarises the relevant research.

3 The System

This paper presents an intuitive and simple way for

non-technical users to interact in real time with crowd

simulations. Figure 2 gives an overview of the en-

tire system. In practice, we need to make decisions

about particular pieces of software to create the sys-

Category Control Discretisation Work

NavGraph Env Graph [YMDHC+05]

Maps/Direct A/Env not stated [SGC04]

Maps Env Grid [MR05, MMHR16]

Maps Env Graph [JCC+15]

Patches Env Grid [Che04, LCL06]

Patches Env Graph [YMPT09, JPCC14]

Patches Env not stated [KHHL12]

Direct Agent not stated
[UCT04, KLLT08,

KSKL14, KHKL09]

Direct Agent Grid [HSK12]

Direct A/Env not stated [SHW+18]

Sketching Env Vector field [JXW+08]

Sketching Env Grid [PvdBC+11, GM17]

Sketching Env Navmesh [HOC14, GM19]

Sketching Agent not stated

[OO09, TYK+09, GD11,

GD13, APKM15,

XJY+08, XWY12,

XWY+15, ZZC+14,

ZLD15, HAMB+14]

Table 1: Summary of the graphical control approaches

for crowd simulations. The Control column indicates

whether the agent behaviour is controlled by changing

agent (A) parameters and/or by modifying the envi-

ronment (Env). The Discretisation column indicates

how the environment is represented: Grid, Navmesh

or Graph (where Graph includes techniques that use a

graph structure based on circles or polygons).

tem. Figure 3 gives an overview of these. There are

two main modules: a visualisation module created by

making use of UNREAL
6 and RECAST

7, and a simu-

lation module based on the FLAMEGPU framework

[RR08]8, which handles the agent and behaviour spec-

ifications. Additional open tools are used to create the

3D model of the environment.

The main modules communicate with each other

through a CPU-based shared memory segment. The

data required by each module is shown in Figure 3.

The agent data used in the FLAMEGPU framework

must be available to the visualisation module running

on the CPU, which, in turn, must send sketched up-

dates to the environment back to FLAMEGPU to in-

fluence the simulation running on the GPU.

3.1 Visualisation

The objective of this module is to provide a visual rep-

resentation of the simulation and to create an interface

where users can use sketching to manipulate the vir-

tual crowd. Additionally, this module is responsible

6https : / / www . unrealengine . com / en-US /

what-is-unreal-engine-4
7http://masagroup.github.io/recastdetour/
8http://www.flamegpu.com
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Scripts

World SpecificationAgent Specification

speed
radius
goal
grid/
navmesh

Variables Perception Grid/Navmesh

SketchingBarrierWaypointsFinal Path

Sketching

Specialist User

Parameters

Steering Path-finding Real-time

Behaviour Specification World Interaction

ParametersParameters

Figure 2: Overview of the crowd control system. In general, a domain specialist defines the model of the agents,

their behaviour and the underlying data structure to represent the environment, in our case a navmesh. The user

interacts with the environment by sketching on top of the navmesh to modify it in real-time. The updated

navmesh is used to find the shortest path from the agent position to the goal. Agents follow this global path

and use local forces (obtained from the agent and behaviour specification) to compute the final path avoiding

inter-agent collisions. Based on Figure 1 in [KSB+12]

Visualisation
Unreal
Engine

Recast

OpenStreet
Map

OSM2World

Simulation
FLAME GPU

Agent data

Grid/Navmesh

Options

Figure 3: System overview.

for the navmesh creation and finding the paths to be

followed by the agents.

The area selected for the simulation is part of the

city centre of Sheffield, UK. Figure 4 shows the area in

OPENSTREETMAP
9 together with the final 3D model

of the environment. The tool OSM2WORLD
10 was

used to convert the OPENSTREETMAP data into a 3D

model before importing it into the game engine. Some

modifications were made to the model prior to the im-

port: imperfections on the ground were removed, tree

9https://www.openstreetmap.org/
10http://osm2world.org/

models were substituted with a new 3D model, and a

few materials were replaced.

3.2 Navmesh

A novel contribution of this paper is the use of a

navmesh to support the sketch-based solution. Previ-

ous work [GM17, JXW+08, PvdBC+11] used a grid-

based approach. A navmesh approach is a more scal-

able solution (see Section 5 for a detailed comparison

based on the scenarios we use in Section 4).

In our work, the underlying navmesh used to de-

termine the movement of the agents is created with

RECAST, which is an open source tool used in games

to automatically create a navmesh from a 3D environ-

ment. RECAST divides the environment into square

tiles on top of which a navmesh is generated which

allows the individual update of the tiles. At the begin-

ning of the simulation, the navmesh of all tiles is com-

puted to generate the polygons (see Figure 5a) – RE-

CAST’s mesh generation process produces some long,

thin triangles, but this does not affect our sketch work.

Later updates are only made in affected tiles, which fa-

cilitates real time modification of the mesh. The user

has the option to hide or show the navmesh – in most of

the figures in this paper the navmesh is visible to make

it clear how it is updated based on user inputs. The

mesh used to represent the environment in Figure 5 is

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037
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(a)

(b)

Figure 4: (a) Map of the selected area in Open-

StreetMap. (b) Part of the final 3D environment in Un-

real Engine.

formed by a rectangular grid of 21x19 (399) tiles. Of

these, 333 tiles contain walkable areas. The resulting

navmesh consists of 726 polygons. In addition, each

tile is represented by a grid of voxels whose size is set

to 0.15 – more details about these are used are given

later. The tile and voxel size can be controlled by RE-

CAST parameters.

The RECAST software was modified to implement

sketching on top of the navmesh and to update it ac-

cording to user actions (Section 3.4). The underly-

ing tile data structure means changes are limited to

affected tiles. After every navmesh change, the short-

est path from every polygon to the target is recalcu-

lated. This information is sent to the simulation mod-

ule through the shared memory segment.

(a)

(b)

Figure 5: (a) The tiled navmesh created with Re-

cast and displayed in Unreal Engine. The underly-

ing square tile pattern is shown, as well as the poly-

gons created to connect different parts of the environ-

ment such as buildings and trees. (b) The environment

where the simulation runs. The red rectangle high-

lights the area shown in (a).

3.3 Simulation

The agent-based simulation uses the social forces

model [HM95] to determine the movement of the

agents. Whilst this is a relatively simple model, it

is sufficient to support the combined sketching work

and navmesh use. A more complex approach could

be used if required. The agent motion is the result

of the weighted sum of three forces: (i) The pedes-

trian avoidance force for inter-agent collision avoid-

ance. This is computed taking into account the posi-

tion and velocity of nearby agents; (ii) The collision

force used to prevent agents colliding with the envi-

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 16(2019), no. 3

ronment. The polygon edges without neighbours exert

a repulsive force on agents depending on the distance;

(iii) The goal force to guide agents to their destination.

This is obtained using the graph (navmesh) sent by the

visualisation module.

The graph is formed by nodes (polygons) and the

edges shared by adjacent polygons. Each node con-

tains a list of neighbouring polygons and the connect-

ing edges. This graph is used to calculate the short-

est path from every polygon to all the exits and ar-

eas. The A* algorithm is used to compute the shortest

path – this uses a heuristic value to guide the search

for better performance. A route is computed for each

exit. To create the route, every polygon stores the ad-

jacent polygon leading to the corresponding exit. In

this manner, agent movement can be calculated know-

ing the current polygon and the assigned exit of the

agents. One approach to generate the agent movement

is by following the middle point of the edges connect-

ing the polygons of the shortest route. However, this

would produce unrealistic paths. This problem can be

solved by smoothing the resulting path using The Sim-

ple Stupid Funnel Algorithm [DB06]. This technique

finds the corners of the path staying inside the poly-

gons found by the A* route.

3.4 Sketching

The interface, implemented in UNREAL, allows the

user to perform a series of actions by sketching or

clicking in the environment. These actions include

definition of agent spawn and goal locations, sketch-

ing obstacles to alter the crowd movement, creation of

flow lines to guide the motion of the agents, drawing

areas to create waypoints, and definition of journeys

via storyboards. The entrances and exits are created by

selecting a polygon edge with no neighbours. These

locations define the spawning position of the agents

and also serve as goals.

The first step to update the navmesh is to capture

the user sketch and sample the line into equidistant

points. Each sequence of points can represent an ob-

stacle, a flow line or an area edge. Then, the line is

mapped to the navmesh by marking the area covered

by the sketch. These regions are given an id to dif-

ferentiate among obstacles, flow lines and areas. The

tiles affected by the user sketch are identified and the

navmesh of these tiles is rebuilt with the new informa-

tion.

3.4.1 Barriers

The barrier obstacles are created by marking the af-

fected navmesh area as null. A null area cannot be

crossed and is not used in navigation computation. The

process is made efficient by using the tiles that the rel-

evant navmesh area overlaps. Each overlapped tile is

divided into an integer grid of voxels. Every voxel

in the grid is tested to determine if it lies within the

sketched obstacle region, whereupon it is marked as

empty. Using this information, the contours of the up-

dated walkable areas inside the affected tiles are cal-

culated and these are used to re-triangulate this area to

obtain the new polygons of the navmesh. The first row

of Figure 6 shows the process of producing a barrier

by sketching a line—navmesh polygons are generated

on both sides of the barrier.

(a) (b) (c)

Figure 6: (a) Original navmesh. (b) User-sketched

lines. (c) Updated navmesh and the elements created:

barrier, flowline and area.

3.4.2 Flow Lines

A sketched flow line is given an id to identify it.

The sketched flow line is divided into a set of poly-

gons which are traversable only in the direction of the

sketch (second row in Figure 6). The cost of traversing

a flow line can be changed by the user – a higher value

means that a flow line is more likely to attract agents

from the surrounding area.

The addition of flow lines converts the navmesh in

the flow line area into a directed graph which means

that adjacent polygons are not necessarily connected

for navigation purposes. Therefore, agents inside flow

lines must follow the complete flow line until the end

of it is reached. The routes to areas and exits are re-

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037
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calculated when the cost of traversing the flow lines is

changed.

Sketching flow lines that cross tile boundaries com-

plicates the process of creating a new navmesh. These

situations occur when the same flow line area is

mapped to two abutting tiles as shown in Figure 7. Nu-

merical conversion issues can result in a misalignment

between adjacent flow line polygons. When mapping

the sketched flow line to the tile, a conversion from

floating point (line coordinates) to integer (tile coordi-

nates) is performed and this conversion may produce

a misalignment. This problem generates small gaps

where pedestrians can ‘escape’ from the flow line. In

Figure 7, pedestrians would be able to leave the flow

line early. The problem was solved by modifying the

adjacency conditions of polygons from different tiles.

Regular polygons from one tile are connected to the

flow line polygons of the adjacent tile, but not vice-

versa.

Figure 7: Polygons

misaligned when crossing

tile boundaries.

Figure 8: Pedestrians fol-

lowing overlapped flow

lines.

It is possible to overlap flow lines and pedestrians

are free to move between flow lines at a crossing point.

In Figure 8, pedestrians follow their specific flow line

without having problems at the crossing point. The

weight of the last sketched flow line will be assigned

to the intersection polygon. Pedestrians may be forced

out of a flow line when it is crowded, however, they

will try to re-enter unless a shortest path is found from

their new navmesh polygon to their destination.

Sketching flow lines produces some long, thin and

sometimes unnecessary polygons that could be merged

into a single polygon. We thus improved the algorithm

used by RECAST to merge polygons so as to reduce the

total number of polygons. Figure 9 shows the result of

the new algorithm in four tiles of the navmesh after

sketching three flow lines. The original tiles and the

flow lines created by the user are shown in Figure 9a

and Figure 9b, respectively. Figure 9c shows the 148

polygons created with RECAST’S original algorithm.

With the improved algorithm, this number is reduced

to 130, as illustrated in Figure 9d. Typically, an initial

navmesh does not have many tiles with complex areas

or polygons. In these cases, the polygon reduction is

not considerable but increases as the environment gets

more complex with barriers and flow lines.

(a) (b)

(c) (d)

Figure 9: (a) Four tiles of the navmesh. (b) The same

four tiles with three flow lines sketched by the user. (c)

Recast’s polygon merge algorithm creates 148 poly-

gons. Edges that are eliminated by our improved al-

gorithm are highlighted in red. (d) The 130 polygons

resulting from the improved algorithm.

3.4.3 Areas and Behaviours

The user can create areas in the environment that serve

as waypoints. The shape of the sketched polygon

is mapped to the navmesh and the new area is re-

triangulated to eliminate concave polygons, as shown

in the third row of Figure 6. The shortest path from

each navmesh polygon to the area is then computed.

In addition, the interface offers the ability to set the

percentage of agents that will visit each area.

Currently, within an area, a simple wandering be-

haviour is implemented. When an agent reaches an

area, it moves in random directions within the area for

a predefined amount of time, before continuing on its

journey. Whilst the idea of areas and behaviours has

been previously suggested [HOC14], the main differ-

ence in our approach is the ability to set the percentage
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of agents visiting and to assign the areas to a story-

board (Section 3.4.4). In future work other behaviours

could be assigned to areas.

3.4.4 Storyboards

A storyboard defines the exact journey of agents

throughout the simulation. To create a storyboard, the

user must select an entrance polygon, areas (optional)

and an exit. Figure 10 gives an example. The selected

polygons and areas are highlighted and the indication

arrows show the order of the storyboard, connecting

entrances to intermediate points and on to targets. In-

dividual pedestrians are guided by the storyboard but

calculate their own specific path using the navmesh.

Figure 10: Storyboard created by the user. The se-

lected polygons and areas are highlighted in green.

The route begins at the left entrance, continues to the

area in the middle and ends at the right exit.

Currently, up to ten storyboards can be created per

entrance. The user is able to define the percentage of

pedestrians (spawned at the selected entrance) that fol-

low the desired storyboard. A menu displays the ex-

isting storyboards and offers editing facilities. If no

storyboard has been created, agents spawn at every

entrance depending on a user-defined emission rate.

Similarly, their exit is selected from all the exits based

on percentages specified by the user. By creating sto-

ryboards, the user defines exact agent journeys.

3.4.5 Timeline

The simulation keeps track of the time allowing the

user to simulate events during a day. Example events

include: open/close entrances and exits; change the

emission rate of an entrance; create barriers, flow

lines, areas and storyboards. In addition, the speed of

the simulation can be increased up to 24x to observe a

day in an hour.

Using the timeline interface, the previously created

elements can be dragged and dropped into the time-

line to specify their occurrence time. The duration of

the events is modified by re-sizing the elements. The

simulation constantly checks for events and updates

the environment accordingly to influence the pedes-

trian behaviour. The elements that are not added to the

timeline are considered permanent as part of the envi-

ronment.

Figure 11 shows a simple example of the timeline

interface. In this scenario only two events are created.

First, the emission rate of the yellow entrance is in-

creased. Second, the barrier appears, blocking the path

of the pedestrians and forcing them to walk around the

building to reach the red exit.

(a)

(b)

Figure 11: (a) Simple scenario with one entrance (yel-

low), one barrier and one exit (red). (b) Timeline sim-

ulating two events. The emission rate of the entrance

is increased, and the barrier appears shortly after that.

4 Validation scenarios

A set of scenarios were simulated to demonstrate the

system’s functionality. A video of the system in action

is available at https://tinyurl.com/y4qfkqb2.

The scenarios were run on an Intel Core i5 6500 with

16GB RAM and an NVIDIA GeForce GTX 1060 SC.

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 16(2019), no. 3

The performance of the system is shown in Table 2.

No. Agents fps

1k 118-119

5k 86-87

10k 50-52

20k 24-26

Table 2: System performance with multiple crowd

sizes.

The first scenario is the creation of a queue that

simulates the entrance to a venue. Figure 12 shows

a snake-like corridor created by sketching barriers.

The second scenario shows the use of flow lines

(Figure 13) to control the crowd by forming lanes in

areas such as road crossing points. Lane formation

is a global behaviour that can emerge in agent-based

simulations [TCP06]. Our system gives a user more

control over where it occurs. Currently the user has

no control over the width of a flow line. Another ex-

tension to consider for future work would be two-way

flow lines.

Figure 12: Pedestrians adjusting their path after the

user created a corridor by sketching barriers.

A more illustrative example is shown in Figure 14

where two crowds move in opposite directions in a cor-

ridor. Multiple lanes are formed when both crowds

meet, as seen in Figure 14a. The number of lanes can

be reduced by sketching one flowline at each side of

the corridor, towards the ends of the corridors (Fig-

ure 14b). These flowlines attract pedestrians moving

in the same direction finally producing only two lanes.

Figure 15 shows the use of areas, which can be used

as waypoints on a journey for a range of scenarios, e.g.

where some pedestrians have to queue at a ticket ma-

chine before continuing in a train station or perhaps

Figure 13: Pedestrians walking in the direction of the

sketched flow lines.

(a)

(b)

Figure 14: Pedestrians walking in opposite directions

inside a corridor. (a) Multiple lanes are formed when

the crowds meet. (b) Two flow lines are sketched, one

at each end of the corridor, to control the number of

lanes.

where pedestrians are stopping to watch some kind of

street entertainment before continuing. In this exam-

ple, the percentage of agents visiting the area, which

is user controllable, is altered from 50% in Figure 15a

to 90% in Figure 15b.

Storyboards offer complete control over the paths

to be followed by the crowd. Figure 16 shows three

storyboards created by the user – different shades of

the same colour are used for storyboards that belong

to the same entrance, and each entrance is assigned a

different colour for its storyboards. The crowd is di-

vided into three equal parts, each following a differ-

ent storyboard. Two storyboards have an intermediate

area and one directs pedestrians straight from the en-

trance to the exit. It can be difficult to see the different

shades of colour used for storyboards emanating from

the same entrance because the system allows up to 10
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(a)

(b)

Figure 15: Pedestrians walking from the right-hand

side to the left-hand side via the same area (repre-

sented by the orange rectangle) with two different

user-controllable area visit percentages: (a) 50%; (b)

90%.

storyboards from one entrance. This is something that

still needs further work.

Figure 16: Pedestrians divided into three equal

groups, each following a different storyboard.

Figure 17 shows a more complex scenario with 10

entrances/exits and 70 storyboards. In this example, a

day in a city centre is simulated. Five entrances/exits

are placed on the outskirts of the city centre and the

other five entrances/exits are located in buildings. This

simulates the flow of people going to work or visiting

the area. Figure 18 shows the timeline for this com-

plex environment. In the example, the emission rate

of the named entrances is changed throughout the day

to simulate two peak travel periods, as people travel

to a city centre in the morning and then leave it in the

evening. For example, the “Division” entrance has a

high flow from 7 - 9 am, then a low flow until 4 pm.

These people follow one of 5 storyboards to different

buildings. For the building ”JLewis”, there is a low

leaving rate from 10 am - 5 pm, followed by a high

leaving rate from 5 - 7 pm. These people follow story-

boards to exit routes (which are equivalent to the orig-

inal entrance routes).

The use of storyboards combined with the time-

line gives non-expert users control over the simulation

to recreate real scenarios. One issue is that display-

ing all the storyboards simultaneously can cause vi-

sual clutter, as in Figure 17. To reduce this, users can

hide/show storyboards individually or grouped by en-

trances. An area to investigate in future work would

be the use of decision trees in conjunction with story-

boards.

The last scenario is a practical application that could

be used to marshal a crowd through a city. An ex-

ample would be a police force controlling a foot-

ball crowd moving from a railway station to a foot-

ball ground. A video of the scenario is available at

https://tinyurl.com/y5cafnkj. Figure 19a

shows the starting position of the crowd to be mar-

shalled (Entrance C) and its destination (Exit A). Ad-

ditional pedestrians are also simulated to walk around

the city. Figure 19b highlights the routes, entrances

and exits used by the agents that are not part of the

marshalled crowd. Without any guidance, the mar-

shalled crowd would follow the path shown in Fig-

ure 19c, a route which passes through the middle of

the potentially congested city centre area. The objec-

tive of the scenario is to dynamically control the path

of the crowd (shown in Figure 19d) by sketching and

deleting barriers to avoid congestion.

Particular frames of the simulated scenario are

shown in Figure 20. At the beginning of the simula-

tion (Figures 20 and 21) barriers are sketched to pre-

vent the crowd from going to the area that will be con-

gested. These obstacles also affect pedestrians who are

not part of the marshalled crowd. Figure 22 shows that

pedestrians moving from Entrance A to Exit B need to

readjust their path and walk around the buildings on

the left to reach their destination. This new route inter-

feres with the path followed by the marshalled crowd,

therefore it is blocked when the crowd approaches

(Figure 23). The front part of the crowd arrives at

Exit A in Figure 24. As the marshalled crowd walks

past certain areas, barriers are deleted and pedestrians
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JLewis

Leopold

City

Town

Fargate

Division

Moor

StPaul

Winter

Surrey

Figure 17: Complex scenario simulating a city centre with 10 entrances/exits and 70 storyboards.

Figure 18: Timeline interface. The elements created by the user can be selected with the drop-down lists on the

left. These can be dragged into the timeline to determine the time of the event.

can retake their original path to their destination (Fig-

ure 25).

This scenario shows that it is possible to dynami-

cally add and remove items such as barriers within the

environment whilst a simulation is running. Multiple

scenarios could easily be simulated in advance of an

operation or tested in faster-than-real-time whilst a live

situation is unfolding based on information feeds from

on-the-ground operatives or from CCTV cameras. We

believe this kind of functionality is unique to our sys-

tem.

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 16(2019), no. 3

(a)

(b)

Figure 19: Crowd marshalling scenario. (a) The crowd to be marshalled spawns from Entrance C and moves

towards Exit A. (b) Pedestrians walking around the city move from Entrances A and B to Exits B, C and D.
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(c) (cont.)

(d) (cont.)

Figure 19 (cont.): Crowd marshalling scenario. (c) The shortest path that the crowd would follow without user

intervention. (d) The desired path to be followed by the crowd while being marshalled.
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Exit A

Exit C

Exit D

Entrance B
Entrance A

Entrance C

Exit B

Exit D

Entrance B

Entrance C

Entrance B

Entrance A

Figure 20: Simulation frames of a crowd being marshalled from Entrance C to Exit A in a city centre. Barrier

sketched (blue line) by the user to block the crowd’s path and avoid a congested area. Highlighted areas in the

environment are enlarged to better show off the crowd.
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Exit A

Exit C

Exit D

Entrance B
Entrance A

Entrance C

Exit B

Exit C

Exit D

Entrance C

Figure 21: Simulation frames of a crowd being marshalled from Entrance C to Exit A in a city centre. User

continues to create obstacles to define the route to be followed by the crowd. The highlighted area in the

environment is enlarged to better show off the barriers and the crowd.
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Exit A

Exit C

Exit D

Entrance B
Entrance A

Entrance C

Exit B

Exit A

Entrance A

Figure 22: Simulation frames of a crowd being marshalled from Entrance C to Exit A in a city centre. Pedestri-

ans moving from Entrance A to Exit B recalculate their shortest path, walking around the buildings on the left.

The highlighted area in the environment is enlarged to better show off the Entrance A crowd and the new path.
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Exit A

Exit C

Exit D

Entrance B
Entrance A

Entrance C

Exit B

Exit A

Entrance A

Figure 23: Simulation frames of a crowd being marshalled from Entrance C to Exit A in a city centre. The new

route followed by A-to-B pedestrians is blocked with a barrier before the crowd arrives. The highlighted area

in the environment is enlarged to better show off the new barrier to protect the marshalled crowd.
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Exit A

Exit C

Exit D

Entrance B
Entrance A

Entrance C

Exit B

Exit D

Entrance B

Entrance C

Exit A

Exit C

Entrance A

Figure 24: Simulation frames of a crowd being marshalled from Entrance C to Exit A in a city centre. The first

pedestrians of the crowd arrive at Exit A. Highlighted areas in the environment are enlarged to better show off

the crowd movement.
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Exit A

Exit C

Exit D

Entrance B
Entrance A

Entrance C

Exit B
Exit C

Exit D

Entrance B
Entrance A

Entrance C

Figure 25: Simulation frames of a crowd being marshalled from Entrance C to Exit A in a city centre. Barriers

begin to be deleted as the crowd walks past certain regions. Pedestrians who are not part of the crowd can then

continue on their preferred path. The highlighted area in the environment is enlarged to better show off the

crowd reforming their path.
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5 Grid vs Navmesh

Our approach makes use of a tiled navmesh unlike

many previous examples which have used a grid-based

approach. This section compares our tiled navmesh

approach with a recent grid-based approach [GM17]

using three criteria: environment representation and

sketch accuracy, memory usage and computation time.

5.1 Environment Representation and Sketch

Accuracy

The part of the environment to be represented is shown

in Figure 26(a). For a grid-based approach, the rep-

resentation accuracy of the grid depends on its resolu-

tion. Low resolution grids use bigger cells which cover

larger areas of the environment, e.g. walkable surfaces

and obstacles. However, a cell can only be marked as

empty or occupied, leading to misrepresentation of the

environment. This issue is evident in objects with cir-

cular shapes and when straight walls are not aligned

with the grid, as shown in the top row of Figure 26,

and also when curves and lines are sketched at angles

to the underlying grid.

The navmesh provides a more accurate representa-

tion of the environment since it is based on the geom-

etry of the model. Reducing the voxel size results in a

better representation but also increases the number of

polygons.

An advantage of the navmesh over the grid is that

polygons cover larger areas compared to the cells

of the grid, therefore fewer polygons are required to

cover the entire walkable surface. The bottom row of

Figure 26 shows the same zoomed area of the environ-

ment represented by navmeshes with different voxel

size. As the voxel size is reduced, the number of

polygons increases and the accuracy of the represen-

tation improves. Sketch precision is also better for the

navmesh approach, since the navmesh does not require

a small voxel size to represent a line in a reasonably

accurate way, whereas the grid approach must increase

its resolution.

In both the grid-based approach and the navmesh-

based approach, increasing the accuracy of the rep-

resentation impacts on the the memory used and the

computation efficiency. Bigger environments require

more data to be accurately represented, therefore a

trade-off has to be made between environment repre-

sentation, memory usage and computation time.

5.2 Memory Usage

A grid is represented by a two-dimensional array with

each element set to empty or occupied. However, an-

other structure is required to store the shortest paths

to the goals. [GM17] used a flowmap per exit (as in

[KRR10]) to store these paths. The flowmaps are grids

where every cell stores a force directing agents to their

target. Table 3 shows the memory used by grids of

different sizes with multiple exits.

Structure memory (kB)

No. exits

Grid size No. cells
Grid

memory (kB)
1 3 5 7

128x128 16,384 128 256 512 768 1,024

256x256 65,536 256 1,024 2,048 3,072 4,096

512x512 262,144 512 4,096 8,192 12,288 16,384

Table 3: Memory used by the grid approach with three

different grid sizes.

The navmesh is represented by a structure that

stores tiles, polygons, vertices and polygon adjacency,

as well as other information required to find paths be-

tween polygons. In addition, an extra structure is de-

fined to store the shortest routes, entrances, exits, ar-

eas, storyboards and a search grid used to accelerate

the polygon search to determine the position of each

agent. A disadvantage of the navmesh is that finding

the polygon in which an agent is located requires test-

ing the agent position against each polygon, whereas

in the grid, the location of the agent can be directly

mapped to a grid cell. Table 4 shows the number of

tiles, polygons and vertices generated for three voxel

sizes and also the memory used by the navmesh struc-

ture. Table 5 shows the memory used by the additional

structure with different voxel sizes and multiple exits.

Voxel

size

No.

tiles

No.

polygons

No.

vertices

Memory

used (kB)

0.5 44 516 1,363 80.2

0.25 168 911 2,643 163

0.1 921 2,213 7,310 499

Table 4: Number of elements generated by the

navmesh with different voxel size, and memory used.

Figures 27 and 28 compares the memory used by

three grids and three navmeshes, each with different

sizes. It illustrates that the memory used by a grid is

directly proportional to its resolution and the number

of exits. When the number of cells is quadrupled, the

memory usage is also increased fourfold. The grid ap-

proach has poor scalability. For the navmesh, memory
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 26: Grid and navmesh representation of the environment. Top row shows three grids with different

resolutions: (a) original environment, (b) 128x128, (c) 256x256 and (d) 512x512. Bottom row shows three

navmeshes with different voxel size: (e) original environment, (f) 0.5, (g) 0.25 and (h) 0.1.

Structure memory (kB)

No. exits

Voxel size 1 3 5 7

0.5 260 263 265 267

0.25 379 387 386 390

0.1 701 710 719 728

Table 5: Memory used by the structure storing the

shortest paths with multiple exits.

usage also increases with the number of tiles, poly-

gons and exits, however, the growth rate is lower. The

navmesh approach scales better with the size of the

environment. In terms of memory usage, it is a more

suitable option for large environments.

5.3 Computation Time

To compare the performance of both approaches, the

time taken by three functions was measured: construc-

tion, update and pathfinding. A grid is built by using

vertical raycasting to segment the world into cells. The

update time is the amount of time taken to change the

values of the grid when the environment is dynami-

cally updated. Pathfinding uses a wavefront propa-

gation algorithm to calculate the distance from each

grid cell to the corresponding goal and the result is

smoothed to create more realistic paths. Table 6 shows
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Grid Memory Usage
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Figure 27: Memory used in megabytes (MB) by three

grid sizes and multiple exits: 128x128 (blue), 256x256

(red) and 512x512 (green).

the time taken by these functions for three grids with

multiple exits. The update times are similar since only

the affected cells are updated. However, the paths must

be recalculated, which requires more time as the grid

resolution increases.

The process of building and updating a navmesh is

described in Section 3. Table 7 shows the times for

these processes and the pathfinding algorithm. The

construction time is an issue for the navmesh ap-

proach. For a static environment, the navmesh can

be created just once in an offline stage. For a dy-
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Figure 28: Memory used in kilobytes (kB) by three

navmeshes with different voxel size and multiple exits:

0.5 (blue), 0.25 (red) and 0.1 (green).

namic environment, such as a sketching environment,

the navmesh must be recalculated when the environ-

ment changes. However, using the tiled approach of

RECAST, where the mesh is updated locally, amelio-

rates the cost. The update time is similar for each case

since the number of voxels per tile is the same.

Figure 29 plots the time taken by the pathfinding al-

gorithm for different size grids and navmeshes. For

the navmesh, the major issue is that this time increases

as the number of polygons grows. Sketching barriers,

flowlines and areas creates more polygons, thus exac-

erbating the problem. Higher computation times could

compromise the real time interaction with the simula-

tion. This may be an issue in complex environments

or with a large number of destinations.

6 Dynamic environment knowledge

Modifying the environment in real-time presents new

challenges. In the system described in the previous

sections, the environment changes made by the user

are immediately mapped to a single navmesh, which is

used to guide agents through the environment. Pedes-

trians react instantly to user sketches. Each person

Pathfinding (s)

No. exits

Size Build (s) Update (s) 1 3 5 7

128x128 0.071 0.00003 0.003 0.008 0.019 0.029

256x256 0.279 0.0001 0.031 0.050 0.075 0.135

512x512 0.944 0.0005 0.062 0.251 0.324 0.45

Table 6: Time taken to create and update three grids of

different sizes and to find the shortest paths for several

goals.

Pathfinding (s)

No. exits

Size Build (s) Update (s) 1 3 5 7

0.5 0.134 0.003 0.003 0.009 0.015 0.024

0.25 0.492 0.002 0.009 0.031 0.054 0.078

0.1 3.433 0.004 0.076 0.253 0.427 0.597

Table 7: Time taken to create and update three

navmeshes with different voxel sizes and to find the

shortest paths for several goals.
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Figure 29: Time taken in seconds to calculate the

shortest paths in grids and navmeshes with different

sizes.

recalculates their route based on all the obstacles in

the environment, including any newly sketched bar-

rier which may not yet be visible. This issue raises

the question of when agents should react to dynamic

changes.

Previous work has proposed solutions to represent

dynamic environments using constrained Delaunay tri-

angulations [KBT04], adaptive roadmaps [SGA+07]

and navmeshes [vTCG12]. However, these structures

are immediately updated after dynamic obstacles are

introduced into the environment and there is no dis-

cussion of when the crowd should react to the new

environment. We explore this issue by implementing

possible solutions and considering their performance

implications to find the most suitable alternative for

producing a more realistic simulation. Two main types

of environment knowledge are considered: immediate

and dynamic. Immediate, as its name suggests, means

that pedestrians gain knowledge of any environment

modification immediately after the user input. Dy-

namic means that pedestrians react to changes either

when they see or hear about the change.
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6.1 Immediate knowledge

Here, pedestrians gain knowledge of any environment

modification immediately after the user input. This

has the potential to produce unrealistic behaviour since

agents that are located far away from the modified area

change their path without seeing the change. Further-

more, any new pedestrians spawn with entire knowl-

edge of the new environment, and thus follow the

recalculated shortest path. This behaviour would be

plausible in the unlikely scenario where all the pedes-

trians are notified in real-time (i.e. by a news item on

their mobile phone, radio, etc.) of the dynamic up-

dates, but this is an unlikely scenario. A route closure

due to an ongoing incident is not necessarily immedi-

ately known to everyone in an environment.

6.2 Dynamic knowledge

Two kinds of dynamic reaction are identified: seeing

(proximity-based) and hearing (time-based). This pro-

duces more realistic behaviour as people adjust their

path only when they become aware of a change to the

environment. We’ll focus on barriers. A new barrier

may block a route or a route may become available

when a barrier is removed. For seeing knowledge,

agents could be equipped with a visual sensor, as in

[PHDL07]. We use a simpler approach based on radial

distance. Agents ”see” barriers based on proximity

from the centre of the barrier. Time-based knowledge

depends on a timer associated with a barrier sketched

by the user. The barrier broadcasts knowledge of the

change to all pedestrians after the elapsed time.

6.3 Comparison

Immediate knowledge within a simulation is the eas-

iest solution. It requires no extra data structures

to handle different pedestrians. Only one copy of

the navmesh is required to handle all the obstacles

sketched by users. Consequently, only one path cal-

culation per polygon is performed per exit after each

environment update. But gaining immediate knowl-

edge of a change does not accurately model the real

world.

In the dynamic approach, each agent has a differ-

ent knowledge of a changing environment depending

on what they have discovered, whether by seeing or

hearing. A way to support dynamic knowledge is

to use more than one navmesh for the environment.

We’ll again focus on barriers. A naive implementation

would be to have every agent store its own navmesh

and update it every time a barrier is discovered. How-

ever, this is unfeasible for large crowds and it is an

inefficient solution since the same navmeshes are re-

peated thousands of times. A more suitable alterna-

tive is to have as many navmeshes as combinations

of barriers: number of navmeshes = 2
n, where n is

the number of barriers. In this manner, pedestrians

would use the navmesh that includes the barriers they

have discovered so far. A disadvantage of this imple-

mentation is that the navmesh path finding time and

memory used grow exponentially, for both dynamic

approaches, based on the number of barriers, as shown

in Figures 30 and 31.
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Figure 30: Comparison of the time taken in seconds to

calculate the shortest path with multiple barriers by the

dynamic and immediate knowledge approaches. The

time for dynamic knowledge is the same for both ap-

proaches: vision and time.
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Figure 31: Comparison of the memory used by the

navmeshes in the the dynamic and immediate knowl-

edge approaches with multiple barriers. The mem-

ory for dynamic knowledge is the same for both ap-

proaches: vision and time

Figures 32 and 33 show frames of the same simula-
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tion running for each different knowledge approach,

immediate, seeing and seeing+hearing. Figure 32

shows barriers being added. Figure 33 then shows the

barriers being deleted. The left column in each figure

is labelled Immediate knowledge, the middle is Vi-

sion knowledge and the right is Vision+Time knowl-

edge, corresponding to immediate, seeing and see-

ing+hearing knowledge, respectively. In each simu-

lation, agents move from the yellow entrance at the

top to the red exit in the bottom building. As barriers

appear and disappear during a simulation, pedestrians

adjust their path accordingly, depending on the type

of environment knowledge. Agents are represented by

coloured circles depending on the navmesh they are

using to clearly show the environment knowledge they

possess at that time. In the simulations with immedi-

ate knowledge (Immediate column), agents are always

shown in red since all the modifications are made to

one navmesh. For other kinds of knowledge, different

colours are used.

Consider the second row of Figure 32, after sketch-

ing the first barrier. In the Immediate column, the

agents are walking along the second corridor between

the buildings on the left. In the Vision and Vi-

sion+Time approaches only pedestrians that have seen

the barrier (blue circles) are trying to walk around the

building. In the third row of Figure 32 a second barrier

has been sketched and the spawning pedestrians in the

Vision+Time simulation have turned blue since they

have been notified of the existence of the first barrier.

Agents with only Vision knowledge are still follow-

ing the original path until they walk within the barrier

proximity radius.

7 Conclusions

This paper has presented a solution for real-time con-

trol of virtual crowds without the need for technical

knowledge and complex parameter tuning. Users can

guide the pedestrian flow by sketching directly in the

environment while the simulation is running. Multi-

ple elements can be defined by sketching or clicking:

entrances/exits, obstacles to block paths, flow lines to

guide agents, waypoint areas, and storyboards to spec-

ify the journeys of the pedestrians. A timeline inter-

face administers the simulation of events through the

day. The underlying navigation approach used is a

navmesh created with a modified version of the open

source tool RECAST. The navmesh is a better alter-

native for navigation, since it represents the environ-

ment more accurately and requires less memory than

the grid-based approach, although computation time is

similar for both approaches. However, the navmesh

approach has some limitations. The initial construc-

tion time (which can be done in an offline step) and

the addition of new elements increases the number of

polygons and consequently the path-finding computa-

tion time. Initial work has been done to reduce the

number of polygons, but further work is required. We

also addressed the issue of when a pedestrian should

know about a change to the environment. Three kinds

of knowledge were considered: immediate, seeing and

hearing. The latter two increase the memory require-

ments for the environment. This is an area for further

work. We also intend to run a user study looking at the

ease of use of the interface as environment complexity

increases.
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Immediate Vision Vision + Time

Figure 32: Frames of a simulation running for each different knowledge approach. Pedestrians move from the

yellow entrance at the top to the red exit in the bottom building whilst barriers appear at different times to block

their path. Agents are represented by coloured circles depending on the environment knowledge they possess

at that time. The left column shows Immediate knowledge, where agents react instantly to any environment

change. The middle column shows the Vision approach, where pedestrians become aware of barriers when

they “see” them by walking inside their proximity radii (dashed orange circles). The right column illustrates

the Vision+Time time solution, where agents become aware of the existence of a barrier in two ways: by seeing

them, as in the Vision approach, or by being notified a short period of time after the barrier was created.
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Immediate Vision Vision + Time

Figure 33: Frames of a simulation running for each different knowledge approach. Pedestrians move from the

yellow entrance at the top to the red exit in the bottom building whilst the barriers disappear at different times

to modify their path. Agents are represented by coloured circles depending on the environment knowledge

they possess at that time. The left column shows Immediate knowledge, where agents react instantly to any

environment change. The middle column shows the Vision approach, where pedestrians become aware of

barriers when they “see” them by walking inside their proximity radius (dashed orange circles). Thus, agents

do not adjust their current path when barriers disappear. The right column illustrates the Vision+Time solution,

where agents become aware of an environment change in two ways: by seeing it, as in the Vision approach, or

by being notified a short period of time after the modification.
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uum Crowds, ACM Transactions

on Graphics 25 (2006), no. 3,

1160–1168, ISSN 0730-0301, DOI

10.1145/1141911.1142008.

[TYK+09] Shigeo Takahashi, Kenichi Yoshida,

Taesoo Kwon, Kang Hoon Lee, Jehee

Lee, and Sung Yong Shin, Spectral-

Based Group Formation Control,

Computer Graphics Forum 28 (2009),

no. 2, 639–648, ISSN 0167-7055, DOI

10.1111/j.1467-8659.2009.01404.x.

[UCT04] Branislav Ulicny, Pablo de Heras

Ciechomski, and Daniel Thal-

mann, Crowdbrush: Interactive

Authoring of Real-time Crowd

Scenes, Proceedings of the 2004

ACM SIGGRAPH/Eurographics

Symposium on Computer Ani-

mation (Goslar, DEU), SCA ’04,

Eurographics Association, 2004,

DOI /10.1145/1028523.1028555,

p. 243–252, ISBN 3-905673-14-2.

[UT01] Branislav Ulicny and Daniel Thal-

mann, Crowd simulation for in-

teractive virtual environments and

VR training systems, Computer

Animation and Simulation 2001

(Nadia Magnenat-Thalmann and

Daniel Thalmann, eds.), Springer

Vienna, 2001, DOI 10.1007/978-3-

7091-6240-8 15, pp. 163–170, ISBN

978-3-7091-6240-8.

[UT02] Branislav Ulicny and Daniel Thal-

mann, Towards Interactive Real-Time

Crowd Behavior Simulation, Com-

puter Graphics Forum 21 (2002),

no. 4, 767–775, ISSN 0167-7055, DOI

10.1111/1467-8659.00634.

[vTCG11] Wouter G. van Toll, Atlas F. Cook,

and Roland Geraerts, Navigation

Meshes for Realistic Multi-Layered

Environments, 2011 IEEE/RSJ

International Conference on Intel-

ligent Robots and Systems, 2011,

DOI 10.1109/IROS.2011.6094790,

pp. 3526–3532, ISBN 978-1-61284-

456-5, 978-1-61284-454-1.

[vTCG12] Wouter G. van Toll, Atlas F. Cook,

and Roland Geraerts, A naviga-

tion mesh for dynamic environments,

Computer Animation and Virtual

Worlds 23 (2012), no. 6, 535–546,

ISSN 1546-4261, 1546-427X, DOI

10.1002/cav.1468.

[XJY+08] Jiayi Xu, Xiaogang Jin, Yizhou

Yu, Tian Shen, and Mingdong

Zhou, Shape-constrained flock an-

imation, Computer Animation and

Virtual Worlds 19 (2008), no. 3-4,

319–330, ISSN 1546-4261, DOI

10.1002/cav.231.

[XWY12] Mingliang Xu, Yunpeng Wu, and

Yangdong Ye, Smooth and Efficient

Crowd Transformation, Proceedings

of the 20th ACM International Con-

ference on Multimedia (New York,

NY, USA), MM ’12, Association

for Computing Machinery, 2012,

DOI 10.1145/2393347.2396415,

pp. 1189–1192, ISBN

9781450310895.

[XWY+15] Mingliang Xu, Yunpeng Wu, Yang-

dong Ye, Illes Farkas, Hao Jiang,

and Zhigang Deng, Collective

Crowd Formation Transform with

Mutual Information-Based Run-

time Feedback, Computer Graphics

Forum 34 (2015), no. 1, 60–73,

ISSN 0167-7055, 1467-8659, DOI

10.1111/cgf.12459.

[YCP+08] Hengchin Yeh, Sean Curtis, Sachin

Patil, Jur van den Berg, Dinesh

urn:nbn:de:0009-6-53490, DOI 10.48663/1860-2037/16.2019.3, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 16(2019), no. 3

Manocha, and Ming Lin, Composite

Agents, Proceedings of the 2008

ACM SIGGRAPH/Eurographics

Symposium on Computer Animation

(Goslar, DEU), SCA ’08, Eurograph-

ics Association, 2008, pp. 39–47,

ISBN 9783905674101.

[YMDHC+05] Barbara Yersin, Jonathan Maı̈m,

Pablo De Heras Ciechomski,
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