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Abstract: With a high potential to generate biomass, maize stover arises as an outstanding feedstock
for biofuel production. Maize stover presents the added advantage of being a multiple exploitation
of the crop as a source of food, feed, and energy. In this study, contrasting groups of recombinant
inbred lines (RILs) from a maize multiparent advanced generation intercross (MAGIC) population
that showed variability for saccharification efficiency were screened by FTIR-ATR spectroscopy to
explore compositional differences between high and low saccharification yielders. High and low
saccharification efficiency groups differed in cell wall compositional features: high saccharification
RILs displayed higher proportions of S subunits, aromatic compounds, and hemicellulose as opposed
to low saccharification efficiency groups in which FTIR predicted higher proportions of lignin, more
precisely lignin being richer in subunits G, and greater proportions of crystalline cellulose and acetyl
methyl esters. The application of FTIR-ATR spectroscopy in this material allowed us to obtain a
rapid and broad vision of cell wall compositional features in contrasting groups of saccharification
efficiency. These results helped us to deepen our knowledge into the relationship between cell
wall composition and biorefining potential; they also allowed us to establish new targets for future
research regarding lignocellulosic bioconversion.

Keywords: FTIR-ATR; saccharification efficiency; cell wall; MAGIC

1. Introduction

Besides its uses as food and feed, maize stover after ear removal can have biorefinery
applications. Cellulosic ethanol derived from fast growing C4 crops has become one of the
preferred alternatives to fossil fuels due to their high biomass yields, broad geographic
adaptation, carbon sequestration, and nutrient utilization [1,2]. Maize has a high biomass
yield potential (5.2 tons of dry matter/ha; dry biomass yield) and has been proposed as an
outstanding model for biofuel production [3,4].

Lignocellulosic feedstock, such as maize stover, is highly abundant and readily avail-
able as substrates for second-generation biofuel production [1,5]. It is typically composed
of 39.4% cellulose, 33.1% hemicelluloses, and 14.9% lignin [6]. Lignin concentration and
composition present variations among taxa and tissue types [7]. In mature stalk, G and S
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lignin units are prevalent compared to H units with average ratios that are nearly equal to
35% and 4%, respectively [8].

The conversion of lignocellulosic biomass to ethanol is a three-step process, namely
(i) a pretreatment stage, followed by (ii) a hydrolytic degradation of carbohydrates to
the constituent sugar monomers (saccharification), and (iii) a final fermentation of the
free sugars to ethanol [9]. The main obstacle for the biomass fermentation process is cell
wall recalcitrance, defined as cell wall resistance to degradation by microbial cellulolytic
complex. Recalcitrance increases the energy requirements, the cost, and complexity of bio
refinery operations and reduce the recovery of biomass carbon into desired products [10].
Therefore, the reduction of cell wall recalcitrance by overcoming chemical and structural
properties of the cell wall is expected to improve saccharification efficiency and increase
the sugars that could be fermented [11].

The saccharification process is dependent on the composition and architecture of the
cell wall. One of the key traits for the processing of plant biomass to produce biofuels
and biomaterials is cell wall quality [12,13]. Efforts to reduce the inherent recalcitrance
of bioenergy feedstock have focused on understanding how variations in lignin content,
composition, and structure can alter the bioconversion process. Lignin reduces the effi-
cacy of enzymatic saccharification processes by adsorbing and nonproductively binding
to hydrolytic enzymes [14,15] and by physically shielding cellulose microfibrils from en-
zymatic attack [12]. The variations in lignin monomeric composition (such as the way
lignin monomers are linked or the increase in S-lignin proportions) have proven useful for
enhancing extraction efficiency. A key determinant of cell wall architecture are crosslinks
between polysaccharides and lignin via hydroxycinnamates [12]. These bonds restrict the
accessibility of exogenous enzymes to the cell wall polysaccharides, hindering biomass
hydrolysis [6,13]. Finally, the degree of polymerization of the cellulose and its crystallinity
index have also been associated to reductions in biomass recalcitrance [15–17].

López-Malvar et al. [18] evaluated a subset of recombinant inbred lines (RILs) de-
rived from a multiparent advanced generation intercross (MAGIC) population, and they
found variability for saccharification efficiency in samples of maize stover after alkaline
pretreatment. From that RIL subset, we selected the lines showing the highest and lowest
saccharification efficiency, and in the current study we screen them by Fourier-transform
infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR) which, in contrast
to analytical/biochemical methods, is a rapid, noninvasive and powerful high-throughput
tool to study the cell wall. This technique has been extensively used for the study of
the cell wall components, crosslinking, and carbohydrate constituents and their organiza-
tion [19,20].

The aim of this study is to take advantage of this spectroscopy technique applied to
contrasting saccharification efficiency groups in order to elucidate differences in the cell
wall composition and architecture of high and low sugar-yielding RILs. In addition, as far as
we know, this is first time that FTIR-Principal Component Analysis is used on maize RILs to
correlate cell wall traits with saccharification. It is expected that the results obtained in this
research will show the relationship between the composition of the wall and the cellulose
bioconversion process in stover samples from highly variable RILs, which could reveal key
aspects to optimize the conversion of not only lignocellulosic biomass biorefinery but also
other promising bioproducts such as biogas via fermentation with anaerobic bacteria or
nonbiofuel-related products derived from fermentation of lignocellulose derived sugars.

2. Material and Methods

A subset of 408 RILs and the eight founders of a MAGIC population developed
by the Maize Genetics and Breeding group at Misión Biológica de Galicia-CSIC [21,22]
were evaluated in single augmented design with 10 blocks in Pontevedra for two years
(2016, 2017). Saccharification efficiency was considered as the amount of released sugars
(nmol mg−1 material−1 h−1) after alkaline pretreatment: 0.5 M NaOH at 90 ◦C for 30 min,
washed four times with 500 µL sodium acetate buffer, and subjected to enzymatic digestion
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(Celluclast CTec2, 7FPU/g) at 50 ◦C for 8 h [23]. For detailed material and methods
determination, see López-Malvar et al. [18]

2.1. Fourier-Transform Infrared Spectroscopy

Attenuated total reflectance Fourier transform mid-infrared (FTIR-ATR) spectroscopy
was performed on all samples included in this study, as reported elsewhere [20,24]. Dupli-
cate spectra were collected in the range 4000–400 cm−1 using a Bruker Optics Vertex 70 FTIR
spectrometer purged by CO2-free dry air and equipped with a Brucker Platinum ATR single
reflection diamond accessory. A Ge on KBr substrate beamsplitter and a liquid nitrogen-
cooled wide-band mercury cadmium telluride (MCT) detector were used. Spectra were
averaged over 32 scans at a resolution of 4 cm−1, and the 3-term Blackman–Harris apodiza-
tion function was applied. The Bruker Opus 8.1 software was also used for (i) removing
eventual H2O and CO2 contributions and (ii) spectral smoothing using the Savitzky–Golay
algorithm. Absorbance spectra were further preprocessed using in-house built functions in
MATLAB (v. R2014b; MathWorks, Natick, MA, USA). Full spectra, or fingerprint region
spectra (1800–800 cm−1), were averaged (per replicate), vector normalized to unit length,
and the baseline was removed according to the automatic weighted least squares algorithm
(polynomial order = 2) prior to statistical analysis, using the Eigenvector PLS Toolbox (v.
7.9; Eigenvector Research, Wenatchee, WA, USA). For the t-tests on spectral data to unveil
the underlying chemometric relationships between FTIR-ATR spectra, an R-based data
analysis platform was used [Chong 2018-https://doi.org/10.1093/nar/gky310 (accessed
on 1 August 2020)].

2.2. Statistical Analysis

An analyses of variance was done for saccharification efficiency according to the SAS
mixed-model procedure (PROC MIXED) of the SAS program, version 9.4 (SAS Institute
2015). Inbred lines were considered as the fixed effects, while years, replication within
years, and lines × year were considered random effects. The comparison of means among
inbred lines was carried out using Fisher’s protected least significant difference (LSD). In
order to classify the RILs into high- and low-saccharification groups, data from each year
were considered separately since we observed the RIL x year interaction. From each year
we selected a total of 60 RILs according to its saccharification efficiency (30 high yielders,
30 low yielders). High and low groups differed significantly in their saccharification
efficiency (LSD < 0.01).

3. Results and Discussion

A subset of 408 RILs from a maize MAGIC population were evaluated for saccha-
rification efficiency and analyzed by FTIR-ATR spectroscopy in field experiments over
two years.

RILs differed significantly for saccharification efficiency (Supplementary Table S1). A
total of 778 samples of maize ground biomass were analyzed in duplicate by FTIR-ATR
spectroscopy, for a total of 1556 data points. A preliminary principal component analysis
(PCA) model was calculated, including all the data. No natural data clusters were detected,
suggesting that the samples were not significantly distinct from each other.

We observed a large influence of the year for saccharification efficiency, but we did not
observe a yearxgenotype interaction, indicating that even though saccharification efficiency
value ranges are different for each year, RILs that in one year present high saccharification
efficiency would also present high values in the other year (data not shown).

Using the information from the best linear unbiased estimator (BLUEs) from each
year, the 30 lowest and the 30 highest lines according to the saccharification yields were
selected to form two extreme groups (Table 1). A t-test (p ≤ 0.001) was performed for each
variable (wavenumber) to compare between high- and low-saccharification groups. For
the 2016 assay, 208 variables were significantly different, whereas for 2017, 121 variables
were significantly different. Two PCA models (2016 and 2017) were calculated based
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on these highly significantly different variables. In both cases, separation between high-
and low-saccharification groups occurred along PC1 (Figure 1). Subsequently, based on
PC1 loadings, tentative compositional attributions were made (Table 2) in order for us to
understand the underlying relationships between the groups of spectra.

Table 1. Saccharification efficiency data, means, and range for two years (2016, 2017) in selected RILs
from a MAGIC population classified in high and low saccharification yielders.

2016 2017

RILs
Saccharification

(nmol mg−1

material−1 h−1)
RILs

Saccharification
(nmol mg−1

material−1 h−1)

Low

EPS21LR-415 70.354 EPS21LR-267 138.409

EPS21LR-494 73.340 EPS21LR-280 140.569

EPS21LR-629 77.574 EPS21LR-560 142.657

EPS21LR-711 78.112 EPS21LR-347 142.719

EPS21LR-289 78.183 EPS21LR-283 142.979

EPS21LR-748 78.336 EPS21LR-409 143.652

EPS21LR-472 79.001 EPS21LR-597 143.789

EPS21LR-643 79.213 EPS21LR-703 143.864

EPS21LR-414 79.443 EPS21LR-260 144.628

EPS21LR-526 79.588 EPS21LR-698 144.732

EPS21LR-316 80.571 EPS21LR-522 148.238

EPS21LR-353 80.747 EPS21LR-670 149.194

EPS21LR-547 81.101 EPS21LR-614 149.238

EPS21LR-317 81.409 EPS21LR-348 150.578

EPS21LR-698 81.641 EPS21LR-398 150.623

EPS21LR-753 82.205 EPS21LR-284 151.153

EPS21LR-675 82.983 EPS21LR-578 152.176

EPS21LR-416 82.984 EPS21LR-619 152.182

EPS21LR-524 83.346 EPS21LR-514 152.870

EPS21LR-285 83.747 EPS21LR-617 152.978

EPS21LR-750 83.753 EPS21LR-427 153.046

EPS21LR-522 83.909 EPS21LR-414 153.132

EPS21LR-426 83.936 EPS21LR-462 153.548

EPS21LR-284 83.998 EPS21LR-669 153.581

EPS21LR-759 84.292 EPS21LR-253 154.624

EPS21LR-251 84.670 EPS21LR-740 155.013

EPS21LR-378 84.768 EPS21LR-361 155.073

EPS21LR-677 85.155 EPS21LR-682 155.156

EPS21LR-257 85.341 EPS21LR-411 155.316

EPS21LR-478 85.468 EPS21LR-276 155.693

Means 81.306 Means 149.380

Range 70.354–85.468 Range 138.409–155.693
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Table 1. Cont.

2016 2017

RILs
Saccharification

(nmol mg−1

material−1 h−1)
RILs

Saccharification
(nmol mg−1

material−1 h−1)

High

EPS21LR-749 114.589 EPS21LR-539 196.892

EPS21LR-623 114.671 EPS21LR-304 196.911

EPS21LR-663 114.899 EPS21LR-325 196.961

EPS21LR-395 115.104 EPS21LR-483 197.079

EPS21LR-259 115.128 EPS21LR-753 197.152

EPS21LR-261 115.189 EPS21LR-646 197.893

EPS21LR-243 115.207 EPS21LR-598 198.361

EPS21LR-489 115.817 EPS21LR-451 199.220

EPS21LR-337 116.051 EPS21LR-396 200.177

EPS21LR-473 116.829 EPS21LR-442 200.615

EPS21LR-657 117.058 EPS21LR-655 201.290

EPS21LR-709 117.321 EPS21LR-381 201.830

EPS21LR-325 117.476 EPS21LR-515 202.263

EPS21LR-653 117.506 EPS21LR-672 203.171

EPS21LR-720 117.547 EPS21LR-482 203.753

EPS21LR-503 117.935 EPS21LR-259 203.789

EPS21LR-405 118.170 EPS21LR-487 204.326

EPS21LR-695 118.372 EPS21LR-412 204.728

EPS21LR-512 118.901 EPS21LR-343 204.963

EPS21LR-726 119.333 EPS21LR-517 205.161

EPS21LR-560 119.530 EPS21LR-741 205.377

EPS21LR-514 120.591 EPS21LR-547 205.750

EPS21LR-741 120.596 EPS21LR-395 205.809

EPS21LR-733 120.959 EPS21LR-508 206.084

EPS21LR-668 121.101 EPS21LR-248 208.187

EPS21LR-364 121.287 EPS21LR-723 209.809

EPS21LR-246 121.350 EPS21LR-694 211.761

EPS21LR-584 123.927 EPS21LR-594 212.177

EPS21LR-511 125.722 EPS21LR-679 218.327

EPS21LR-743 127.652 EPS21LR-502 218.694

Means 118.527 Means 203.950

Range 114.589–127-652 Range 198.892–218.694
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Figure 1. Mean FTIR-ATR spectra of maize lignocellulosic biomass from high and low saccharification yield groups,
harvested in 2016 and 2017, in the range 1800–800 cm−1. Score plot of the PCA model calculated based on highly
significantly different variables (p ≤ 0.001), as calculated by t-tests (208 variables for 2016 and 121 variables for 2017). The
PC loadings plots indicate spectral regions (a–l) that are positively or negatively correlated to PC1, along which group
separation occurred. Table 2 shows the wavenumbers corresponding to each region.

In the 2016 model, the high-saccharification group was clustered on the negative
portion of PC1, which is negatively correlated with spectral bands ascribed to the molec-
ular features associated to syringyl (S-lignin) units (f ), aromatic compounds (j), and to
hemicelluloses (l) (Table 2, Figure 1) [24–29]. By contrast, PC1 is positively correlated with
spectral regions ascribed to lignin structural features, namely to guaiacyl (G-lignin) units (c,
h, and i), and to cellulose structural features, e.g., to crystalline cellulose (g and k) (Table 2,
Figure 1) [26,28,30–36]. Given that the low-saccharification group is mostly clustered on
the positive side of PC1, samples classified as low yielders were predicted to have higher
proportions of these compositional and structural cell wall traits.

In the 2017 model, the high-saccharification group is clustered on positive regions
of PC1, which is negatively correlated to the following structural features: acetyl and
methyl esters (a), lignin (h), and cellulose structural features (d and e), such as its degree of
crystallinity (g) (Table 2, Figure 1) [30–45].

Table 2. Assignment of relevant FTIR-ATR absorption bands characteristic of maize cell wall biomass.

PC1 Loading
Spectral Region

Wavenumber (cm−1) Reference Assignment Biomass Constituent

a
1740
1735
1734

[37,40,43,44] C=O stretching Acetyl and methyl esters

b 1550 [29,30,37]
Amide II (N-H deformation
and stretching contribution

from C-N stretching)
Proteins
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Table 2. Cont.

PC1 Loading
Spectral Region

Wavenumber (cm−1) Reference Assignment Biomass Constituent

c
1504
1500 [26,28] Aromatic skeletal vibrations

in guaiacyl rings Lignin

d 1336 [38,41] C-H in plane deformation Cellulose

e

1328
1311
1318
1311

[38,39,43–46]
OH in-plane bending CH2

wagging CH in plane
scissoring

Cellulose

f
1224
1219
1220

[27,28] C–O stretch in syringyl rings Lignin

g

1160
1161
1163
1157

[30–35] C–O–C asymmetric
stretching

Crystalline cellulose;
associated to modifications

cellulose-I > cellulose-II;
linked to celluloses

crystallinity features

h 1116 [31,36] Aromatic C–H deformation Lignin

i
1035
1041
1040

[24,29,47]

Aromatic C–H in plane
deformation, G > S; plus

C–O deformation in primary
alcohols; plus C=O stretch

(unconjugated)

Lignin

j 915–925 [24,29] C-H out-of-plane; aromatic
compounds Aromatic compounds

k 898 [35] C–O–C stretching Cellulose

l
872
875 [25] Glycosidic linkage in

hemicelluloses Hemicellulose

Biomass hydrolysis is a key factor in lignocellulosic deconstruction during biofuel
production. Among other cell wall components such as ester linked hydroxycinnamates or
arabinose/xylose ratio, lignin has been pointed out as one of the most important polymer in
the determination of biomass recalcitrance, not only because it makes the biomass resistant
to digestion, but also because lignin fractions adsorb enzymes, reducing their access to
the polysaccharides [47–49]. Reductions in lignin content are positively correlated with
increases of cell wall hydrolysis efficiency [50,51]. This is supported by the results obtained
in this study, as higher saccharification yields in 2017 are related with FTIR predictions
of decreasing concentrations of lignin. Besides total lignin content, its composition and
the manner in which it binds holocellulose within the cell wall matrix is often seen as
a feature of cell wall recalcitrance to enzymatic deconstruction [47]. Modifications in
the phenylpropanoid pathway, through enzymes directly changing lignin content and
monolignol composition, were associated with increases in saccharification efficiency in
several crops [52]. For example, transgenic switchgrass lines with reduced cinnamyl alcohol
dehydrogenase (CAD) levels and consequently reduced lignin content and altered lignin
composition showed improved sugar release [53]. Similarly, Fornalé et al. [54] studied the
effect of CAD downregulation on lignin S/G ratio, among other cell wall components,
through a transgenic approach in maize. They observed a decrease in the syringyl-to-
guaiacyl (S/G) ratio by both a reduction in the syringyl (S) subunits and an increase of the
guaiacyl (G) and p-hydroxyphenyl (H) subunits. Moreover, they observed that transgenic
plants produced 8% more cellulosic bioethanol than the wild type. The results obtained
in the present study support the idea that lignin monomeric composition influences the
saccharification efficiency of the feedstock. High saccharification yields in this MAGIC
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population correlate with lignin subunits, i.e., lower proportions of G subunits in contrast
to higher proportions of S subunits, which are known to promote saccharification efficiency.
S units can only form β-O-4- (β-aryl ether) inter-unit linkages, which are easily cleaved
onto. By contrast, G units have the availability of the C5 position for coupling. Lignin
composed mainly of G units contain more resistant (β-5, 5-5, and 4-O-5) linkages than
lignins incorporating S units [55,56].

However, variation in cell wall recalcitrance is not only due to lignin content and
composition. In concordance with the results obtained, cell wall aromatic compounds,
such as ferulic acid, could be positively correlated to saccharification in grass species [57].
To support this, FTIR predicted that RILs classified in the low saccharification efficiency
group would present lower proportions of aromatic compounds.

On the other hand, lignocellulosic polysaccharides, mainly cellulose (40%), serve
as the main substrate for the fermentation of cell wall sugars in ethanol. In this way,
cell walls richer in cellulose have more sugars to potentially be fermented. The low-
saccharification groups in 2017 were predicted to present lower proportions of cellulose
structural features, which are detrimental for biomass deconstruction. The results obtained
in 2016 show that low-saccharification groups presented higher cellulose crystallinity,
indicating that crystallinity limit enzymatic degradability. Cellulose is composed of linear
chains of D-glucopyranose residues linked by β-(1-4) glucosidic bonds that result in the
formation of glucose dimers between adjacent chains that form a flat structure called
cellobiose that is repeated. The structure of the cellulose chains allows for the formation of
intermolecular hydrogen bridges. This results in a stable crystalline structure that provides
cellulose mechanical strength and stability, contrasting with amorphous less organized
regions [58]. The crystalline structure limits the penetration of water molecules and is highly
resistant to chemical and biological hydrolysis to form fermentable sugars [10,57,59,60],
thus decreasing saccharification efficiency and hydrolysis yield potential.

The interaction between cellulose and other cell wall features, such as the pattern of
xylan acetylation, also influences saccharification since a uniform pattern of xylan substitu-
tion is crucial within plant cells interactions with cellulose [61]. In grass cell walls, most
of the acetylation occurs in arabinoxylans, which modifies the interaction with cellulose
and lignin [62]. The role of acetylation in biomass recalcitrance was demonstrated in other
Poales species, such as in Miscanthus spp. [57]. In this study, we suggest that acetate could
cause steric hindrance of hydrolytic enzymes, thus inhibiting both saccharification and fer-
mentation. Pawar et al. [63] found that aspen plants with reduced xylan acetylation showed
25% higher glucose saccharification yield compared with wild types. They proposed that
de-acetylating xylan increases susceptibility to hydrolytic enzymes during saccharification
as well as promoting changes in the cell wall architecture that increase the extractability of
lignin and xylan.

4. Conclusions

This study is one of the first research that used FTIR-PCA on maize RILs to correlate
cell wall traits with saccharification. High- and low-saccharification groups differed in its
cell wall spectral features, and FTIR spectroscopy in this material revealed proper cell wall
compositional features for saccharification efficiency. The results presented here help us
to understand the relationship between maize cell wall composition and its potential for
biofuel production. This can allow for establishing new targets for future research and
breeding targets to tailor biorefinery feedstock, for which this maize MAGIC population
is a useful genetic tool that presents great advantages, such as high genetic diversity and
rapid linkage disequilibrium decay.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11061130/s1, Table S1. Average, range values and BLUEs for saccharification
efficiency in RILs of the MAGIC population.



Agronomy 2021, 11, 1130 9 of 11

Author Contributions: A.L.-M., R.M.F.d.C., R.A.M., and R.S. conceived and design the study. R.A.M.,
R.S., and A.L.-M. participated in its design and carried out the field trial and participated in sample
collection; A.L.-M. wrote the manuscript; L.F. and L.D.G. performed saccharification efficiency
analysis and contributed to the discussion of the manuscript; A.L.-M. and R.A.M. participated in
saccharification efficiency data analysis; R.M.F.d.C. performed FTIR-ATR and statistical analysis;
D.M. participated in spectral interpretation of FTIR-ATR; I.P.d.S. participated in statistical analysis
of FTIR-ATR; L.A.E.B.d.C. is responsible for the FTIR equipment, and contributed significantly to
the discussion of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research has been developed in the frame of the Agri-Food Research and Transfer
Centre of the Water Campus (CITACA) at the University of Vigo (Spain), which is economically
supported by the Galician Government and in the Misión Biológica de Galicia (CSIC). It was funded
by the “Plan Estatal de Ciencia y Tecnología de España” (projects RTI2018–096776-B-C21, and
RTI2018–096776-B-C22 cofinanced with European Union funds under the FEDER program). The
funding body played no role in study design, data analysis, and manuscript preparation. Further
support for the FTIR-ATR analyses came from the Project “RENATURE–Valorisation of the Natural
Endogenous Resources of the Centro Region” (CENTRO-01-0145-FEDER-000007) and the Portuguese
Foundation for Science and Technology (UIDB00070/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data sets used and/or analyzed during the current study will be
available upon request to the corresponding author. Vegetal materials are distributed to the scientific
community by Maize Genetics and Breeding group of MBG-CSIC upon request (http://www.mbg.
csic.es/en/plant-genetics-and-breeding-department/maize-genetics-and-breeding/rmalvar@mbg.
csic.es).

Conflicts of Interest: Authors declare that they have no conflict of interest.

References

1. Vermerris, W.; Saballos, A.; Ejeta, G.; Mosier, N.S.; Ladisch, M.R.; Carpita, N.C. Molecular breeding to enhance ethanol production
from corn and sorghum stover. Crop Sci. 2007, 47, S142. [CrossRef]

2. Van der Weijde, T.; Alvim Kamei, C.L.; Torres, A.F.; Vermerris, W.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M. The potential of C4
grasses for cellulosic biofuel production. Front. Plant Sci. 2013, 4, 1–18. [CrossRef]

3. Vermerris, W. Cell wall Biosynthetic Genes of Maize and their Potential for Bioenergy Production. In Handbook of Maize; Springer:
New York, NY, USA, 2009.

4. Courtial, A.; Soler, M.; Chateigner-Boutin, A.-L.; Reymond, M.; Mechin, V.; Wang, H.; Grima-Pettenati, J.; Barriere, Y. Breeding
grasses for capacity to biofuel production or silage feeding value: An updated list of genes involved in maize secondary cell wall
biosynthesis and assembly. Maydica 2013, 58, 67–102.

5. Dhugga, K.S. Maize biomass yield and composition for biofuels. Crop Sci. 2007, 47, 2211–2227. [CrossRef]
6. Pauly, M.; Keegstra, K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008, 54, 559–568.

[CrossRef] [PubMed]
7. Vanholme, R.; Cesarino, I.; Rataj, K.; Xiao, Y.; Sundin, L.; Goeminne, G.; Kim, H.; Cross, J.; Morreel, K.; Araujo, P.; et al. Genotypic

variation in phenolic components of cell-walls in relation to the digestibility of maize stalks. Plant Physiol. 2010, 11, 1–18.
[CrossRef]

8. Lapierre, C. Application of New Methods for the Investigation of Lignin Structure. In Forage Cell Wall Structure and Digestibility;
American Society of Agronomy, Inc.: Madison, WI, USA, 1993; pp. 133–166. [CrossRef]

9. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for
pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [CrossRef] [PubMed]

10. McCann, M.C.; Carpita, N.C. Biomass recalcitrance: A multi-scale, multi-factor, and conversion-specific property. J. Exp. Bot.

2015, 66, 4109–4118. [CrossRef]
11. Barrière, Y.; Méchin, V.; Riboulet, C.; Guillaumie, S.; Thomas, J.; Bosio, M.; Fabre, F.; Goffner, D.; Pichon, M.; Lapierre, C.; et al.

Genetic and genomic approaches for improving biofuel production from maize. Euphytica 2009, 170, 183–202. [CrossRef]
12. Selig, M.J.; Viamajala, S.; Decker, S.R.; Tucker, M.P.; Himmel, M.E.; Vinzant, T.B. Deposition of lignin droplets produced during

dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 2007, 23, 1333–1339. [CrossRef]
13. Mansfield, S.D.; Mooney, C.; Saddler, J.N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog.

1999, 15, 804–816. [CrossRef]



Agronomy 2021, 11, 1130 10 of 11

14. Berlin, A.; Balakshin, M.; Gilkes, N.; Kadla, J.; Maximenko, V.; Kubo, S.; Saddler, J. Inhibition of cellulase, xylanase and
β-glucosidase activities by softwood lignin preparations. J. Biotechnol. 2006, 125, 198–209. [CrossRef] [PubMed]

15. Nakagame, S.; Chandra, R.P.; Saddler, J.N. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic
substrates, on enzymatic hydrolysis. Biotechnol. Bioeng. 2010, 105, 871–879. [CrossRef] [PubMed]

16. Torres, A.F.; Visser, R.G.F.; Trindade, L.M. Bioethanol from maize cell walls: Genes, molecular tools, and breeding prospects. GCB

Bioenergy 2015, 7, 591–607. [CrossRef]
17. Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.;

et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 6185. [CrossRef]
18. López-Malvar, A.; Butron, A.; Malvar, R.A.; McQueen-Mason, S.J.; Faas, L.; Gómez, L.D.; Revilla, P.; Figueroa-Garrido, D.J.;

Santiago, R. Association mapping for maize stover yield and saccharification efficiency using a multiparent advanced generation
intercross (MAGIC) population. Sci. Rep. 2021, 11, 1–9. [CrossRef]

19. Oliveira, D.M.; Mota, T.R.; Grandis, A.; Morais, G.R.D.; Lucas, R.C.D.; Polizeli, M.L.T.M.; Marchiosi, R.; Buckeridge, M.S.;
Ferrarese-Filho, O.; Santos, W.D.D. Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renew. Energy

2020, 147, 2206–2217. [CrossRef]
20. Costa, R.M.F.D.; Barrett, W.; Carli, J.; Allison, G.G. Analysis of Plant Cell Walls by Attenuated Total Reflectance Fourier Transform

Infrared Spectroscopy. In The Plant Cell Wall; Humana: New York, NY, USA, 2020; pp. 97–313. ISBN 9781071606193.
21. Jiménez-Galindo, J.C.; Malvar, R.A.; Butrón, A.; Santiago, R.; Samayoa, L.F.; Caicedo, M.; Ordás, B. Mapping of resistance to corn

borers in a MAGIC population of maize. BMC Plant Biol. 2019, 19, 1–17. [CrossRef]
22. Butrón, A.; Santiago, R.; Cao, A.; Samayoa, L.; Malvar, R. QTLs for Resistance to Fusarium Ear Rot in a Multiparent Advanced

Generation Intercross (MAGIC) Maize Population. Plant Dis. 2019, 103, 897–904. [CrossRef]
23. Gomez, L.D.; Whitehead, C.; Barakate, A.; Halpin, C.; McQueen-Mason, S.J. Automated saccharification assay for determination

of digestibility in plant materials. Biotechnol. Biofuels 2010, 3, 23. [CrossRef]
24. Faix, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforsch. Int. J. Biol. Chem. Phys. Technol.

Wood 1991, 43, 195–203. [CrossRef]
25. Kacuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic

polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [CrossRef]
26. Sills, D.L.; Gossett, J.M. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol.

Bioeng. 2012, 109, 353–362. [CrossRef] [PubMed]
27. Zhao, J.; Xiuwen, W.; Hu, J.; Liu, Q.; Shen, D.; Xiao, R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR

and Py-GC/MS. Polym. Degrad. Stab. 2014, 108, 133–138. [CrossRef]
28. Traoré, M.; Kaal, J.; Cortizas, A.M. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim.

Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 63–70. [CrossRef] [PubMed]
29. Cuello, C.; Marchand, P.; Laurans, F.; Grand-Perret, C.; Lainé-Prade, V.; Pilate, G.; Déjardin, A. ATR-FTIR microspectroscopy

brings a novel insight into the study of cell wall chemistry at the cellular level. Front. Plant Sci. 2020, 11, 1–13. [CrossRef]
30. Carpita, N.C.; Defernez, M.; Findlay, K.; Wells, B.; Shoue, D.A.; Catchpole, G.; Wilson, R.H.; McCann, M.C. Cell wall architecture

of the elongating maize coleoptile. Plant Physiol. 2001, 127, 551–565. [CrossRef]
31. Kubo, S.; Kadla, J.F. Hydrogen bonding in lignin: A fourier transform infrared model compound study. Biomacromolecules 2005, 6,

2815–2821. [CrossRef]
32. McCann, M.C.; Defernez, M.; Urbanowicz, B.R.; Tewari, J.C.; Langewisch, T.; Olek, A.; Wells, B.; Wilson, R.H.; Carpita, N.C.

Neural network analyses of infrared spectra for classifying cell wall architectures. Plant Physiol. 2007, 143, 1314–1326. [CrossRef]
33. Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR Spectra and PCA to the bulk characterization of cell wall residues of fruits and

vegetables along a fraction process. Food Biophys. 2013, 8, 29–42. [CrossRef]
34. Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by

FTIR spectroscopy. Carbohydr. Polym. 2014, 100, 9–16. [CrossRef] [PubMed]
35. Bekiaris, G.; Lindedam, J.; Peltre, C.; Decker, S.R.; Turner, G.B.; Magid, J.; Bruun, S. Rapid estimation of sugar release from winter

wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy. Biotechnol. Biofuels 2015, 8, 1–12. [CrossRef]
[PubMed]

36. Lupoi, J.S.; Singh, S.; Parthasarathi, R.; Simmons, B.A.; Henry, R.J. Recent innovations in analytical methods for the qualitative
and quantitative assessment of lignin. Renew. Sustain. Energy Rev. 2015, 49, 871–906. [CrossRef]

37. Christophe, F.; Séné, B.; Mccann, M.C.; Wilson, R.H.; Crinter, R. Fourier-transform Raman and Fourier-transform Lnfrared
spectroscopy. Plant Physiol. 1994, 106, 1623–1631.

38. Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci.

1999, 71, 1969–1975. [CrossRef]
39. Åkerholm, M.; Salmén, L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 2001, 42, 963–969.

[CrossRef]
40. McCann, M.C.; Bush, M.; Milioni, D.; Sado, P.; Stacey, N.J.; Catchpole, G.; Defernez, M.; Carpita, N.C.; Hofte, H.; Ulvskov, P.; et al.

Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 2001, 57, 811–821. [CrossRef]
41. Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib.

Spectrosc. 2007, 43, 13–25. [CrossRef]



Agronomy 2021, 11, 1130 11 of 11

42. Zhang, M.; Lapierre, C.; Nouxman, N.L.; Nieuwoudt, M.K.; Smith, B.G.; Chavan, R.R.; McArdle, B.H.; Harris, P.J. Location and
characterization of lignin in tracheid cell walls of radiata pine (Pinus radiata D. Don) compression woods. Plant Physiol. Biochem.

2017, 118, 187–198. [CrossRef]
43. Marchessault, R.H. To cellulose and wood polysaccharides. Pure Appl. Chem. 1962, 5, 107–130. [CrossRef]
44. Harrington, K.J.; Higgins, H.G.; Michell, A.J. Infrared spectra of Eucalyptus regnans F. Muell. and Pinus radiata D. Don. Holz-

forschung Int. J. Biol. Chem. Phys. Technol. Wood 1964, 18, 108–113.
45. Blackwell, J. Infrared and Raman Spectroscopy of Cellulose. In Cellulose Chemistry and Techology; ACS: Washington, DC, USA,

1977; pp. 206–218.
46. Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR

spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [CrossRef]
47. Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 2010, 153, 895–905.

[CrossRef] [PubMed]
48. Ding, S.Y.; Liu, Y.S.; Zeng, Y.; Himmel, M.E.; Baker, J.O.; Bayer, E.A. How does plant cell wall nanoscale architecture correlate

with enzymatic digestibility? Science 2012, 338, 1055–1060. [CrossRef] [PubMed]
49. Weng, J.; Li, X.; Bonawitz, N.D.; Chapple, C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel

production. Curr. Opin. Biotechnol. 2008, 19, 166–172. [CrossRef] [PubMed]
50. Li, X.; Weng, J.K.; Chapple, C. Improvement of biomass through lignin modification. Plant J. 2008, 54, 569–581. [CrossRef]
51. Xiong, W.; Wu, Z.; Liu, Y.; Li, Y.; Su, K.; Bai, Z.; Guo, S.; Hu, Z.; Zhang, Z.; Bao, Y.; et al. Mutation of 4-coumarate: Coenzyme

A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnol.

Biofuels 2019, 12, 1–13. [CrossRef] [PubMed]
52. Huang, R.; Su, R.; Qi, W.; He, Z. Bioconversion of lignocellulose into bioethanol: Process intensification and mechanism research.

Bioenergy Res. 2011, 4, 225–245. [CrossRef]
53. Fu, C.; Xiao, X.; Xi, Y.; Ge, Y.; Chen, F.; Bouton, J.; Dixon, R.A.; Wang, Z.Y. Downregulation of cinnamyl alcohol dehydrogenase

(CAD) leads to improved saccharification efficiency in switchgrass. Bioenergy Res. 2011, 4, 153–164. [CrossRef]
54. Fornalé, S.; Capellades, M.; Encina, A.; Wang, K.; Irar, S.; Lapierre, C.; Ruel, K.; Joseleau, J.P.; Berenguer, J.; Puigdomènech, P.; et al.

Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl
alcohol dehydrogenase. Mol. Plant 2012, 5, 817–830. [CrossRef]

55. Ralph, J.; Brunow, G.; Boerjan, W. Lignins. Encycl. Life Sci. 2007, 1–10. [CrossRef]
56. Wilkerson, C.G.; Mansfield, S.D.; Lu, F.; Withers, S.; Park, J.Y.; Karlen, S.D.; Gonzales-Vigil, E.; Padmakshan, D.; Unda, F.; Rencoret,

J.; et al. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 2014, 344, 90–93.
[CrossRef]

57. Costa, R.M.F.D.; Pattathil, S.; Avci, U.; Winters, A.; Hahn, M.G.; Bosch, M. Desirable plant cell wall traits for higher-quality
miscanthus lignocellulosic biomass. Biotechnol. Biofuels 2019, 12, 1–18. [CrossRef]

58. Kumar, M.; Turner, S. Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 2015, 112, 91–99. [CrossRef]
59. Hall, M.; Bansal, P.; Lee, J.H.; Realff, M.J.; Bommarius, A.S. Cellulose crystallinity—A key predictor of the enzymatic hydrolysis

rate. FEBS J. 2010, 277, 1571–1582. [CrossRef] [PubMed]
60. Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from

synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2003, 125, 14300–14306. [CrossRef]
61. Grantham, N.J.; Wurman-Rodrich, J.; Terrett, O.M.; Lyczakowski, J.J.; Stott, K.; Iuga, D.; Simmons, T.J.; Durand-Tardif, M.; Brown,

S.P.; Dupree, R.; et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat. Plants

2017, 3, 859–865. [CrossRef] [PubMed]
62. Busse-Wicher, M.; Gomes, T.C.F.; Tryfona, T.; Nikolovski, N.; Stott, K.; Grantham, N.J.; Bolam, D.N.; Skaf, M.S.; Dupree, P. The

pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary
plant cell wall of Arabidopsis thaliana. Plant J. 2014, 79, 492–506. [CrossRef] [PubMed]

63. Pawar, P.M.A.; Derba-Maceluch, M.; Chong, S.L.; Gandla, M.L.; Bashar, S.S.; Sparrman, T.; Ahvenainen, P.; Hedenström, M.;
Özparpucu, M.; Rüggeberg, M.; et al. In muro deacetylation of xylan affects lignin properties and improves saccharification of
aspen wood. Biotechnol. Biofuels 2017, 10, 1–11. [CrossRef]


	Introduction 
	Material and Methods 
	Fourier-Transform Infrared Spectroscopy 
	Statistical Analysis 

	Results and Discussion 
	Conclusions 
	References

