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Abstract. We study a Rock–Paper–Scissors model for competing populations that

exhibits travelling waves in one spatial dimension and spiral waves in two spatial

dimensions. A characteristic feature of the model is the presence of a robust heteroclinic

cycle that involves three saddle equilibria. The model also has travelling fronts that

are heteroclinic connections between two equilibria in a moving frame of reference,

but these fronts are unstable. However, we find that large-wavelength travelling waves

can be stable in spite of being made up of three of these unstable travelling fronts.

In this paper, we focus on determining the essential spectrum (and hence, stability)

of large-wavelength travelling waves in a cyclic competition model with one spatial

dimension. We compute the curve of transition from stability to instability with the

continuation scheme developed in [Rademacher, Sandstede, and Scheel, 2007. Physica

D ]. We build on this scheme and develop a method for computing what we call belts

of instability, which are indicators of the growth rate of unstable travelling waves.

Our results from the stability analysis are verified by direct simulation for travelling

waves as well as associated spiral waves. We also show how the computed growth rates

accurately quantify the instabilities of the travelling waves.

1. Introduction

Cyclic interactions of three competing populations have been observed in various

ecosystems including morphs of the side-blotched lizard [30, 31], coral reef invertebrates

[12] and strains of Escerichia coli [13, 14]. The famous game of Rock-Paper-Scissors,

where Rock crushes Scissors, Scissors cut Paper and Paper wraps Rock, provides a

model for cyclic dominance between competing populations in ecology, or strategies

in evolutionary game theory. This phenomenon can be described by the May–Leonard

‡ Corresponding author (rhasan@ucc.ie)
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model [16], a system of ordinary differential equations (ODEs) that are defined as follows:




ȧ = a (1− a− b− c− (σ + ζ)b+ ζc),

ḃ = b (1− a− b− c− (σ + ζ)c+ ζa),

ċ = c (1− a− b− c− (σ + ζ)a+ ζb).

(1)

Here, the dot represents the derivative with respect to time t, the variables a, b and c are

the (non-negative) densities of the three competing populations, non-dimensionalized

to vary between 0 and 1, and σ and ζ are parameters that describe how the species

interact, assuming symmetry between the three species. This system has three on-axis

equilibria (a, b, c) = (1, 0, 0), (0, 1, 0) and (0, 0, 1), which are connected in a close circuit

via heteroclinic connections to form a so-called heteroclinic cycle. Since the heteroclinic

connections between the pairwise equilibria lie in invariant planes, namely, {c = 0},

{a = 0} and {b = 0}, respectively, this heteroclinic cycle is robust, that is, it persists

under small perturbations that preserve the invariant subspaces [19].

In this paper, we assume that the competing populations are spatially distributed on

the line or plane. This implies that the ODEs (1) become a system of partial differential

equations (PDEs), such as the model presented in [9, 22]:




ȧ = a (1− a− b− c− (σ + ζ)b+ ζc) +∇2a,

ḃ = b (1− a− b− c− (σ + ζ)c+ ζa) +∇2b,

ċ = c (1− a− b− c− (σ + ζ)a+ ζb) +∇2c,

(2)

where a(x, y, t), b(x, y, t) and c(x, y, t) now depend on spatial coordinates as well as

time. As in (1), the dot represents the derivative with respect to time t and the Laplace

operator ∇2 (= ∂2

∂x2 +
∂2

∂y2
in two dimensions) models diffusion of the species. We remark

that the system of PDEs (2) can be derived from a stochastic model of interacting

populations in an appropriate limit [9, 33, 34].

A natural question to ask is: what happens to the heteroclinic cycle in the ODE

once spatial structure is added? In addition to spatially uniform and heteroclinic

cycle solutions, the system of PDEs (2) is known to feature one-dimensional, periodic

travelling wave (TW) solutions as well as (in two dimensions) spiral wave solutions and

chaotic or disordered spatiotemporal patterns [22, 35].

Figure 1 shows a snapshot of spiral waves of system (2), with σ = 3.2 and ζ = 0.8

in a two-dimensional domain with periodic boundary conditions. The three populations

chase each other in a rotational way in the clockwise direction: a (red) chases c (blue),

c chases b (green) and b chases a. Figure 1(b) illustrates the distribution of a, b

and c along the white horizontal cross-section shown in panel (a). The solution along

the cross-section appears to approach a periodic TW asymptotically as it propagates

away from the central core of the spiral. As the TWs move along the domain in the

positive x-direction, we observe the same chasing dynamics between the species a, b

and c. Postlethwaite and Rucklidge [19, 20] illustrated that one-dimensional solutions

of system (2) on periodic domains also show stable TWs with a variety of spatial

periodicities and wavelengths, as well as other spatiotemporal behaviour.
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Figure 1. Spiral waves and their relation to travelling waves in system (2), with

σ = 3.2 and ζ = 0.8, in a 500× 500 domain with periodic boundary conditions. Here,

red, green and blue represent a, b and c, respectively. (a) The central spiral wave

rotates clockwise, in the (x, y)-plane. (b) The values of a, b and c along the white

line segment in panel (a), with the core of the spiral on the left and (effectively) one-

dimensional travelling waves on the right.

In this paper, we complement the work done in [19, 20] and focus on stability

analysis of large-wavelength periodic TWs near a heteroclinic cycle. In large one-

dimensional periodic domains, the stable TWs take the form of three fronts connecting

three equilibria of system (1). In an infinite domain, a single travelling front, connecting

one equilibrium to another, is necessarily unstable, since one of the connecting equilibria

is unstable [24]. We can understand this heuristically as follows. Restrict the dynamics

to the invariant subspace with c = 0, and consider the front between the equilibrium

with b = 1 and the equilibrium with a = 1, in an unbounded one-dimensional domain.

Then, a → 0 and b → 1 as x → −∞, and a → 1 and b → 0 as x → +∞. The front moves

from left to right: b is out-competing a. Now, consider an arbitrarily small perturbation

in b. In a background with a = 1, such perturbation will grow, and since the front moves

at a constant, finite speed, we can make this perturbation sufficiently far to the right so



Spatiotemporal stability of periodic TWs in a heteroclinic-cycle model 4

that it grows before the front reaches it. Thus, the front is unstable. However, a similar

situation for a periodic travelling wave solution on a possibly large, but finite domain

will see the front catch up with, and possibly absorb, any small, growing perturbation.

Indeed, we observe the counter-intuitive phenomenon where TWs made up of three

arbitrarily long unstable fronts cycling between three equilibria can be stable.

Previous studies have shown that pulses formed by gluing together two unstable

fronts can be stable [17, 23, 27]—a phenomenon that was described at the time as

unexpected [17, 27] and paradoxical [23]. Stability analysis of large-wavelength periodic

TWs near heteroclinic cycles that are composed of three constituent unstable fronts, to

our knowledge, has not been done before.

For the stability analysis, we adapt the continuation-based numerical method

described in [21] to compute the spectrum of periodic TWs and obtain the stability

boundaries in the parameter plane. The spatially-extended system (2) poses particular

challenges because of the large dynamic range of the three variables over the heteroclinic

cycle and the large period of the TWs. This paper provides a blueprint on how

to perform these technically challenging computations. We also provide a demo via

the supplementary data link github.com/CrisHasan/Supplementary-material for

computing essential spectra and stability boundary in parameter space using the open-

source continuation software package Auto [7].

We compare our stability calculations to direct simulations of system (2) and use the

stability analysis for one-dimensional TWs to inform numerically determined stability

boundaries for the two-dimensional spiral waves. To define and quantify spatiotemporal

instabilities, we introduce heuristic criteria for the destablization of TWs and spiral

waves in the PDE simulations. We find the instabilities of periodic TWs and spiral

waves to be accurately captured by the stability analysis.

In direct simulations of system (2), large-wavelength periodic TWs with unstable

essential spectra persist and remain stable for a very long time, even after introducing

small perturbations. We observe that this surprising phenomenon occurs when the

growth rates of these TWs are very small. This motivated us to expand on the work

of [21] and develop a technique for continuing the growth rate of unstable periodic

travelling waves. The computed growth rates accurately and efficiently predict the

computationally expensive integration time needed for the destabilization of TWs.

The outline of the paper is as follows. Section 2 reviews the dynamics of system (2)

in a travelling frame of reference and discusses the existence of periodic TWs. In

section 3, we describe and implement the numerical scheme for computing the essential

spectrum of periodic TWs and determining the boundary of the stability region. We

then show in section 4 how the spatiotemporal behaviour of travelling waves in the

PDE simulations agrees with the acquired results of the stability analysis. We also find

that the computed growth rate of the periodic TWs obtained from the spectral analysis

serves as an accurate predictor and indicator of the instabilities of the TW solutions.

Conclusions and final remarks are presented in section 5.
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2. Existence of periodic travelling waves

We use a dynamical-systems approach to study the existence and stability of TW

solutions of system (2). Our starting point is the analysis in [19, 20] that establishes the

existence of TWs for system (2) with one spatial dimension; this section briefly reviews

the relevant results from [19, 20]. Writen in vector form, system (2) is given by

Ut = f(U) +Uxx, (3)

where U(x, t) = (a(x, t), b(x, t), c(x, t))T , for t, x ∈ R. The subscripts denote the partial

derivatives, and f(U) represents the kinetic terms of (2). We assume that the travelling

waves move with a constant wavespeed γ > 0 and introduce the change of coordinates

z = x + γt, so that ∂
∂x

7→ ∂
∂z

and ∂
∂t

7→ γ ∂
∂z

+ ∂
∂t
. The system in the travelling frame

then becomes

Ut = −γUz + f(U) +Uzz. (4)

Stationary solutions of (4) can be obtained by setting ∂
∂t

= 0, resulting in a second-order

ODE that can be written as a six-dimensional system of first-order ODEs for U and Uz:{
U′ = Uz,

U′

z = γUz − f(U),
(5)

where the prime denotes derivation with respect to z.

System (5) admits five non-negative equilibria: the origin (a, b, c, az, bz, cz) =

(0, 0, 0, 0, 0, 0), the coexistence equilibrium 1

σ+3
(1, 1, 1, 0, 0, 0), and the on-axis equilibria

ξ1 = (1, 0, 0, 0, 0, 0), ξ2 = (0, 1, 0, 0, 0, 0) and ξ3 = (0, 0, 1, 0, 0, 0). For all γ, ζ, σ > 0,

there exists a robust heteroclinic cycle between the saddle on-axis equilibria [19, 20]

as follows. Consider the four-dimensional invariant subspaces P1 := {c = cz = 0},

P2 := {a = az = 0}, and P3 := {b = bz = 0}. For the dynamics restricted to each

invariant subspace Pi, i ∈ {1, 2, 3}, the saddle equilibrium ξi has a three-dimensional

unstable manifold and saddle equilibrium point ξi+1 (where ξ4 ≡ ξ1) has a two-

dimensional stable manifold; these manifolds generically intersect pairwise in the four-

dimensional invariant subspace Pi. Hence, there exists a one-dimensional heteroclinic

connection ξi → ξi+1 for all Pi even though ξi and ξi+1 are both saddles with respect

to the invariant subspace Pi. The concatenation of the three heteroclinic connections

(travelling fronts) forms a robust heteroclinic cycle in the sense that it persists under

perturbations that respect the invariant subspaces.

Figure 2 shows the bifurcation diagram of the travelling-frame system (5) for

varying γ and ζ, with σ = 3.2. The red line is the locus of Hopf bifurcation (HB)

and the grey curve is the locus of fold bifurcation of periodic orbits (F). The three

blue-shaded curves are three different types of heteroclinic bifurcations: heteroclinic flip

bifurcation (Flip), Belyakov–Devaney-type heteroclinic bifurcation (BD) and resonance

heteroclinic bifurcation (Res). The flip bifurcation in system (5) is a degenerate

heteroclinic bifurcation where each heteroclinic orbit is no longer tangent to the weak

direction of the unstable manifold, but rather, tangent to the subspace spanned by the
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Figure 2. Bifurcation diagram of system (5) in the (γ, ζ)-parameter plane with

σ = 3.2. The red and grey curves are the loci of Hopf bifurcation (HB) and fold

bifurcation of periodic orbits (F), respectively. The differently shaded blue curves,

from left to right, are the loci of heteroclinic flip bifurcation (Flip), Belyakov–Devaney-

type heteroclinic bifurcation (BD) and resonance heteroclinic bifurcation (Res). The

three dots labelled c1, c2 and c3 are codimension-two points at which bifurcations of

different types meet; the inset shows an enlargement near c1 and c2.

strong directions. We trace this bifurcation using a two-point boundary value problem

set-up in conjunction with numerical continuation. The bifurcation BD arises when

two of the expanding eigenvalues of the saddle equilibria are equal, and the resonance

heteroclinic bifurcation occurs when the heteroclinic orbit involves two eigenvalues of

the same magnitude but opposite signs. The codimension-two bifurcation points c1, c2
and c3 (black dots) are the meeting points of bifurcation curves F and Flip, of curves BD

and Flip, and of curves Res and BD, respectively. Note that in [20], preliminary

numerical results indicated that c1 = c2. Here, we have repeat the calculations more

carefully and show that generally this is not the case.

A two-parameter family of periodic orbits born at the Hopf bifurcation exists to

the right of the curve HB. Another family of periodic orbits originates from the flip

bifurcation and exists between the curves Flip and F. The two families collide and

annihilate each other at the fold bifurcation of periodic orbits. Away from F, the periodic

orbits emanating from the Hopf bifurcation terminate at one of the three heteroclinic

bifurcation branches. There exists a single periodic orbit for each parameter value in

the region in between the Hopf bifurcation and the heteroclinic bifurcations, and two

periodic orbits co-exist in the region between F and Flip. Each periodic orbit with period

L in the travelling-frame system (5) corresponds to a TW solution in system (3) that

is spatially periodic with wavelength L. We find that the codimension-two bifurcation

points c3 and c1, related to degenerate heteroclinic bifurcations of system (5), also act
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as end points of a curve that marks the boundary of the parameter region for which the

periodic TWs of system (3) are stable; see already figures 6–8.

3. Stability analysis of periodic travelling waves

In this section, we perform a linear stability analysis of the periodic TWs. We first derive

the eigenvalue problem and describe the computational set-up for computing spectra of

TWs, which is adapted from [21, 26]. We then implement this analysis to determine

the stability of periodic TWs in the spatially-extended Rock–Paper–Scissors model (2).

The Python drivers for these Auto calculations are available in the form of a demo via

the supplementary data link github.com/CrisHasan/Supplementary-material.

3.1. Derivation of the eigenvalue problem

We assume that Û is a periodic TW solution with spatial period or wavelength L. This

TW is required to be a stationary solution to the PDE in the travelling frame given by

system (4), that is,

−γÛz + f(Û) + Ûzz = 0.

Hence, in the travelling-frame coordinates, Û depends only on z and Û(z + L) = Û(z)

for all z ∈ R. Now consider the perturbation U(t, z) = Û(z)+ Ũ(t, z), with the Floquet

ansatz

Ũ(t, z) = eλtV(z).

Here, λ ∈ C is the temporal eigenvalue and V(z) ∈ C
3 is the associated eigenfunction.

Linearization of system (4) about the stationary solution Û leads to a second-order

ODE for the eigenfunction V(z),

Vzz − γVz +DUf(Û)V = λV, (6)

where DUf(Û) is the Jacobian of f(U) evaluated at Û. Solutions of this eigenvalue

problem correspond to the spectrum of the linear operator L = ∂zz − γ ∂z +DUf(Û),

acting on V(z). Spectra of linear operators separate into discrete and continuous parts;

they are known as the point and essential spectra, respectively. It can be shown that

the point spectrum of periodic TWs in reaction-diffusion models is always empty [24],

so we will use ‘spectrum’ to refer to the essential spectrum throughout this paper. A

periodic TW solution Û is said to be spectrally (or linearly) stable if the spectrum of the

associated linear operator L, which always contains the origin, lies otherwise entirely in

the left half of the complex plane. Conversely, if the spectrum contains any eigenvalues

with positive real part, then the corresponding periodic TW is linearly unstable.

3.2. Set-up for computing the essential spectrum of periodic travelling waves

In order to find the essential spectrum of the operator L, we take into account the

periodicity in z of the underlying TW solution Û. The eigenfunction V(z) satisfies
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this same periodicity modulo a contraction or expansion associated with the (spatial)

eigenvalues of L. We consider the eigenvalue problem (6) with temporal eigenvalue

λ ∈ C as a system of first order ODEs,
{

V′ = Vz,

V′

z = γVz −DUf(Û)V + λV,
(7)

subject to the boundary conditions
{

V(L) = eνLV(0),

Vz(L) = eνLVz(0),

where, ν ∈ C is a spatial Floquet exponent measured with respect to the unit for

space. Each eigenvalue λ in the complex plane admits six complex Floquet exponents

ν1, ν2, ..., ν6. The essential spectrum is computed by assuming that no contraction

or expansion is achieved in the spatial dimension. Hence, each Floquet exponent is

restricted to the form ν = i φ, where the parameter φ ∈ R represents the phase shift

across one period of the TW. In other words, the boundary conditions are
{

V(L) = eiφL V(0),

Vz(L) = eiφL Vz(0).
(8)

In order to identify the eigenfunctions uniquely, we normalize and impose a phase

condition as follows



∫ L

0

‖V(z)‖2 dz = L,

∫ L

0

Im ( 〈Vold(z), V(z) 〉 ) dz = 0.

(9)

Here, the brackets 〈 , 〉 denote the dot product and the subscript ‘old’ denotes the

solution from the previous (or initial) solution in the continuation step. The (essential)

spectrum of a periodic TW solution Û is the set of temporal eigenvalues λ, for

which there exist spatial exponents iφ and associated eigenfunctions V that satisfy

the boundary value problem (7)–(9).

We encountered several challenges when computing the spectrum of periodic TWs

in system (2) that are not necessarily specific to this example. The periodic TW solution

will be similar to the heteroclinic cycle, especially when the wavelength is large. A main

challenge is that the alternating proximity of solution curves to the invariant subspaces

increases numerical sensitivity for small values of the population variables and ultimately

leads to numerical instability. Since the population values are always non-negative, we

avoid this issue by writing the problem in logarithmic coordinates. To this end, we

define U(t, z) = exp[W(t, z)] and consider the corresponding equation for W in the

travelling frame:
{

W′ = Wz,

W′

z = γWz − g(W)− (Wz)
2,

(10)



Spatiotemporal stability of periodic TWs in a heteroclinic-cycle model 9

where g(W) satisfies g(W(t, z)) = exp[−W(t, z)] ◦ f(exp[W(t, z)]) and ◦ represents the

Hadamard product (component-wise vector multiplication). Using a similar derivation

as before, we linearize about the stationary solution Ŵ(z) = log(Û(z)) and consider

the perturbation in logarithmic coordinates, based on the same Floquet ansatz,

W(t, z) = Ŵ(z) + eλtV(z),

which leads to the eigenvalue problem
{

V′ = Vz,

V′

z = (γ − 2Ŵz)Vz −D
Ŵ
gV + λV,

with the same boundary and integral conditions (8) and (9). Here, the abbreviation

D
Ŵ
g represents the Jacobian Dwg of g(W) evaluated at Ŵ.

A second major challenge, when the periodic TW solution for large wavelengths

is similar to a heteroclinic cycle, is the fact that the solution also spends a relatively

long time in the vicinity of each of the equilibria. Consequently, the solution variation

over one period is extremely non-uniform, signalling that this is a very stiff problem.

In particular, even though each eigenfunction is associated with Floquet exponents on

the imaginary axis, there can still be enormous expansion and contraction pointwise

along V. We found it helpful to rescale V(z) 7→ e−iφz V(z), so that the rescaled

eigenfunction is periodic in z. With slight abuse of notation, we use the variable V

for the rescaled version to obtain the following boundary value problem with periodic

boundary conditions.




V′ = Vz − iφV,

V′

z = (γ − 2Ŵz)Vz −D
Ŵ
gV + λV − iφVz,

V(L) = V(0),

Vz(L) = Vz(0).

(11)

System (11) needs to be solved together with integral conditions (9) and this

computation is usually done in parallel with solving system (10) together with

appropriate periodicity and phase conditions.

As a final remark, we note that the instructions given in [21] suggest to find the

initial data for the eigenfunction V(z) by way of a large matrix eigenvalue problem

obtained from finite difference approximations of the discretized linear operator L based

on a known periodic TW solution Ŵ. In both papers [21, 24], the comment is made that

λ = 0 is always contained in the spectrum and its associated eigenfunction is Ŵz. Hence,

it should be straightforward to start the continuation from λ = 0, with φ = 0, periodic

TW solution Ŵ and eigenfunction Ŵz. More precisely, it suffices to consider the vector

set {Ŵ,Ŵz} that solves system (5), and fix the associated eigenfunction {V,Vz} as

V = Ŵz and Vz = Ŵzz. When V and Vz are obtained from evaluating the right-

hand side of system (5), there is no reason to assume that this eigenfunction has unit

integral norm. In practice, the eigenfunction will be scaled to satisfy the normalization

condition as part of the corrections in the first continuation step, but convergence can be
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Figure 3. Essential spectrum (black curve) of the periodic TW for system (2) with

σ = 3.2, ζ = 1, L = 20 and corresponding wavespeed γ ≈ 1.69505. The coloured dots

indicate a selection of phases φ.

slow [21]. The tangent Floquet bundle can also be solved using a bifurcation approach,

where the non-trivial eigenfunction {V,Vz} is computed as the solution branch that

crosses the trivial solution V ≡ Vz ≡ 0 at a branching bifurcation that exists for φ = 0;

see [15, 18] for more details. The advantage of this bifurcation approach is that the non-

trivial eigenfunction is first detected as a solution with zero norm emanating from the

branching bifurcation point; the branching step grows the eigenfunction until it satisfies

the unit integral norm in condition (9). Detecting the desired Floquet exponent ν can

sometimes be tricky for stiff problems. However, we know that the branch point lies

at φ = 0 and are able to skip this detection step as follows. We start the branching

step at φ = 0 from the trivial branch but with an initial eigenfunction {V,Vz} that is

an arbitrary constant function with (small) nonzero norm; this nonzero norm ensures

that Auto corrects and converges to the true tangent Floquet bundle associated with

φ = 0, despite the lack of branching information that would normally be encoded in the

detected branch point.

3.3. Geometry of essential spectra: An example

Figure 3 shows the spectrum of a periodic TW at σ = 3.2, ζ = 1 and L = 20 (with

corresponding wavespeed γ ≈ 1.69505) as an example. Vertical and horizontal axes

correspond to the real and imaginary parts of the temporal eigenvalue λ, respectively.

The essential spectrum is computed by continuation of solutions to the boundary value

problem (9)–(11), starting from the origin λ = 0 (red dot) with φ = 0 and initial data

obtained by substituting the known periodic TW solution Ŵ into the right-hand side of
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Figure 4. Illustration of an Eckhaus-type change in stability of periodic TWs of

system (2) with σ = 3.2 and ζ = 1 as the wavelength L varies. Shown are the essential

spectrum before (a) with L = 40 (γ ≈ 1.90633), approximately at (b) with L ≈ 29.9950

(γ ≈ 1.83521), and after the bifurcation (c) with L = 20 (γ ≈ 1.69505), which is the

same value as used in figure 3.

system (10); here, both λ and φ are allowed to vary. The black curve in figure 3 is the

spectrum of the periodic TW and the blue dots are selected λ-values that correspond to

various phases φ. Note that the spectrum is symmetric about the real axis due to the

translational invariance of the linear operator L.

The spectrum of the periodic TW for σ = 3.2, ζ = 1 and L = 20 extends into the

right half of the complex plane, which indicates that the periodic TW is linearly unstable

for this choice of parameters. Figure 4 shows three spectra of periodic TWs in (2) with

σ = 3.2 and ζ = 1. Here, we vary the wavelength L and, consequently, the wavespeed

γ. Panel (a) shows the spectrum of the periodic TW with L = 40 and γ ≈ 1.90633.

Observe that, apart from the origin, the spectrum for this wavelength lies entirely in

the left half of the complex plane. Hence, the corresponding periodic TW is linearly

stable. Panel (b) illustrates the onset of an instability, approximately at L = 29.9950

(γ ≈ 1.83521). The tangency at the origin made by the (black) curve of eigenvalues

λ appears to be of a higher order than quadratic, suggesting that the curvature of the

spectrum is (almost) zero; this type of instability is known as an Eckhaus instability [8].

Panel (c) shows the same spectrum for L = 20 as in figure 3, which curves in the

opposite direction into the right half of the complex plane; the corresponding periodic

TW is now unstable.

3.4. Changes in stability: the Eckhaus bifurcation

There are two common types of instabilities that can occur for the essential spectrum

of periodic TWs [21]. The Eckhaus instability [8] illustrated in figure 4 is also known

as sideband instability and occurs when the curvature of the spectrum changes sign at

the origin (λ = 0); this is the only type of instability that we find in system (2). Hopf
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instability occurs when the a pair of complex eigenvalues on the spectrum crosses the

imaginary axis away from the origin; our numerical explorations did not indicate the

existence of a Hopf instability for the periodic TWs in system (2).

Loss of stability via an Eckhaus instability can be computed numerically as a zero

of the second derivative d2

dν2
Re(λ)|λ=φ=0

with respect to ν = i φ of the real part of the

eigenvalue λ evaluated at the origin; indeed, the curve of eigenvalues in the complex

plane is parametrized by ν = i φ. The onset for σ = 3.2 and ζ = 1 can readily be

detected this way and we find that an Echhaus instability occurs when L ≈ 29.9950.

A subsequent two-parameter continuation in L and ζ determines the boundary of the

region of stability in the (ζ, L)-plane, by imposing the condition d2

dν2
Re(λ)|λ=φ=0

= 0.

The formulation of the corresponding boundary value problem is described in [21],

where the required second derivative is found via implicit differentiation of the eigenvalue

problem with respect to ν = iφ. We adapt the set-up to our system (11), which is written

in logarithmic coordinates. We use the notation Vφ, Vφφ and Vzφ, Vzφφ for the first

and second derivatives with respect to iφ of V and Vz at λ = φ = 0, respectively. Then

the boundary value problem is extended by the following system of equations,




(Vφ)
′ = Vzφ −V,

(Vzφ)
′ = (γ − 2Ŵz)Vzφ −D

Ŵ
gVφ + λφ V −Vz

(Vφφ)
′ = Vzφφ − 2Vφ,

(Vzφφ)
′ = (γ − 2Ŵz)Vzφφ −D

Ŵ
gVφφ + λφφ V + 2λφ Vφ − 2Vzφ,

(12)

subject to the periodic boundary conditions




Vφ(L) = Vφ(0),

Vzφ(L) = Vzφ(0),

Vφφ(L) = Vφφ(0),

Vzφφ(L) = Vzφφ(0),

(13)

and integral conditions




∫ L

0

〈 V(z), Vφ(z) 〉 dz = 0,

∫ L

0

〈 V(z), Vφφ(z) 〉 dz = 0.

(14)

Figure 5 shows the curve of Eckhaus instability, denoted Eck (orange), in the (ζ, L)-

parameter plane, which marks the instability onset of periodic TWs of system (2) with

σ = 3.2. In this projection, there exists a single periodic TW at every point of the

parameter plane. The convex region bounded by the curve Eck is called a Busse balloon

[4] and it exclusively contains all stable periodic TWs. In the region outside the Busse

balloon, periodic TWs are linearly unstable. We observe from figure 5 that small-

wavelength periodic TWs will always be unstable. In contrast, large-wavelength TWs

are stable within a finite interval of ζ. Note that this finding is rather counter-intuitive

to the heuristic explanation in the introduction of the fronts catching up quickly enough

to squash any perturbation of the wave.
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Figure 5. Locus of Eckhaus instability (Eck) of periodic TWs of system (2) in the
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Figure 6. Bifurcation diagram with the curve Eck of the Eckhaus instability (orange)

for system (2) with σ = 3.2. The insets illustrate how the Eckhaus instability curve

ends at the codimension-two points c1 and c3 (black dots). See figure 2 for details on

the other curves and labels.

3.5. Busse balloon and the bifurcation diagram for different values of σ

In this section, we investigate how the stability region (Busse balloon) depends on σ.

The Busse balloon corresponds to the region bounded by the curves Eck, BD, and the

segment between c1 and c3 of the curve Flip. Figure 6 shows the curve Eck of the

Eckhaus instability (orange) superimposed on the bifurcation diagram of the travelling-
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Figure 7. Bifurcation diagram with Eckhaus instability curve for system (2) with

σ = 1.0 (a) and σ = 10.0 (b). Colours and labels are as in figure 6.

frame ODE system (2) for σ = 3.2; compare with figure 2. As before, we show the loci of

Hopf bifurcation (HB, red), fold of periodic orbits (F, grey), and heteroclinic bifurcations

of flip (Flip, light blue), Belyakov–Devaney (BD, dark blue) and resonance types (Res,

turquoise). The two insets show enlargements in the vicinity of the codimension-two

points. We find that the curve Eck begins and terminates at the codimension-two points

c1 and c3, where it is tangent to the curves Flip and Res. We repeat the computation

of the Eckhaus instability for smaller and larger values of σ > 0. Figure 7 shows the

bifurcation diagrams of system (10) in panels (a) and (b) for σ = 1.0 and σ = 10.0,

respectively; compare with figure 6. Panel (a) shows that, for σ = 1.0, the Busse

balloon shrinks down to a thin region in the (γ, ζ)-plane that is bounded by the curves
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Eck (orange), BD (dark blue) and Flip (light blue). As before, the end points of the

curve Eck are the codimension-two points c1 and c3. For smaller values of σ > 0, the

Busse balloon becomes smaller and smaller and the Eckhaus curve lies flat against the

curve of heteroclinic bifurcations as σ → 0. The region of existence of periodic orbits

also becomes smaller when decreasing σ, and we observe that the bifurcation curve HB

collides with the curves F, Flip, BD and Res as σ → 0.

In figure 7(b), the stable regime for σ = 10.0 extends along a wider region in the

(γ, ζ)-plane. The curve Eck still terminates at c1 and c3, but c1, defined as the point

where the curve F terminates, now lies to the right of c2 and both F and Eck terminate

on the curve BD. The details of how this transition occurs are left for future work.

We detected another regime of stable periodic TWs that is secondary to the Busse

balloon. Figure 8 shows the bifurcation diagrams of system (10) for larger ranges of γ

and ζ. Here, σ = 10.0 and σ = 15.0 in panels (a) and (b), respectively. For σ = 10,

as shown in panel (a), we find a second branch of Eckhaus bifurcation that appears to

extend to infinity and forms a convex region that constitutes a second stable regime. We

were unable to detect such a second stable region for σ = 3.2 and we suspect that this

region exists only for very large values of ζ when σ is relatively small. For σ ≈ 11.5239,

the two stable regions merge into a single stable region. Figure 8(b) shows that there

is a single stable region for σ = 15.0 that extends to infinity. For larger values of σ,

we observe that the stable region extends to cover an increasingly larger region in the

(γ, ζ)-plane.

4. Comparison to PDE simuations

In this section, we compare the stability analysis to direct simulations of one-dimensional

TWs and two-dimensional SWs for the PDE system (2). Throughout, integration of the

PDE system (2) is carried out using a second-order exponential time differencing method

for integrating stiff systems [5] with periodic boundary conditions, i.e., U(t, L) = U(t, 0)

and Ux(t, L) = Ux(t, 0).

The stability analysis predicted by the computation of the essential spectrum

corresponds to the stability of periodic TWs that extend along an infinitely large domain

−∞ < x < ∞. Of course, this is unfeasible in practice. Therefore, in order to have a

good agreement with this analysis, we carry out simulations of five copies of periodic

TWs along a large bounded domain of size 5 × L, where L is the wavelength of the

periodic TW. When the number of copies is increased, we obtain qualitatively similar

results but the computation time will be significantly longer. Throughout this section,

the initial condition is a train of five periodic TWs with wavelength L, which is obtained

from the numerical continuation of periodic solutions of system (2).
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Figure 8. Bifurcation diagram with Eckhaus instability curve for system (2) with

σ = 10.0 (a) and σ = 15.0 (b) for larger ranges of γ and ζ. Colours and labels are as

in figure 6.

4.1. Instability mechanism of periodic TWs in system (2)

We find that unstable periodic TWs in system (2) deform in a particular way as follows.

Figure 9 demonstrates the instability mechanism for periodic TWs in system (2) with

σ = 3.2, ζ = 1 and L = 20. Panel (a) shows the amplitudes of the three populations as

a function of time; the inset is an enlargement highlighting the onset of the instability.

Here, the amplitude of a variable refers to the difference between the maximum and

minimum of that variable over the entire domain. The initial condition shown in

figure 9(b1) is obtained from a periodic solution to the travelling-frame system (10);

its essential spectrum is shown in figure 4(c). Note that all three variables appear to
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Figure 9. Illustration of the instability mechanism for periodic TWs in system (2)

with σ = 3.2, ζ = 1.0. Panel (a) shows the amplitudes of the unstable periodic TW for

a (red), b (green) and c (blue), as a function of time; the inset is an enlargement. The

dashed black line indicates the moment at which the amplitude of the TW increases

by 5%. Panels (b1) and (b2) show the the distributions of the three populations for

the initial condition (t = 0) and at the heuristic moment of instability (t = 2223.32),

respectively.

have approximately fixed amplitudes for a certain amount of time, but at t ≈ 2000

the amplitudes of the wave begin to oscillate in time and an irregular spatiotemporal

behaviour emerges. Eventually, the amplitudes of the waves decay to zero and each

population acquires a solution that is homogeneous in space. The acquired homogeneous

solutions are then governed by the following ODE

Ut = f(U), (15)

and approach a heteroclinic cycle in time.

We observe that this instability mechanism is characteristic for all unstable periodic

TWs in system (2). Therefore, we use the following criterion for the onset of instability

of periodic TWs in system (2). We define the moment at which the amplitude of one

of the three populations changes by 5% as a heuristic criterion for observing the onset

of instability; see figure 9(b2). The vertical dashed line at t = 2223.32 in figure 9(a)

corresponds to this moment for the simulation; see also the enlargement in the inset.
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Figure 10. Comparison between PDE simulations of the one-dimensional periodic

TWs and the respective spectral stability analysis of system (2) with σ = 3.2.

Panels (a) and (b) correspond to periodic TWs with wavelengths L = 20 and L = 60,

repsectively. The left column shows 1

T
versus the leading temporal eigenvalue λmax,

where T is the minimal integration time needed for the instabilities to be observable.

In the right column, the black curve is the dispersion relation between λmax and ζ,

and the red circles represent the PDE simulations for parameter values at their centres.

The radii of the red circles are proportional to 1

T
. The black cross corresponds to a

parameter value at which the instability was not observed in the PDE simulations.

4.2. Relation between instabilities in the simulated PDE system and the computed

eigenvalues

PDE simulations of unstable periodic TWs may take a very long time before the

instabilities become observable. Hence, we perform further spectral analysis for the

unstable region (the region outside the Busse balloon). Namely, we compute the

maximal growth rate associated with the unstable TWs, that is, the real part of the

leading (rightmost) temporal eigenvalue of the spectrum λmax := max{Re(λ)}. The

maximal eigenvalue λmax of unstable periodic TWs represents the rate at which the

perturbations grow causing the destabilization of the waves [32]. Therefore, we compare

λmax to the growth rates of the unstable waves in the PDE simulations.
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Figure 10 shows a comparison between the computed maximal growth rate λmax

obtained from equations (7)–(14) and the integration time T needed for the periodic

TWs to destabilize in the PDE simulations according to our heuristic criterion. In

panels (a) and (b), we fix L = 20 and L = 60, respectively, and allow ζ to vary. In the

left column of figure 10, we plot the growth rate of the unstable periodic TWs measured

by 1

T
against the computed maximal growth rate λmax. When λmax is sufficiently small,

the relation between the two quantities appears to be almost linear. For L = 60, we

performed a least-squares fit to the log-transformed data for λmax < 0.01, and found

the approximate relationship

log

(
1

T

)
≈ 1.049 log(λmax)− 3.364. (16)

The black cross at (ζ, L) = (1.6, 60) in panel (b) lies just outside the stability region, but

the corresponding train of periodic TWs does not show any sign of instability, despite

integrating for the very long time of T = 3.0 × 105. Indeed the computed growth rate

λmax = 8.51062×10−8 suggest that an integration time T > 7.539×108 is needed before

the destabilization can be observed.

In the right column of figure 10, we plot the dispersion relation (black curve)

between the maximal eigenvalue λmax and ζ, computed using the continuation software

Auto, again for L = 20 (a2) and L = 60 (b2). The red circles on top of the

dispersion relation are representatives of the growth rate 1

T
in the PDE simulations.

More precisely, the radii of the circles are linearly proportional to 1

T
. Note that the

larger the maximal eigenvalue λmax, the larger the corresponding data circles (i.e., the

faster the corresponding periodic TWs destabilize in the PDE simulations).

4.3. Belts of instability

We now identify different subregions in the (ζ, L)-parameter plane based on the maximal

growth rate λmax; we call these subregions belts of instability. The idea is to fix the real

part of the leading temporal eigenvalue λmax of the spectrum of an unstable TW and

continue it as a contour curve in the two-parameter plane.

Figure 11 shows the unstable region (outside the Busse balloon) subdivided into

four quantitative subregions, which are bounded by contours (black curves) of fixed

leading eigenvalues λmax. For instance, the black curve labeled 10−2 is obtained by

continuing the contour for the rightmost temporal eigenvalue λmax = 10−2; see also the

spectrum shown in figure 4. One would expect that perturbations of the periodic TWs

grow faster in the belts of instability with larger eigenvalues λmax. For example, the

region bounded in between the curves labeled 10−3 and 10−2 contains periodic TWs that

are ‘more unstable’ than those that lie in between the curves labeled 10−4 and 10−3.

Also shown in figure 11 is the PDE simulation data superimposed on the different

stability and instability regions. The blue squares indicate that the simulated periodic

TWs remain stable for the entire total integration time T = 3.0×105. The radii of the red

circles are proportional to the growth rate 1

T
, where T is the integration time needed to
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Figure 11. Comparison between PDE simulations of the one-dimensional periodic

TWs and the respective spectral stability analysis of system (2) with σ = 3.2. The

orange curve is the curve of Eckhaus instability (Eck). The black curves are contours

for the leading temporal eigenvalues λmax = 10−2, λmax = 10−3, and λmax = 10−4

for the corresponding periodic TWs. The blue squares and red circles represent

stable and unstable periodic TWs, respectively. The radii of the red circles are

inversely proportional to the minimal integration time needed for the instabilities to

be observable.

achieve our criterion of a 5% amplitude increase for the periodic TWs. The blue square

at (ζ, L) = (1.6, 60) lies just outside the stable region and corresponds to the black cross

in figure 10(b). We again find that the growth rate in the PDE simulations, measured by
1

T
, increases proportionally with the maximal eigenvalue λmax. For instance, note that

periodic TWs at parameter values in belts with smaller eigenvalues λmax take longer

times to destabilize (the red circles are smaller). The upshot is that the maximal growth

rate λmax obtained from the spectral analysis is a very good quantitative indicator of

the instability of the periodic TWs.

4.4. Comparison to stability of spiral waves

We illustrated that solutions of spiral waves converge asymptotically to a train of

periodic TWs as they move away from the core; see figure 1. Sandstede and Scheel [26]

have shown that the maximal eigenvalue of the spectrum of spiral waves coincides with

that of the asymptotic periodic TW. In other words, spiral waves and associated periodic

TWs have the same stability boundary. Therefore, we perform PDE simulations of the

two-dimensional spiral waves in a very large box (2000×2000) and compare it against the

stability of the associated TWs. Our initial conditions resulted in four spirals centred in

the middle, edges and corners of the box, but we extrapolated the central spiral to fill the

box using polar coordinates centred on the core and Fourier transforms of the angular
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Figure 12. Comparison between PDE simulations of the two-dimensional spiral waves

and the spectral stability analysis of the asymptotic periodic TWs of system (2) with

σ = 10.0. The blue squares and red circles represent stable and unstable spiral waves,

respectively. Colours and labels of bifurcation curves are as in figure 6. The inset is

an enlargement.

dependence of U. This extrapolation process results in perturbations to the core, and

the instability or stability of the spirals was judged by whether these perturbations

grew or decayed, respectively, as they moved outwards. See the supplementary data

link github.com/CrisHasan/Supplementary-material for three examples.

Figure 12 shows the two-dimensional spiral wave simulation data superimposed

on the bifurcation diagram for the one-dimensional periodic TWs in system (2) with

σ = 10.0. Blue squares indicate stability and red circles indicate instability. We note

that the asymptotic TWs admit relatively short wavelengths L ∈ (16.19, 20.53) and are

not particularly close to the heteroclinic bifurcations. The red circles in figure 12 lie

outside the stable Busse balloon and the blue squares lie inside it except for one data

point at (γ, ζ) = (3.9023, 7.5). Since the curve Eck corresponds to the stability of the

asymptotic periodic TWs in an infinitely unbounded domain, this discrepancy is likely

due to the finite size of the domain in the simulations. For example, we performed

a simulation at (γ, ζ) = (4.1082, 8.5) in the smaller box of size 1000 × 1000, and

found that the spiral wave then appears to be stable for the entire integration time,

although, it is convectively unstable in a 2000x2000 box (see supplementary Material

github.com/CrisHasan/Supplementary-material). Overall, we find that the stability

analysis of asymptotic periodic TWs matches the stability of the associated spiral waves,

as expected.
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5. Conclusions and discussion

We investigated the stability of periodic TWs in a spatially-extended May-Leonard

system, a phenomenological model that describes the local dynamics of cyclic

interactions of three competing populations. The spatiotemporal behaviour in this

model is intricate and not well understood. In this study, we performed a linear stability

analysis of periodic TWs and examined it against the PDE simulation in the laboratory

frame. In particular, we computed the onset of Eckhaus instabilities and located the

parameter regimes in which the periodic TWs are stable. We also identified different

unstable subregions (belts of instability) that quantitatively vary with respect to the

underlying growth rate.

Numerical evidence from previous work [10, 28, 29] on periodic TWs, or periodic

pulse trains, generated in systems with an underlying homoclinic bifurcation (solitary

pulse), shows that the Eckhaus instability curve terminates at codimension-two points

that involve a homoclinic bifurcation. In the context of heteroclinic-induced periodic

travelling waves, namely system (2), we found that the Eckhaus instability curve

terminates at two codimension-two points c1 and c3, both of which involve heteroclinic

bifurcations. Robust heteroclinic cycles in system (2) are formed by concatenating three

travelling fronts with unstable essential spectrum. We have also performed preliminary

calculations for the absolute spectrum of these travelling fronts and found that the onset

of the absolute spectrum of the travelling fronts changes at the codimension-two points

c2 and c3. In particular, the largest eigenvalue of the absolute spectrum of the fronts

is zero along the curve BD and less than zero along the curves Res and Flip. In the

(γ, ζ)-parameter plane, near heteroclinic bifurcations, we find that the travelling fronts

below and above the curve ζ = γ2/4 are absolutely stable and unstable, respectively.

We remark that Belyakov–Devaney-type heteroclinic bifurcation is described by the

algebraic relation ζ = γ2/4. This suggests that the stability of periodic TWs (organized

by c1 and c3) as well as absolute stability of the connecting travelling fronts (organized by

c2 and c3) are determined by degenerate heteroclinic bifurcations. Since the organising

codimension-two points are different, there are no obvious conclusions that can be drawn

with respect to the relationship between stability of large-wavelength periodic TWs and

the absolute stability of the travelling fronts forming the heteroclinic cycles.

The mechanism underlying the instability of TWs may take different forms. We

found that unstable periodic TWs in system (2) deform in a particular way that causes

their wave amplitudes to oscillate in time. We introduced a heuristic criterion for the

instability of periodic TWs and used it as a benchmark to measure the growth rate in

the laboratory frame. Comparing the growth rate in the laboratory frame against the

largest temporal eigenvalue λmax suggests that the rightmost eigenvalue of the essential

spectrum captures the long term spatiotemporal behaviour of unstable periodic TWs in

system (2).

Spiral waves in the two-dimensional Rock–Paper–Scissors model are closely related

to the periodic TWs. Away from the core, the solutions appear to converge
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asymptotically to a train of periodic TWs. These periodic solutions typically have

relatively short wavelengths. Our results demonstrate that the stability of the two-

dimensional SWs can be predicted by the stability analysis of the associated one-

dimensional periodic TWs. This is expected since the onset of instability of SWs

coincides with that of the associated periodic TWs [26].

Numerical continuation of spiral waves in reaction-diffusion models has been

conducted in [1, 2, 3, 6]. Barkley [2] developed a numerical method for continuing

rotating spiral waves by discretization on an equidistant polar grid. Bär et al. [1]

performed a pseudo-arclength continuation method to study the existence and stability

of spiral waves in a modified Barkley model. Bordyugov and Engel [3] described in

detail a numerical method for computing and continuing rigidly rotating spiral waves

by solving for a large boundary value problem in Fourier space. Dodson and Sandstede

[6] used a continuation scheme to analyze the spectral properties of spiral waves and

investigate the underlying mechanisms for instabilities. Performing continuation-based

techniques to study the existence and stability of spiral wave solutions in system (2) is

ongoing work [11].
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