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Abstract 

The flexible retrieval of knowledge is critical in everyday situations involving problem 

solving, reasoning and social interaction. Current theories emphasise the importance 

of a left-lateralised semantic control network (SCN) in supporting flexible semantic 

behaviour, while a bilateral multiple-demand network (MDN) is implicated in 

executive functions across domains. No study, however, has examined whether 

semantic and non-semantic demands are reflected in a common neural code within 

regions specifically implicated in semantic control. Using functional MRI and 

univariate parametric modulation analysis as well as multivariate pattern analysis, we 

found that semantic and non-semantic demands gave rise to both similar and distinct 

neural responses across control-related networks. Though activity patterns in SCN 

and MDN could decode the difficulty of both semantic and verbal working memory 

decisions, there was no shared common neural coding of cognitive demands in SCN 

regions. In contrast, regions in MDN showed common patterns across manipulations 

of semantic and working memory control demands, with successful cross-

classification of difficulty across tasks. Therefore, SCN and MDN can be dissociated 

according to the information they maintain about cognitive demands.  
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Introduction 

Our semantic knowledge encompasses disparate features and associations for any 

given concept (e.g., APPLE can go with PIE but also HORSE). While this allows us 

to understand the significance of diverse experiences, it raises the question of how 

we generate coherent patterns of semantic retrieval that diverge from strong 

associations in the semantic store. The controlled semantic cognition framework 

suggests that a distributed neural network manipulates activation within the semantic 

representational system to generate inferences and behaviours that are appropriate 

for the context in which they occur (Lambon Ralph et al. 2017). In well-practised 

contexts, in which the relevant information is robustly encoded, conceptual 

representations need little constraint from semantic control processes to produce the 

correct response. In contrast, situations requiring the retrieval of weakly-encoded 

information or uncharacteristic features, and the suppression of strong but currently-

irrelevant patterns of retrieval, depend more on control processes to shape semantic 

retrieval (Jefferies et al. 2020). Converging evidence from neuroimaging, patient and 

neuromodulation studies suggests that left inferolateral prefrontal cortex, posterior 

middle temporal gyrus, pre-supplementary motor area and intraparietal sulcus form a 

semantic control network (SCN); these sites all respond to diverse manipulations of 

semantic control demands (Jefferies and Lambon Ralph 2006; Hoffman et al. 2010; 

Jefferies 2013; Lambon Ralph 2014; Nozari and Thompson-Schill 2016; Lambon 

Ralph et al. 2017; Chiou et al. 2018).  

An outstanding question concerns the degree to which the neural mechanisms 

underpinning semantic control are specialised for this domain. A bilateral “multiple 

demand” network (MDN), including frontal, parietal, cingulate and opercular brain 

regions (Duncan and Owen 2000; Duncan 2010; Fedorenko et al. 2013), supports a 
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diverse range of cognitively-demanding tasks, including selective attention, working 

memory (WM), task switching, response inhibition, conflict monitoring and problem-

solving (Fedorenko et al. 2013; Fedorenko 2014; Crittenden et al. 2016; Assem et al. 

2020; Diachek et al. 2020). Meta-analyses of neuroimaging studies identify a 

network for semantic control that partially overlaps with MDN (Figure 3; Noonan et 

al. 2013; Jackson 2020). However, there also appear to be anatomical differences 

between these networks: regions supporting semantic control extend into more 

anterior areas of left inferior frontal gyrus, and posterior middle temporal areas, 

which are not implicated in executive control more generally. Moreover, SCN shows 

strong left-lateralisation, in contrast to other aspects of control, which are bilateral or 

even right-lateralized (Gonzalez Alam et al. 2018; Gonzalez Alam et al. 2019; 

Jefferies et al. 2020).  

Moreover, it is still poorly understood whether semantic control demands are 

analogous to domain-general control processes. Some studies have argued that 

there are important differences in the processes supported by MDN and SCN: for 

example, when semantic category is used as the basis of go-no go decisions, 

behavioural inhibition is still associated with right-lateralised MD regions, not 

activation within SCN (Gonzalez-Alam et al., 2018). This suggests that semantic 

control processes are only recruited when conceptual information itself must be 

controlled, and not whenever semantic tasks become hard. Semantic control might 

involve distinct neural processes not shared by the control of action or visual 

attention, since controlled semantic retrieval draws on heteromodal memory 

representations and information integration, supported by the default mode network 

(DMN) (Price et al. 2015; Margulies et al. 2016; Price et al. 2016; Pylkkänen 2019; 

Lanzoni et al. 2020), along with control processes (Davey et al. 2016). The SCN sits 
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at the intersection of DMN and MDN, showing structural and intrinsic functional 

connectivity to regions in both networks (Davey et al., 2016) and falling between 

these networks on whole-brain connectivity and functional gradients (Wang et al. 

2020): in this way, it might support functional coupling between DMN and MDN in the 

left-lateralised semantic network. While a few studies have manipulated both 

linguistic and non-linguistic demands, observing common modulation of the neural 

response in anterior insula and/or anterior cingulate cortex (Eckert et al. 2009; Erb et 

al. 2013; Fedorenko et al. 2013; Piai et al. 2013), we are still lacking knowledge 

about whether MDN and SCN regions share the same neural coding.  

Here, we conducted a pair of fMRI studies to assess the nature of neural signals 

relating to semantic and domain-general control demands. First, we contrasted 

parametric manipulations of difficulty for semantic judgements (by varying the 

strength of association) and verbal WM (by varying load), to identify sites specifically 

implicated in semantic and non-semantic control. We matched the task/trial structure 

and input modality across semantic and non-semantic domains. Next, using pattern 

classification analyses which examine the multivariate pattern of activation across 

voxels (Haynes and Rees 2006; Norman et al. 2006; Tong and Pratte 2012; Haynes 

2015), we tested which regions in the brain could decode semantic demands and 

WM load. Finally, we assessed whether SCN and MDN regions could cross-classify 

difficulty across semantic and non-semantic judgements. In this way, the current 

study tests the extent to which a shared neural code underlies both semantic control 

and WM load.   
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Materials and Methods 

Participants 

A group of 32 young healthy participants aged 19~35 (mean age = 21.97 ± 3.47 

years; 19 females) was recruited from the University of York. They were all right-

handed, native English speakers, with normal or corrected-to-normal vision and no 

history of psychiatric or neurological illness. The study was approved by the 

Research Ethics Committee of the York Neuroimaging Centre. All volunteers 

provided informed written consent and received monetary compensation or course 

credit for their participation. The data from one task was excluded for four 

participants due to head motion, and one additional WM dataset was excluded due 

to errors in recording the responses. The final sample included 28 participants for the 

semantic task and 27 participants for the WM task, with 26 participants completing 

both tasks.  

Design 

Participants completed two experiments, presented in separate sessions. The first 

session included four functional scans while participants performed a semantic 

association task. The second session included three WM functional scans and a 

structural scan (see Figure 1 for an example of each task). A slow event-related 

design was adopted for the two sessions in order to better characterise the activation 

pattern for each trial. Each trial lasted 9s and each run included 48 trials in the 

semantic task and 40 trials in the WM task. 
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Semantic association task design 

Participants were asked to decide if pairs of words were semantically associated or 

not. The stimuli were 192 English concrete noun word-pairs. We excluded any 

abstract nouns and items drawn from the same taxonomic category, so that only 

thematic links were evaluated in this task (i.e. forest – path or bath – duck; these 

items are related because they are found or used together). The strength of the 

thematic link between the items varied parametrically from no clear link to highly 

related; in this way, participants were free to decide based on their own experience if 

the words had a discernible semantic link. There were no ‘correct’ and ‘incorrect’ 

responses: instead, we expected slower response times and less convergence 

across participants for items judged to be ‘related’ when the associative strength 

between the items was weak, and for items judged to be ‘unrelated’ when the 

associative strength between the items was strong (see behavioural below). Overall, 

there were roughly equal numbers of ‘related’ and ‘unrelated’ responses across 

participants. 

Each trial began with a visually presented word (WORD-1) which lasted 1.5s, 

followed by a fixation presented at the centre of the screen for 1.5s. Then, the 

second word (WORD-2) was presented for 1.5s, followed by a blank screen for 1.5s. 

Participants had 3s from the onset of WORD-2 to judge whether this word pair was 

semantically associated or not by pressing one of two buttons with their right hand 

(using their index and middle fingers). During the inter-trial interval (3s), a red fixation 

cross was presented until the next trial began. Both response time (RT) and 

response choice were recorded. Participants finished 4 runs of the semantic task, 

each lasting 7.3 min. Before the scan, they completed a practice session to 
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familiarise themselves with the task and key responses (see Figure 1 for task 

schematic). 

Semantic stimuli 

To quantify the strength of semantic relationships in the association task, distributed 

representations of word meanings were obtained from the word2vec neural network, 

trained on the 100 billion-word Google News dataset (Mikolov et al. 2013). In 

common with other distributional models of word meaning, the word2vec model 

represents words as high-dimensional vectors with 300 dimensions, where the 

similarity of two words’ vectors indicates that they appear in similar contexts, and 

thus are assumed to have related meanings. The word2vec vectors used here were 

found to outperform other available vector datasets in predicting human semantic 

judgements in a recent study (Pereira et al. 2016). We defined the strength of the 

semantic relationship between words using the cosine similarity method. This value 

was calculated for each word pair presented as a trial, allowing us to characterise 

the trials on a continuum from strongly related to unrelated.  

While word2vec values were higher for trials judged to be semantically related 

overall (see below), there was considerable variation for both related and unrelated 

judgements. Since different numbers of items were judged to be thematically related 

and unrelated across participants, we split related and unrelated trials for each 

participant into five levels according to their word2vec value, each with the same 

number of word-pairs. In order to simplify the presentation of the results, the analysis 

was based on these five levels of word2vec unless otherwise stated. We reasoned 

that higher word2vec values would be associated with lower task demands for trials 

judged to be related, and with higher task demands for trials judged to be unrelated. 
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This was confirmed by behavioural analyses (see below). Word2vec values did not 

correlate with psycholinguistic variables from N-Watch (Davis 2005), including word 

length (number of letters: Word1, r = 0.099, p = 0.17; Word2, r = 0.113, p = 0.119), 

word frequency (Word1, r = 0.033, p = 0.657; Word2, r = 0.111, p = 0.127) or 

imageability (Word1, r = -0.004, p = 0.958; Word2, r = -0.010, p = 0.901). We also 

computed a semantic decision consistency index for each word pair by calculating 

how many participants judged it to be semantically associated (expressed as a 

proportion of the total participants tested). Word2vec was significantly positively 

correlated with this consistency value (r = 0.773, p < 0.0001), showing that people 

were more likely to judge word pairs as related when they had high word2vec values.  

Verbal working memory task 

The WM task had a similar structure to the semantic task (see Figure 1). Each trial 

began with a letter string (3 to 7 letters) presented at the centre of the screen for 

1.5s, followed by a fixation presented for 1.5s. Participants were asked to remember 

these letters. Next, two letters were shown on the screen for 1.5s. Participants 

judged whether both of them had been presented in the letter string by pressing one 

of two buttons within 3s (participants were told the order of the letters on the screen 

did not matter). Then a red fixation cross was presented for 3s, until the start of the 

next trial. Participants completed 3 runs, each containing 40 trials and lasting for 6.1 

minutes. WM load was manipulated by varying the number of letters memorised in 

each trial; there were five levels of load from 3 to 7 letters (to match the five levels of 

word2vec in the semantic task), with 8 trials at each level in each run, presented in a 

random order. Both response time (RT) and accuracy were recorded, and 

participants were asked to respond as quickly and accurately as possible. 
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Mixed-Effects Modelling of Behavioural Data 

Since participants judged different numbers of items to be semantically related and 

unrelated in the semantic task, mixed-effects modelling was used for the analysis of 

the behavioural data. This approach is particularly suitable when the number of trials 

in each condition differs across participants (Mumford and Poldrack 2007; Ward et 

al. 2013). Semantic association strength (or WM load) was used as a predictor of the 

decision participants made (in the semantic task: judgements of whether the words 

were related or unrelated; in the WM task: whether the response was correct or 

incorrect) and, in separate models, how long the reaction time this decision took (i.e., 

RT). Participants were included as a random effect. The mixed-effects model was 

implemented with lme4 in R (Bates et al. 2014). We used the likelihood ratio test 

(i.e., Chi-Square test) to compare models with and without the effect of semantic 

association strength and WM load level, in order to determine whether the inclusion 

of the difficulty manipulations significantly improved the model fit. 

Neuroimaging data acquisition 

Imaging data were acquired on a 3.0 T GE HDx Excite Magnetic Resonance Imaging 

(MRI) scanner using an eight-channel phased array head coil at the York 

Neuroimaging Centre. A single-shot T2*-weighted gradient-echo, EPI sequence was 

used for functional imaging acquisition with the following parameters: TR/TE/θ = 

1500 ms/15 ms/90°, FOV = 192 × 192 mm, matrix = 64 × 64, 3 x 3 x 4 mm voxel 

size, 32 axial slices without a gap. Slices were tilted approximately 30° relative to the 

AC-PC line to improve the signal-to-noise ratio in the anterior temporal lobe and 

orbitofrontal cortex (Deichmann et al. 2003; Wimmer and Büchel 2019). Anatomical 

MRI was acquired using a T1-weighted, 3D, gradient-echo pulse-sequence 
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(MPRAGE). The parameters for this sequence were as follows: TR/TE/θ = 7.8s/2.3 

ms/20°, FOV = 256 × 256 mm, matrix = 256 × 256, and slice thickness = 1 mm. A 

total of 176 sagittal slices were acquired to provide high-resolution structural images 

of the whole brain. The relatively short TE was used to minimise the EPI distortion 

around ATL. We calculated the temporal signal-to-noise ratio (tSNR) for each 

participant by dividing the mean of the smoothed time series in each voxel by its 

standard deviation in each run; we then averaged the tSNR across all runs for the 

semantic task. These tSNR values were comparable with previous studies (Hoffman 

et al. 2015; Striem-Amit et al. 2018), and were at acceptable levels (Murphy et al. 

2007), although lowest at the anterior temporal pole (mean value: 107.8). 

Supplementary Figure S5 shows tSNR for a range of ROIs and the full tSNR map in 

MNI space is available to view online:  https://neurovault.org/images/441927/. 

fMRI Data Pre-processing Analysis 

Image pre-processing and statistical analysis were performed using FEAT (FMRI 

Expert Analysis Tool) version 6.00, part of FSL (FMRIB software library, version 

5.0.11, www.fmrib.ox.ac.uk/fsl). The first 4 volumes before the task were discarded 

to allow for T1 equilibrium. The remaining images were then realigned to correct for 

head movements. Translational movement parameters never exceeded one voxel in 

any direction for any participant or session. Data were spatially smoothed using a 5 

mm FWHM Gaussian kernel. The data were filtered in the temporal domain using a 

nonlinear high-pass filter with a 100 s cut-off. A two-step registration procedure was 

used whereby EPI images were first registered to the MPRAGE structural image 

(Jenkinson and Smith 2001). Registration from MPRAGE structural image to 

standard space was further refined using FNIRT nonlinear registration (Andersson et 

al. 2007).  

https://neurovault.org/images/441927/
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Univariate Parametric Modulation Analysis 

We examined the parametric effect of semantic control demands (i.e. the strength of 

association between WORD-1 and WORD-2) in the decision phase of the task, using 

general linear modelling within the FILM module of FSL with pre-whitening turned on. 

Trials judged to be semantically related (YES trials) and unrelated (NO trials) by 

participants were separately modelled, using their demeaned word2vec values as 

the weight, and the RT of each trial as the duration. In addition, we included 

unmodulated regressors for the trials judged to be related and unrelated, as well as 

regressors containing WORD-1 and the within-trial fixation between the words. The 

second fixation interval between the trials was not coded and thus treated as an 

implicit baseline. Regressors of no interest were included to account for head 

motion. Three contrasts (related vs. baseline, unrelated vs. baseline, and related vs. 

unrelated) were defined to examine the effect of semantic control demands on trials 

judged to be related and unrelated.  

The WM task was analysed in a similar way. Correct and incorrect trials were 

separately modelled. For correct trials, the parametric effect of difficulty was 

modelled by including memory load as the weight, and reaction time as the duration 

of each trial; we also included unmodulated regressors for these trials. In addition, 

we included three unmodulated regressors: incorrect trials, the first word and the first 

within-trial fixation. The second fixation interval between the trials was not coded and 

thus treated as an implicit baseline. Regressors of no interest were included to 

account for head motion. Two contrasts (correct > baseline and the reverse) were 

defined to examine how memory load parametrically modulated neural activation in 

the brain.  
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For both semantic and WM models, a higher-level analysis was conducted to 

perform cross-run averaging using a fixed-effects model. These contrasts were then 

carried forward into the group-level analysis, using FMRIB’s Local Analysis of Mixed 

Effects 1 + 2 with automatic outlier detection (Beckmann et al. 2003; Woolrich et al. 

2004; Woolrich 2008). Unless otherwise noted, group images were thresholded 

using cluster detection statistics, with a height threshold of z > 3.1 and a cluster 

probability of p < 0.05, corrected for whole-brain multiple comparisons using 

Gaussian Random Field Theory. The same threshold was used for both univariate 

and MVPA analysis. Uncorrected statistical maps are available to view online: 

(https://neurovault.org/collections/8710/). 

Multivoxel Pattern Analysis 

Single-trial Response Estimation 

We used the least square-single (LSS) approach to estimate the activation pattern 

for each trial during the decision phase in the two tasks. Each trial’s decision was 

separately modelled in one regressor and all other trials were modelled together as a 

second regressor; we also included WORD-1 and the fixation as additional 

regressors. Pre-whitening was applied. The same pre-processing procedure as in 

the univariate analysis was used except that no spatial smoothing was applied. This 

voxel-wise GLM was used to compute the activation associated with each trial in the 

two tasks. Classification was performed on t statistic maps, derived from beta 

weights associated with each regressor, to increase reliability by normalizing for 

noise (Walther et al., 2016). 

https://neurovault.org/collections/8710/
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Network Selection and Parcellation 

We used two complementary multivariate approaches to assess representations of 

control demands; both network/ROI-based and whole-brain searchlight methods. We 

used two networks defined from previous studies: the semantic control network 

(SCN) and multiple-demand network (MDN) (Fedorenko et al. 2013; Jackson 2020). 

We decomposed these networks into semantic control specific (SCN specific) areas, 

which did not overlap with MDN; multiple-demand specific (MDN specific) regions, 

which did not overlap with SCN; and shared control regions identified from the 

overlap between MDN and SCN. As a comparison, we also examined regions within 

the semantic network not implicated in control. To identify these regions, we 

downloaded a semantic meta-analysis from Neurosynth (search term ‘semantic’; 

1031 contributing studies; http://www.neurosynth.org/analyses/terms/). Then, we 

removed regions within this semantic network which overlapped with the two control 

networks to identify semantic regions predominately associated with semantic 

representation or more automatic aspects of semantic retrieval, mostly within DMN 

(e.g. in lateral temporal cortex and angular gyrus). All of the voxels within the 

network maps defined above were included within network-based ROIs. Intraparietal 

sulcus was not included because the sequence did not allow us to cover the whole 

brain for some participants. In total, thirty ROIs were defined; four ROIs in semantic 

non-control areas, three ROIs in SCN areas, six ROIs in the overlap of MDN and 

SCN, and seventeen ROIs in MDN specific areas. These thirty ROIs are available 

online: https://osf.io/bau5c/, see Figure 4A for the four networks. 

http://www.neurosynth.org/analyses/terms/
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Regions of Interest Definition 

To further examine cross-task decoding accuracy in SCN and MDN regions in a 

supplementary analysis designed to minimise the likelihood of a type II error, two 

ROIs per participant (cubes with a radius of three voxels containing 343 voxels) were 

defined using the univariate parametric analysis. The SCN ROI was based on 

individual peak responses to the univariate parametric effect of task difficulty for 

semantically-related trials in the left IFG (pars triangularis from the Harvard-Oxford 

atlas). By selecting the region maximally sensitive to semantic control demands for 

each participant, we could investigate whether the same pattern of response within 

this region was elicited by easy and hard semantic and WM trials. Mean MNI 

coordinates across the sample were X = -50, Y = 29, Z = 13. We defined the MDN 

ROI using each participant’s peak coordinate for the conjunction of parametric 

effects for semantic control (from related trials) and WM load in the pre-

supplementary motor cortex (pre-SMA). The mean MNI coordinates across the 

sample were X = -6, Y = 22, Z = 52. These sites are shown in Supplementary Figure 

S4A. 

Support Vector Regression Analysis  

Epsilon-insensitive support vector regression analysis (SVR) (Drucker et al. 1997) 

was conducted using a linear support vector machine (SVM) (Chang and Lin 2011) 

and custom code implemented in MATLAB (The MathWorks) (code is available at: 

https://osf.io/bau5c/). In contrast to conventional support vector machine 

classification (SVM), the SVR does not depend on categorical classification (i.e., 

predictions falling on the correct or incorrect side of a hyperplane); instead, it outputs 

estimations using a regression approach. This approach was used to estimate the 

https://osf.io/bau5c/
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difficulty level or cognitive demand for each trial. For each level of difficulty (based on 

inverse word2vec for semantic trials judged to be related, word2vec for semantic 

trials judged to be unrelated and memory load in the WM task), the test and training 

data were normalized (i.e., mean subtracted and divided by the standard deviation) 

across voxels within each region of interest (i.e., searchlight, ROI) (Misaki et al. 

2010). This allowed an evaluation of the pattern of activity across voxels without 

contamination from mean signal differences within the searchlight or ROI as a whole 

across the difficulty levels (i.e., the univariate effect) (Misaki et al. 2010; Jimura and 

Poldrack 2012; Coutanche 2013), while MVPA may still potentially be sensitive to 

subtle changes in activity patterns that accompany difficulty-based 

deactivation/activation in each voxel within a searchlight cube or an ROI. The SVR 

cost parameter was set to 0.001. For each searchlight or ROI, the accuracy of SVR 

prediction was then calculated within-participant, defined as the z-transformed 

Pearson’s correlation coefficient between actual and predicted values of the difficulty 

parameter for the left-run-out data, with the actual difficulty levels ranging from 1 

(easy) to 5 (hard) in both tasks. The epsilon parameter in the SVR model was set to 

epsilon = 0.01 (Jimura and Poldrack 2012). 

 

For each participant, three separate SVR classifiers were trained to decode cognitive 

demands: these examined the difficulty of semantic trials judged to be related 

(difficulty maximised for low association trials), the difficulty of semantic trials judged 

to be unrelated (difficulty maximised for high association trials), and the difficulty of 

WM trials (difficulty maximised for highest memory load). We examined 

generalization of difficulty effects within the semantic domain (i.e. between trials 

judged to be semantically-related and unrelated). In order to test whether semantic 



18 
 

control and executive control share a common neural code, we also performed a 

series of generalization (cross-task classification) analyses, in which classifiers were 

trained on each task type (semantic related; semantic unrelated; WM) and tested on 

the other task types (i.e. trained on semantic related, tested on WM), resulting in 4 

SVR decoding accuracy types. All classification analyses were performed using a 

leave-one-run-out cross-validation. SVR decoding was performed using searchlight 

and ROI approaches.  

For searchlight-based analysis, for each voxel, signals were extracted from a cubic 

region containing 125 surrounding voxels. The searchlight analysis was conducted in 

standard space. A random-effects model was used for group analysis. Since no first-

level variance was available, an ordinary least square (OLS) model was used. 

For the network ROI-based analysis, because the number of voxels in the network 

ROIs varied and differences in ROI size are likely to influence classifier performance, 

classification analyses were performed by randomly subsampling 200 voxels from 

each ROI. This process was repeated for 100 iterations for each ROI and subject, 

with each iteration involving a different random sample of 200 voxels. The 100 

iterations in each ROI were averaged into one value, and this value from all ROIs 

were averaged again for each brain network.  

Results 

Behavioural Results  

Overall, equal numbers of word pairs were judged to be related or unrelated by the 

participants (mean ratio: 0.491 vs. 0.495, χ2(1) = 0.00021, p > 0.995). Linear mixed 

effects models examined whether associative strength and WM load were reliable 

predictors of behaviour. We found that both the strength of the semantic association 
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(word2vec value) and WM load successfully manipulated task difficulty. For the 

semantic task, the continuous word2vec value was positively associated with a 

higher probability that participants would identify a semantic relationship between the 

words (χ2(1) = 2421.3, p < 0.001) using a logistic regression approach. When word 

pairs were grouped into 5 levels according to their word2vec value, the relationship 

was still significant (χ2(1) = 2467.8, p < 0.001).  

Since we used a continuous manipulation of associative strength, and there is no 

categorical boundary of word2vec values which can capture the trials reliably judged 

to be related and unrelated, we were not able to compute a traditional error score for 

the semantic task. We expected that for those word-pairs judged to be related in 

meaning, higher word2vec values would facilitate semantic decision-making. For 

these trials, the pattern of semantic retrieval required by the task (i.e. the 

identification of a linking context) is likely to be well-supported by dominant 

information in long-term memory. Since the linking context is highly accessible on 

these trials, there is less uncertainty about the relevant response, and potential 

conflict between the response options is reduced. In contrast, when items are judged 

to be semantically related even when they have less semantic overlap as assessed 

by word2vec, it is thought that control processes must be engaged to shape 

activation within the semantic store; this is because a dominant linking context is not 

readily available in long-term memory. In this situation, task-irrelevant but more 

dominant semantic associations to the two words may need to be suppressed and 

there is likely to be more uncertainty about the decision. For trials in which words are 

judged to be unrelated in meaning, the effect of strength of association is expected 

to have the opposite effect on task difficulty. When the two items have very different 

meanings and are not remotely connected to each other, it is relatively easy to 
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decide that they are not semantically associated; low word2vec values should be 

associated with lower decisional uncertainty. In contrast, when participants decide 

that two words are unrelated even when they are somewhat linked according to 

word2vec, the semantic decision is expected to be more difficult, with greater 

uncertainty or response conflict emerging from their partial relationship. Participants 

may need to recruit control processes to overcome this conflict or uncertainty.  

Mean RT for each level is presented in Figure 1C, separately for related (YES) and 

unrelated (NO) decisions. To examine how association strength level modulated RT 

for trials judged to be related and unrelated, we performed linear mixed effects 

analyses with participant as a between-subject variable and association level as a 

within-subject variable. This revealed a significant effect of level of association 

strength for both related and unrelated decisions. Association strength level was 

negatively associated with RT (χ2(1) = 146.6, p < 0.001) for related trials and 

positively associated with reaction time for unrelated trials (χ2(1) = 58.668, p < 

0.001). It was more difficult for participants to retrieve a semantic connection 

between two words when strength of association was lower; on the contrary, it was 

easier for them to decide there was no semantic connection between word pairs with 

low word2vec values. 

For the WM task, the proportion of correct responses was 84.8%, when all memory 

load levels were considered. The more items to be maintained or manipulated in 

WM, the more difficult the trial was expected to become. A logistic regression 

showed that higher WM load was associated with lower accuracy (χ2(1) = 112.4, p < 

0.001). A further linear mixed effects model with participant as a between-subject 

variable and memory load as a within-subject variable revealed a significant positive 
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relationship between load level and RT for correct responses (χ2(1) = 39.826, p < 

0.001).  

Lastly, a two-way repeated-measures ANOVA was conducted examining the effects 

of task condition (semantic related, unrelated and WM correct) and difficulty level 

(five levels per task) on the proportional change in RT for each difficulty level of the 

task, relative to the average RT for each condition. The results showed a significant 

interaction between conditions and difficulty levels (F(5.395,134.881) = 8.329, p < 

0.001, Greenhouse-Geisser corrected), along with a main effect of difficulty level 

(F(3.134, 78.346) = 53.262, p < 0.001, Greenhouse-Geisser corrected). Together, 

these results suggest that association strength and memory load successfully 

manipulated task difficulty, with semantic association showing a stronger influence 

on RT than WM load.  
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Figure 1. Experiment paradigm and behavioural results.  A. Semantic association task; 

participants were asked to decide if word pairs were semantically related or not. B. Word pair 

examples for both related and unrelated decisions from one participant, with association 

strength increasing from Level 1 (L1; little semantic overlap) to Level 5 (L5; high semantic 

overlap). These trials were assigned to related and unrelated sets of trials on an individual 

basis for each participant, depending on their decisions, and then split into 5 levels, based 

on word2vec scores. C. RT for semantic decisions across 5 levels of word2vec for word 

pairs judged to be related and unrelated. D. Working memory task; participants were asked 

to decide if two probe letters were presented in a sequence, in any order. E. Working 

memory load ranged from 3 to 7 items. F. RT for WM trials across 5 levels of load, for 

correct and incorrect decisions. 
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fMRI Results 

The Parametric Effect of Word2vec on Brain Activation 

We identified brain areas showing an increase or decrease in activation as a function 

of association strength (using the continuous word2vec scores). It was harder for 

participants to decide that items were semantically related when they were weakly 

associated; consequently, we would expect stronger responses in semantic control 

and multiple demand regions for these trials. It was also harder for participants to 

decide that items were semantically unrelated when they had greater word2vec 

values; therefore we would expect opposite effects of word2vec for related and 

unrelated trials in brain regions supporting demanding semantic decisions. The direct 

comparison of word2vec effects for semantically-related and unrelated decisions can 

identify brain areas responding to semantic similarity but not difficulty, while the 

combination of negative effects of word2vec for related decisions and positive effects 

of word2vec for unrelated decisions can identify brain regions that respond to the 

difficulty of semantic decisions, without a confound of semantic relatedness.  

For related trials, weaker associations elicited greater activity in regions linked to 

semantic control in previous studies, including left inferior frontal gyrus (IFG), left 

middle frontal gyrus (MFG), superior frontal gyrus (SFG) and left posterior middle 

temporal gyrus (pMTG); see Figure 2A. Similarly, when participants decided that 

items were unrelated, there was stronger activation in left inferior frontal gyrus, 

middle frontal gyrus, superior frontal gyrus and frontal orbital cortex (FOC) when 

these items had higher word2vec scores; see Figure 2B.  
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We investigated common and distinct effects of semantic control demands across 

trials classified as related and unrelated. A conjunction analysis revealed that 

rejecting strongly associated word pairs and accepting weakly associated word pairs 

recruited common semantic control regions including left inferior frontal gyrus, middle 

frontal gyrus, superior frontal gyrus and frontal orbital cortex, see Figure 2D. There 

were no significant differences in the parametric effects of semantic control demands 

or semantic relatedness for trials judged to be related and unrelated in a direct 

contrast. There were also no common effects of semantic similarity (i.e. positive 

effects of word2vec that were shared across related and unrelated decisions). 

In addition, although we could not compute task accuracy in our main analysis (since 

we manipulated strength of association in a continuous way, and participants were 

asked to split this distribution into related and unrelated trials), a supplementary 

control analysis removed trials with unexpected word2vec scores, given the decision 

that was made. An additional regressor was included to capture trials judged to be 

related even though they had particularly low word2vec values (bottom 25% of 

word2vec values), and trials judged to be unrelated that had particularly high 

word2vec values (top 25% of word2vec values). The results were very similar to the 

analysis above; see Supplementary Figure S1A. 

The Parametric Effect of Working Memory Load on Brain Activation and the 

Comparison with Semantic Control  

For correct WM trials, a significant parametric effect of memory load was found in 

right middle frontal gyrus, frontal pole (FP) and superior frontal gyrus consistent with 
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previous studies in which higher WM loads elicited greater activity in distributed 

bilateral areas within the multiple-demand network (MDN); see Figure 2C.1  

We performed further analyses to establish the common and distinct parametric 

effects of semantic control demands and WM load. We compared correct WM trials 

and word pairs judged to be semantically-related, since participants made YES 

decisions in both situations. Since semantic relatedness was varied in a continuous 

fashion while WM load was manipulated across five levels, we first divided the 

semantically related trials into five difficulty levels according to their word2vec 

values, with lower word2vec corresponding to harder trials (re-analysis of the 

univariate activation for the semantic task using these five levels replicated the 

findings above and obtained highly similar results, see Supplementary Figure S1B). 

To simplify the following univariate and multivariate results focussed on the 

comparison of the semantic and WM tasks, we used five levels of difficulty or 

association strength for the thematically related and unrelated decisions, unless 

otherwise mentioned. 

A conjunction analysis showed a significant overlap between semantic control 

demands and WM load in superior frontal gyrus and pre-supplementary motor area 

(pre-SMA); see Figure 2F. Direct contrasts of these semantic and non-semantic 

difficulty effects revealed stronger effects of difficulty in the WM than the semantic 

task in right-lateralized regions mainly within the multiple-demand network, including 

right middle frontal gyrus, frontal pole and supramarginal gyrus (SMG); Figure 2G. 

There was a greater effect of semantic control demands in distributed areas in the 

 
1 A supplementary analysis, thresholded at Z > 2.6, revealed a more distributed neural 

substrate for WM load including bilateral middle frontal gyrus, precentral gyrus and occipital 

fusiform cortex; see Supplementary Figure S2A.  
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left hemisphere, including IFG, frontal orbital cortex, superior frontal gyrus, lateral 

occipital cortex (LOC), precuneus, hippocampus, parahippocampal gyrus and 

temporal fusiform, consistent with previous observations that semantic control is 

strongly left-lateralized; Figure 2E. A supplementary ROI-based analysis using 

percent signal change to directly compare the parametric effect of difficulty against 

implicit baseline in the two tasks showed that the task differences in most of the 

clusters in Figure 2E and Figure 2G were driven by increased responses to more 

difficult trials, and not solely by negative parametric effects of difficulty in the other 

task (see detailed information in Supplementary Figure S2B).   

  

Figure 2. Univariate results with cluster thresholded at Z = 3.1, p = 0.05. A. Parametric 

modulation effect of associative strength for trials judged to be semantically related. B. 

Parametric modulation effect of associative strength for trials judged to be unrelated. C. 

Parametric modulation effect of WM for correct trials. D. The conjunction of semantic control 

parametric effects across trials judged to be related and unrelated (i.e. negative word2vec 

for related trials and positive word2vec for unrelated trials). E. Areas showing a stronger 
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parametric effect of control demands for semantic judgements (negative effect of word2vec 

for related trials) compared to WM (effect of memory load for correct trials). F. The 

conjunction of the parametric modulation effect for semantic control (from related trials) and 

WM load (correct trials). G. A larger parametric modulation effect for WM load (correct trials) 

compared with semantic control demands (negative effect of word2vec on semantically-

related trials). There are no additional clusters within brain views not shown for each 

contrast.  

Identifying the Neural Coding of Semantic and Working Memory Demand 

Using a Searchlight Approach  

In order to test whether the same neural code supported semantic control demands 

and WM load, we examined classification of control demands (task difficulty) in each 

task, and cross-classification of difficulty across tasks using a whole-brain 

searchlight approach. For the semantic task, word2vec (as a measure of 

relatedness) and difficulty (as assessed by behavioural performance) show an 

opposite relationship for trials judged to be related and unrelated. We therefore 

reasoned that a classifier sensitive to control demands would show a positive 

correlation between actual and predicted control demands when trained on related 

trials (which had low word2vec values for more difficult trials) and then tested on 

unrelated trials (which had high word2vec values for more difficult trials), or vice 

versa. In contrast, brain regions showing a negative correlation across these trial 

types would be sensitive to the associative strength of the presented items, 

irrespective of the subsequent judgement. Moreover, brain regions able to cross-

classify difficulty between semantic and WM tasks are sensitive to domain-general 

control demands.  
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After controlling for mean univariate activation (see Methods), we found difficulty 

could be decoded for semantically-related trials in lateral and medial frontal and 

parietal areas, bilaterally, as well as left posterior middle temporal gyrus, see Figure 

3A. We also found significant decoding of difficulty for semantically-unrelated trials in 

similar areas, see Figure 3B. Finally, we searched for brain regions that supported 

cross-classification of difficulty across semantically-related and unrelated trials 

(training on one condition and testing on the other). Significant positive cross-

classification was identified in distributed regions including left inferior and middle 

frontal gyrus, bilateral superior frontal gyrus/paracingulate gyrus, left posterior middle 

temporal lobe, bilateral lateral occipital cortex/angular gyrus, see Figure 3D. These 

sites were sensitive to semantic difficulty irrespective of strength of association, while 

there were no significant clusters showing negative correlation in the cross-decoding 

between related and unrelated trials, suggesting our classifiers were not sensitive to 

semantic relatedness.  

Brain regions that coded for WM load were found in frontal, parietal, temporal as well 

as visual cortex, bilaterally (see Figure 3C). Compared to the neural underpinnings 

of semantic control, which were strongly left-lateralised, the multivariate effect of WM 

load was bilateral. There was significant cross-task classification between semantic 

and WM tasks in bilateral insula, pre-supplementary motor area and left precentral 

gyrus, see Figure 3E. Most of these voxels fell within the SCN+MDN (29.6%) and 

MDN (52%), and few were within SCN (0.9%), see Figure 3G. This result suggests 

that SCN regions do not support a shared neural coding between semantic and non-

semantic control demands, while MDN regions (including those overlapping with 

SCN) show common patterns across manipulations of semantic and WM control 

demands. In contrast, cross-classification of difficulty between related and unrelated 
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semantic decisions overlapped with SCN-only regions (9716 voxels in total, see 

Figure 3F). 

 

 

Figure 3. SVR decoding of control demands. A. Brain regions representing control demands 

for semantic trials judged to be related. B. Brain regions representing control demands for 

semantic trials judged to be unrelated. C. Brain regions representing WM load. D. Brain 

regions with significant cross-classification of difficulty between semantic trials judged to be 

related and unrelated (R2U). E. Brain regions with significant cross-task classification of 

difficulty (Semantic2WM). F. Voxel distribution in Figure 3D (cross-classification between 

semantic trials judged to be related and unrelated) across regions identified as (i) semantic 

not control, (ii) within the semantic control network (SCN) but outside multiple-demand 

cortex (DMN), (iii) within both SCN and MDN, and (iv) falling in MDN regions not implicated 

in semantic cognition. Voxels showing significant cross-classification outside these networks 
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are also shown (Others); 9716 voxels in total. G. Voxel distribution in Figure 3E (cross-task 

classification of difficulty for semantic and WM tasks) across regions identified as (i) 

semantic not control, (ii) SCN only, (iii) SCN+MDN, (iv) MDN only, and other networks, 933 

voxels in total.  

 

Neural Coding of Semantic and Working Memory Demand in Large-scale Brain 

Networks  

To check the robustness of our results, we examined the cross-classification of 

difficulty across tasks within pre-defined MDN and SCN networks. We performed a 

series of SVR decoding analyses in ROIs selected to fall within the following areas: 

(i) sites within the semantic network but not implicated in control (largely within 

DMN); (ii) SCN (defined as voxels within the semantic control network identified by 

Noonan et al. (2013) and updated by Jackson (2020), and yet outside the MDN); (iii) 

regions common to both SCN and MDN; (iv) MDN (defined as voxels within the 

multiple-demand network identified by Fedorenko et al. (2013), and not within the 

SCN, see Figure 4A. 

The results are summarised in Figure 4B. There was significant generalization of 

difficulty within the semantic domain (between semantically-related and unrelated 

trials) in all control networks (all p < 0.001), and also in non-control-semantic regions 

(p = 0.002). All p values were adjusted by Bonferroni correction. In contrast, cross-

classification between semantic and WM tasks was found only for the MDN-only and 

MDN+SCN regions (p = 0.018 and p = 0.012, respectively, with Bonferroni correction 

applied). SCN-only and non-control-semantic regions were unable to cross-classify 

difficulty across semantic and WM tasks (p = 0.594 and p = 0.891, respectively, with 

Bonferroni correction applied). These findings suggest that semantic control 

demands and WM load do not share a common neural code in semantic-only 
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networks, although they do in multiple-demand regions. Semantic demand is not 

analogous to other types of control within the SCN. 

Recent studies have suggested that there is graded functional change from DMN 

through SCN regions to MDN: these networks form an orderly sequence on the 

cortical surface that is captured by the “principal gradient” of intrinsic connectivity 

(Margulies et al. 2016; Wang, Margulies, et al. 2020). If SCN is spatially and 

functionally intermediate between DMN and MDN, we would expect a linear change 

across brain networks in cross-task decoding accuracy for semantically-relevant 

DMN, SCN-only and SCN+MDN regions. The MDN-only regions were removed from 

this analysis, since this network by definition fell outside semantically-relevant cortex, 

and consequently included many regions that were not adjacent to SCN+MDN on 

the cortical surface (see Figure 4A). Repeated-measures ANOVA revealed a 

significant linear contrast effect in cross-task decoding accuracy across semantic not 

control, SCN-only and SCN+MDN regions (F(1,25) = 17.032, p < 0.001). Simple t-

tests revealed there was significantly higher decoding accuracy in SCN+MDN 

regions than in semantic not control regions (p < 0.001, Bonferroni corrected), and 

higher cross-task decoding accuracy in SCN+MDN than SCN-only regions (p = 

0.042, Bonferroni corrected). The linear contrast effect was also significant for the 

cross-decoding between related and unrelated trials (F(1,25) = 19.06, p < 0.001). 

Simple t-tests revealed there was significantly higher decoding accuracy in 

MDN+SCN regions than in semantic not control regions (p < 0.001, Bonferroni 

corrected), and a marginal effect of higher decoding in MDN+SCN regions than in 

SCN regions before multiple comparison correction (p = 0.064). Thus, our results 

suggest graded changes in the representation of control demands from DMN 

through SCN to SCN+MDN.  
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These analyses support our key conclusions: cross-classification of difficulty 

between semantic and WM tasks was only found in MDN-only and SCN+MDN 

regions, not in SCN-only or semantic not control network regions; and there was a 

pattern of decreasing cross-task decoding from shared MDN+SCN regions, through 

SCN to semantic regions not implicated in control. However, to some degree, the 

multivariate response in all four networks was sensitive to task difficulty.  

To confirm that our results were not underpinned by specific ROIs in each network 

but reflected the characteristics of neural coding of cognitive demands across the 

networks, we randomly sampled 200 voxels in each network across ROIs in each 

iteration. Highly similar results were found, and details are provided in 

Supplementary Figure S3. An additional supplementary analysis was designed to 

minimise the likelihood of Type II errors when assessing whether SCN can cross-

classify difficulty across semantic and WM tasks. To maximise the chances of 

observing this pattern, we identified ROIs for individual participants based on their 

peak response in the univariate analysis of task demands. The results, shown in 

Supplementary Figure S4, reproduce the pattern reported above: pre-SMA in MDN 

was able to cross-classify difficulty between semantic and WM tasks, while left IFG 

in SCN could not.  
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Figure 4. Decoding cognitive demand in large-scale brain networks; bars reflect average 

accuracy which is different from the conventional SVM classification and instead measures 

correlation (Fisher’s z-transformed) between actual task demand (difficulty) and predicted 

task demand.  A. Brain regions for each network. B. R2U: Cross-condition classification 

between semantic related and unrelated trials. Semantic2WM: Cross-task classification 

between semantic difficulty and WM load. Cross-task decoding was not significantly greater 

than chance level (0) in the ‘semantic, not control’ and SCN networks, and significantly 

higher than chance level in MDN+SCN regions and MDN (p = 0.012 and p = 0.018, 

respectively, with Bonferroni correction applied). All other decoding accuracy results are 

significantly higher than chance level in all networks (P < 0.001). Bonferroni correction was 

applied for each condition, separately; ***p < 0.001/4. **p < 0.01/4. *p < 0.05/4. 

 

Discussion 

This study parametrically manipulated the difficulty of semantic and verbal WM 

judgements to delineate common and distinct neural mechanisms supporting control 

processes in these two domains. Across two experiments, we investigated the 

brain’s univariate and multivariate responses to different manipulations of difficulty: in 

a semantic relatedness task, we varied the strength of association between probe 

and target words, while in a verbal WM task, we manipulated the number of items to 

be maintained (WM load). Retrieving semantic links between weakly associated 

words is known to elicit stronger activation within the “semantic control network” 

(SCN) (Noonan et al. 2013; Jackson 2020), while higher loads in WM are associated 

with greater responses within the “multiple demand network” (MDN) (Fedorenko et 

al. 2013) – particularly, left-lateralised parts of this network for verbal WM (Emch et 

al. 2019). This comparison is therefore ideal to establish similarities and differences 
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in the neural basis of these forms of control, with any divergence unlikely to be 

accounted for by the use of language (as both tasks were verbal in nature). We 

obtained convergent evidence across analyses for both common and distinct neural 

responses to difficulty across networks. Dorsolateral prefrontal cortex and pre-

supplementary motor area (within MDN) showed a common response to difficulty 

across tasks; in decoding analyses, MDN showed common patterns of activation 

across manipulations of semantic and non-semantic demands, and cross-

classification of difficulty across tasks. In contrast, left inferior frontal gyrus within 

SCN showed an effect of difficulty that was greater for the semantic task; moreover, 

there was no shared neural coding of cognitive demands in SCN regions, consistent 

with the view that semantic control has a neural basis distinct from other cognitive 

demands beyond the semantic domain. 

The semantic control network, encompassing left inferior frontal gyrus and posterior 

middle temporal gyrus, is known to activate across a wide range of manipulations of 

semantic control demands – including a stronger response for weak associations, 

ambiguous words and multiple distractors (Noonan et al. 2013; Davey et al. 2016; 

Jackson 2020). Since these regions are implicated in semantic cognition, as well as 

in control processes, one point of contention is the extent to which semantic retrieval 

per se, which is potentially increased in more demanding conditions, can explain this 

pattern of results. A unique strength of this study is that we can distinguish the 

impacts of semantic control and within-trial semantic similarity through the 

comparison of difficulty in trials judged by participants to be related and unrelated. 

This is because semantic similarity has opposite effects of difficulty in these two sets 

of trials: when participants decide there is a semantic link between two words, more 

control is needed to make this link when the words are weakly associated; in 
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contrast, when participants decide there is no semantic link between two words, 

more control is needed for this decision when the words are strongly associated. The 

univariate analyses found equivalent effects of difficulty in left inferior frontal gyrus 

for trials judged to be related and unrelated; consequently, we can conclude this site 

is sensitive to the difficulty of semantic decisions and not strength of association per 

se.  

In addition to investigating the involvement of SCN and MDN in semantic and non-

semantic tasks differing in difficulty, we examined the characteristics of cognitive 

control in multivariate analyses of activation patterns using a whole-brain searchlight 

approach and SVR decoding for the first time. Our results revealed significant 

information about semantic demands within both SCN and MDN; however, cross-

classification of control demands across related and unrelated semantic trials 

identified regions within SCN that lie beyond MDN, while cross-classification of 

control demands across semantic and WM tasks identified MDN regions – both 

regions that overlap with SCN, and other MDN regions that lie beyond the semantic 

network. These findings point to functional heterogeneity across control network 

regions (Dixon et al. 2018). Though previous studies revealed that distributed areas 

in the left lateral frontal, medial frontal, lateral temporal and parietal regions support 

the representation of semantic relatedness (Mahon and Caramazza 2010), our 

decoding generalization analysis provided strong evidence that semantically-related 

and unrelated judgements share the same neural code relating to difficulty in SCN 

(despite opposing effects of semantic similarity). In contrast, we were not able to 

decode difficulty across semantic and WM tasks in SCN (i.e. training on WM load 

and testing on semantic association strength or vice versa), even in an ROI analysis, 
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suggesting that the multivariate neural codes relating to the difficulty of semantic and 

WM judgements may be distinct in SCN.  

In network-based decoding analyses, we also examined the decoding of task 

demands within parts of the semantic network not implicated in control processes, 

primarily regions within DMN (including anterior lateral temporal cortex and angular 

gyrus). Decoding was less accurate in DMN than in control networks – yet semantic 

regions not implicated in control were still able to decode semantic task difficulty. 

DMN has long been considered a ‘task-negative’ network, only engaged when the 

brain is not occupied by an externally-presented task, and associated with internally-

oriented cognitive processes such as mind-wandering, memory retrieval and future 

planning (Buckner and DiNicola 2019). DMN regions typically show deactivation 

relative to rest during challenging tasks (Raichle et al. 2001; Raichle 2015). Though 

our multivariate analysis examined normalized activation across voxels within each 

region of interest (i.e., searchlight, ROI) (Misaki et al. 2010; Jimura and Poldrack 

2012; Coutanche 2013), decoding may still be sensitive to voxel-by-voxel patterns of 

activation and/or deactivation in DMN, for example, reflecting the way this network 

changes its pattern of connectivity to suit the ongoing task demands (Cole et al. 

2013). In line with this view, semantically-relevant regions of DMN show increased 

connectivity to executive cortex during control-demanding semantic tasks (Krieger-

Redwood et al. 2015). Moreover, beyond the semantic domain, DMN shows 

dynamically-changing patterns of connectivity with other brain networks, including 

those implicated in control and attention, as WM load is varied (Vatansever et al. 

2015). In line with the view that DMN may play a more active role in even demanding 

aspects of cognition, recent studies show that multivariate patterns in both DMN and 

MDN track semantic goal information instead of conceptual similarity (Wang et al. 
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2020), and that DMN represents broad task context (Wen et al. 2020). The current 

results are therefore potentially consistent with growing evidence that DMN can 

contribute to controlled as well as more automatic aspects of cognition, even as it 

deactivates (Elton and Gao 2015; Raichle 2015; Vatansever et al. 2015; Vatansever 

et al. 2017), although load-dependent multivariate responses in DMN appear not to 

be shared across task contexts (perhaps because relevant patterns of connectivity 

depend on the task).  

As proposed by Duncan (2010, 2013, 2016), MDN captures an abstract code relating 

to the difficulty of decisions across multiple domains. Frontal-parietal regions in MDN 

have been shown to flexibly represent goal-directed information, including visual, 

auditory, motor, and rule information, to support context-appropriate behaviour (Cole 

et al. 2013; Crittenden et al. 2016; Woolgar et al. 2016; Bhandari et al. 2018). 

However, the current study, to our knowledge, is the first to test whether semantic 

and non-semantic verbal demands share a common neural currency in the brain 

using cross-classification analyses. Converging evidence from the ROI/Network and 

searchlight-based analyses revealed that regions in MDN (including the overlap with 

SCN) could cross-classify task difficulty across semantic decisions and WM; in 

particular, the searchlight revealed bilateral insula in MDN, and a cluster in the left 

posterior IFG/operculum in SCN+MDN. These regions were sensitive to demands 

across tasks, as expected given the involvement of MDN in cognitive control across 

domains. This observation is noteworthy given previous proposals that the 

“language” network is largely distinct from MDN regions in left IFG (Fedorenko and 

Blank 2020); we find that additional regions are recruited to support semantic control, 

in line with this view, but that MDN regions are also recruited in these circumstances, 

giving rise to functional overlap.  
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Our results also suggest that SCN diverges from this pattern in important ways. 

There was no common neural code relating to task demands in SCN-specific regions 

or non-control semantic areas. Given that a heteromodal semantic control network 

which only partially overlaps with MDN has been shown to support the retrieval of 

both verbal and non-verbal information (Krieger-Redwood et al. 2015), semantic 

control processes could regulate the activation of unimodal regions supporting 

specific semantic features, relevant to visual, auditory and action attributes – for 

example, when linking dog to beach, activation might be focussed on running, 

swimming and digging actions, as opposed to the physical features of a dog (such as 

its ears and tail). This generation of an appropriate pattern of semantic retrieval is 

thought to rely on interactions between the heteromodal ‘hub’ within anterolateral 

temporal cortex and ‘spoke’ systems in unimodal cortex; semantic control processes 

could bias activation towards relevant spoke systems, resulting in a more task-

appropriate response within the heteromodal hub when these features are distilled 

into a coherent meaning (Jackson et al. 2019; Zhang et al. 2020). This process could 

be largely analogous to the way that MDN regions are thought to bias processing 

towards task-relevant inputs or sensory features. However, our observation that 

there are semantic-specific control processes beyond MDN is also consistent with 

the view that this mechanism is supplemented by separate semantic control 

representations that interface with the long-term conceptual store. This evidence 

allows us to reject the account that semantic control demands are exactly analogous 

to other types of cognitive demand.  

The functional distinction between SCN and MDN is also anticipated by 

contemporary accounts of brain organization that suggest that neural function is 

organized along a connectivity gradient from unimodal regions of sensorimotor 
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cortex, through executive regions to transmodal DMN (Margulies et al. 2016; 

Huntenburg et al. 2018). Wang et al. (2020) showed that this gradient can capture 

the orderly transitions between MDN, SCN and DMN in semantic processing. Given 

that SCN has greater proximity to DMN than MDN along this principal gradient of 

connectivity, this network might be able to more efficiently select, retrieve and act on 

semantic information stored in heteromodal DMN regions. Our results showed a 

decreasing pattern in cross-task decoding and the representation of WM load from 

MDN and shared MDN+SCN regions, through SCN to semantic regions not 

implicated in control (see Supplementary Materials Figure S3) – with this series of 

networks following the principal gradient (Wang et al. 2020). In a similar 

way, González-García et al. (2018) found regions in DMN and MDN have similar 

representational formats relating to prior experience, and occupy adjacent positions 

on the principal gradient. 

One limitation of the current study was that different metrics (strength of association 

and WM load) were used to manipulate difficulty across the semantic and WM tasks, 

and it is difficult to directly compare these manipulations. The WM task was 

associated with faster responses, perhaps because word reading takes longer than 

letter identification, but RT reading times are not necessarily relevant to the 

activation of control networks. Similarly, the effect of strength of association had a 

larger effect on RT than WM load, although RT does not provide a direct measure of 

cognitive control demands. Our task design focussed on manipulating task demands 

in the verbal domain when semantic cognition was or was not required, and the 

tasks were similar in their visual presentation and in the button-press response. 

Future studies could manipulate semantic and non-semantic tasks in more directly 

comparable ways, for example by presenting strong vs. weak distractors or more vs. 
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less information to support a specific decision. A better match in difficulty across 

tasks might result in further cross-task classification results, extending beyond the 

regions identified here.  

In summary, univariate and multivariate pattern analyses provide strong evidence 

that semantic control demands and WM load recruit both common and distinct 

processes in the multiple-demand and semantic control networks, respectively. 

Though semantic demand and domain general demand are represented in both 

control networks, there was only shared neural coding of difficulty across tasks in 

MDN, and different neural coding of control demands in SCN. These findings 

indicate SCN and MDN can be dissociated according to the information that they 

maintain about cognitive demands. 
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