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Abstract

In Property Testing, proximity-oblivious testers (POTs) form a class of particularly simple testing

algorithms, where a basic test is performed a number of times that may depend on the proximity

parameter, but the basic test itself is independent of the proximity parameter.

In their seminal work, Goldreich and Ron [STOC 2009; SICOMP 2011] show that the graph

properties that allow constant-query proximity-oblivious testing in the bounded-degree model are

precisely the properties that can be expressed as a generalised subgraph freeness (GSF) property

that satisfies the non-propagation condition. It is left open whether the non-propagation condition

is necessary. Indeed, calling properties expressible as a generalised subgraph freeness property

GSF-local properties, they ask whether all GSF-local properties are non-propagating. We give a

negative answer by exhibiting a property of graphs that is GSF-local and propagating. Hence in

particular, our property does not admit a POT, despite being GSF-local. We prove our result by

exploiting a recent work of the authors which constructed a first-order (FO) property that is not

testable [SODA 2021], and a new connection between FO properties and GSF-local properties via

neighbourhood profiles.
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1 Introduction

Graph property testing is a framework for studying sampling-based graph algorithms. Given

a graph property P, the goal is to design a (randomised) algorithm, called tester, that

distinguishes between graphs that satisfy P from those that are “far” from satisfying P,

where the notion “being far” depends on the underlying query access model and is always

parametrised by a proximity parameter ε > 0. The query model also specifies the class of

graphs and the types of queries allowed by the algorithm. The two most well known models

for graph property testing are the dense graph model and the bounded-degree graph model

(see [9]). Towards an understanding of which graph properties are testable with a constant

number of queries in each model, much progress has been made since the framework of

property testing was introduced [24, 10]. To illustrate, a full characterization of the properties

that are testable with a constant number of queries in the dense graph model has been

obtained by Alon, Fischer, Newman, and Shapira [2].
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Typical property testers make decisions regarding the global property of the graph from

the local views. In the extreme case, a tester could make local views independent of the

distance to a predetermined set of graphs. Motivated by this, Goldreich and Ron [13] initiated

the study of (one-sided error) proximity-oblivious testers (POTs) for graphs, where a tester

simply repeats a basic test for a number of times that depends on the proximity parameter,

and the basic tester is oblivious of the proximity parameter. They gave characterizations of

graph properties that can be tested with constant query complexity by a POT in both dense

graph model and the bounded-degree model. In each model, it is known that the class of

properties that have constant-query POTs is a strict subset of the class of properties that

are testable (by standard testers).

In this paper, we focus on the bounded-degree graph model [12]. In this model, the

algorithm is given query access to an input graph with maximum degree bounded by d, where

d is some constant. For any specified query v and an index i ≤ d, the algorithm can obtain

the i-th neighbor of v if it exists, and a special symbol ⊥ otherwise. Given a proximity

parameter ε > 0, an n-vertex graph with maximum degree at most d is said to be ε-far from

a property P if one needs to add and/or delete more than εdn edges to make it satisfy P. A

property is said to be testable if there exists a tester that makes only a constant number of

queries to the input graph G, and distinguishes if G satisfies the property P or is ε-far from

satisfying P, with success probability at least 2
3 . Here the constant is a number that might

depend on ε and d, but is independent of the size of the input graph. It has been known that

many properties are testable, such as subgraph-freeness, k-edge connectivity, cycle-freeness,

being Eulerian, degree-regularity [12], minor-freeness [3, 16, 20], hyperfinite properties [22],

k-vertex connectivity [25, 7], and subdivision-freeness [19].

Turning to POTs, informally, a (one-sided error) POT for a property P is a tester

that always accepts a graph G if it satisfies P, and rejects G with probability that is a

monotonically increasing function of the distance of G from the property P. We say P is

proximity-oblivious testable if such a tester exists for P with constant query complexity. To

characterise the class of proximity-oblivious testable properties in the bounded-degree model,

Goldreich and Ron [13] introduced a notion of generalized subgraph freeness (GSF), that

extends the notions of induced subgraph freeness and (non-induced) subgraph freeness. A

graph property is called a GSF-local property if it is expressible as a GSF property. It has

been shown in [13] that a graph property is constant-query proximity-oblivious testable if

and only if it is a GSF-local property that satisfies a so-called non-propagation condition.

Informally, a GSF-local property P is non-propagating if repairing a graph G that does not

satisfy P does not trigger a global “chain reaction” of necessary modifications. We refer

Section 2.3 for formal definitions.

A major question that is left open is whether every GSF-local property satisfies the

non-propagation condition.

1.1 Our contribution

In this paper, we resolve the aforementioned open question raised in [13] by showing the

following negative result.

▶ Theorem 1 (Main result). There exists a GSF-local property that is not testable in the

bounded-degree graph model. Thus, not all GSF-local properties are non-propagating.

We expect our result would shed some light on a full characterization of testable properties in

the bounded degree model. Indeed, in the recent work by Ito, Khoury and Newman [18], the

authors gave a characterization of testable monotone graph properties and testable hereditary



I. Adler, N. Köhler, and P. Peng 34:3

graph properties with one-sided error in the bounded-degree graph model; and they asked the

open question “is every property that is defined by a set of forbidden configurations testable?”

Since their definition of a property defined by a set of “forbidden configuration” is equivalent

to a GSF-local property, our main result also gives a negative answer to their question.

1.2 Proof outline

The starting point of our proof is a recent result of the authors that there exists a first-order

(FO) property that is not testable in the bounded degree graph model [1], where a property

P is said to be an FO property if it can be expressed by an FO formula, i. e. a quantified

formula whose variables represent graph vertices, with predicates for equality and adjacency.

Intuitively, each structure in the property given in [1] is a hybridization of a sequence of

expander graphs and a tree structure, where the expander graphs are recursively constructed

by the zig-zag product introduced by Reingold et al. [23]. Here each level of the tree structure

forms one member of the recursive sequence of expander graphs. It was shown that this

property is both an FO property and a family of expanders, and the latter implies it is not

testable (see e. g. [6]). We refer to Section 4 and [1] for a detailed description of the property.

By Gaifman’s locality theorem [8], it is known that FO can only express local properties.

Indeed, Hanf’s Theorem [15] implies that we can understand this locality as prescribing

upper and lower bounds for the occurrence of certain local neighbourhood (isomorphism)

types.

On the other hand, a GSF-local property as defined in [13] refers to the freeness of some

constant-size marked graphs, where a mark graph F specifies an induced subgraph and how

it “interacts” with the rest of the graph (see Definition 3). Intuitively, such a property just

specifies a condition that the local neighbourhoods of a graph G should satisfy, i.e., certain

types of local neighbourhoods cannot not occur in G, or equivalently, these types have 0

occurrences.

Building upon the above observations, we establish a formal connection between FO

properties and GSF-local properties. We first encode the possible bounds on occurrences

of local neighbourhood types into what we call neighbourhood profiles, and characterise FO

definable properties of bounded degree relational structures as finite unions of properties

defined by neighbourhood profiles (Lemma 9). We then show that every FO formula defined

by a non-trivial finite union of properties which in turn is defined by a so-called 0-profiles, i. e.

the prescribed lower bounds are all 0, is GSF-local (Theorem 11). Given the fundamental

roles of local properties in graph theory, graph limits [21], we believe this new connection is

of independent interest.

For technical reasons, we make use of a property P z of relational structures that can

be expressed by some FO formula while it is not testable in the bounded-degree model,

instead of directly using the non-testable graph property from [1]. We further prove that

a minor variant of the relational structure property P z , which we denote by P ′
z , can be

defined by 0-profiles (Lemma 20). Finally, we construct a non-testable graph property Pgraph

by a local reduction from the σ-structure property P ′
z (Lemma 24). In the reduction we

maintain being definable by 0-profiles which proves GSF-locality of the graph property Pgraph

(Lemma 25). Intuitively, the property Pgraph encodes the property P z in undirected graphs.

Again, Pgraph is a family of expanders (which guarantees non-testability), where in addition

the local neighbourhoods satisfy the aforementioned features which guarantee that it is an

FO property and also GSF-local.

CCC 2021
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1.3 Other related work

The notion of POT was implicitly defined in [4]. Goldreich and Shinkar [14] studied two-sided

error POTs for both dense graph and bounded-degree graph models. Goldreich and Kaufman

[11] investigated the relation between local conditions that are invariant in an adequate

sense and properties that have a constant-query proximity-oblivious testers. Fichtenberger et

al. [6] showed that every testable property is either finite or contains an infinite hyperfinite

subproperty.

2 Preliminaries

2.1 Graphs, relational structures and first-order logic

We will briefly introduce structures and first-order logic and point the reader to [5] for a more

detailed introduction. A (relational) signature is a finite set σ = ¶R1, . . . , Rℓ♢ of relation

symbols Ri. Every relation symbol Ri has an arity ar(Ri) ∈ N>0. A σ-structure is a tuple

A = (U(A), R1(A), . . . , Rℓ(A)), where U(A) is a finite set, called the universe of A and

Ri(A) ⊆ U(A)ar(Ri) is an ar(Ri)-ary relation on U(A). Note that if σ = ¶E1, . . . , Eℓ♢ is a

signature where each Ei is a binary relation symbol, then σ-structures are directed graphs

with ℓ edge-colours. Let σgraph := ¶E♢ be a signature with one binary relation symbol E.

Then we can understand undirected graphs as σgraph-structures for which the relation E is

symmetric (every undirected edge is represented by two tuples). Using this we can transfer

all notions defined below for graphs. Typically we name graphs G,H,F , we denote the set

of vertices of a graph G by V (G), the set of edges by E(G) and vertices are typically named

u, v, w, u′, v′, w′, . . . . In contrast when we talk about a general relational structure we use

A,B and a, b, a′, b′, . . . to denote elements from the universe.

In the following we let σ be a relational signature. Two σ-structures A and B are

isomorphic if there is a bijective map from U(A) to U(B) that preserves all relations. For

a σ-structure A and a subset S ⊆ U(A), we let A[S] denote the substructure of A induced

by S, i. e. A[S] has universe S and R(A[S]) := R(A) ∩ Sar(R) for all R ∈ σ. The degree

of an element a ∈ U(A) denoted by degA(a) is defined to be the number of tuples in A

containing a. We define the degree of A, denoted by deg(A), to be the maximum degree of its

elements. Given a signature σ and a constant d, we let Cσ,d be the class of bounded-degree d

σ-structures and Cd the set of all bounded-degree d graphs. Note that the degree of a graph

differs by exactly a factor 2 from the degree of the corresponding σgraph-structure.

Syntax and semantic of FO is defined in the usual way (see e. g. [5]). We use ∃≥mxφ

(and ∃=mxφ, ∃≤mxφ, respectively) as a shortcut for the FO formula expressing that the

number of witnesses x satisfying φ is at least m (exactly m, at most m, respectively). We

say that a variable occurs freely in an FO formula if at least one of its occurrences is not

bound by any quantifier. We use φ(x1, . . . , xk) to express that the set of variables which

occur freely in the FO formula φ is a subset of ¶x1, . . . , xk♢. For a formula φ(x1, . . . , xk), a

σ-structure A and a1, . . . , ak ∈ U(A) we write A ♣= φ(a1, . . . , ak) if φ evaluates to true after

assigning ai to xi, for 1 ≤ i ≤ k. A sentence of FO is a formula with no free variables. For

an FO sentence φ we say that A is a model of φ or A satisfies φ if A ♣= φ.

The Gaifman graph of a σ-structure A is the undirected graph G(A) = (U(A), E), where

¶v, w♢ ∈ E, if v ̸= w and there is an R ∈ σ and a tuple a = (a1, . . . , aar(R)) ∈ R(A), such that

v = aj and w = ak for some 1 ≤ k, j ≤ ar(R). We use G(A) to apply graph theoretic notions

to relational structures. Note that for any graph the Gaifman graph of the corresponding

symmetric σgraph-structure is the graph itself. For two elements a, b ∈ U(A), we define the
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distance between a and b in A, denoted by distA(a, b), as the length of a shortest path form

a to b in G(A), or ∞ if there is no such path. For r ∈ N and a ∈ U(A), the r-neighbourhood

of a is the set NA
r (a) := ¶b ∈ U(A) : distA(a, b) ≤ r♢. We define NA

r (a) := A[NA
r (a)] to

be the substructure of A induced by the r-neighbourhood of a. For r ∈ N an r-ball is a

tuple (B, b), where B is a σ-structure, b ∈ U(B) and U(B) = NB
r (b), i. e. B has radius r and

b is the centre. Note that by definition (NA
r (a), a) is an r-ball for any σ-structure A and

a ∈ U(A). Two r-balls (B, b), (B′, b′) are isomorphic if there is an isomorphism of σ-structure

from B to B′ that maps b to b′. We call the isomorphism classes of r-balls r-types. For an

r-type τ and an element a ∈ U(A) we say that a has (r-)type τ if (NA
r (a), a) ∈ τ . Moreover,

given such an r-type τ , there is a formula φτ (x) such that for every σ-structure A and for

every a ∈ U(A), A ♣= φτ (a) iff (NA
r (a), a) ∈ τ . A Hanf-sentence is a sentence of the form

∃≥mxφτ (x), for some m ∈ N>0, where τ is an r-type. An FO sentence is in Hanf normal

form, if it is a Boolean combination1 of Hanf sentences. Two formulas φ(x1, . . . , xk) and

ψ(x1, . . . , xk) of signature σ are called d-equivalent, if they are equivalent on Cσ,d, i. e. for all

A ∈ Cσ,d and (a1, . . . , ak) ∈ U(A)k we have A ♣= φ(a, . . . , ak) iff A ♣= ψ(a1, . . . , ak). Hanf’s

locality theorem for first-order logic [15] implies the following.

▶ Theorem 2 (Hanf [15]). Let d ∈ N. Every sentence of first-order logic is d-equivalent to a

sentence in Hanf normal form.

2.2 Property testing

In the following, we give definitions of two models for property testing - the bounded-degree

model for graphs and the bounded-degree model for relational structures. For notational

convenience, C will either denote a class of graphs of bounded-degree d, or a class of σ-

structures of bounded-degree d for some signature σ and some d ∈ N. We will further refer

to both graphs and σ-structures as structures. A property P in C is a subset of C which is

closed under isomorphism. We say that a structure A has property P if A ∈ P. For ϵ ∈ (0, 1)

we say that a structure A on n vertices/elements is ϵ-close to P if there is a structure A′ ∈ P

such that A and A′ differ in at most ϵdn edges/tuples. We say that A ∈ C is ϵ-far from P if

A is not ϵ-close to P.

A property tester accesses a structure via oracle queries. A query to a σ-structure A of

bounded-degree d has the form (a, i) for an element a ∈ U(A), i ∈ ¶1, . . . , d♢ and is answered

by ans(a, i) := (R, a1, . . . , aar(R)) where (a1, . . . , aar(R)) is the i-th tuple containing a and

(a1, . . . , aar(R)) ∈ R(A). A query to a graph G of bounded-degree d has the form (v, i) for

v ∈ V (G), i ∈ ¶1, . . . , d♢ and is answered by ans(v, i) := w where w is the i-th neighbour

of v.

Let Pn be the subset of P with n vertices/elements. Thus P = ∪n∈NPn. We give the

formal definitions of standard property testing and proximity-oblivious testing in Appendix A.

2.3 Generalised subgraph freeness

Now we present the formal definition of generalised subgraph freeness, GSF-local properties

and the notion of non-propagation, which were introduced in [13].

1 By Boolean combination we always mean finite Boolean combination.

CCC 2021
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▶ Definition 3 (Generalized subgraph freeness (GSF)). A marked graph is a graph with each

vertex marked as either “full” or “semifull” or “partial”. An embedding of a marked graph

F into a graph G is an injective map f : V (F ) → V (G) such that for every v ∈ V (F ) the

following three conditions hold.

1. If v is marked “full”, then NG
1 (f(v)) = f(NF

1 (v)).

2. If v is marked “semifull”, then NG
1 (f(v)) ∩ f(V (F )) = f(NF

1 (v)).

3. If v is marked “partial”, then NG
1 (f(v)) ⊇ f(NF

1 (v)).

The graph G is called F -free if there is no embedding of F into G. For a set of marked graphs

F , a graph G is called F-free if it is F -free for every F ∈ F .

Based on the above definition of GSF, we can define GSF-local properties.

▶ Definition 4 (GSF-local properties). Let P = ∪n∈NPn be a graph property where Pn =

¶G ∈ P ♣ ♣V (G)♣ = n♢ and F = (Fn)n∈N a sequence of sets of marked graphs. P is called

F-local if there exists an integer s such that for every n the following conditions hold.

1. Fn is a set of marked graphs, each of size at most s.

2. Pn equals the set of n-vertex graphs that are Fn-free.

P is called GSF-local if there is a sequence F = (Fn)n∈N of sets of marked graphs such that

P is F-local.

The following notion of non-propagating condition of a sequence of sets of marked graphs

was introduced to study constant-query POTs.

▶ Definition 5 (Non-propagating). Let F = (Fn)n∈N be a sequence of sets of marked graphs.

For a graph G, a subset B ⊂ V (G) covers Fn in G if for every marked graph F ∈ Fn
and every embedding of F in G, at least one vertex of F is mapped to a vertex in B.

The sequence F is non-propagating if there exists a (monotonically non-decreasing)

function τ : (0, 1] → (0, 1] such that the following two conditions hold.

1. For every ϵ > 0 there exists β > 0 such that τ(β) < ϵ.

2. For every graph G and every B ⊂ V (G) such that B covers Fn in G, either G is

τ(♣B♣/n)-close to being Fn-free or there are no n-vertex graphs that are Fn-free.

A GSF-local property P is non-propagating if there exists a non-propagating sequence F

such that P is F-local.

In the above definition, the set B can be viewed as the set involving necessary modifications

for repairing a graph G that does not satisfy the property P that is F -local, and the second

condition says we do not need to modify G “much beyond” B. In particular, it implies we can

repair G without triggering a global “chain reaction”. Goldreich and Ron gave the following

characterization for the proximity-oblivious testable properties in the bounded-degree graph

model.

▶ Theorem 6 (Theorem 5.5 in [13]). A graph property P has a constant-query proximity-

oblivious tester if and only if P is GSF-local and non-propagating.

The following open question was raised in [13].

▶ Open Question 7 (Are all GSF-local properties non-propagating?). Is it the case that for every

GSF-local property P = ∪n∈NPn, there is a sequence F = (Fn)n∈N that is non-propagating

and P is F-local?
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3 Relating different notions of locality

In this section we define properties by prescribing upper and lower bounds on the number of

occurrence of neighbourhood types. These bounds are given by neighbourhood profiles which

we will define formally below. We use these properties to give a natural characterization of FO

properties of bounded-degree structures in Lemma 9, which is a straightforward consequence

of Hanf’s Theorem (Theorem 2). We use this characterization to establish links between FO

definability and GSF-locality. This connection is the key ingredient in the proof of our main

theorem.

Observe that for fixed r, d ∈ N and σ, there are only finitely many r-types in structures in

Cσ,d. For any signature σ and d, r ∈ N we let nd,r,σ ∈ N be the number of different r-types of

σ-structures of degree at most d. Assuming that for all d, r ∈ N the r-neighbourhood-types of

σ-structures of degree at most d are ordered, we let τ id,r,σ denote the i-th such neighbourhood

type, for i ∈ ¶1, . . . , nd,r,σ♢. With each σ-structure A ∈ Cσ,d we associate its r-histogram

vector vd,r,σ(A), given by

(vd,r,σ(A))i := ♣¶a ∈ U(A) ♣ NA
r (a) ∈ τ id,r,σ♢♣.

We let

I := ¶[k, l], [k,∞) ♣ k ≤ l ∈ N♢

be the set of all closed or half-closed, infinite intervals with natural lower/upper bounds.

▶ Definition 8. Let σ be a signature and d, r ∈ N.

1. An r-neighbourhood profile of degree d is a function ρ : ¶1, . . . , nd,r,σ♢ → I.

2. For a structure A ∈ Cσ,d, we say A obeys ρ, denoted by A ∼ ρ, if

(vd,r,σ(A))i ∈ ρ(i) for all i ∈ ¶1, . . . , nd,r,σ♢.

Let Pρ be the set of structures A that obey ρ, i.e., Pρ = ¶A ∈ Cσ,d ♣ A ∼ ρ♢.

3. We say that a property P is defined by a finite union of neighbourhood profiles if there is

k ∈ N such that P =
⋃

1≤i≤k Pρi
where ρi is an ri-neighbourhood profile and ri ∈ N for

every i ∈ ¶1, . . . , k♢.

We let nd,r := nd,r,σgraph
denote the total number of r-type of undirected graphs of

degree at most d, and let τ id,r := τ id,r,σgraph
be the i-th r-type of bounded degree d, for any

i ∈ ¶1, . . . , nd,r♢. Further, for a graph G let vd,r(G) denote the r-histogram vector of G. Note

that for any type τ id,r where the edge relation is not symmetric we have that (vd,r(G))i = 0

and therefore in any r-neighbourhood profile ρ for graphs we have ρ(i) = [0, 0] for any type

τ id,r which is not symmetric.

We now give a lemma showing that bounded-degree FO properties can be equivalently

defined as finite unions of properties defined by neighbourhood profiles. Here the technicalities

that arise are due to Hanf normal form not requiring the locality-radius of all Hanf-sentences

to be the same. The proof of Lemma 9 is deferred to Appendix C.

▶ Lemma 9. For every non-empty property P ⊆ Cσ,d, P is FO definable on Cσ,d if and only

if P can be obtained as a finite union of properties defined by neighbourhood profiles.

CCC 2021
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3.1 Relating FO properties to GSF-local properties

We now prove that FO properties which arise as unions of neighbourhood profiles of a

particularly simple form are GSF-local. For this let

I0 := ¶[0,∞), [0, k] ♣ k ∈ N♢ ⊂ I.

We call any neighbourhood profile ρ with codomain I0 a 0-profile, as all lower bounds for

the occurrence of types are 0.

▶ Observation 10. Let ρ be a 0-profile. If two structures A,A′ ∈ Cσ,d satisfy (vd,r,σ(A))i ≤

(vd,r,σ(A′))i for every i ∈ ¶1, . . . , nd,r,σ♢ and A′ ∼ ρ, then A ∼ ρ.

In particular, the existence of an r-type cannot be expressed by a 0-profile.

▶ Theorem 11. Every finite union of properties defined by 0-profiles is GSF-local.

Proof. We prove this in two parts (Claim 12 and Claim 13). We first argue that every

property Pρ defined by some 0-profile ρ : ¶1, . . . , nd,r,σ♢ → I0 is GSF-local. For this it

is important to note that we can express a forbidden r-type τ by a forbidden generalised

subgraph. For (B, b) ∈ τ , the set of all graphs with no vertex of neighbourhood type τ is the

set of all B-free graphs where every vertex in V (B) of distance less than r to b is marked

“full” and every vertex in V (B) of distance r to b is marked “semifull”. Since a profile of

the form ρ : ¶1, . . . , nd,r,σ♢ → I0 can express that some neighbourhood type τ can appear

at most k times for some fixed k ∈ N, we need to forbid all marked graphs in which type τ

appears k + 1 times. We will formalise this in the following claim.

▷ Claim 12. For every r-neighbourhood profile ρ : ¶1, . . . , nd,r♢ → I0, there is a finite set F

of marked graphs such that Pρ is exactly the property of F-free graphs.

Proof. Assume τ is an r-type and k ∈ N>0. Then we say that a marked graph F is a

k-realisation of τ if F has the following properties.

1. There are k distinct vertices v1, . . . , vk in F such that (NF
r (vi), vi) ∈ τ for every i =

1, . . . , k.

2. Every vertex v in F has distance less or equal to r to at least one vertex vi.

3. Every vertex v in F of distance less than r to at least one vi is marked as “full”.

4. Every vertex v in F of distance greater or equal to r to every vi is marked as “semifull”.

We denote by Sk(τ) the set of all k-realisations of τ .

Now we can define the set F of forbidden subgraphs to be

F :=
⋃

k∈N,1≤i≤nd,r,σ :ρ(i)=[0,k]

Sk+1(τ id,r).

Let P be the property of all F -free graphs. We first prove that the property P is contained

in Pρ. Towards a contradiction assume that G ∈ Cd is F -free but not contained in Pρ. As G

is not contained in Pρ there must be an index i ∈ ¶1, . . . , nd,r♢ such that (vd,r(G))i /∈ ρ(i).

Since ρ(i) ∈ I0 there is k ∈ N such that ρ(i) = [0, k] and hence (vd,r(G))i > k. Hence

there must be k + 1 vertices v1, . . . , vk+1 in G such that (NG
r (vi), vi) ∈ τ id,r. We define the

marked graph F to be the subgraph of G induced by the r-neighbourhoods of v1, . . . , vk+1,

i. e. G[∪1≤i≤k+1N
G
r (vi)], in which every vertex of distance less than k to at least one of

the vi is marked as “full” and every other vertex is marked as “semifull”. Then F is by

definition a (k + 1)-realisation of τ id,r and hence F ∈ F . We now argue that F can be

embedded into G. Since F is an induced subgraph of G the identity map gives us a natural
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embedding f : F → G. Let v be any vertex marked “full” in F . Then by construction of

F , there is i ∈ ¶1, . . . , k + 1♢ such that f(v) is of distance less than r to vi in G. But then

NG
1 (f(v)) is a subset of NG

r (vi). As F without the marking is the subgraph of G induced

by ∪1≤i≤k+1N
G
r (vi) this implies that f(NF

1 (v)) = NG
1 (f(v)). Furthermore, assume v is a

vertex marked “semifull” in F . Then f(NF
1 (v)) = NG

1 (f(v)) ∩ f(V (F )) holds as F without

the markings is an induced subgraph of G. This proves that G is not F -free by Definition 3.

This is a contradiction to our assumption that G is F-free and F ∈ F .

Similarly, we can show that Pρ ⊆ P by assuming G ∈ Cd is in Pρ but not F-free, and

showing that the embedding of any graph of F into G yields an amount of vertices of a

certain type contradicting containment in Pρ. ◁

Next we prove that classes defined by excluding finitely many marked graphs are closed

under finite unions.

▷ Claim 13. Let F1,F2 be two finite sets of marked graphs. For i ∈ ¶1, 2♢, let Pi be the

property of Fi-free graphs. Then there is a set F of generalised subgraphs such that P1 ∪ P2

is the property of F-free graphs.

Proof. We say that a marked graph F is a (not necessarily disjoint) union of marked graphs

F1, F2 if

1. there is an embedding fi of Fi into the graph F without its markings as in Definition 3

for every i ∈ ¶1, 2♢.

2. for every vertex v in F there is i ∈ ¶1, 2♢ and a vertex w in Fi such that fi(w) = v.

3. every vertex v in F is marked “full”, if there is i ∈ ¶1, 2♢ and a “full” vertex w in Fi such

that fi(w) = v.

4. every vertex v in F is marked “semifull”, if there is i ∈ ¶1, 2♢ and a “semifull” vertex w

in Fi such that fi(w) = v and fi(u) ̸= v for every i ∈ ¶1, 2♢ and every “full” vertex u.

5. every vertex v in F is marked “partial” if fi(u) ̸= v for every i ∈ ¶1, 2♢ and every “full”

or “semifull” vertex u.

We define S(F1, F2) to be the set of all possible (not necessarily disjoint) unions of F1, F2.

We can now define the set F to be

F :=
⋃

F1∈F1,F2∈F2

S(F1, F2).

Let P be the property of all F-free graphs. Now we prove P ⊆ P1 ∪ P2. Towards a

contradiction assume G is F -free but G is in neither P1 nor in P2. Then for every i ∈ ¶1, 2♢

there is a graph Fi ∈ Fi such that G is not Fi-free. It is easy to see that there is a union F∪

of F1 and F2 such that G is not F∪-free, which contradicts that G is F-free.

Conversely, in order to prove P1 ∪ P2 ⊆ P, if G is Fi free for some i ∈ ¶1, 2♢ then G must

be F-free by construction of F . ◁

Combining the two claims above proves the Theorem 11. ◀

Further discussion of the relation between FO and GSF-locality

First let us remark that it is neither true that every FO definable property is GSF-local, nor

that every GSF-local property is FO definable.

▶ Example 14. The property of bounded-degree graphs containing a triangle is FO definable

but not GSF-local.
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partial partial

partial

partial full full

G1 G2 G3

Figure 1 Marked graphs for Example 16.

Indeed, the existence of a fixed number of vertices of certain neighbourhood types can

be expressed in FO, while in general, this cannot be expressed by forbidding generalised

subgraphs. If a formula has a 0-profile (and hence does not require the existence of any

types) then the property defined by that formula is GSF-local, as shown in Theorem 11.

▶ Example 15. The class of all bounded-degree graphs with an even number of vertices is

GSF-local but not FO definable.

Let us remark that Theorem 11 combined with Lemma 9 proves that every finite union of

properties definable by 0-profiles is both FO definable and GSF-local. Hence it is natural to

ask whether the intersection of FO definable properties and GSF-local properties is precisely

the set of finite unions of properties definable by 0-profiles. However, this is not the case.

The following example shows that there are properties which are both FO definable and

GSF-local but cannot be expressed by 0-profiles.

▶ Example 16. We let d ≥ 2 and let B1 := (¶v♢, ¶♢), B2 = (¶v, w♢, ¶¶v, w♢♢) be two graphs.

We further let τ1, τ2 be the 1-types of degree d such that (B1, v) ∈ τ1 and (B2, v) ∈ τ2.

Consider the property P defined by the following FO formula

φ := ¬∃x(x = x) ∨ ∃=1x
(

φτ1
(x) ∧ ∀y(x ̸= y → φτ2

(y))
)

.

P contains, besides the empty graph, unions of an arbitrary amount of disjoint edges and

one isolated vertex. To define a sequence of forbidden subgraphs we let G1, G2, G3 be the

marked graphs in Figure 1. Let Feven := ¶G1♢ and Fodd := ¶G2, G3♢ and let F = (Fn)n∈N

where Fi = Feven if i is even and Fi = Fodd if i is odd. Note that every graph on more

than one vertex with an odd number of vertices which is Fodd-free must contain a vertex

of neighbourhood type τ1, and that the set of Feven-free graphs contains only the empty

graph. Hence P is F-local. Now assume towards a contradiction that P = ∪1≤i≤kPρi
for

0-profiles ρi. Let Gm be the graph consisting of m disjoint edges and one isolated vertex

and Hm the graph consisting of m disjoint edges. Since Gm ∈ P there is i ∈ ¶1, . . . , k♢ such

that Gm ∼ ρi. By choice of Gm and Hm we have 0 ≤ (vd,r(Hm))j ≤ (vd,r(Gm))j ∈ ρi(j) for

every j ∈ ¶1, . . . , nd,r♢. Since additionally ρi(j) ∈ I0 this implies that (vd,r(Hm))j ∈ ρi(j).

But then Hm ∼ ρi which yields a contradiction as Hm /∈ P. Hence P can not be defined as

a finite union of 0-profiles.

Figure 2 gives a schematic overview of all classes of properties discussed here and their

relationship.
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GSF-local

FO

POT

0-profiles

Pgraph

P16

P15

P14

Cd

Figure 2 Overview of the classes of properties, here Pi refers to the property from Example i,

Cd refers to the property of all graphs of bounded degree d and Pgraph is the property defined in

Section 4.2.

4 Proof of the main theorem

In this section we prove Theorem 1. We start by describing a property of relational structures,

similar to a property in [1], which is not testable. We then show that the property can be

expressed by a union of 0-profiles, and hence by Theorem 11 it is GSF-local.

Let σ be the signature, d ∈ N and P z be the property of d σ-structures of bounded-degree

from [1].

Brief Description of the property P z

P z is the property of all bounded-degree d σ-structures, which satisfy some first-order logic

formula φ z . On a high level, each structure A in the property P z is a hybridization of a

sequence of expander graphs and a tree structure, where the expander graphs are constructed

by the zig-zag product that was introduced in [23]. Slightly more precisely, each model of

φ z is a rooted k-ary complete tree for some constant k, where the vertices on each level

form an expander. In terms of logic language, for some constant D > 1, we considered

σ := ¶¶Ei,j♢i,j∈[D]2 , ¶Fk♢k∈([D]2)2 , R, ¶Lk♢k∈([D]2)2♢,

where Ei,j , Fk, R and Lk are binary relation symbols for i, j ∈ [D]2 and k ∈ ([D]2)2. We

further use F and E as an abbreviation to denote
⋃

i,j∈[D]2 Ei,j and
⋃

k∈([D]2)2 Fk. We

defined an FO formula φ z such that

φ z := φtree ∧ φrotationMap ∧ φbase ∧ φrecursion, and P z := ¶A ∈ Cσ,d ♣ A ♣= φ z ♢,

where φtree, φrotationMap, φbase, φrecursion are FO formulas which encode the tree structure (and

degree regularity), rotation maps, base graph (with constant size) and recursive construction

of expander graphs (via the zig-zag product). Note that for the construction we use some

base graph H which is given by its rotation map ROTH : ([D]2)2 × [D] → ([D]2)2 × [D],

which is a special type of an encoding of a graph.

The precise formula is given in Appendix B. We will restate parts of the formula, whenever

they are relevant in the proofs below.
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4.1 Characterisation by neighbourhood profiles

Our aim in this section is to prove that a minor variation of property P z of relational

structures can be written as a finite union of properties defined by 0-profiles of radius 2. As

the existence of a certain vertex cannot be expressed with a 0-profile (see Observation 10)

and φ z demands the existence of a certain vertex (the root vertex), the property P z cannot

be expressed in terms of 0-profiles. However we define a slight variation of the formula φ z
which, as we will see later, can be expressed by 0-profiles. Let

φ′
z := φ′

tree ∧ φrotationMap ∧ φbase ∧ φrecursion,

where we obtain φ′
tree from φtree by replacing the subformula ∃=1xφroot(x) by ∃≤1xφroot(x),

where φroot(x) := ∀y¬F (y, x). We define the property

P ′
z := ¶A ∈ Cσ,d ♣ A ♣= φ′

z ♢.

We denote the empty structure by A∅ (i. e. U(A∅) = ∅).

▶ Lemma 17. The properties P ′
z and P z ∪ ¶A∅♢ are equal.

To prove this we use the following lemma [1, Lemma 3.5].

▶ Lemma 18 ([1]). For A ∈ Cσ,d let GAF be the graph with vertex set U(A) and edge set

¶¶a, b♢ ♣ (a, b) ∈ F (A)♢. If A ♣= φ z then GAF is connected.

Proof of Lemma 17. We fist prove that P ′
z ⊆ P z ∪¶A∅♢. Consider the formula φ̃ z which

is obtained from φ z by removing the subformula ∃=1xφroot(x). We use the following simple

observation, which we will prove in Appendix D.

▷ Claim 19. Satisfying φ̃ z is closed under disjoint unions on Cσ,d.

Since A∅ ∈ P z ∪ ¶A∅♢ it is sufficient to consider only non-empty structures in the following.

Therefore assume that there exists A ∈ Cσ,d with U(A) ̸= ∅ such that A ♣= φ′
z and A

contains no element a for which A ♣= φroot(a). Let A′ ∈ Cσ,d be any model of φ z with

U(A) ∩ U(A′) = ∅. Then A ∪A′ ♣= φ̃ z by Claim 19. Furthermore, A ∪A′ ♣= ∃=1xφroot(x),

which implies A∪A′ ♣= φ z . By construction GA∪A′

F has more than one connected component

as both U(A) ̸= ∅ and U(A′) ̸= ∅ and A ∪ A′ is a disjoint union of A and A′. Hence we

obtain a contradiction to Lemma 18. Therefore every non-empty structure satisfying φ′
z

must satisfy ∃=1xφroot(x), and hence also φ z .

Conversely, if A ∈ Cσ,d is a model of φ z then A ♣= ∃=1xφroot(x). This implies directly

that A ♣= ∃≤1xφroot(x) and hence A ♣= φ′
z . Furthermore, A∅ ∈ P ′

z as A ♣= ∃≤1xφroot(x)

and A ♣= φ̃ z as φ̃ z is a conjunction of universally quantified formulas. Hence P z ∪ ¶A∅♢ ⊆

P ′
z . ◀

We now define the 0-profiles which express the property P ′
z . For all σ-structures in P z

(all σ-structure in P ′
z but A∅) it is crucial that they are allowed to contain precisely one

root element. Hence the neighbourhood profile describing P ′
z must restrict the number of

occurrences of the 2-type of the root element. But since in P z , the root elements in different

structures may have different 2-types, we partition P z into parts P1, . . . ,Pm by the 2-type
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of the root element. Note that the number m of parts is constant as there are at most nd,2,σ
2-types in total. For each of these parts we then define a neighbourhood profile ρk such that

Pk ∪ ¶A∅♢ = Pρk
. We would like to remark here that the roots of all but one structure in

P z actually have the same 2-types. However, proving this requires a detailed insight into

the construction of P z , so we avoid this here and use the partition into finitely many parts

instead. We now define the parts and corresponding profiles formally.

Assume without loss of generality that the 2-types τ1
d,2,σ, . . . , τ

nd,2,σ

d,2,σ of degree d are

ordered in such a way that for (B, b) ∈ τkd,2,σ, it holds that B ♣= φroot(b) if and only if

k ∈ ¶1, . . . ,m♢ for some m ≤ nd,2,σ. For k ∈ ¶1, . . . ,m♢, let

Pk := ¶A ∈ P z ♣ there is a ∈ U(A) such that (NA
2 (a), a) ∈ τkd,2,σ♢.

Since every A ∈ P z satisfies ∃=1xφroot(x) we get that

P ′
z =

⋃

1≤k≤m

Pk ∪ ¶A∅♢

and this union is disjoint. Furthermore, for k ∈ ¶1, . . . ,m♢, let Ik ⊆ ¶1, . . . , nd,2,σ♢ be the

set of indices j such that there is a structure A ∈ Pk and a ∈ U(A) with (NA
2 (a), a) ∈ τ jd,2,σ.

For every k ∈ ¶1, . . . ,m♢ we define the 2-neighbourhood profile ρk : ¶1, . . . , nd,2,σ♢ → I0 by

ρk(i) :=















[0, 1] if i = k,

[0,∞) if i ∈ Ik \ ¶k♢,

[0, 0] otherwise.

To prove that these 0-profiles of radius 2 define the property P ′
z , the crucial observation

is that for every element a of some structure in Cσ,d, the FO-formula φ′
z only talks about

elements of distance at most 2 to a (i. e. φ′
z is 2-local). Hence the 2-histogram vector of a

structure already captures whether the structure satisfies φ′
z . We will now formally prove

this.

▶ Lemma 20. It holds that P ′
z =

⋃

1≤k≤m Pρk
.

Proof. We first prove that P ′
z ⊆

⋃

1≤k≤m Pρk
. First note that trivially A∅ ∈

⋃

1≤k≤m Pρk
.

Now assume A ∈ P z . This implies that there is k ∈ ¶1, . . . ,m♢ such that A ∈ Pk. By

construction we have that for every a ∈ A, there is i ∈ Ik such that (NA
2 (a), a) ∈ τ id,2,σ.

Furthermore, since A ♣= φ z , we have that A ♣= ∃=1xφroot(x), and that there can be at most

one a ∈ U(A) such that (NA
2 (a), a) ∈ τkd,2,σ. Therefore A ∈ Pρk

.

To prove
⋃

1≤k≤m Pρk
⊆ P ′

z , we prove that every structure in
⋃

1≤k≤m Pρk
must satisfy

φ′
z . We will prove that every A ∈

⋃

1≤k≤m Pρk
satisfies φrecursion, and refer for the proof

that A satisfies φ′
tree ∧φrotationMap ∧φbase to Claim 30, Claim 31 and Claim 32 in Appendix D.

Note that A∅ ♣= φ′
z by Lemma 17 and hence we exclude A∅ in the following.

▷ Claim 21. Every structure A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢ satisfies φrecursion.
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Proof. Let A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢. Then there is a k ∈ ¶1, . . . ,m♢ such that A ∈ Pρk

.

By definition, φrecursion := ∀x∀z
(

φ(x, z) ∨ ψ(x, z)
)

(see Appendix B), where

φ(x, z) :=¬∃yF (x, y) ∧ ¬∃yF (z, y) and

ψ(x, z) :=
∧

k′
1,k

′
2∈[D]2

ℓ′
1,ℓ

′
2∈[D]2



∃y
[

Ek′
1,ℓ

′
1
(x, y) ∧ Ek′

2,ℓ
′
2
(y, z)

]

→

∧

i,j,i′,j′∈[D],k,ℓ∈([D]2)2

ROTH (k,i)=((k′
1,k

′
2),i′)

ROTH ((ℓ′
2,ℓ

′
1),j)=(ℓ,j′)

∃x′∃z′
[

Fk(x, x′) ∧ Fℓ(z, z
′) ∧ E(i,j),(j′,i′)(x

′, z′)
]



.

Let a, c ∈ U(A). Assume first that there is b ∈ U(A) with (a, b) ∈ F (A). Hence A ̸♣= φ(a, c).

Since φrecursion := ∀x∀z
(

φ(x, z)∨ψ(x, z)
)

we aim to prove A ♣= ψ(a, c). By construction of ρk,

there is an i ∈ Ik such that (NA
2 (a), a) ∈ τ id,2,σ. Therefore there is a structure Ã ♣= φ z and

ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Let f be an isomorphism from (NA
2 (a), a) to

(N Ã
2 (ã), ã). Since b ∈ NA

2 (a), we get that f(b) is defined. Since f is an isomorphism mapping

a onto ã, we have that (a, b) ∈ F (A) implies that (ã, f(b)) ∈ F (Ã). Hence Ã ̸♣= φ(ã, c̃), for

every c̃ ∈ U(Ã). But since Ã ♣= φrecursion, as Ã ♣= φ z , this shows that Ã ♣= ψ(ã, c̃) for every

c̃ ∈ U(Ã).

Let k′
1, k

′
2 ∈ [D]2 and ℓ′

1, ℓ
′
2 ∈ [D]2 be indices such that there is b′ ∈ U(A) with (a, b′) ∈

Ek′
1,ℓ

′
1
(A) and (b′, c) ∈ Ek′

2,ℓ
′
2
(A). Since b′, c ∈ NA

2 (a), by assumption we get that f(b′)

and f(c) are defined. Furthermore, (a, b′) ∈ Ek′
1,ℓ

′
1
(A) and (b′, c) ∈ Ek′

2,ℓ
′
2
(A) imply that

(ã, f(b′)) ∈ Ek′
1,ℓ

′
1
(Ã) and (f(b′), f(c)) ∈ Ek′

2,ℓ
′
2
(Ã), since f is an isomorphism mapping a

onto ã. We proved in the previous paragraph that Ã ♣= ψ(ã, f(c)). Hence we can conclude

that for all indices i, j, i′, j′ ∈ [D], k, ℓ ∈ ([D]2)2 for which ROTH(k, i) = ((k′
1, k

′
2), i′) and

ROTH((ℓ′
2, ℓ

′
1), j) = (ℓ, j′), there are elements ã′, c̃′ ∈ U(Ã) such that (ã, ã′) ∈ Fk(Ã),

(f(c), c̃′) ∈ Fℓ(Ã), and (ã′, c̃′) ∈ E(i,j),(j′,i′)(Ã). Since ã′, c̃′ ∈ N Ã
2 (ã), we get that a′ :=

f−1(ã′) and c′ := f−1(c̃′) are defined. Furthermore, we get that (a, a′) ∈ Fk(A), (c, c′) ∈

Fℓ(A) and (a′, c′) ∈ E(i,j),(j′,i′)(A). This proves that A ♣= ψ(a, c).

In the case that there is b ∈ U(A) with (c, b) ∈ F (A), we can prove similarly that

A ♣= ψ(a, c), by considering that there exist Ã ♣= φ z and c̃ ∈ U(Ã) such that (NA
2 (a), c) ∼=

(N Ã
2 (c̃), c̃) by construction of ρk. Finally if there is no b ∈ U(A) such that (a, b) ∈ F (A) or

(c, b) ∈ F (A) then A ♣= φ(a, c). Since this covers every case we get that A ♣= φrecursion. ◁

Assume A ∈
⋃

1≤k≤m Pρk
. As proved in Claims 30, 31, 32 and 21 this implies that A ♣= φ′

tree,

A ♣= φrotationMap, A ♣= φbase and A ♣= φrecursion. Since φ′
z is a conjunction of these formulas,

we get A ♣= φ′
z and hence A ∈ P ′

z . ◀

4.2 A local reduction from relational structures to graphs

In this section we will define our graph property Pgraph by giving a reduction from the

property P ′
z and argue that Pgraph is GSF-local while not testable. To do so, we show that

this reduction is “local” which preserves the testability of these two properties.
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Local reduction

We first introduce the following notion of local reduction between two property testing models.

In the following, when the context is clear, we will use C to denote both a class of structure

and the corresponding property testing model, which can be either the bounded-degree model

for graphs or bounded-degree model for relational structures.

▶ Definition 22 (Local reduction). Let C, C′ be two property testing models and let P ⊆ C,

P ′ ⊆ C′ be two properties. We say that a function f : C → C′ is a local reduction from P to

P ′ if there are constants c1, c2 ∈ N≥1 such that for every X ∈ C the following properties hold.

1. If X ∈ P then f(X) ∈ P ′.

2. If X is ϵ-far from P then f(X) is (ϵ/c1)-far from P ′.

3. For every query to f(X) we can adaptively2 compute c2 queries such that the answer to

the query to f(X) can be computed from the answers to the c2 queries to X.

The following lemma is known.

▶ Lemma 23 (Theorem 7.14 in [9]). Let C, C′ be two property testing models, P ⊆ C, P ′ ⊆ C′

be two properties and f a local reduction from P to P ′. If P ′ is testable then so is P.

Construction of the graph property

Now we construct a property Pgraph from the property P ′
z . We obtain this graph property

as f(P ′
z ) by defining a map f : Cσ,d → Cd. To define f we introduce a distinct arrow-graph

gadget for every relation in σ (i. e. for every edge colour). The map f then replaces every

tuple in a certain relation (every coloured edge) by the respective arrow-graph gadget. We

further prove that this replacement operation defines a local reduction f from P ′
z to Pgraph.

Recall that a local reduction is a function maintaining distance that can be simulated locally

by queries. Since by Lemma 23 local reductions preserve testability, we use the local reduction

from P ′
z to Pgraph to obtain non-testability of the property Pgraph from the non-testability

of P ′
z . We will now define f formally.

Let ℓ be the number of relations (the number of edge colours) in σ. We first introduce

the different types of arrow-graph gadgets we need to define the local reduction. For

1 ≤ k ≤ ℓ, we let Hk be the graph with vertex set V (Hk) := ¶a1, . . . , a2ℓ+2, b1, b2♢ and

edge set E(Hk) := ¶¶ai, ai+1♢ ♣ 1 ≤ i ≤ 2ℓ+ 1♢ ∪ ¶¶aℓ+1+k, bj♢ ♣ j ∈ ¶1, 2♢♢. We call Hk a

k-arrow. For any graph G and vertices v, w ∈ V (G), we say that there is a k-arrow from

v to w, denoted v
k
−→ w, if there are 2ℓ + 2 vertices v2, . . . , v2ℓ+1, w1, w2 ∈ V (G) and an

isomorphism g : Hk → NG
1 (v2, . . . , v2ℓ+1, w1, w2) such that g(a1) = v and g(a2ℓ+2) = w.

We now define a second arrow gadget. For 1 ≤ k ≤ ℓ, we let Lk be the graph with vertex

set V (Lk) := ¶a1, . . . , aℓ+1, b♢ and edge set E(Lk) := ¶¶ai, ai+1♢ ♣ 1 ≤ i ≤ ℓ♢ ∪ ¶¶ak, b♢♢.

We call Lk a k-loop. For any graph G and vertex v ∈ V (G), we say that there is a k-loop

at v, denoted v
k
−→ v, if there are ℓ + 1 vertices v1, . . . , vℓ, w ∈ V (G) and an isomorphism

g : Lk → NG
1 (v1, . . . , vℓ, w) such that g(aℓ+1) = v. Finally we let H⊥ be the graph with vertex

set V (H⊥) := ¶a1, . . . , aℓ+1, b♢ and edge set E(H⊥) := ¶¶ai, ai+1♢ ♣ 1 ≤ i ≤ ℓ♢ ∪ ¶¶ai, b♢ ♣

i ∈ ¶1, 2♢♢. We call H⊥ a non-arrow. For any graph G and vertex v ∈ V (G), we say that

there is a non-arrow at v, denoted v ̸→, if there are ℓ+ 1 vertices v1, . . . , vℓ, w ∈ V (G) and

an isomorphism g : H⊥ → NG
1 (v1, . . . , vℓ, w) such that g(aℓ+1) = v.

2 By adaptively computing queries we mean that the selection of the next query may depend on the
answer to the previous query.
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a vℓa,i v2
a,i

v1
a,i

wa,i

(a) Case ans(a, i) = ⊥.

a vℓa,i vka,i v1
a,i

wa,i

(b) Case ans(a, i) = (k, a, a).

a vℓa,i v1
a,i

wa,i

bv1
b,j vkb,j vℓb,j

wb,j

(c) Case ans(a, i) = ans(b, j) = (k, a, b).

Figure 3 Different types of arrows in GA.

We now define a function f : Cσ,d → Cd by f(A) := GA, where GA is the graph on vertex

set V (GA) := U(A) ∪ ¶vka,i, wa,i ♣ 1 ≤ i ≤ d, a ∈ U(A), 1 ≤ k ≤ ℓ♢ and edge set

E(GA) :=
{

¶a, vℓa,i♢ ♣ a ∈ U(A), 1 ≤ i ≤ d
}

∪
{

¶vka,i, v
k+1
a,i ♢ ♣ 1 ≤ k ≤ ℓ− 1, a ∈ U(A), 1 ≤ i ≤ d

}

∪
{

¶vkb,j , wb,j♢, ¶v
k
b,j , wa,i♢, ¶v

ℓ
a,i, v

ℓ
b,j♢ ♣ a ̸= b, ans(a, i) = ans(b, j) = (k, a, b)

}

∪
{

¶vka,i, wa,i♢ ♣ ans(a, i) = (k, a, a)
}

∪
{

¶v1
a,i, wa,i♢, ¶v

2
a,i, wa,i♢ ♣ ans(a, i) = ⊥

}

,

where ans(a, i) = (k, a, b) denotes that the i-th tuple of a is (a, b) and is in the k-th relation.

Hence GA is defined in such a way that if (a, b) is a tuple in the k-th relation of σ in A, then

a
k
−→ b in GA, and a has a non-arrow for every i satisfying that ans(a, i) = ⊥ for every k. For

illustration see Figure 3.

Now we define property Pgraph := ¶f(A) ♣ A ∈ P ′
z ♢ ⊆ Cd.

▶ Lemma 24. The map f is a local reduction from P ′
z to Pgraph.

Proof. First note that for any A ∈ P ′
z , we have that f(A) ∈ Pgraph by definition.

Now let c1 = 2d+ 2d2ℓ. We prove that if A ∈ Cσ,d is ϵ-far from P ′
z then f(A) is ϵ/c1-far

from Pgraph by contraposition. Therefore assume that f(A) =: GA is not ϵ/c1-far from

Pgraph for some A ∈ Cσ,d. Then there is a set E ⊆ ¶e ⊆ V (GA) ♣ ♣e♣ = 2♢ of size at most

ϵd♣V (GA)♣/c1, and a graph G ∈ Pgraph such that G is obtained from GA by modifying the

tuples in E. By definition of Pgraph, there is a structure AG ∈ P ′
z such that f(AG) = G.

First note that ♣U(AG)♣ = ♣U(A)♣, as (1 + dℓ)♣U(A)♣ = ♣V (GA)♣ = ♣V (G)♣ = (1 + dℓ)♣U(AG)♣.

Hence there must be a set R of tuples that need to be modified to make A isomorphic to AG.

First note that R cannot contain a tuple (a, b) where ¶a, vka,i, wa,i, b, v
k
b,i, wb,i ♣ 1 ≤ i ≤ d, 1 ≤
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k ≤ ℓ♢∩e = ∅ for every e ∈ E. This is because if (a, b) is a tuple in A, then a
k
−→ b for some k in

GA. But since ¶a, vka,i, wa,i, b, v
k
b,i, wb,i ♣ 1 ≤ i ≤ d, 1 ≤ k ≤ ℓ♢∩e = ∅ for every e ∈ E, we have

that a
k
−→ b in G. But then (a, b) must be a tuple in AG, and hence (a, b) cannot be in R. The

same argument works when assuming that (a, b) is a tuple in AG. Since for every e ∈ E, there

are at most 2d tuples (a, b) such that ¶a, vka,i, wa,i, b, v
k
b,i, wb,i ♣ 1 ≤ i ≤ d, 1 ≤ k ≤ ℓ♢ ∩ e ̸= ∅,

we get that

♣R♣ ≤ 2dϵd♣V (GA)♣/c1 = 2d(1 + dℓ)ϵd♣U(A)♣/c1 = ϵd♣U(A)♣.

Hence A is not ϵ-far to being in P ′
z .

Let c2 := d+ 1. Let A ∈ Cσ,d and GA := f(A). Note that any a ∈ U(A) is adjacent in GA
to vℓa,i, for every 1 ≤ i ≤ d. Hence any neighbour query in GA to a can be answered without

querying A. Assume v ∈ ¶vka,i, wa,i ♣ 1 ≤ k ≤ ℓ♢ for some a ∈ U(A) and some 1 ≤ i ≤ d.

Then we can determine all neighbours of v by querying (a, i) and further if ans(a, i) ̸= ⊥

and ans(a, i) = (k, a, b), then we need to query (b, j) for every 1 ≤ j ≤ d. Hence we can

determine the answer to any query to GA by making c2 queries to A. This proves that f is a

local reduction from P ′
z to Pgraph. ◀

We remark that Pgraph is a simpler version of the simple graph property defined in [1] where

extra care had to be taken to define degree-regular graphs.

4.3 The graph property is GSF-local

Let Pgraph be the graph property as defined in Section 4.2. We now show that Pgraph is

GSF-local.

▶ Lemma 25. The graph property Pgraph is GSF-local.

Proof. For this we will prove that Pgraph is equal to a finite union of properties defined

by 0-profiles, and then use Theorem 11 to prove that Pgraph is GSF-local. We define the

0-profiles for Pgraph in a very similar way to the relational structure case, and then use

the description of P ′
z by 0-profiles shown in Lemma 20. To this end, assume that the

4ℓ+ 2-types τ1
d,4ℓ+2, . . . , τ

nd,4ℓ+2

d,4ℓ+2 are ordered in such a way that (N
f(B)
4ℓ+2 (b), b) ∈ τkd,4ℓ+2, for

every k ∈ ¶1, . . . ,m♢ and (B, b) ∈ τkd,2,σ, where m is the number of parts of the partition of

P z defined in Subsection 4.1. For k ∈ ¶1, . . . ,m♢, let Îk be the set of indices i such that there

is A ∈ Pk, and v ∈ V (f(A)) for which (N
f(A)
4ℓ+2 (v), v) ∈ τ id,4ℓ+2. Let ρ̂k : ¶1, . . . , nd,4ℓ+2♢ → I0

be defined by

ρ̂k(i) :=















[0, 1] if i = k,

[0,∞) if i ∈ Îk \ ¶k♢,

[0, 0] otherwise.

▷ Claim 26. It holds that Pgraph =
⋃

1≤k≤m Pρ̂k
.

Proof. First we prove Pgraph ⊆
⋃

1≤k≤m Pρ̂k
. Assume G ∈ Pgraph and let A ∈ P ′

z be a

structure such that G = f(A). If A = A∅ then clearly G ∈
⋃

1≤k≤m Pρ̂k
. Hence assume

A ̸= A∅. Then A ∈ Pk for some k ∈ ¶1, . . . ,m♢. By the construction of Îk we know that for
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every v ∈ V (G) we have (NG
4ℓ+2(v), v) ∈ τ id,4ℓ+2 for some i ∈ Îk. Furthermore, since A ∈ Pk

there is at most one a ∈ U(A) with (NA
2 (a), a) ∈ τkd,2,σ. This implies directly that there can

be at most one vertex v ∈ V (G) with (NG
4ℓ+2(v), v) ∈ τkd,4ℓ+2 and hence G ∈ Pρ̂.

Now we prove that
⋃

1≤k≤m Pρ̂k
⊆ Pgraph. Let G ∈

⋃

1≤k≤m Pρ̂k
and let k ∈ ¶1, . . . ,m♢

be an index such that G ∈ Pρ̂k
.

First note that every model of φ z is d regular for some large d. Then for any A ♣= φ z ,

every vertex in f(A) has either degree ≤ 4 or degree d . Since every structure in P ′
z apart

from the empty structure A∅ is a model of φ z , this implies that every vertex in any graph

G′ ∈ Pgraph has degree ≤ 4 or degree d. Since for every i for which ρ̂(i) ̸= [0, 0], there is a

graph G′ ∈ Pgraph and v ∈ V (G′) such that (NG′

4ℓ+2(v), v) ∈ τ id,4ℓ+2, we get that every vertex

in G has to have degree ≤ 4 or degree d. Using this argument further, we get that every

vertex v ∈ V (G) of degree ≤ 4 has to be contained in the (ℓ+ 1)-neighbourhood of a vertex

of degree d, and that the (2ℓ + 1)-neighbourhood of every vertex v ∈ V (G) of degree d is

the union of k-arrows, k-loops and non-arrows which are disjoint apart from their endpoints.

Hence there is a σ-structure A such that f(A) ∼= G. Let g be an isomorphism from f(A) to

G.

Now we argue that A ∈ Pρk
. First assume that there are two elements a, b with

(NA
2 (a), a) ∈ τkd,2,σ and (NA

2 (b), b) ∈ τkd,2,σ. By definition, we get that (N
f(A)
4ℓ+2 (a), a) ∈ τkd,4ℓ+2

and (N
f(A)
4ℓ+2 (b), b) ∈ τkd,4ℓ+2. Since g is an isomorphism, the restriction of g to N

f(A)
4ℓ+2(a)

must be an isomorphism from N
f(A)
4ℓ+2 (a) to NG

4ℓ+2(g(a)), and hence (NG
4ℓ+2(g(a)), g(a)) ∼=

(N
f(A)
4ℓ+2 (a), a) ∈ τkd,4ℓ+2. But the same holds for the (4ℓ + 2)-ball of g(b), and hence we

contradict the assumption that G ∈ Pρ̂k
since ρ̂k(k) = [0, 1]. Let us further assume that

there is an a ∈ U(A) such that (NA
2 (a), a) ∈ τ id,2,σ for some i /∈ Ik. Let j be the index

such that (N
f(A)
4ℓ+2 (a), a) ∈ τ jd,4ℓ+2. Additionally note that a must have degree d in f(A) by

construction of f . As g is an isomorphism, we get that (NG
4ℓ+2(g(a)), g(a)) ∈ τ jd,4ℓ+2, and

g(a) has degree d. But then by construction of ρ̂k, there must be G′ ∈ Pgraph, and a vertex

v ∈ V (G′) of degree d such that (NG′

4ℓ+2(v), v) ∈ τ jd,4ℓ+2. By construction of Pgraph, there is

a structure A ∈ P ′
z such that f(A′) = G′. Since v has degree d, it must be an element in A′.

Furthermore (NA′

2 (v), v) ∈ τ id,2,σ by choice of i and j. Hence A′ /∈ Pρk
. But this contradicts

Lemma 20.

Hence we have shown that A ∈ Pρk
. Then by Lemma 20 A ∈ P ′

z , and by construction

G ∈ Pgraph. ◁

Since by Claim 26 we can express Pgraph as a finite union of properties each defined by a

0-profile, Theorem 11 implies that Pgraph is GSF-local. ◀

4.4 Putting everything together

Now we prove our main theorem.

Proof of Theorem 1. Let the property P ′
z of relational structures be as defined above.

Note that P ′
z is not testable, as P z is not testable [1, Theorem 4.4] and P ′

z only differs

from P z by the empty structure. By Lemma 24 and Lemma 23, the graph property Pgraph

that is locally reduced from P ′
z is not testable. Lemma 25 shows that Pgraph is also a

GSF-local property. Hence there exists a GSF-local property of bounded-degree graphs which

is not testable. Furthermore, since having a POT implies being testable, this proves that

there is a GSF-local property which has no POT. By Theorem 6 this implies that not all

GSF-local properties are non-propagating. ◀
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A Formal definitions of property testers and POTs

Now we give the formal definitions of standard property testing and proximity-oblivious

testing.

▶ Definition 27 ((Standard) property testing). Let P = ∪n∈NPn be a property. An ϵ-tester

for Pn is a probabilistic algorithm which, given query access to a structure A ∈ C with n

vertices/elements,

accepts A with probability 2/3 if A ∈ Pn.

rejects A with probability 2/3 if A is ϵ-far from Pn.

We say that a property P is testable if for every n ∈ N and ϵ ∈ (0, 1), there exists an

ϵ-tester for Pn that makes at most q = q(ϵ, d) queries. We say the property P is testable with

one-sided error if the ϵ-tester always accepts A if A ∈ P.

We introduce below the formal definition of proximity-oblivious testers.

▶ Definition 28 ((One-sided error) proximity-oblivious testing). Let P = ∪n∈NPn be a property.

Let η : (0, 1] → (0, 1] be a monotone function. A proximity-oblivious tester (POT) with

detection probability η for Pn is a probabilistic algorithm which, given query access to a

structure A ∈ C with n vertices/elements,

accepts A with probability 1 if A ∈ Pn.

rejects A with probability at least η(dist(A,Pn)) if A /∈ Pn, where dist(A,Pn) is the

minimum fraction of different edges between A and any other A′ ∈ Pn.

We say that a property P is proximity-oblivious testable if for every n ∈ N, there exists a

POT for Pn of constant query complexity with detection probability η.

B The FO formula

For the construction of the formula φ z we use a recursively defined sequence (Gm)m∈N>0

of edge expanders [17, Proposition 9.2]. Using this sequence we define the formula φ z in

such a way that any model restricted to relation F forms a rooted complete D4-ary tree.

Furthermore, the formula enforces that restricted to the vertices of level i of the tree the

relation E encodes the rotation map of the expander Gi. The formula φ z is the conjunction

of the following formulas. For a more detailed explanation and a proof of the precise form of

the models of φ z see [1].

We use the following formula

φroot(x) := ∀y¬F (y, x),
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which expresses that vertex x is a root vertex, i. e. has no incoming F -edges. We then define

the formula φtree which expresses that the structure restricted to the relation F locally looks

like a tree. More precisely, the formula expresses that there is precisely one root vertex,

that every other vertex has one incoming F -edge and every vertex either has no F -children

or has precisely D4 F -children. We furthermore attach a R-self-loop to the root and D4

L-self-loops to the leaves. This was important in [1] to make structures degree regular, but

is of no relevance to this proof.

φtree := ∃
=1
xφroot(x)∧

∀x



(

φroot(x) ∧R(x, x)
)

∨
(

∃
=1
yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

)



∧

∀x



[

¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x) ∧ ∀y
(

y ̸= x →
∧

k∈([D]2)2

¬Lk(x, y)∧

∧

k∈([D]2)2

¬Lk(y, x)
)

]

∨

[

¬∃y
∨

k∈([D]2)2

(

Lk(x, y) ∨ Lk(y, x)
)

∧

∧

k∈([D]2)2

∃yk



x ̸= yk ∧ Fk(x, yk) ∧ (
∧

k′∈([D]2)2

k′ ̸=k

¬Fk′ (x, yk)) ∧ ∀y(y ̸= yk → ¬Fk(x, y))
]



.

We define formula φrotationMap which expresses that the edge relations restricted to the

relations E encode a rotation map.

φrotationMap := ∀x∀y


∧

i,j∈[D]2

(Ei,j(x, y) → Ej,i(y, x))


∧

∀x


∧

i∈[D]2



∨

j∈[D]2

(

∃=1yEi,j(x, y) ∧
∧

j′∈[D]2

j′ ̸=j

¬∃yEi,j′(x, y)
)



The formula φbase expresses that the children of the root vertex form the basis of the recursive

construction of expanders. The basis of the recursive construction is the square of some

D regular graph H on D4 vertices with edge expansion ratio 1/4. Explicit constructions

of graphs with such properties are given in [23]. We assume that this graph is given by a

rotation map ROTH , which is an encoding of H.

φbase :=∀x


φroot(x) →
[

∧

i,j∈[D]2



Ei,j(x, x) ∧ ∀y


x ̸= y →
(

¬Ei,j(x, y) ∧ ¬Ei,j(y, x)
)



∧

∧

ROTH2 (k,i)=(k′,i′)

k,k′∈([D]2)2

i,i′∈[D]2

∃y∃y′
(

Fk(x, y) ∧ Fk′(x, y′) ∧ Ei,i′(y, y
′)

)

]

We define the formula φrecursion which expresses the recursive construction of the sequence

(Gm)m∈N>0
. This formula also depends on the base graph H.

φrecursion :=∀x∀z





¬∃yF (x, y) ∧ ¬∃yF (z, y)


∨

∧

k′
1,k

′
2∈[D]2

ℓ′
1,ℓ

′
2∈[D]2



∃y
[

Ek′
1,ℓ

′
1
(x, y) ∧ Ek′

2,ℓ
′
2
(y, z)

]

→

∧

i,j,i′,j′∈[D],k,ℓ∈([D]2)2

ROTH (k,i)=((k′
1,k

′
2),i′)

ROTH ((ℓ′
2,ℓ

′
1),j)=(ℓ,j′)

∃x′∃z′
[

Fk(x, x′) ∧ Fℓ(z, z
′) ∧ E(i,j),(j′,i′)(x

′, z′)
]
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C Deferred proofs from Section 3

Proof of Lemma 9. For the first direction assume φ is an FO-sentence. Then by Hanf’s

Theorem (Theorem 2) there is a sentence ψ in Hanf normal form such that Pφ = Pψ.

We will first convert ψ into a sentence in Hanf normal form where every Hanf sentence

appearing has the same locality radius. Let r ∈ N be the maximum locality radius appearing

in ψ, and let φ≥m
τ := ∃≥mxφτ (x) be a Hanf sentence, where τ is an r′-type for some r′ ≤ r.

Let τ1, . . . , τk be a list of all r-types of bounded degree d for which (NB
r′ (b), b) ∈ τ for

(B, b) ∈ τi, for every 1 ≤ i ≤ k. Let Π be the set of all partitions of m into k parts. Let

φ̃≥m
τ :=

∨

(m1,...,mk)∈Π

k
∧

i=1

∃≥mixφτi
(x).

▷ Claim 29. φ≥m
τ is d-equivalent to φ̃≥m

τ .

Proof. Assume that A ∈ Cd satisfies φ≥m
τ , and assume that a1, . . . , am are m distinct elements

with (NA
r′ (aj), aj) ∈ τ , for every 1 ≤ j ≤ m. Let τ̃j be the r-type for which (NA

r (aj), aj) ∈ τ̃j .

By choice of τ1, . . . , τk, we get that there are indices i1, . . . , im such that τ̃j = τij . For

i ∈ ¶1, . . . , k♢ let mi = ♣¶j ∈ ¶1, . . . ,m♢ ♣ ij = i♢♣. Hence A ♣=
∧k
i=1 ∃≥mixφτi

(x) and since

additionally (m1, . . . ,mk) ∈ Π this implies A ♣= φ̃≥m
τ .

On the other hand, let A ∈ Cd satisfy φ̃≥m
τ , and let (m1, . . . ,mk) ∈ Π be a partition of

m such that A ♣=
∧k
i=1 ∃≥mixφτi

(x). For every 1 ≤ i ≤ k, let ai1, . . . , a
i
mi

be mi distinct

elements such that (NA
r (aij), a

i
j) ∈ τi, for every 1 ≤ j ≤ mi. By choice of τ1, . . . , τk, we get

that (NA
r′ (aij), a

i
j) ∈ τ , for every pair 1 ≤ i ≤ k, 1 ≤ j ≤ mi. But since m1 + · · · +mk = m

this implies that A ♣= φ≥m
τ . This proves that φ≥m

τ and φ̃≥m
τ are d-equivalent. ◁

Let ψ′ be the formula in which every Hanf-sentence φ≥m
τ for which τ is an r′-type for some

r′ < r gets replaced by φ̃≥m
τ . By a simple inductive argument using Claim 29, we get that

ψ is d-equivalent to ψ′, and hence Pφ = Pψ = Pψ′ . Furthermore since φ̃≥m
τ is a Boolean

combination of Hanf-sentences for every φ≥m
τ , and any Boolean combination of Boolean

combinations is a Boolean combination itself, ψ′ is in Hanf normal form. Furthermore, every

Hanf-sentence appearing in ψ′ has locality radius r by construction.

Since any Boolean combination can be converted into disjunctive normal form, we can

assume that ψ′ is a disjunction of sentences ξ of the form

ξ =

k
∧

j=1

∃≥mjxφτj
(x) ∧

ℓ
∧

j=k+1

¬∃≥mjxφτj
(x),

where ℓ ∈ N≥1, 1 ≤ k ≤ ℓ, mi ∈ N≥1 and τi is an r-type for every 1 ≤ i ≤ ℓ. We can

further assume that every sentence in the disjunction ψ′ is satisfiable by some A ∈ Cd, as

any sentence with no bounded degree d model can be removed from ψ′.

Let τ̃1, . . . , τ̃t be a list of all r-types of bounded degree d in the order we fixed. Let

ki := max(¶mj ♣ 1 ≤ j ≤ k, τj = τ̃i♢∪¶0♢) and ℓi := min(¶mj ♣ k+1 ≤ j ≤ ℓ, τj = τ̃i♢∪¶∞♢)

for every i ∈ ¶1, . . . , t♢. Since ξ has at least one bounded degree model ki ≤ ℓi for every

i ∈ ¶1, . . . , t♢. Let ρ : ¶1, . . . , t♢ → I be the neighbourhood profile defined by ρ(i) := [ki, ℓi]

if ℓi < ∞ and ρ(i) := [ki, ℓi) otherwise. Then by construction, we get that Pρ = Pξ. Since

ψ′ is a disjunction of formulas, each of which defines a property which can be defined by

some neighbourhood profile, we get that Pψ′ must be a finite union of properties defined by

some neighbourhood profile.
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On the other hand, for every r-neighbourhood profile ρ of degree d, τ1, . . . , τt a list of all

r-types of bounded degree d in the order fixed and the formula

φρ :=
∧

i∈¶1,...,t♢,

ρ(i)=[ki,ℓi]



∃≥kixφτi
(x) ∧ ¬∃≥ℓi+1xφτi

(x)


∧
∧

i∈¶1,...,t♢,

ρ(i)=[ki,∞)

∃≥kixφτi
(x)

it clearly holds that Pρ = Pφρ
. Hence every finite union of properties defined by neigh-

bourhood profiles can be defined by the disjunction of the formulas φρ of all ρ in the finite

union. ◀

D Deferred proofs from Section 4

Proof of Claim 19. Let A,A′ ∈ Cσ,d such that A ♣= φ̃ z and A′ ♣= φ̃ z , where φ̃ z was the

formula obtained from φ z by removing the subformula ∃=1xφroot(x). Our aim is to prove

that A∪A′ ♣= φ̃ z where A∪A′ denotes the disjoint union of A and A′. For this we essentially

prove that for any two elements a ∈ U(A) and b ∈ U(A′) the formula φ̃ z does not require a

tuple containing a and b.

Let us define formulas

φ := ∀x



(

φroot(x) ∧R(x, x)
)

∨
(

∃
=1
yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

)



,

ψ(x) := ¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x)∧

∀y



y ̸= x →
∧

k∈([D]2)2

¬Lk(x, y) ∧
∧

k∈([D]2)2

¬Lk(y, x)


and

χ(x) := ¬∃y
∨

k∈([D]2)2

(

Lk(x, y) ∨ Lk(y, x)
)

∧

∧

k∈([D]2)2

∃yk



x ̸= yk ∧ Fk(x, yk) ∧ (
∧

k′∈([D]2)2

k′ ̸=k

¬Fk′ (x, yk)) ∧ ∀y(y ̸= yk → ¬Fk(x, y))


.

Then φ̃ z := φ ∧ ∀x(ψ(x) ∨ χ(x)) ∧ φrotationMap ∧ φbase ∧ φrecursion. Hence it is sufficient to

prove that A ∪ A′ ♣= φ, A ∪ A′ ♣= ∀x(ψ(x) ∨ χ(x)), A ∪ A′ ♣= φrotationMap, A ∪ A′ ♣= φbase

and A ∪A′ ♣= φrecursion.

We first argue that A ∪A′ ♣= φ. Let a ∈ U(A ∪A′) be arbitrary and assume without loss

of generality that a ∈ U(A). Assume that A ∪ A′ ̸♣= φroot(a) ∧ R(a, a). Since φroot(x) :=

∀y¬F (y, x) this implies that A ̸♣= φroot(a) ∧ R(a, a). Since A ♣= φ we get that A ♣=

∃=1yF (y, a) ∧ ¬∃yR(a, y) ∧ ¬∃yR(y, a). Hence there is an element b ∈ U(A) such that

(b, a) ∈ F (A). Furthermore, for every b′ ∈ U(A), b′ ̸= b we have (b′, a) /∈ F (A), (a, b′) /∈ R(A)

and (b′, a) /∈ R(A). But because a cannot be in a tuple with any element in U(A′) we get

that A ∪A′ ♣= ∃=1yF (y, a) ∧ ¬∃yR(a, y) ∧ ¬∃yR(y, a). Hence A ∪A′ ♣= φ.

Next we prove that A∪A′ ♣= ∀x(ψ(x)∨χ(x)). Let a ∈ U(A∪A′) be arbitrary and assume

without loss of generality that a ∈ U(A). First assume that (a, b) /∈ F (A ∪ A′) for every

b ∈ U(A∪A′). Since A is a substructure of A∪A′ this means that A ♣= ¬∃yF (a, y). But then

A ̸♣=
∧

k∈([D]2)2 ∃yk


a ̸= yk ∧Fk(a, yk)


which implies A ̸♣= χ(a). Since A ♣= ∀x(ψ(x) ∨χ(x))

this implies that A ♣= ψ(a). Hence for every k ∈ ([D]2)2 we have (a, a) ∈ Lk(A) and for

every b ∈ U(A), b ̸= a we have (a, b), (b, a) /∈ Fk(A). Since there are no tuples containing

both elements from A and A′ this directly implies that A ∪A′ ♣= ψ(a).
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On the other hand, assume that there is b ∈ U(A∪A′) such that (a, b) ∈ F (A∪A′). Since

we are considering the disjoint union of A and A′ this implies that b must be an element

from A. Hence A ̸♣= ψ(a). Since A ♣= ∀x(ψ(x) ∨ χ(x)) this implies that A ♣= χ(a). Then for

every k ∈ ([D]2)2 there is an element b ∈ U(A) such that (a, b) ∈ Fk(A), (a, b) /∈ Fk′(A) for

every k′ ∈ ([D]2)2, k′ ̸= k and (a, b′) /∈ Fk(A) for every b′ ∈ U(A), b′ ̸= b. But since in A∪A′

there are no tuples containing both elements from A and A′ this implies that A ∪A′ ♣= χ(a).

In conclusion we proved that A ∪A′ ♣= ∀x(ψ(x) ∨ χ(x)).

We now prove A∪A′ ♣= φrotationMap. Hence assume a, b ∈ U(A∪A′) are arbitrary elements.

First consider the case that a, b are either both from U(A) or both from U(A′). Then if

for some i, j ∈ [D]2 we have that (a, b) ∈ Ei,j(A ∪ A′) then (b, a) ∈ Ej,i(A ∪ A′) because

A ♣= φrotationMap and A′ ♣= φrotationMap. Now consider the case that ♣¶a, b♢ ∩ U(A)♣ = 1.

Then (a, b) /∈ Ei,j(A∪A′) and (b, a) /∈ Ej,i(A∪A′) and hence A∪A′ ♣=
∧

i,j∈[D]2(Ei,j(a, b) →

Ej,i(b, a)). Therefore A ∪A′ ♣= ∀x∀y


∧

i,j∈[D]2(Ei,j(x, y) → Ej,i(y, x))


.

Now consider an arbitrary element a ∈ U(A ∪ A′) and any i ∈ [D]2. Without loss of

generality assume a ∈ U(A). Since A ♣= φrotationMap there must be an index j ∈ [D]2 and

an element b ∈ U(A) such that (a, b) ∈ Ei,j(A). Furthermore, for every b′ ∈ U(A), b′ ≠ b

we have (a, b′) /∈ Ei,j(A) and for every j′ ∈ [D]2, j′ ≠ j and every b̃ ∈ U(A) we have

(a, b̃) /∈ Ei,j′(A). But since a ∈ U(A) it also holds that (a, b′) /∈ Ei,j′(A) for every b′ ∈ U(A′)

and every j′ ∈ [D]2. Hence A∪A′ ♣=
∨

j∈[D]2

(

∃=1yEi,j(a, y) ∧
∧

j′∈[D]2

j′ ̸=j

¬∃yEi,j′(a, y)
)

. This

concludes the proof of A ∪A′ ♣= φrotationMap.

We now prove A ∪ A′ ♣= φbase. Assume a ∈ U(A ∪ A′) is an arbitrary element such

that A ∪ A′ ♣= φroot(a). Without loss of generality assume a ∈ U(A). Since φroot(x) :=

∀y¬F (y, x) and A ∪ A′ ♣= φroot(a) we get that A ♣= φroot(a). Since A ♣= φbase this means

that for every i, j ∈ [D]2 we have (a, a) ∈ Ei,j(A) and (a, b), (b, a) /∈ Ei,j(A) for every

b ∈ U(A), b ̸= a. Since further (a, b), (b, a) /∈ Ei,j(A ∪ A′) for every b ∈ U(A′) this

implies that A ∪ A′ ♣=
∧

i,j∈[D]2



Ei,j(a, a) ∧ ∀y


a ≠ y →
(

¬Ei,j(a, y) ∧ ¬Ei,j(y, a)
)



.

Furthermore, since A ♣= φbase and A ♣= φroot(a) for every k, k′ ∈ ([D]2)2, i, i′ ∈ [D]2 for

which ROTH2(k, i) = (k′, i′) there are b, b′ ∈ U(A) such that (a, b) ∈ Fk(A), (a, b′) ∈ Fk′(A)

and (b, b′) ∈ Ei,i′(A). Since A is a substructure of A ∪A′ this proves that A ∪A ♣= φbase.

Finally we prove A∪A′ ♣= φrecursion. Hence assume a, c ∈ U(A∪A′) are arbitrary elements.

Assume A∪A′ ̸♣= ¬∃yF (a, y)∧¬∃yF (c, y) and assume without loss of generality that there is

ã ∈ U(A∪A′) such that (a, ã) ∈ F (A∪A′). Since there are no tuples containing both elements

from A and A′ we get that a, ã are from the same structure. Without loss of generality

assume a, ã ∈ U(A). Assume that for indices k′
1, k

′
2 ∈ [D]2, ℓ′

1, ℓ
′
2 ∈ [D]2 and some element

b ∈ U(A∪A′) we have (a, b) ∈ Ek′
1,ℓ

′
1
(A∪A′) and (b, c) ∈ Ek′

2,ℓ
′
2
(A∪A′). As b also has to be

in U(A) and A ♣= φrecursion this implies that for every i, j, i′, j′ ∈ [D], k, ℓ ∈ ([D]2)2 for which

ROTH(k, i) = ((k′
1, k

′
2), i′) and ROTH((ℓ′

2, ℓ
′
1), j) = (ℓ, j′) there are elements a′, c′ ∈ U(A∪A′)

such that (a, a′) ∈ Fk(A ∪A′), (c, c′) ∈ Fℓ(A ∪A′) and (a′, c′) ∈ E(i,j),(j′,i′)(A ∪A′). Hence

A ∪A′ ♣= φrecursion. ◁

▷ Claim 30. Every structure A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢ satisfies φ′

tree.

Proof. Let A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢. Then there is k ∈ ¶1, . . . ,m♢ such that A ∈ Pρk

.

By definition, φ′
tree := ∃≤1xφroot(x) ∧ φ ∧ ∀x(ψ(x) ∨ χ(x)), where

φ := ∀x


(

φroot(x) ∧R(x, x)
)

∨
(

∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)
)



,
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ψ(x) := ¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x)∧

∀y



y ̸= x →
∧

k∈([D]2)2

¬Lk(x, y) ∧
∧

k∈([D]2)2

¬Lk(y, x)


and

χ(x) := ¬∃y
∨

k∈([D]2)2

(

Lk(x, y) ∨ Lk(y, x)
)

∧

∧

k∈([D]2)2

∃yk



x ̸= yk ∧ Fk(x, yk) ∧ (
∧

k′∈([D]2)2

k′ ̸=k

¬Fk′ (x, yk)) ∧ ∀y(y ̸= yk → ¬Fk(x, y))


.

Thus, it is sufficient to prove that A ♣= ∃≤1xφroot(x), A ♣= φ and A ♣= ∀x(ψ(x) ∨ χ(x)).

To prove A ♣= ∃≤1xφroot(x) we note that by construction of ρk we have A ̸♣= φroot(a) for

any a ∈ U(A) for which (NA
2 (a), a) /∈ τkd,2,σ. Since ρk restricts the number of occurrences of

elements of neighbourhood type τkd,2,σ to at most one, this proves that there is at most one

a ∈ U(A) with A ♣= φtree(a) and hence A ♣= ∃≤1xφroot(x).

To prove A ♣= φ, let a ∈ U(A) be an arbitrary element. Since A ∈ Pρk
, there is an

i ∈ Ik such that (NA
2 (a), a) ∈ τ id,2,σ. But then by definition, there exist Ã ♣= φ z and

ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Assume f is an isomorphism from (NA
2 (a), a)

to (N Ã
2 (ã), ã). First consider the case that A ♣= φroot(a) := ∀y¬F (y, a). Assume there is

b̃ ∈ U(Ã) such that (b̃, ã) ∈ F (Ã). Since b̃ ∈ N Ã
2 (ã), there must be an element b ∈ NA

2 (a)

such that f(b) = b̃. Since f is an isomorphism mapping a to ã, this implies (b, a) ∈ F (A),

which contradicts A ♣= φroot(a). Hence Ã ♣= φroot(ã). Since Ã ♣= φ′
tree, it holds that

Ã ♣= φ, which means that (ã, ã) ∈ R(Ã). But since f is an isomorphism mapping a onto

ã, this implies (a, a) ∈ R(A). Now consider the case that A ̸♣= φroot(a). Then there is

b ∈ U(A) with (b, a) ∈ F (A). Since f is an isomorphism, this implies (f(b), ã) ∈ F (Ã).

Hence Ã ♣= ∃=1yF (y, ã) ∧ ¬∃yR(ã, y) ∧ ¬∃yR(y, ã), as Ã ♣= φ. Now assume that there

is b′ ≠ b such that (b′, a) ∈ F (A). Then f(b) ̸= f(b′) and (f(b), ã), (f(b′), ã) ∈ F (Ã).

Since this contradicts Ã ♣= ∃=1yF (y, ã) we have A ♣= ∃=1yF (y, a). Furthermore, assume

that there is b′ ∈ U(A) such that either (a, b′) ∈ R(A) or (b′, a) ∈ R(A). Then either

(ã, f(b′)) ∈ R(Ã′) or (f(b′), ã) ∈ R(Ã), which contradicts Ã ♣= ¬∃R(ã, y) ∧ ¬∃yR(y, ã).

Therefore A ♣= ¬∃R(a, y) ∧ ¬∃yR(y, a) which completes the proof of A ♣= φ.

We prove A ♣= ∀x(ψ(x) ∨ χ(x)) by considering the two cases A ♣= ¬∃yF (a, y) and

A ♣= ∃yF (a, y) for each element a ∈ U(A). For this, let a ∈ U(A) be any element. By

the construction of ρk there is Ã ♣= φ z and ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã).

Let f be an isomorphism from (NA
2 (a), a) to (N Ã

2 (ã), ã). First consider the case that

A ♣= ¬∃yF (a, y). If there was b̃ ∈ U(Ã) with (ã, b̃) ∈ F (Ã) then (a, f−1(b̃)) ∈ F (A)

contradicting our assumption. Hence Ã ♣= ¬∃yF (ã, y) which implies that Ã ̸♣= χ(ã). But

since Ã ♣= φ z , it holds that Ã ♣= ∀x(ψ(x) ∨ χ(x)), which implies that Ã ♣= ψ(ã). Hence

(ã, ã) ∈ Lk(Ã) for every k ∈ ([D]2)2. Since f is an isomorphism and f(a) = ã, it holds that

(a, a) ∈ Lk(A) for every k ∈ ([D]2)2, and hence A ♣=
∧

k∈([D]2)2 Lk(a, a). Furthermore, assume

that there is b ∈ U(A), b ̸= a and k ∈ ([D]2)2 such that either (a, b) ∈ Lk(A) or (b, a) ∈ Lk(A).

Since f is an isomorphism this implies that either (ã, f(b)) ∈ Lk(Ã) or (f(b), ã) ∈ Lk(Ã) which

contradicts Ã ♣= χ(ã). Hence A ♣= ∀y


y ≠ a →
∧

k∈([D]2)2 ¬Lk(a, y) ∧
∧

k∈([D]2)2 ¬Lk(y, a)


proving that A ♣= ψ(a).
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Now consider the case that there is an element b ∈ U(A) such that (a, b) ∈ F (A). Since

this implies that (ã, f(b)) ∈ F (Ã), we get that Ã ̸♣= ψ(ã), and hence Ã ♣= χ(ã). Now assume

that there is b ∈ U(A) and k ∈ ([D]2)2 such that either (a, b) ∈ Lk(A) or (b, a) ∈ Lk(A). But

then either (ã, f(b)) ∈ Lk(Ã) or (f(b), ã) ∈ Lk(Ã), which contradicts Ã ♣= χ(ã). Hence A ♣=

¬∃y
∨

k∈([D]2)2

(

Lk(a, y) ∨ Lk(y, a)
)

. For each k ∈ ([D]2)2, let b̃k ∈ U(Ã) be an element such

that Ã ♣= ã ≠ b̃k∧Fk(ã, b̃k)∧(
∧

k′∈([D]2)2,k′ ̸=k ¬Fk′(ã, b̃k))∧∀y(y ̸= b̃k → ¬Fk(ã, y)). Since f

is an isomorphism, this implies that a ̸= bk := f−1(b̃k), (a, bk) ∈ Fk(A) and (a, bk) /∈ Fk′(A),

for each k′ ∈ ([D]2)2, k′ ̸= k. Furthermore, assume there is b ∈ U(A), b ≠ bk such that

(a, b) ∈ Fk(A). Since f is an isomorphism, this implies f(b) ̸= f(bk) = b̃k and (ã, b̃) ∈ Fk(Ã),

which contradicts Ã ♣= ∀y(y ̸= b̃k → ¬Fk(ã, y)). Hence A ♣= ∀y(y ̸= bk → ¬Fk(a, y)) and

therefore concluding that A ♣= χ(a). This proves that in either case A ♣= ψ(a) ∨ χ(a) and

therefore A ♣= ∀x(ψ(x) ∨ χ(x)). ◁

▷ Claim 31. Every structure A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢ satisfies φrotationMap.

Proof. Let A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢. Then there is a k ∈ ¶1, . . . ,m♢ such that A ∈ Pρk

.

By definition, φrotationMap = φ ∧ ψ, where

φ := ∀x∀y


∧

i,j∈[D]2

(Ei,j(x, y) → Ej,i(y, x))


and

ψ := ∀x


∧

i∈[D]2



∨

j∈[D]2

(

∃=1yEi,j(x, y) ∧
∧

j′∈[D]2

j′ ̸=j

¬∃yEi,j′(x, y)
)



.

Thus, it is sufficient to prove that A ♣= φ and A ♣= ψ.

To prove A ♣= φ, assume towards a contradiction that there are a, b ∈ U(A) such that for

some pair i, j ∈ [D]2, we have that (a, b) ∈ Ei,j(A), but (b, a) /∈ Ej,i(A). By construction of

Pρk
, there is a structure Ã ♣= φ z and ã ∈ U(Ã) such that (NA

2 (a), a) ∼= (N Ã
2 (ã), ã). Assume

f is an isomorphism from (NA
2 (a), a) to (N Ã

2 (ã), ã). Note that f(b) is defined since b is in

the 2-neighbourhood of a. Furthermore since f is an isomorphism, (a, b) ∈ Ei,j(A) implies

(ã, f(b)) ∈ Ei,j(Ã), and (b, a) /∈ Ej,i(A) implies (f(b), ã) /∈ Ej,i(Ã). Hence Ã ̸♣= φ, which

contradicts Ã ♣= φrotationMap.

To prove A ♣= ψ, assume towards a contradiction that there is an a ∈ U(A) and i ∈ [D]2

such that A ̸♣= ∃=1yEi,j(a, y) ∧
∧

j′∈[D]2

j′ ̸=j

¬∃yEi,j′(a, y) for every j ∈ [D]2. We know that

there is a structure Ã ♣= φ z and ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Let f

be an isomorphism from (NA
2 (a), a) to (N Ã

2 (ã), ã). Since Ã ♣= ψ, there must be j ∈ [D]2

such that Ã ♣= ∃=1yEi,j(ã, y) ∧
∧

j′∈[D]2

j′ ̸=j

¬∃yEi,j′(ã, y). Hence there must be b̃ ∈ U(Ã)

such that (ã, b̃) ∈ Ei,j(Ã), which implies that (a, f−1(b̃)) ∈ Ei,j(A). Since we assumed

that A ̸♣= ∃=1yEi,j(a, y) ∧
∧

j′∈[D]2

j′ ̸=j

¬∃yEi,j′(a, y), there must be either b ̸= f−1(b̃) with

(a, b) ∈ Ei,j(A), or there must be j′ ∈ [D]2, j′ ̸= j and b′ ∈ U(A) such that (a, b′) ∈ Ei,j′(A).

In the first case (ã, f(b)) ∈ Ei,j(Ã), since f is an isomorphism. But then Ã ̸♣= ∃=1yEi,j(ã, y),

which is a contradiction. In the second case, we get that (ã, f(b′)) ∈ Ei,j′(Ã). But then

Ã ̸♣=
∧

j′∈[D]2

j′ ̸=j

¬∃yEi,j′(ã, y), which is a contradiction. Hence A ♣= φ ∧ ψ. ◁

▷ Claim 32. Every structure A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢ satisfies φbase.

Proof. Let A ∈
⋃

1≤k≤m Pρk
\ ¶A∅♢. Then there is a k ∈ ¶1, . . . ,m♢ such that A ∈ Pρk

.
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By definition, φbase := ∀x
(

φroot(x) → (φ(x) ∧ ψ(x))
)

, where

φ(x) :=
∧

i,j∈[D]2



Ei,j(x, x) ∧ ∀y


x ̸= y →
(

¬Ei,j(x, y) ∧ ¬Ei,j(y, x)
)



and

ψ(x) :=
∧

ROTH2 (k,i)=(k′,i′)

k,k′∈([D]2)2

i,i′∈[D]2

∃y∃y′
(

Fk(x, y) ∧ Fk′(x, y′) ∧ Ei,i′(y, y
′)

)

.

Thus, it is sufficient to prove that A ♣= φ(a) and A ♣= ψ(a) for every a ∈ U(A) for which

A ♣= φroot(a). Therefore assume a ∈ U(A) is any element such that A ♣= φroot(a). Because

A ∈ Pρk
there is an i ∈ Ik such that (NA

2 (a), a) ∈ τ id,2,σ. Then by definition there is

a structure Ã ♣= φ z and ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Let f be an

isomorphism from (NA
2 (a), a) to (N Ã

2 (ã), ã). Assume that there is an element b̃ ∈ U(Ã) such

that (b̃, ã) ∈ F (Ã). Since f is an isomorphism and b̃ ∈ N Ã
2 (ã) we get that (f−1(b̃), a) ∈ F (A)

which contradicts that A ♣= φroot(a) as φroot(x) := ∀y¬F (y, x). Hence there is no element

b̃ ∈ U(Ã) such that (b̃, ã) ∈ F (Ã) which implies that Ã ♣= φroot(ã). But since Ã ♣= φ z we

have that Ã ♣= φbase and hence Ã ♣= φ(ã) and Ã ♣= ψ(ã).

To prove A ♣= φ(a) first observe that (a, a) ∈ Ei,j(A) for every i, j ∈ [D]2 since Ã ♣= φ(ã)

implies that (ã, ã) ∈ Ei,j(Ã) for every i, j ∈ [D]2 and f is an isomorphism mapping a onto

ã. Assume that there is an element b ∈ U(A), b ̸= a and indices i, j ∈ [D]2 such that either

(a, b) ∈ Ei,j(A) or (b, a) ∈ Ei,j(A). Since b ∈ NA
2 (a) and f is an isomorphism we get that

f(b) ̸= f(a) = ã and either (ã, f(b)) ∈ Ei,j(Ã) or (f(b), ã) ∈ Ei,j(Ã). But this contradicts

Ã ♣= φ(ã) and hence A ♣= φ(a).

We now prove A ♣= ψ(a). Let k, k′ ∈ ([D]2)2 and i, i′ ∈ [D]2 such that ROTH2(k, i) =

(k′, i′). Since Ã ♣= ψ(ã) there must be elements b̃, b̃′ ∈ U(Ã) such that (ã, b̃) ∈ Fk(Ã), (ã, b̃′) ∈

Fk′(Ã) and (b̃, b̃′) ∈ Ei,i′(Ã). But since b̃, b̃′ ∈ N Ã
2 (ã) we get that f−1(b̃) and f−1(b̃′) are

defined and since f is an isomorphism we get that (a, f−1(b̃)) ∈ Fk(A), (a, f−1(b̃′)) ∈ Fk′(A)

and (f−1(b̃), f−1(b̃′)) ∈ Ei,i′(A). Hence A ♣= ∃y∃y′
(

Fk(a, y) ∧ Fk′(a, y′) ∧ Ei,i′(y, y
′) for any

k, k′ ∈ ([D]2)2 and i, i′ ∈ [D]2 such that ROTH2(k, i) = (k′, i′) which implies that A ♣= ψ(a).

◁
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