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Glioblastoma is the most frequently diagnosed type of primary brain

tumour in adults. These aggressive tumours are characterised by inherent

treatment resistance and disease progression, contributing to ~ 190 000

brain tumour-related deaths globally each year. Current therapeutic inter-

ventions consist of surgical resection followed by radiotherapy and temo-

zolomide chemotherapy, but average survival is typically around 1 year,

with < 10% of patients surviving more than 5 years. Recently, a fourth

treatment modality of intermediate-frequency low-intensity electric fields

[called tumour-treating fields (TTFields)] was clinically approved for

glioblastoma in some countries after it was found to increase median over-

all survival rates by ~ 5 months in a phase III randomised clinical trial.

However, beyond these treatments, attempts to establish more effective

therapies have yielded little improvement in survival for patients over the

last 50 years. This is in contrast to many other types of cancer and high-

lights glioblastoma as a recognised tumour of unmet clinical need. Previous

work has revealed that glioblastomas contain stem cell-like subpopulations

that exhibit heightened expression of DNA damage response (DDR) fac-

tors, contributing to therapy resistance and disease relapse. Given that

radiotherapy, chemotherapy and TTFields-based therapies all impact DDR

mechanisms, this Review will focus on our current knowledge of the role

of the DDR in glioblastoma biology and treatment. We also discuss the

potential of effective multimodal targeting of the DDR combined with

standard-of-care therapies, as well as emerging therapeutic targets, in pro-

viding much-needed improvements in survival rates for patients.
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1. Introduction

1.1. Glioblastoma and current treatment regimes

Brain tumours are globally responsible for around

190 000 deaths per year (around 5000 of which are in

the UK) and are responsible for the greatest reduction

in life expectancy of any cancer – around 20 years on

average [1,2]. Glioblastoma is ascribed the highest

glioma grade designated by the World Health Organi-

zation (WHO grade IV glioma). It is the most fre-

quently diagnosed primary brain tumour in adults and

is associated with an exceptionally poor clinical course

characterised by treatment resistance, rapid disease

progression and dire patient survival rates of around

12–15 months following diagnosis in clinical studies

[3]. However, average survival for unselected patients

in the real-world setting is typically closer to 8 months

[4]. In most cases, glioblastoma arises rapidly without

previous clinical presentation or histological confirma-

tion of a less malignant precursor lesion, although, in

a minority of cases, signs of progression from a lower

grade diffuse (WHO grade II) or anaplastic (WHO

grade III) astrocytoma are evident [5].

Despite some recent advances in the genetic, epige-

netic and molecular subtyping of gliomas [6], the cur-

rent standard-of-care treatment remains maximal safe

surgical resection followed by a course of radiotherapy

with concomitant and adjuvant chemotherapy [7–9].

The mainstay chemotherapeutic agent is oral delivery

of the DNA alkylating agent temozolomide following

successful clinical trial data evidencing a 2.5-month

increase in patient survival rates [7,8]. However,

despite this aggressive course of therapy, median

patient survival was estimated at 14.6 months, with

< 10% of patients surviving more than 5 years. Impor-

tantly, however, in the subset of patients with pro-

moter methylation of the DNA repair gene MGMT

(discussed below), the addition of temozolomide was

associated with overall survival of 21.7 months, repre-

senting an increase of 6.4 months [10]. More recent

studies corroborate the benefit of temozolomide in the

context of methylated MGMT status [11,12]. However,

in contrast, efforts to improve the survival of patients

with an unmethylated MGMT promoter have been less

successful [13,14].

Since the approval of temozolomide in 2005, no new

approved treatments for glioblastoma were forthcom-

ing until the recent development and clinical approval

of tumour-treating fields (TTFields) therapy, which

uses locoregional delivery of alternating electrical fields

within a narrow frequency range to specifically target

rapidly dividing cancer cells within a defined brain

region [15–17]. Akin to the introduction of temozolo-

mide into existing radiotherapy regimes, the inclusion

of TTFields to current temozolomide dosing schedules

increased overall patient survival rates by approxi-

mately 5 months, leading to clinical approval for

newly diagnosed glioblastoma by the Food and Drug

Administration (FDA) in the United States [17] in

2015, following its initial approval for recurrent

glioblastoma in 2011. However, the incorporation of

TTFields into standard-of-care therapy for glioblas-

toma is not universally accepted for numerous reasons,

including the lack of a placebo treatment, such as a

sham TTFields device, in key phase 3 randomised tri-

als [17,18]; incomplete understanding of the mechanis-

tic basis for TTFields therapeutic effects [16]; the

challenge of maintaining high treatment compliance;

and the current high financial costs associated with

this treatment regime. Consequently, opportunities for

patients to receive TTFields are not geographically

equitable and are largely dependent on the country’s

healthcare system approval structure for cancer thera-

pies [16]. Importantly, and relevant to this Review, the

current landscape of multimodal therapy used to treat

glioblastoma – that is, chemotherapy, radiotherapy

and TTFields – all induces DNA damage, replication

stress and mitotic-mediated cell death within tumour

cells. As such, a deeper understanding of the innate

DNA damage response (DDR) mechanisms and coor-

dinated cell cycle regulation within these tumours

offers opportunities to uncover exploitable tumour-

specific genetic and phenotypic vulnerabilities which

could lead to more efficient targeting and effective

treatment strategies in the clinic to confer much-

needed improvements in survival rates for patients.

1.2. Therapeutic challenges for glioblastoma

A cornerstone of glioblastoma treatment is effective sur-

gical resection of the tumour bulk. However, clinical

studies have suggested that neurosurgical removal of as

much as 98% of the tumour volume may be required

to provide an impact on median survival [19]. As such,

a plethora of surgical innovations have been applied to

help maximise surgical resection rates. Multimodal neu-

ronavigation, intraoperative magnetic resonance imag-

ing and ultrasound (MRI/US), and fluorescence-guided

surgery with 5-aminolevulinic acid (5-ALA) have

demonstrated the potential to augment surgical reduc-

tion of tumour burden [20–24]. Additionally, forthcom-

ing innovations, including the application of iKnife,
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which utilises rapid evaporative ionisation mass spec-

trometry (REIMS) to differentiate between tumour and

healthy tissue [25,26] or Raman spectroscopy, which is

used to achieve similar tumour-brain resolution in a

nondestructive manner [27–30], may yield further

improvements in resection rates in the near future.

However, given the highly infiltrative nature of glioblas-

toma and limited ability to resect infiltrated regions of

eloquent cortex without unacceptable morbidity, it is

unfortunately hard to envisage advances in surgical

technology impacting patient survival outcomes beyond

incremental gains.

In a similar manner to surgical interventions, radio-

therapy has also seen technological advancements,

including intensity-modulated radiation therapy,

stereotactic radiosurgery and proton beam therapy,

which have the potential to lead to improved delivery

of effective radiation doses to tumour sites whilst spar-

ing the surrounding healthy brain tissue [31,32].

Beyond the challenges associated with effective and

maximal surgical resection and targeted radiotherapy

regimes, delivery of a therapeutically effective dose of

chemotherapy to postsurgical residual tumour cells is

hampered by the presence of the blood–brain barrier/

blood–tumour barrier (BBB) [3,33], although there are

several groups developing ways in which to disrupt or

circumvent the BBB (discussed later).

The development of effective future therapies for

glioblastoma will also need to tackle the biological

mechanisms that help facilitate treatment resistance in

these aggressive cancers. Unlike lower grade tumours,

the majority of glioblastomas are classed as isocitrate

dehydrogenase (IDH) wild-type but often exhibit

mutations and/or deletions in phosphatase and tensin

homolog (PTEN), cyclin-dependent kinase inhibitor

2A/B (CDKN2A/B), telomerase reverse transcriptase

(TERT) promoter, tumour protein P53 (TP53), neu-

rofibromin 1 (NF1), phosphatidylinositol-4,5-bisphos-

phate 3-kinase catalytic subunit alpha (PIK3CA) and

phosphoinositide-3-kinase regulatory subunit 1

(PIK3R1), as well as amplification of epidermal growth

factor receptor (EGFR) and/or gain of chromosome 7,

chromosome 10 monosomy and MGMT promoter

methylation [5,34–36]. However, at present, no tar-

geted therapy designed to exploit such genetic and/or

phenotypic traits has proven successful within the

clinic [37]. One of the main reasons for this is that

glioblastomas exhibit profound intratumoural hetero-

geneity, with spatiotemporally divergent subpopula-

tions within a tumour displaying varying profiles of

vulnerability and resistance [38–41], which likely con-

tributes to local disease recurrence. Additionally,

increasing evidence supports the existence of a

subpopulation of glioblastoma cells that possess an

innate capacity for unlimited regeneration and self-re-

newal, which are often described as cancer stem cells

(CSCs) or glioblastoma stem cells (GSCs) [3,42–47].

Importantly, GSCs are often deemed responsible for

resistance to conventional chemoradiotherapy treat-

ment regimens through enhanced activation of DNA

damage checkpoints and DNA repair capacity [48–50].

This will be highlighted with specific examples later

within this Review.

1.3. Clinically relevant models of glioblastoma

Over the last decade, there has been a disappointing

lack of success in translating promising novel agents or

drug repurposing from preclinical studies into clinical

survival benefit for patients with glioblastoma [51]. To

some degree, this failure is representative of a lack of

clinically and postsurgically relevant preclinical models

of glioblastoma. In particular, the reported and further

emerging intratumoural heterogeneity that exists within

gliomas is a vital consideration for the development of

future therapies. Variation in the genetic aberrations,

phenotypic characteristics and clinical progression of

individual patient tumours presupposes the need for

personalised therapeutic strategies informed by a range

of molecular biomarkers [52–56]. Furthermore, accumu-

lating evidence suggests that a phylogenetic hierarchy of

spatiotemporally divergent subclones exists within indi-

vidual glioblastomas, each possessing a distinct collec-

tion of putative driver mutations and a characteristic

transcriptome [38,40,53,57,58]. Creating appropriate

preclinical models that are capable of recapitulating

such profound intratumoural heterogeneity as well as

GSC states represents a key challenge for the develop-

ment of new therapeutic agents that can impact patient

survival [3,46,59,60]. A detailed discussion of the advan-

tages and disadvantages of the various models is

beyond the scope of this Review, but these currently

consist of in vitro preclinical glioblastoma models that

range from traditional commercially available immor-

talised cell lines or fresh patient-derived primary cell

cultures (‘bulk’ or stem cell enriched) which can all be

maintained in either two- or three-dimensional (2D or

3D) architectures, as well as more complex tumouroid

and organoid cocultures and microfluidic ‘glioblastoma-

on-a-chip’ cultures [61–73]. Likewise, there are a

plethora of in vivo preclinical glioblastoma models

available, including subcutaneous, syngeneic, orthotopic

and patient-derived (PDX) xenografts as well as de novo

genetically engineered rodent models [74–77].

What is clear from the historic lack of newly

approved therapies and limited improvement in patient
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survival rates over the last 50 years compared with

other solid tumours is that glioblastoma represents a

complex and difficult therapeutic challenge. However,

recent work by numerous groups has started to reveal

further genetic and molecular insights into glioblas-

toma biology, particularly within the area of DDR

mechanisms that are triggered by current standard-of-

care radiochemotherapy regimes used to treat these

tumours. Furthermore, an evolving understanding of

the GSC niche together with the development of novel

preclinical models that better reflect postsurgical resid-

ual disease should hopefully begin to yield new thera-

peutic strategies over the next 5–10 years.

2. The DNA damage response and
glioblastoma treatment

2.1. Cellular responses to DNA damage

The structural integrity of DNA is constantly threat-

ened due to replication stress, telomere attrition and a

multitude of endogenous and exogenous agents that

generate high levels of varying DNA lesions. Such

agents include metabolic by-products, such as reactive

oxygen species (ROS) and aldehydes, UV light, ionis-

ing radiation (IR) and chemical toxins [78–80]. Failure

to repair DNA lesions induced by these processes can

lead to mutagenesis, tumorigenesis or cell attrition.

Given the potential deleterious effects on genome

integrity induced by such lesions, it is perhaps not sur-

prising that an intricate network of signalling path-

ways and reparative mechanisms have evolved to deal

with a plethora of DNA lesions, preserving genomic

architecture and integrity (genome stability). This net-

work is collectively referred to as the DNA damage

response (DDR), which encompasses a coordinated

and interconnected network of pathways that regulate

cell cycle progression/checkpoints, DNA repair mecha-

nisms, DNA replication and mitotic progression, as

well as transcriptional and cell death processes, in

order to preserve the integrity of the genome [79,81–

85]. Importantly, given that radiation and chemother-

apy treatments cause DNA lesions and affect cell cycle

progression, heightened and/or dysregulated DDR

mechanisms within tumour cells can often give rise to

innate and/or acquired treatment resistance. However,

such dysregulation to DDR mechanisms/processes dur-

ing cancer development and progression can also offer

vital cancer-selective vulnerabilities that can be

exploited for an improved therapeutic index as part of

either monotherapy- or combination therapy-targeted

treatment strategies [82,85–89].

The mechanisms associated with physically repairing

DNA damage can be categorised into four main types

based on the type of DNA lesion present: (a) base

modifications (including alkylation damage) and mis-

paired bases; (b) intrastrand or interstrand DNA

crosslinks; (c) single-strand breaks (SSBs); and (d)

double-strand breaks (DSBs) [79,81,84,85,90]. Addi-

tionally, although DSBs are often considered amongst

the most toxic of DNA lesions, it is worth considering

that each type of lesion is not an enduringly separate

entity. For example, radiation-induced damage often

leads to so-called ‘complex lesions’ or ‘clustered dam-

age’, in which multiple lesions are present within a few

hundred base pairs of the DNA helix [91]. The colli-

sion of replication forks with SSBs or DNA inter-

strand crosslinks (ICLs), particularly as a consequence

of oncogene activation, can result in the formation of

DSBs and other deleterious lesions. Similarly,

DNA : RNA hybrids known as R-loops can be gener-

ated from replication forks colliding with transcription

bubbles, which can have a plethora of deleterious

effects if not adequately resolved [92,93]. As such, the

dynamic relationships that exist between various DNA

lesions lead to functional redundancy within the repar-

ative processes, which likely contributes to treatment

resistance and forms the rationale for targeting multi-

ple DDR pathways/processes to potentially overcome

treatment resistance [78,82,83,86–89].

Maintenance of genome integrity relies not only on

accurate DNA repair, but also on the processes that

detect DNA damage and co-ordinate cell cycle check-

points, allowing time for DNA to be repaired. The

regulation of cell cycle checkpoints and subsequent

DNA repair processes as part of the early DDR pro-

cess is controlled by three main related protein kinases

– ataxia telangiectasia mutated (ATM); ataxia telang-

iectasia and Rad3-related kinase (ATR); and DNA-de-

pendent protein kinase (DNA-PK) – along with the

various cyclin-dependent kinases (CDKs) and the cen-

tral cell cycle regulator p53 and its associated factors

[83,90] (Fig. 1). ATM represents an apical, multifunc-

tional kinase within the DDR and typically plays a

key role in cellular responses to DNA DSBs, where it

helps co-ordinate all major cell cycle checkpoints via

the ATM-CHK2 axis [90,94]. Through the ATR-

CHK1 signalling axis, ATR helps preserve DNA integ-

rity in response to replication stress (perturbation to

ongoing replication forks) [95], although it is impor-

tant to note that there is significant crosstalk and some

functional redundancy amongst the activities of these

related kinases [90,96]. However, due to the main dif-

fering functions of these kinases, they are considered

as credible separate drug targets in cancer biology as
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part of either monotherapy or combinatorial (adju-

vant) therapeutic approaches [88,90,97,98].

Beyond the initial DDR signalling and cell cycle

checkpoint regulation, a key part of the cellular

responses to DNA damage is obviously the physical

repair of the vast array of DNA lesions that can be

present within both heterochromatic and euchromatic

regions of the genome [99–102]. An exhaustive discus-

sion of the vast array of DDR pathways is not possi-

ble within the confines of this Review; however, brief

summaries of some of the DNA repair pathways most

relevant to the therapy-induced DNA damage within

the context of glioblastoma treatment will be discussed

in the following section.

2.2. Therapy-induced DNA lesions and

associated repair mechanisms

Abrogation of the mechanisms that glioblastoma cells

use to repair the DNA lesions induced by chemo- and

radiotherapy may represent a key to effective multi-

modal treatment approaches [97] (Fig. 2). The most

effective chemotherapeutic agent in current standard-

of-care clinical use for glioblastoma is the alkylating

agent temozolomide [8]. Of the array of methylation

lesions induced on both nitrogen and oxygen mole-

cules within DNA nucleotides, O6-methlyguanine

(O6MeG) is considered the most toxic lesion induced

by temozolomide once metabolised from its prodrug

G1 S G2 M

G1/S Intra S G2/M

ATR

Chk1

CDC45
inhibition

CDC25C / CDK1

ATM

Chk2

p53/p21 CDC25A / CDK2 CDC25C / CDK1

DNADSBs

RPAcoatedssDNA

DNA DSBs

RPA-coated ssDNA

Fig. 1. The role of ATM and ATR in cell cycle regulation following DNA damage. The processes of cell division (mitosis, M phase) and DNA

synthesis (S phase) are separated by two important gap phases (G1 and G2). Progression of mitotic cells through the cell cycle is controlled by

periodic accumulation and destruction of the aptly named cyclin-dependent kinases (CDKs) and cyclins. Inappropriate progression through

phases of the cell cycle is prevented by three main checkpoints (G1/S, intra-S and G2/M checkpoints; dashed red lines). Following DNA

damage, checkpoint activation is critical to provide ample time and recruit the necessary machinery required to maintain genomic integrity.

Checkpoint activation: DNA double-strand breaks (DSBs) activate the apical DNA damage response (DDR) kinase ataxia telangiectasia mutated

(ATM), which can influence all three major cell cycle checkpoints via the phosphorylation of checkpoint kinase 2 (CHK2) and subsequent

downstream signalling. In contrast, ataxia telangiectasia and Rad3-related kinase (ATR) is activated by the presence of replication protein A

(RPA)-coated single-stranded DNA (ssDNA) and contributes to maintenance of the intra-S phase and G2/M checkpoints via phosphorylation of

checkpoint kinase 1 (CHK1) and subsequent downstream signalling as indicated. G1/S checkpoint: Phosphorylation of p53 by CHK2 and ATM

directly (arrow not shown) results in a reduction in the binding of mouse double minute 2 homolog (MDM2) to p53 and p53 activation,

promoting its nuclear accumulation and stabilisation. Subsequently, elevated p53 levels promote increased transcription of p21, which inhibits

CDK2–cyclin-E activity, resulting in prevention of progression to S phase. Intra-S checkpoint: Within S phase, the activation of cell division cycle

25 (CDC25) phosphatases predominantly by prevention of cell division cycle 45 (CDC45) loading onto replication origins (preventing subsequent

DNA replication) primarily via the ATR–CHK1 axis, but also via ATM-CHK2-mediated phosphorylation of CDC25A, can instigate an intra-S

checkpoint in response to replication stress or other perturbations to optimal DNA synthesis, permitting a slowing of DNA replication. G2/M

checkpoint: Both ATM- and ATR-mediated phosphorylation of CHK2 and CHK1, respectively, lead to the phosphorylation of CDC25C

phosphatases, which influence the G2/M checkpoint via interaction with the cyclinB1–CDK1 complex. This figure is adapted, with permission,

from Ref. [227].
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form to MTIC [3-methyl-(triazen-1-yl)imidazole-4-car-

boxamide] [103]. O6MeG can act as a miscoding base

during DNA replication, leading to a corresponding

C-to-T transversion within the complementary DNA

strand. If O6MeG is not successfully excised by the

mismatch repair (MMR) DNA repair machinery [104],

it endures as a perpetually miscoding base, instigating

‘futile cycles’ of MMR with consequent stalling of

DNA replication forks or double-strand breakage

[104,105]. As such, MMR capacity within GSCs har-

bouring genetic or epigenetic defects that affect MMR

gene expression can impact on temozolomide

sensitivity as well as other phenotypic traits due to the

well-established hypermutation phenotype conferred

by MMR defects [106–108] (Fig. 2). Additionally, the

de-alkylating enzyme methylguanine methyltransferase

(MGMT) can sequester the methyl group from

O6MeG to restore the guanine residue to its original

state, but this leaves MGMT irreversibly inactivated

and subject to ubiquitin-mediated proteasomal degra-

dation [105,109]. Consequently, high expression levels

of MGMT can contribute to temozolomide resistance

in glioblastoma [109]. On the other hand, approxi-

mately 40% of IDH-wild-type glioblastomas exhibit
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transcriptional repression of MGMT expression due to

hypermethylation of an MGMT-associated 5’ CpG

island, which confers a greater benefit from temozolo-

mide therapy and prolonged patient survival [10].

The mere notion that a DNA repair mechanism

such as MGMT expression can profoundly influence

survival for some patients provides further evidence of

the critical nature of DNA repair in glioblastoma.

However, it is important to note that, although both

MMR activity and MGMT expression can impact

temozolomide sensitivity of glioblastomas, longitudinal

genomic profiling has revealed that such defects do not

account for the majority of therapy resistance exhib-

ited within these tumours [106]. In addition to

O6MeG, the more prevalent (but less toxic) temozolo-

mide-induced DNA lesions N3-methyladenine and N7-

methylguanine are primarily removed via base excision

repair (BER), leaving an intermediary abasic [or apuri-

nic/apyrimidinic (AP)] site. The nucleotide gap is sub-

sequently filled through triggered DNA synthesis

processes and strand integrity restored through ligation

of the DNA ends – a process involving an AP endonu-

clease (APEX1), DNA polymerase (pol-b) and DNA

ligases I and III, respectively [110–112]. Additionally,

nucleotide excision repair (NER) is able to remove a

wide variety of structurally unrelated DNA lesions

that can be generated by both chemo- and radiother-

apy. The process can be activated by DNA helix dis-

tortions associated with structural changes to

nucleotides or by stalling of RNA polymerase II due

to the presence of a DNA lesion during transcript

elongation, and involves the DNA unwinding before

removal of a section of DNA containing the lesion fol-

lowed by resynthesis using the template strand and

subsequent ligation [113].

Radiotherapy exerts cellular damage by inducing a

wide range of DNA lesions, but it is particularly asso-

ciated with the generation of large amounts of SSBs

and DSBs (Fig. 2). Poly (ADP-ribose) polymerase-1

(PARP1) plays a pivotal role in detection of SSBs,

facilitating the colocalisation of the single-strand break

repair (SSBR) polypeptide x-ray repair cross-comple-

menting protein 1 (XRCC1) [114,115]. DNA DSBs are

predominantly repaired by the nonhomologous end

joining (NHEJ) and homologous recombination (HR)

DNA repair pathways. The HR pathway represents a

complex, high-fidelity mechanism of DNA DSB repair.

However, given its reliance on a homologous DNA

sequence (duplicate DNA strand on a sister chro-

matid) as a template for resynthesis of removed DNA

sequences around the site of DNA damage, HR-medi-

ated repair mechanisms are only possible during S and

Fig. 2. The effects of clinically approved therapies on the DNA damage response (DDR) and novel strategies to enhance efficacy of current

standard-of-care treatments. Schematic representation of the main DNA damage lesions (in blue italic) induced by therapies approved for

clinical use to treat glioblastoma and associated DDR mechanisms. For each approved treatment, putative strategies to enhance therapeutic

efficacy through targeting relevant DDR mechanism(s) are indicated. (A) Radiotherapy: generates large amounts of DNA single-strand breaks

(SSBs) and double-strand breaks (DSBs), which activate ATR and ATM, respectively. DSB repair is then predominantly undertaken by either

nonhomologous end joining (NHEJ), which is available throughout the cell cycle but compromises fidelity, or homologous recombination

(HR) DNA repair, which provides a high-fidelity repair mechanism, but is only available during S and G2 phases of the cell cycle due to the

requirement for a sister chromatid. SSB repair relies on PARP1 to detect SSBs and facilitate the recruitment of XRCC1. However, the

presence of strand breaks also leads to stalling of DNA replication forks, which depend on the functions of ATR and proteins within the

Fanconi anaemia pathway (FAP) for stability and replication restart. Consequently, a strong scientific rationale exists supporting inhibition of

either ATM (ATMi), ATR (ATRi), PARP1 (PARPi) or the FAP (FAPi) to enhance the efficacy of radiotherapy. (B) Temozolomide: produces an

array of methylation lesions including N3-methyladenine (N3MeA) and N7-methylguanine (N7MeG), which are substrates for effective

removal via DNA base excision repair (BER), and O6-methylguanine (O6MeG), which is removed directly by the enzyme MGMT in a suicide

reaction. Hypermethylation of the MGMT gene promoter region leads to reduced MGMT expression, shifting the balance in favour of

persistent O6MeG. O6MeG can act as a miscoding base during DNA replication, leading to a corresponding C-to-T transversion within the

complementary DNA strand. If O6MeG is not successfully excised by the mismatch repair (MMR) DNA repair machinery, it endures as a

perpetually miscoding base, instigating ‘futile cycles’ of MMR with consequent stalling of DNA replication forks or DSBs. (C) Tumour-

treating fields (TTFields): may negatively impact FAP and HR-mediated DNA repair processes. TTFields-induced ‘BRCAness’ (reflecting a

relative HR deficiency) provides a compelling rationale to combine this therapeutic modality with PARPi, or potentially FAPi, ATRi or even

ATMi. (D) Carmustine (BCNU) – Gliadel� wafers: provide local delivery of this bidirectional DNA alkylating agent, leading to the generation of

DNA interstrand crosslinks which impede DNA replication during S phase. This leads to activation of the FAP, within which

monoubiquitination of FANCD2 within the FANCD2-I complex is a key quantifiable step. Activated FANCD2-I coalesces as foci at sites of

DNA damage and acts as a master regulator of downstream DNA repair, recruiting proteins involved in nucleotide excision repair (NER),

translesion synthesis (TLS) and HR. Interplay with associated DDR mechanisms, for example ATM and ATR, leads to the phosphorylation of

multiple FAP proteins (examples indicated), providing a rationale for the use of non-FAP DDR inhibitors (e.g. ATRi or ATMi) to sensitise to

crosslinking chemotherapy, and for the concept of combining multiple DDR inhibitors (including FAPi) to potentially maximise therapeutic

enhancement.
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G2 phases of the cell cycle, when such sister chro-

matids are available [116,117]. Interestingly, although

TTFields therapy does not directly induce DNA

breaks (unlike IR), recent work has suggested that, in

addition to its effects on mitotic cells, TTFields may

negatively impact on HR-mediated DNA repair pro-

cesses [16,118], which could be important for future

DDR-targeting strategies that combine with this

recently approved glioblastoma therapy. In contrast to

HR, the NHEJ DNA repair pathway provides rapid

DSB repair capabilities throughout the cell cycle (since

a homologous sister chromatid is not required), per-

mitting repair of a range of DNA-end configurations

(Fig. 2). However, the flexibility and rapidity of NHEJ

is provided at the expense of fidelity [119,120]. As one

might expect given the cell cycle regulated nature of

these pathways, both HR and NHEJ are tightly regu-

lated by CDK activity [120,121], a family of kinases

often dysregulated in human cancers [122,123].

Finally, the Fanconi anaemia (FA or FA/BRCA)

pathway is frequently activated in response to DNA

strand breaks, alkylation damage and other cytotoxic

DNA lesions induced by both alkylating and DNA

crosslinking chemotherapeutic agents that impede

ongoing DNA replication [124–128]. The FA pathway

is also activated during normal S-phase progression

and is regulated by both ATM and ATR kinases [124–

134]. The FA pathway consists of at least 22 proteins

which can be broadly categorised into three distinct

functional groups (core complex, ID complex and

downstream effectors) that, through sequential interac-

tion, facilitate lesion repair and the restart of replica-

tion forks via physical removal of lesions by NER and

HR-mediated processes, as well as interactions with

components of the MMR system [135].

3. Targeting functional interplay
within the glioblastoma DDR network

3.1. Exploiting synthetic lethality and synthetic

sensitivity strategies

As mentioned previously, there are a plethora of inter-

connected interactions and functional crosstalk

between the various DDR, regulatory and DNA repair

pathways that open up a multitude of potential thera-

peutic targeting strategies in heterogeneous tumours

such as glioblastoma [88]. Perhaps most notable over

the past 10 years or so is the concept of synthetic

lethality: a concept that was originally described as a

simultaneous genetic mutation in, or functional aberra-

tion of the product of, two genes which causes cell

death; but in isolation, either change is survivable

[136]. More recently, synthetic lethality in terms of

oncology-based therapeutic strategies has expanded to

include scenarios in which specific phenotypic traits

such as defective HR-mediated DNA repair function,

or aberration in the function of certain genes or path-

ways, result in impaired cell growth or proliferation,

promoting lethal effects in the presence of additional

insults such as IR or cytotoxic chemotherapy [137]. As

such, the term ‘synthetic sensitivity or lethality’ (SSL)

can be used to amalgamate these related concepts.

Although major advancements in the generation of

RNAi and CRISPR/Cas9 libraries have undoubtedly

advanced our ability to uncover potential SSL rela-

tionships at the genome scale, the most successful

implementation of an SSL strategy to date in cancer

treatment, the targeting of BRCA-deficient cells with

PARP1 inhibitors, was derived from hypothesis-dri-

ven research rooted in a fundamental understanding

of the specific molecular pathways concerned and rel-

evant interplay between them, rather than broad

screening approaches [138,139]. This seminal work

has led to a wave of clinical approvals for PARP1

inhibitors that are delivering survival benefits to

patients with a range of cancers globally [140–142]. In

the context of gliomas, tumours with IDH1/2 muta-

tions may exhibit a ‘BRCAness’ phenotype as a con-

sequence of inhibition of HR DNA repair processes

by the enhanced levels of oncometabolites, which

could explain why a subset of IDH-mutant tumours

respond well to conventional DNA damaging

chemotherapies such as temozolomide as well as

PARP1 and ATR inhibitors [141,143,144]. However,

as highlighted earlier, the majority of high-grade

aggressive gliomas do not exhibit such defects in IDH

genes and associated metabolism but, as discussed

below, disruption to HR and associated DDR path-

ways may represent a credible mechanism to produce

a similar phenotype in these tumours. Furthermore,

challenges in efficient delivery of such compounds

across the BBB are a major clinical consideration;

however, at least for PARP1 inhibitors, early indica-

tions are encouraging in that therapeutically active

doses can be achieved at the tumour site [145].

3.2. Single DDR inhibitor strategies to enhance

therapeutic response

As mentioned previously, glioblastoma cells within a

single tumour can demonstrate remarkable hetero-

geneity in the expression of DDR factors and conse-

quently exhibit varying resistance profiles [146,147],

which likely plays a key role in treatment failure.
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Given the interconnected nature of the DDR path-

ways [88], it is perhaps not surprising that, although

promising in preclinical models, targeting any single

DDR pathway might not yield an effective therapeu-

tic response clinically. The D’Andrea group were the

first to demonstrate that components of the FA path-

way could confer resistance to temozolomide in

glioma cells [148], which was further corroborated by

Kondo and colleagues [149]. Building upon these

findings, we showed that the FA pathway is re-ex-

pressed and active within high-grade gliomas com-

pared with low-grade tumours as well as normal

healthy tissue and that inhibition of the FA pathway

in both established and primary glioma cells could

confer an increased sensitivity to temozolomide [150].

These findings were recently confirmed by large-scale

CRISPR-Cas9 screens that identified the FA and

related HR pathways as key modulators of temozolo-

mide resistance within glioma stem cells [108]. Impor-

tantly, we showed that disruption to FA pathway

function was able to render glioma cells sensitive to

temozolomide irrespective of MGMT status/expres-

sion levels [150], demonstrating a potential large

scope for such an approach within the clinical setting.

This is particularly important, as PARP1 inhibition

(the most successful DDR-targeting drug to date)

may only confer a similar increased temozolomide

sensitivity within cells that have MGMT promoter

methylation [151], which represents ~ 40% of all

patients diagnosed with glioblastoma and whose

tumours are already intrinsically more sensitive to

temozolomide. This is consistent with previous work

by Gupta and colleagues, who demonstrated that

siRNA-mediated knockdown of either N-methylpur-

ine DNA glycosylase (MPG) or XRCC1 (two indis-

pensable components of a functional BER pathway)

did not confer temozolomide sensitivity in resistant

glioma cell lines [152], even though PARP1 can act as

a scaffold to promote BER-mediated repair of alkyla-

tion damage [153].

Given that persistent bulky O6MeG lesions in the

absence of MGMT result in elevated DNA replication

stress [154,155] and that replication fork stability and

recovery is influenced by a number of DDR factors,

such as PARP1, as well as the HR and FA proteins

RAD51/FANCR, FANCD2, BRCA1/FANCS and

BRCA2/FANCD1, the integrity of some of these inter-

connected DDR processes may underpin the heteroge-

neous preclinical success of PARP1 inhibitor-mediated

temozolomide sensitisation. At least theoretically, these

data would support the use of adding an additional

DDR inhibitor to maximise replication fork collapse

and/or failure of resultant DNA DSB resolution,

potentially resulting in more pronounced neoplastic

cell death across a wider range of tumours. In this

regard, it seems rational that the activity of apical

DDR kinases, such as ATR and ATM, that regulate

replication stress signalling and DNA break repair

mechanisms might cooperate to limit the cytotoxicity

of temozolomide in cancer cells. Interestingly, activa-

tion of both ATR and ATM following temozolomide

chemotherapy occurs in an MMR-dependent manner

[156], which likely reflects the nature of the cytotoxicity

associated with O6meG compared with N7-meG and

N3-meA lesions, which do not activate MMR. Previous

work by Eich and colleagues showed that siRNA-medi-

ated knockdown of either ATR or ATM sensitised an

MGMT-negative glioma cell line to temozolomide

[157], with similar findings for ATM also reported by

Nadkarni et al. [158]. Interestingly, the degree of sensiti-

sation conferred by ATR knockdown in the Eich study

was more than double that observed following ATM

siRNA, indicating that impaired resolution of DNA

replication stress generated from O6MeG lesions may

be a key driver of sensitisation in this context, especially

given that simultaneous ATR and ATM knockdown

did not provide any additional sensitisation relative to

ATR alone and that the enhanced temozolomide sensi-

tisation could be rescued by ectopic expression of

MGMT [157]. These findings were also recently corrob-

orated by Jackson et al., who established that MGMT-

deficient glioma cells are profoundly susceptible to

temozolomide sensitisation using small-molecule ATR

inhibitors both in vitro and in vivo [159].

3.3. The FA pathway as a foundation for future

DDR-centric combinatorial strategies

In addition to potential compounding genetic and/or

epigenetic alterations within glioblastomas that might

affect DDR-targeting strategies, and the interplay

within the BER, MMR, MGMT, FA and HR path-

ways (highlighted above), interactions between the FA

pathway and other DDR elements have been charac-

terised that are also important to consider with regard

to potential FA-based combination targeting strategies

within glioblastomas [160]. For example, as mentioned

previously, both ATM and ATR phosphorylate several

proteins within the various FA subcomplexes [161–

163] and components of the FA pathway have also

been shown to promote activation of ATR and supress

potentially deleterious repair of DNA ICLs by NHEJ

[164–166]. Additionally, as the FA pathway promotes

HR-mediated DNA repair processes around

stalled/collapsed replication forks [167], HR-deficient

cells have been shown to be sensitive to disruption of
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FA pathway function [168,169]. Given this functional

interplay, it has been postulated that FA dysfunctional

tumours, or targeting of the FA pathway, may render

them sensitive to PARP1 inhibitors [170–172], as well

as a multitude of other drug targeting strategies within

the FA and related DDR pathways [170]. Indeed, we

have recently generated data in clinically relevant GSC

3D cell culture model systems highlighting profound

radio- and chemosensitisation through the combined

targeting of the FA pathway in combination with

ATM, ATR or PARP1 inhibitors (Rominiyi et al,

manuscript under preparation).

Unfortunately, there have been no reported ration-

ally designed inhibitors of the FA pathway to date;

however, recent structural insights into key regulatory

components of the FA pathway together with current

efforts by several groups to identify FA pathway inhi-

bitors (including our own group) [173–178] should

hopefully lead to the emergence and further develop-

ment of such compounds in the near future that could

be of great clinical significance for glioblastoma treat-

ment regimes. Apart from exhibiting high potency and

specify, such compounds would also need to demon-

strate high biological efficacy within the correct brain

regions or be adaptable to novel delivery mechanisms

in order to maximise their effectiveness in any such

therapeutic regimes [3]. Encouragingly, tumour margin

penetration within a biologically active drug concen-

tration range has been recently reported for the

PARP1 inhibitor olaparib (Lynparza) in combination

with temozolomide chemotherapy as part of the

OPARATIC trial [145], and it will be interesting to see

the results from other DDR inhibitor trials for

glioblastoma when they are reported (Table 1).

3.4. Expanding the preclinical evidence base for

parallel targeting of the DDR

As highlighted previously, there has been intense

research into the development of small-molecule inhi-

bitors of DDR proteins [82]; to date, however, only a

handful of published preclinical studies have examined

combined inhibition of multiple DDR elements simul-

taneously in glioblastoma. Given that ATM and

PARP1 inhibition each individually possess some util-

ity in sensitising GSCs to radiotherapy [179,180],

Ahmed et al. [181] investigated parallel inhibition of

the DDR targets ATM, ATR, CHK1 and PARP1 in

primary patient-derived glioblastoma cell lines. Firstly,

in agreement with previous findings by Bao et al. [48],

this study demonstrated that these DDR factors were

upregulated in the inherently treatment-resistant sub-

population of GSCs compared to bulk populations.

This further confirms the importance of targeting mul-

tiple DDR pathways and the potential for functional

redundancy within the DDR to contribute to the treat-

ment-refractory nature of glioblastoma. Secondly, the

study by Ahmed et al. demonstrated that combined

inhibition of PARP1 and ATR resulted in a profound

radiosensitisation of GSCs, with effects greater than

any single inhibitor used in isolation [181].

The rationale for a combination DDR inhibitory

strategy in glioblastoma is also supported by the work

of Signore and colleagues, who performed a simultane-

ous multipathway approach with subsequent reverse-

phase protein microarrays and kinase inhibitor library

screening to identify dual inhibition of CHK1 and

PDK1, resulted in profound retardation of GSC growth

in both in vitro and in vivo (subcutaneous and intracra-

nial mouse) models [182]. Although this study is highly

informative, the lack of target specificity with use of a

drug such as UCN-01 severely limits potential clinical

utility due to the high likelihood of dose-limiting toxici-

ties mediated by known off-target effects associated with

this compound. Nevertheless, this work provides further

preclinical proof-of-concept data in support of such

combinatorial approaches within heterogeneous glioblas-

toma tumour populations. More recently, Rasmussen

et al. [183] demonstrated that reduced DDR capacity

through PARP1 inhibition (olaparib) in conjunction

with epigenetic-downregulation-induced oxidative stress

through histone deacetylase (HDAC) inhibition

(vorinostat) led to reduced glioblastoma cell survival,

induced apoptosis and impaired cell cycle progression.

As demonstrated through these examples, the princi-

ple of multimodal targeting within the DDR network

based on an in-depth mechanistic understanding of

functional interplay and regulatory mechanisms offers

a potentially powerful approach to combat biological

complexity and functional redundancy within the

DDR, as well as intratumour heterogeneity within

glioblastoma tumour subpopulations (Fig. 3). Indeed,

preclinical research investigating such dual DDR inhi-

bition approaches outside of glioblastoma research is

supportive of this concept, for example CHK1 and

PARP1 inhibition in pancreatic cancer [184], CHK2

and PARP1 inhibition in lymphoma [185], CHK1 and

PARP1 inhibition in breast cancer [186], ATR and

PARP1 inhibition in breast and ovarian cancer [187],

and ATM and PARP1 inhibition in lung cancer [188].

3.5. Indirect DDR-targeting strategies in

glioblastoma

In addition to direct combination targeting of DDR

network factors, a comparable approach can be to
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Table 1. DNA damage response inhibitor trials in high-grade glioma. AEs(G3-4), grade 3–4 adverse events; AEs, adverse events; and WBRT, whole brain radiotherapy; CR, complete

response; DIPG, diffuse intrinsic pontine glioma; DLTs, dose-limiting toxicities; EFS, event-free survival; F/U, follow-up; IMRT, intensity-modulated radiation therapy; IR, radiotherapy; MTD,

maximum tolerated dose; nGBM, newly diagnosed GBM; NIRA, niraparib; OLAP, olaparib; ORR, overall response rate (proportion of patients with a PR or CR); OS, median overall survival;

PAMI, pamiparib; PFS, median progression-free survival; PR, partial response; QoL, quality of life; rGBM, recurrent GBM; rHGG, recurrent high-grade glioma; RP2D, recommended phase

II dose – highest dose with acceptable toxicity (producing a rate of around 20% DLTs); Rx, treatment; SAEs, severe adverse events; SD, stable disease; SoC, standard-of-care; TALA,

talazoparib; TMZ, temozolomide; TTF, tumour-treating fields; VELI, veliparib.

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

Summary of key PARP inhibitor in high-grade glioma clinical trials – completed and ongoing

Phase I studies

NCT00770471 [228]

nGBM

Veliparib (ABT-888), radiation therapy,

and temozolomide in treating patients

with newly diagnosed glioblastoma

multiforme

Phase I

Single arm

24 patients

(2009–2012)

VELI + IR + TMZ Phase I: VELI MTD

Phase II: OS (with

VELI MTD)

A) Safety/toxicity

B) Pharmacokinetics � Following initial safety groups

and planned dosing steps,

3/6 pts (50%) had DLTs (2

thrombocytopenia,

1 neutropenia) with 10mg BD

VELI+R+TMZ ? accrual

discontinued

� VELI at this dose with

standard dosing regimen

of IR+TMZ deemed not

tolerable

� Further development of

appropriate dosing

regimen needed

NCT01390571 [229,230]

rGBM

Olaparib and temozolomide in treating

patients with relapsed glioblastoma

(OPARATIC)

Phase 0/I

Single arm

48 patients

(2011–2017)

Stage I: OLAP for 3/7

prior to surgery then

usual Rx

Stage II: Escalating OLAP

3/7 prior to surgery then

OLAP + TMZ post-op

Phase 0: Tumour

penetration

via BBB/BTB

Phase I: Safety

A) BBB disruption/

permeability

B) Preliminary

antitumour activity

of OLAP + TMZ

� OLAP detected in 73/74

tumour specimens from

27 pts, mean conc.

588nM (range = 97–1374 nM).

� Mean tumour margin :

core ratio = 1.2 (0.2–3.9)

� Mean tumour : plasma

ratio = 0.25 (0.01–0.9)

� 24/35 pts (67%) AEs(G3-4)

� 45% PFS at 6 m F/U

� OLAP penetrates tumour

core/margins and is safe with

extended low-dose TMZ

NCT01294735 [230]

rGBM/rMelanoma/solid cancers

Phase I

Single arm

19 patients

NIRA + TMZ No. of DLTs A) ORR within

30 days of � MTD & RP2D = 40 mg OD

NIRA with 150 mg�m�2 TMZ.
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Table 1. (Continued).

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

Niraparib (MK-4827) given with temozolomide

in participants with advanced cancer

(2011–2012) last dose & 2m

intervals

B) PFS

� 2/10 pts (20%) had Grade

4 thrombocytopenia at this

dose

� 1 PR (glioblastoma) & 2 SD

out of 16 evaluable pts

� NIRA tolerable in combination

with TMZ

nGBM [231]

Two parallel phase I studies of olaparib and

radiotherapy or olaparib and radiotherapy

plus temozolomide in patients with newly

diagnosed glioblastoma, with treatment

stratified by MGMT status (PARADIGM-2)

Phase I

Parallel

Estimated patients:

25–40 methylated;

19–28 unmethylated

(2016–2021)

Methylated: OLAP +

IR + TMZ

Unmethylated:

OLAP + IR

Safety/toxicity

(MTD & optimum

scheduling)

A) Define DLTs

(+/� TMZ) � MGMT methylated dosing

schedule = OLAP (dose

escalation) with IR and

concomitant TMZ, then

4 weeks OLAP with

maintenance TMZ started

after completing OLAP

� Trial ongoing – recruitment

ends May 2021

Phase I/II studies

NCT01026493 [232]

rGBM

A randomized phase I/II study of veliparib

(ABT-888) in combination with

temozolomide in recurrent (temozolomide

resistant) glioblastoma (RTOG0929)

Phase I/II

Randomised

225 patients: 151

BEV na€ıve

(BEV-N); 74 BEV

refractory

(BEV-R)

(2009–2017)

Arm 1: VELI + TMZ

75 mg�m�2 (both

21/28 day cycle)

Arm 2: VELI + TMZ

150 mg�m�2

(both 5/28 day cycle)

Phase I: MTD.

Phase II: PFS at 6m

A) ORR

B) OS � Myelosuppression AE(G3-4) in

20% of pts

� PFS at 6 m = 17.0% (BEV-N)

& 4.4% (BEV-R) – median

PFS ~ 2 m (95% CI,

1.9–2.1 m) in both groups

� Median OS = 10.3 m

(8.4–12.0 m, BEV-N) & 4.7 m

(3.5–5.6 m, BEV-R)

� Concluded addition of VELI

‘did not significantly improve

PFS at 6m’ relative to historic

controls

� Note: MGMT status was not

included or analysed

NCT01514201 [214,233]

DIPG

Veliparib, radiation therapy, and

temozolomide in treating younger patients

with newly diagnosed diffuse pontine

Phase I/II

Single arm

65 patients

(2012–2018)

VELI + IR + TMZ Phase I: RP2D/DLTs.

Phase II: OS

A) PFS

B) Pseudoprogression

C) Pharmacokinetics

� VELI RP2D was 65 mg�m�2

BD
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Table 1. (Continued).

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

gliomas: a paediatric brain tumor

consortium study

� Day 4 average VELI

(65 mg�m�2) plasma

Cmax = 3 lM

� VELI DLTs inc: intratumoural

haemorrhage (1 pt, Grade 2);

rash (2 pts, Grade 3);

neurological (1 pt, Grade 3)

� Additional intrapatient TMZ

dose escalation could not be

tolerated

� OS at 1 and 2 years = 37.2%

and 5.3% respectively

� Accrual stopped early due to

futility at interim analysis

NCT02116777 [234]

Solid & haematological cancers

Talazoparib and temozolomide in treating

younger patients with refractory or

recurrent malignancies

Phase I/II

Single arm

40 patients

(2014–2018)

TALA + TMZ Phase I:

MTD/RP2D;

Safety/toxicity;

Pharmacokinetics

Phase II: ORR

(Ewing/PNET)

A) ORR all solid

tumours

(RECIST)

� RP2D = TALA 600 lg�m�2 BD

on day 1 then OD days 2–6/28

with TMZ 30 mg�m�2 day

2–6/28 cycle

� Majority of patients had

Ewing sarcoma (EWS), but

one patient with a malignant

glioma experienced a PR

� During Phase II, no response

observed out of 10 EWS pts

� No efficacy in EWS but may

warrant further study in CNS

tumours

NCT03150862 [235]

nGBM/rGBM

Pamiparib (BGB-290) with radiation and/or

temozolomide (TMZ) in newly diagnosed

or recurrent glioblastoma

Phase Ib/II

Parallel

Estimated

patients: 116

(2017–2021)

nGBM (unmethylated)

Arm 1: PAMI + IR

Arm 2: PAMI + IR + TMZ

rGBM (un- & methylated)

Arm 3: PAMI + TMZ

Phase I: Safety/toxicity

Phase II: Disease

response/control

A) Pharmacokinetics

B) PFS

C) OS

D) ORR

� RP2D for Arm 1 = PAMI

60 mg BD for 6 weeks

alongside IR

� RP2D for Arm 3 = PAMI

60 mg BD day 1–28 + TMZ

60 mg�m�2 7/28 day cycle

� Well tolerated – no Grade 4/5

toxicities; Grade 3 – Arm

1 -nausea (2%), Arm
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Table 1. (Continued).

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

2 – decreased WBC count

(11%). Arm 3 none

� PAMI + IR + TMZ well

tolerated – trial ongoing

– recruitment ends October

2021, final results awaited

NCT03212742 [236]

Unresectable HGG

Study of concomitant radiotherapy with

olaparib and temozolomide in unresectable

high-grade gliomas patients

(OLA-TMZ-RTE-01)

Phase I/IIa

Sequential

Estimated

patients: 79

(2017–2022)

OLAP + IR + TMZ Phase I: RP2D for both

IR-period and

maintenance period.

Phase II: OS

A) PFS

B) ORR

C) Neurocognitive

function

D) Morphological and

functional MRI

findings

� Dosing schedule = OLAP

(IR-period dose) with IR and

concomitant TMZ, then

4 weeks OLAP at same

dose ? then maintenance

TMZ started alongside daily

OLAP (maintenance dose)

� Trial ongoing – expected

completion June 2022

Phase II studies

NCT02974621

rGBM

Cediranib maleate and olaparib compared

to bevacizumab in treating patients with

recurrent glioblastoma

Phase II

Randomised

Estimated

patients: 70

(2017–2020)

Arm 1: OLAP + cediranib

Arm 2: BEV

PFS A) OS

B) Safety/toxicity

C) Circulating

biomarkers

(inc DDR and

cytokines)

� Dosing schedule = OLAP

BD on day 1–28/28 cycle

with cediranib OD on day

1–28/28 cycle

� Trial ongoing – recruitment

completed May 2020, results

awaited (estimated study

completion date May 2021)

NCT03233204

Solid tumours with DDR defects

Phase 2 subprotocol of olaparib in patients

with tumors harbouring defects in DNA

damage repair genes (NCI-COG Paediatric

MATCH (Molecular Analysis for

Therapy Choice))

Phase II

Single group

assignment

Estimated

patients: 49

(2017–2024)

OLAP only ORR A) PFS

B) Safety/toxicity

C) Pharmacokinetics

� Patient subprotocol

assignment from within the

overall paediatric MATCH

study [237] – based on

actionable mutations

� Eligible actionable mutations

not defined at trial registration

� Dosing schedule = OLAP BD

on day 1–28/28 cycle

� Changes in tumour genomic

profile monitored using ctDNA
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Table 1. (Continued).

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

� Trial ongoing – recruitment

ends September 2024

NCT03212274

rGlioma (WHO Grade II-IV) /

cholangiocarcinoma / solid tumours

with IDH1/2 mutation

Olaparib in treating patients with advanced

glioma, cholangiocarcinoma, or solid tumours

with IDH1 or IDH2 mutations

Phase II

Single arm

Estimated

patients: 145

(2018–2021)

OLAP only ORR (3 cohorts)

A) Glioma

B) Cholangio

C) Other solid

tumours

A) PFS

B) OS

C) Safety/toxicity

D) Exploratory

objectives inc

correlation between

baseline 2HG and

response

� Dosing schedule = OLAP BD

on day 1–28/28 cycle

� Builds on preclinical studies

demonstrating ‘BRCAness’

with IDH1/2 mutation and

elevated 2HG [238]

� Trial ongoing – recruitment

ends July 2021, results

awaited

NCT03581292

nHGG (H3K27M� BRAFV600�)

Veliparib (ABT-888), radiation therapy, and

temozolomide in treating patients

with newly diagnosed malignant

glioma without H3 K27M or

BRAFV600 mutations

Phase II

Single arm

Estimated

patients: 115

Age 3–25

(2018–2024)

VELI + IR + TMZ PFS A) ORR

B) OS � Dosing schedule = daily

VELI BD during

chemoradiotherapy phase

then 4 weeks after

completion ? daily VELI BD +

maintenance TMZ on days

1–5/28 cycle

� Incorporates longitudinal

assessment of ctDNA

� Exploratory objectives inc:

relationship between BRCA

1/2 alternations and features

of HRD (inc. large-scale

translocations, mutational

signature 3); penetrance of

HRD genes inc. HR genes,

FA genes, ATM, CHK2, and

MMR genes

� Trial ongoing – recruitment

ends October 2024

NCT04221503

rGBM

Evaluating the efficacy and safety

of niraparib and tumor-treating fields in

recurrent glioblastoma

(Niraparib/TTFields) [240]

Phase II

Parallel

Estimated patients:

30 (2019–2025)

All patients receive

NIRA + TTFields

Cohort 1: surgical

resection indicated

Cohort 2: resection not

indicated

Disease control

(CR/PR or SD)

A) Safety/toxicity

B) ORR

C) PFS

D) OS

� Cohort 1: initiate and continue

TTFields for 5–7 days prior

to starting NIRA

� Cohort 2: receive TTFields

for 5–7 before planned
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Table 1. (Continued).

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

resection, then postoperative

therapy as above

� Builds on preclinical studies

demonstrating ‘BRCAness’

induced by TTFields [118,239]

� Trial ongoing – expected

completion September 2021

NCT03561870

rHGG (IDHmut)

Olaparib in Recurrent IDH-mutant High

Grade Gliomas (OLAGLI)

Phase II

Single arm

Estimated patients:

35 (2020–2021)

OLAP only PFS n/a

� Dosing schedule = OLAP

300 mg BD on days 1–28/28

cycle

� Based on preclinical studies

demonstrating ‘BRCAness’

with IDH1/2 mutation and

elevated 2HG [238]

� Trial ongoing – expected

completion September 2021

NCT03991832

IDHmut solid tumours

Olaparib and durvalumab in patients with

IDH-mutated solid tumors (MEDI 4736)

Phase II

Parallel

Estimated patients:

78 (2020–2022)

All pts receive OLAP +

durvalumab

Cohort 1: Glioma

Cohort 2: Cholangio

Cohort 3: Other solid

tumours

ORR A) PFS

B) OS

C) Safety/toxicity

� Dosing schedule = OLAP BD

on days 1–28/28 cycle +

durvalumab (anti-PD-L1

therapy) on day 1/28 cycle

� Based on preclinical studies

demonstrating ‘BRCAness’

with IDH1/2 mutation and

elevated 2HG [238]

� Trial ongoing – recruitment

ends September 2022,

expected completion

September 2023

Phase II/III studies

NCT02152982

nGBM (MGMT promoter hypermethylated)

Temozolomide with or without veliparib in

treating patients with newly diagnosed

glioblastoma multiforme

Phase II/III

RCT

Randomised

447 patients

(2014–2021)

After SoC IR and

concomitant TMZ:

Arm 1: VELI + TMZ

Arm 2: PLACEBO + TMZ

OS A) ‘Interaction’

with TTFields

(for pts receiving

this)

B) PFS

C) ORR

D) Safety/toxicity

E) QoL

� Patients permitted to receive

TTFields alongside trial

therapies. No other additional

therapies permitted

� Studies will also assess

whether genetic/epigenetic
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Table 1. (Continued).

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

alternations to DDR genes

influence outcomes

� Trial ongoing – recruitment

completed November 2020,

results awaited

Summary of key ATM inhibitor in high-grade

glioma clinical trials – ongoing

Phase I studies

NCT03423628 [241,242]

nGBM/rGBM/brain metastases

Safety and tolerability of AZD1390 given

with radiation therapy in patients with

brain cancer

Phase I

Parallel

Estimated

patients: 132

(2018–2023)

AZD1390 + SoC IR:

nGBM: IMRT 60 Gy

over 6 weeks

rGBM: IMRT 35 Gy over

2 weeks

Mets: WBRT 30 Gy over

2 weeks

Safety/toxicity A) EFS

B) ORR

C) Pharmacokinetics

� Dosing schedule = AZD1390

administered in 3 ‘cycles’

– (1) 1 dose prior to starting

IR; (2) intermittent if

continuous administration

during IR; (3) 2-week adjuvant

ATMi after IR

� Based on preclinical studies

demonstrating BBB

penetration and improved

survival with AZD1390 in

mouse models [243]

� Trial ongoing – expected

completion February 2023

Summary of key DNA-PK inhibitor in high-grade glioma clinical trials – ongoing

Phase II studies

NCT02977780

nGBM

INdividualized Screening Trial of Innovative

Glioblastoma Therapy (INSIGhT)

Phase II

Parallel RCT

Estimated

patients: 250

(2017–2021)

After SoC IR and

concomitant TMZ:

Arm 1: TMZ

Arm 2: Neratinib + TMZ

Arm 3: CC115 + TMZ

Arm 4: Abemaciclib + TMZ

OS A) Safety/toxicity

B) PFS

C) Biomarkers &

survival associations

� Compares SoC therapy with

3 novel regimens each

adding an additional drug:

neratinib (tyrosine kinase

inhibitor); CC115 (DNA-PK

inhibitor); abemaciclib

(cyclin-dependent kinase 4

and 6 inhibitor)

� Details on CC115 dosing

schedule not available

� Trial ongoing – expected

completion December 2022
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Table 1. (Continued).

Trial (reference) & indication

Design &

n (rec dates) Treatment(s) 1° Endpoint 2° Endpoint(s)

Results/remarks &

conclusions

Summary of key WEE1 inhibitor in high-grade glioma clinical trials – ongoing

Phase I studies

NCT02207010 [225]

rGBM

A phase 0 study of AZD1775 in

recurrent GBM patients

Phase 0/I

Single arm

20 patients

(2015–2019)

Single dose of AZD1775

(100mg, 200mg or

400mg) prior to surgery

A) Plasma

concentration

B) Intratumoural

concentration

Tissue biomarker

analysis � Mean peak total AZD1775

plasma concentration over

100 ng�mL�1 with single

200 mg or 400 mg dose

� Mean unbound AZD1775

tumour concentration of

85 ng�g�1 at 2–24 h

exceeding the in vitro IC50

(40 ng�mL�1) for WEE1

inhibition

� Confirmation of target effects

including elevated cH2AX,

pH3 and cleaved caspase-3

NCT01849146 [244]

nGBM/rGBM

Adavosertib (AZD1775), radiation therapy,

and temozolomide in treating patients with

newly diagnosed or recurrent glioblastoma

Phase I

Nonrandomised

Estimated

patients: 114

(2013–2021)

Arm 1: AZD1775 during

initial IR + TMZ and

maintenance TMZ

Arm 2: AZD1775 during

maintenance TMZ

A) MTD

B) Safety/toxicity

A) OS

B) PFS � Preliminary data suggests

AZD1775 in combination

with initial IR + TMZ at

150 mg QDS and 425 mg

QDS alongside maintenance

TMZ for 5 days in each

28 day cycle had acceptable

toxicity

� Trial recruitment completed

– estimated study completion

December 2021

1
8

M
o
le
c
u
la
r
O
n
c
o
lo
g
y
(2
0
2
1
)
ª

2
0
2
1
T
h
e
A
u
th
o
rs
.
M
o
le
c
u
la
r
O
n
c
o
lo
g
y
p
u
b
lis
h
e
d
b
y
J
o
h
n
W
ile
y
&

S
o
n
s
L
td

o
n
b
e
h
a
lf
o
f
F
e
d
e
ra
tio

n
o
f
E
u
ro
p
e
a
n
B
io
c
h
e
m
ic
a
l
S
o
c
ie
tie

s
.

T
h
e
D
D
R
in

g
lio

b
la
s
to
m
a
b
io
lo
g
y
a
n
d
th
e
ra
p
y

O
.
R
o
m
in
iy
i
a
n
d
S
.
J
.
C
o
llis



target other signalling pathways that impact on DDR

activity and/or capacity. For example, Gomez-Roman

et al. [64] recently demonstrated in 3D GSC models

that disruption to functional VEGF and AKT sig-

nalling pathways impacted the balance between NHEJ

and HR DNA DSB break repair activities to increase

radiation sensitivity. This is particularly interesting

given that targeted therapies against VEGF (such as

bevacizumab) have generally failed to improve patient

overall survival in large clinical trials [51].

In a similar manner to identifying nonclassical DDR

pathway targeting strategies, we recently identified

ERK5/MAPK5 through a kinome-wide RNAi screen

as a novel temozolomide resistance factor, with abroga-

tion of ERK5 activity in glioma cells leading to defec-

tive DNA repair capacity, likely through inappropriate

NHEJ activity prior to mitosis [189]. Interestingly,

ERK5 has recently been identified as a key factor in

promoting cell growth and cell survival in the aggressive

diffuse intrinsic pontine gliomas [190], supporting recent

evidence around ERK5 as an emerging novel oncology

drug target [191–193]. As such, we are currently further

assessing the potential of ERK5 targeting in glioblas-

tomas as part of various combinatorial approaches

together with current standard-of-care therapy.

On the topic on non-DDR signalling kinases that

impact the DDR, Riess et al. [194] recently assessed

targeting of the CDK family of signalling kinases given

their common dysregulation in glioblastoma and the

recent advancement of a new generation of clinically

approved compounds. Using a CDK-based monother-

apy approach in various 3D glioblastoma preclinical

models, they showed that CDK inhibitors could nega-

tively affect tumour growth, but also that some CDK

inhibitors were able to effectively combine with DNA

damaging regimes such as radiation and temozolomide

treatments. However, they also showed that not all

tested CDK inhibitors behaved in the same way, with

some conferring antagonistic properties when combined

with temozolomide, potentially through differential

effects on global gene expression patterns [194]. This

study further highlights the need to understand the

intricate functional interplay and regulatory mecha-

nisms within the DDR as part of preclinical studies to

help maximise the therapeutic potential of such new

combinatorial regimes within the clinic.

In addition to CDK dysregulation, another common

feature of cancer cells is a heightened level of replica-

tion stress due to the activation of oncogenes [92,195].

Oncogene-induced replication stress has been shown to

be present in GSCs [49] and is capable of triggering

the DDR during early tumorigenesis [196]. Recent

work from Ning et al. [197] revealed that heightened

MYC activity in GSCs can lead to suppression of
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Fig. 3. An approach for cancer-selective killing through multimodality targeting of interconnected DNA damage response (DDR) pathways. A

schematic representation of simultaneous targeting of multiple interconnected DDR processes to achieve cancer-selective killing. Left – a

simplified network schematic of key DDR proteins illustrating the complexity of intra- and interpathway protein–protein interactions within

the global DDR. This complexity provides a degree of functional redundancy in DDR processes, which is likely to afford therapeutic

resistance to current DNA damaging therapies. Right – due to the loss of functionality within some DDR pathways during carcinogenesis,

cancerous cells often demonstrate overreliance on a reduced subset of DDR processes for cell survival. Where inhibition of a single DDR

pathway may not be sufficient to provide synthetic lethality or substantial cancer cell killing, targeting multiple DDR processes

simultaneously may overwhelm the remaining functional DDR leading to exquisitely potent cancer cell killing. However, by virtue of their

complete repertoire of fully functional DDR processes, normal cells might continue to avoid significant toxicity associated with multi-DDR-

targeting strategies (e.g. PARPi in noncancerous breast tissue that exhibits normal BRCA1/2 expression/function).
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ATR-mediated replication stress signalling through

transcriptional repression of CDK18. This is consistent

with recent findings from our laboratory that identified

CDK18 as a novel component of the ATR-mediated

replication stress signalling module that promotes cel-

lular resistance to a variety of replication stress-induc-

ing chemotherapeutic agents [198,199]. In keeping with

the aforementioned interplay between ATR signalling

and PARP1 activity (see above), Ning et al. [197] fur-

ther showed that GSCs with reduced CDK18 expres-

sion and subsequent retarded ATR activity, as a

consequence of oncogenic MYC action, were rendered

sensitive to PARP1 inhibitors. In keeping with a

heightened S-phase fraction within a subpopulation of

GSCs, a recent study by Zhou et al. [200] showed that

purine metabolism was increased in aggressive/high-

grade tumours and represents a potential target to

improve the effectiveness of radiotherapy regimes. This

is especially compelling given that, as highlighted

within this study, there are currently FDA-approved

inhibitors of GTP synthesis, although obviously the

efficient delivery of therapeutic doses within the brain

will be key to the success of such strategies.

Finally, another common feature of cancer cells,

particularly solid tumours, is an imbalance between

oxygen supply and demand from active aerobic meta-

bolism, causing regional hypoxia defined as regions of

reduced oxygen concentration. This presents both chal-

lenges in terms of cell death mechanisms, which are

less effective in the context of hypoxia, such as those

elicited by radiotherapy, but also potentially exploita-

ble therapeutic opportunities given the effects hypoxia

has on several DDR factors [201–204]. Recent discov-

eries outside of glioblastoma have revealed key molec-

ular and functional links between the DDR,

replication stress signalling and the cGAS-STING

immune pathways [205,206], and that targeting of

replication stress signalling may synergise with

immuno-oncology (IO) therapies [207,208]. However,

the propensity of glioblastoma to escape immuno-

surveillance, potentially poor receptor expression and

anatomical considerations have so far limited progress

in the development of effective immunotherapies for

glioblastoma compared to other cancers [209–212].

However, strategies to circumvent such immuno-

surveillance escape in gliomas have recently been

reported [213] and, as more mechanistic understanding

around how these pathways interact becomes avail-

able, further therapeutic opportunities for gliomas will

hopefully be developed. Together, these studies raise

the possibility that oncogene-induced replication stress

within residual GSC populations following surgical

resection may be targeted with agents that exploit such

defective ATR signalling, for example. However, as is

unfortunately all too common in glioblastoma

research, promising preclinical studies do not necessar-

ily translate into clinical benefit for patients [3,214] so

expectations in this regard need to be measured.

4. Conclusions and future
perspectives

As highlighted in this Review, there is a critical need

for new and more effective treatment strategies to

combat the long-standing dismal survival rates experi-

enced by patients diagnosed with high-grade brain

tumours such as glioblastoma. Through the combined

acquisition of fundamental biological insights into

DDR mechanisms and interplay within this network

and associated pathways, together with continued pro-

gress in imaging, surgical technologies and

radiochemotherapy delivery within the clinic, it is

expected that targeting of the DDR has a potential to

tackle the historic lack of treatment options for these

tumours. It will be particularly interesting to see the

results of DDR inhibitor clinical trials currently in var-

ious phases around the world (Table 1), as this will

give an indication of how successful such approaches

may or may not be [145,215]. There is, of course, the

risk, given the extensive intratumoural heterogeneity of

glioblastoma and inherently treatment-resistant GSCs

within these tumours, that any single targeted therapy

may in fact be ‘too targeted’, leading to inevitable

resurgence of resistant subclones and tumour repopu-

lation. In a similar manner to other difficult-to-treat

diseases such as HIV and multidrug-resistant tubercu-

losis [216], novel drug combinations may be required

to overcome the extensive genetic heterogeneity and

resistance mechanisms observed in glioblastoma. Con-

sequently, as highlighted within this Review, targeting

multiple DDR constituents in parallel has the potential

to provide new effective treatment paradigms that

might help prevent disease progression by counteract-

ing complex and overarching phenotypic delinquency

within the DDR of cancerous cells (Fig. 3).

In addition to the aforementioned needed improve-

ment in preclinical models that better reflect postsurgi-

cal residual disease, an important factor alongside the

development of such multimodal strategies will be fur-

ther improvements in the efficient delivery of therapeu-

tically active doses of drugs beyond the BBB, which

remains a significant challenge in glioblastoma therapy

[3]. Potential innovations on the horizon include the

use of MRI-directed magnetic nanoparticles [217,218],

surgical delivery of in situ gelling agents [219,220] and

enhanced intrathecal/cerebrospinal fluid delivery using
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novel viral vectors, antibody ligands or exosomes

[221–223]. Such approaches, in addition to traditional

oral or intravenous delivery approaches, coupled with

novel ways to disrupt the BBB, such as ultrasound

[224,225] or TTFields [226]-based approaches, will

hopefully provide the best chance for DDR-targeting

approaches to provide much-needed clinical benefit to

patients and families faced with the devastating diag-

nosis of a high-grade glioma.
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