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Abstract

Background: Despite the success of TNF-inhibitor therapy in rheumatoid arthritis treatment, up to 40% of patients
fail to respond adequately. This study aimed to identify transcriptome-based biomarkers of adalimumab response in
rheumatoid arthritis (RA) to aid timely switching in non-responder patients and provide a better mechanistic
understanding of the pathways involved in response/non-response.

Methods: The Affymetrix Human Transcriptome Array 2.0 (HTA) was used to measure the transcriptome in whole
blood at pre-treatment and at 3 months in EULAR good- and non-responders to adalimumab therapy. Differential
expression of transcripts was analysed at the transcript level using multiple linear regression. Differentially expressed
genes were validated in independent samples using OpenArray™ RT-qPCR.

Results: In total, 813 transcripts were differentially expressed between pre-treatment and 3 months in adalimumab
good-responders. No significant differential expression was observed between good- and non-responders at either
time-point and no significant changes were observed in non-responders between time-points. OpenArray™ RT-
qPCR was performed for 104 differentially expressed transcripts in good-responders, selected based on magnitude
of effect or p value or based on prior association with RA or the immune system, validating differential expression
for 17 transcripts.

Conclusions: An early transcriptome signature of DAS28 response to adalimumab has been identified and
replicated in independent datasets. Whilst treat-to-target approaches encourage early switching in non-responsive
patients, registry evidence suggests that this does not always occur. The results herein could guide the
development of a blood test to distinguish responders from non-responders at 3 months and support clinical
decisions to switch non-responsive patients to an alternative therapy.
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Background
TNF-inhibitor (TNFi) therapies have revolutionised the
treatment of rheumatoid arthritis (RA) for many pa-
tients, reducing synovial inflammation and long-term
disability attributed to cartilage and bone destruction
[1–3]. Despite their success, up to 40% of patients fail to
respond adequately leaving them vulnerable to further
disease progression and potential adverse effects of treat-
ment [4, 5]. In addition, non-response is economically
inefficient; the cost of TNFi therapy is estimated to be
£3000–10,000 per patient per year. Thus, early identifi-
cation of non-responders for switching to an alternative
therapy is a research priority for improved long-term
outcomes and the responsible use of limited healthcare
resources.
Currently, non-responder patients can be identified

and switched to an alternative therapy at 3 months, but
many remain on an ineffective therapy for much longer
periods [6]. Whilst clinical markers explain some of the
variability in response, alone they offer insufficient pre-
dictive capability [7]. Ideally, a reliable biological bio-
marker or panel of biomarkers would be measured in
newly diagnosed patients and throughout the treatment
time-course to predict and monitor response to therapy.
This would aid timely therapeutic switching in patients in
whom the treatment is unlikely to be effective but requires
the identification of reliable biomarkers and development
of a statistical classifier of treatment response.
Prediction of TNFi response in RA has so far been dis-

appointing with little evidence of replication between
studies [8]. Progress has been hampered by small sample
sizes, lack of replication, and a paucity of reliable bio-
markers of TNFi response that are needed to drive
advanced statistical approaches to develop robust clas-
sifiers [9–11].
The aim of this study was to discover and validate bio-

markers that are associated with DAS28 response to
TNFi by comparing changes in the transcriptome of per-
ipheral blood from RA patients who were good- and
non-responders to adalimumab therapy. Whilst previous
studies have utilised microarrays to investigate TNF
treatment response in RA [12], to our knowledge, this is
the first to utilise the human transcriptome array
(HTA), which facilitates study of both gene and exon-
level data.

Methods
Patient selection
Seventy patients were selected from the Biologics in
Rheumatoid Arthritis Genetics and Genomics Study
Syndicate (BRAGGSS), previously described [7], from
contributing UK centres. Inclusion criteria specified that
participants provided informed written consent, were
Caucasian, were over 18 years of age, and fulfilled the

2010 American College of Rheumatology (ACR)/Euro-
pean League Against Rheumatism (EULAR) criteria for
RA [13].
All patients were biologic naïve, had received previous

treatment with DMARDs, and were selected if they were
treated with adalimumab and could be categorised as
good or non-responders to treatment at 3 months. Strin-
gent inclusion criteria were applied to select responder
groups. Good-responders were defined by a 28-joint
count disease activity score (DAS28) of < 2.6 at follow-up
(i.e. clinical remission) and an improvement of > 1.2. Non-
responders were included if their improvement in DAS28
was < 0.6 with an endpoint DAS28 of > 5.1 (i.e. high dis-
ease activity). Non-responder patients were excluded if
anti-drug antibodies, measured by radioimmunoassay at
3-month follow-up, were detected in serum samples and/
or if they self-reported non-adherence [14, 15].

Blood collection
Pre-treatment and 3-month post-treatment blood sam-
ples were collected into Tempus™ Blood RNA Tubes (3
ml) (Applied Biosystems, Foster City, CA, USA). Once
collected, samples were shipped to the Versus Arthritis
Centre for Genetics and Genomics laboratory for central
processing. Samples were logged onto the laboratory in-
formation management system (LIMS) and were stored
at − 80 °C until RNA isolation.

RNA isolation
Total RNA was isolated from Tempus™ whole blood
using the MagMAX™ for Stabilised Blood Tubes RNA
Isolation Kit, compatible with Tempus™ Blood RNA
Tubes (Life Technologies, Carlsbad, CA, USA), accord-
ing to manufacturer’s instructions. Extraction batches
were mixed for responders and non-responders in order
to reduce technical bias. Extracted RNA samples were
treated with DNase to eliminate any potential genomic
DNA contamination from downstream transcriptome
measurement. RNA was quantified using the Nanodrop
ND-1000 (Thermo Scientific, Waltham, MA, USA) and
quality-assessed using the 2100 Bioanalyzer to generate
an RNA integrity number (RIN; Agilent, Santa Clara,
CA, USA).

Transcriptome measurement
Total RNA (100 ng) was amplified and converted into
biotinylated sense-strand cDNA targets using the Affy-
metrix WT PLUS kit according to the manufacturer’s
instructions (Affymetrix, Santa Clara, CA, USA). All
samples were collected using the same study protocol,
irrespective of clinical features. We adhered to the man-
ufacturer’s recommendations regarding RNA quality
control (260/280 ratio between 1.7 and 2.1). The Nano-
drop ND-1000 was used to monitor and normalise
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cDNA concentration across samples throughout the tar-
get preparation. Samples of different response status and
time-point were arranged in the 96-well plate at random
to avoid cDNA conversion bias. For each sample, 5-μg
of fragmented, end-labelled sense-strand target cDNA
was hybridised to a GeneChip Human Transcriptome
Array (HTA) 2.0 before incubation for 16 h at 45 °C in
the GeneChip® Hybridization Oven 645. Following hy-
bridisation, arrays were washed and stained using the
GeneChip® Fluidics Station 450 and scanned using the
GeneChip® Scanner 3000 7G with Autoloader to gener-
ate a raw CEL data file for each sample.

Statistical analysis of transcriptome
Raw CEL files were quality control assessed using the
Affymetrix Expression Console software (version 1.1). All
array files were then processed in the programming lan-
guage ‘R’ using Bioconductor packages: The pd.hta.2.0
package was used for platform design information annota-
tion and the affy package was used to summarise probe-
level data into a single expression measure for each individ-
ual transcript and pre-process the data. The affy package
was used to perform normalisation and probe specific back-
ground correction before summarising the probe set values
into a single expression measure according to default set-
tings. Highly variable probes were used to cluster samples
and produce a dissimilarity matrix. The highly variable
probes were used to create a cluster dendrogram of samples
based on both transcript- and probe-level differences and il-
lustrate how samples cluster to identify any major outliers
of which there were none. The PCAmethods library was
used to conduct principal component analysis (PCA) to test
for run order effects and limma was used for differential ex-
pression analysis. The arrayWeights function in limma was
used to assess array quality using default parameters. Differ-
ential expression analysis was adjusted for baseline DAS28,
age, gender, concurrent DMARD use, and array weights.
Pathway analysis was performed using the Ingenuity Path-
way Analysis (IPA) tool (version 33559992) according to
default settings.

RT-qPCR validation
Results from the discovery analyses were ranked according
to p value and also fold change. The top 10 hits according
to most significant p value and the top 10 according to lar-
gest fold change were selected for validation. A further 84
transcripts that satisfied a fold change > 1.2 and a false dis-
covery rate (FDR) < 0.05 were selected according to a
known biological association with RA or the immune sys-
tem. TaqMan™ assays were selected for a total of 104 tran-
scripts from the initial adalimumab transcriptome study
for custom design of a gene expression OpenArray™ Plate,
112 assay format. Housekeeping genes were used to nor-
malise targets and calculate relative expression values:

ACTB (Hs99999903_m1), B2M (Hs00187842_m1), GAPD
H (Hs99999905_m1), and HPRT1 (Hs02800695_m1). Re-
sponder groups were less stringently defined than in the
discovery study. That is to say good-response to adalimu-
mab were not necessarily in clinical remission at follow-
up but did show large DAS28 improvements and were in
low disease activity states (change in DAS28 > 2.78;
mean = 3.08; n = 11) versus poor-responders (change in
DAS28 < 1.04; mean = 0.83; n = 11). This enabled us to
test whether the changes identified in the discovery cohort
could be identified in patients with a less extreme re-
sponse. Total RNA was reverse transcribed into single-
stranded cDNA using the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems) according to man-
ufacturer’s instructions. Sample cDNA and TaqMan™
OpenArray™ Gene Expression Master Mix were loaded on
OpenArray™ plates using the OpenArray™ AccuFill® soft-
ware and OpenArray™ AccuFill® system (Applied Biosys-
tems). RT-qPCR was performed on the QuantStudio™ 12
K Flex real-time qPCR system (Applied Biosystems) and
analysed in the Relative Quantification Application on the
Thermo Fisher Cloud (Thermo Scientific).

Results
Cohort characteristics
Seventy patients receiving adalimumab therapy were in-
cluded in the initial study. Baseline characteristics for
the patients are presented in Table 1.

Transcriptome measurement
PCA of the dataset revealed one principal component
contributing significantly to sample variance (> 10%)
which was adjusted for during downstream differential
expression analysis. There was no correlation between
this principal component and age, gender, DMARD use,
baseline DAS28, DAS28 components, RIN, or RNA ex-
traction batch. Differentially expressed transcripts be-
tween response groups and time-points were defined by
a fold change > 1.2 and a false discovery rate (FDR) <
0.05. No significant differential expression was observed
between good- and non-responders at either pre-
treatment or 3 months and no significant changes were
observed in non-responders between pre-treatment and
3months. However, 813 transcripts were differentially
expressed between time-points in good-responders,
mapping to 491 unique genes. This comprised 202 tran-
scripts that were more- and 611 transcripts that were
less-abundant at 3 months, compared with the pre-
treatment sample (Additional file 1: Table S1). Testing
was performed to identify whether adjusting for RIN in
the analysis was important, but this adjustment did not
qualitatively change the results. RIN was not included in
the final analysis because it was not available for all
samples (n = 20).
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Ingenuity pathway analysis was performed to identify
enrichment of relevant pathways involving differentially
expressed transcripts, which are either up- or downregu-
lated (Table 2 or Additional file 2: Table S2). The most
significantly enriched pathway within the differential ex-
pression dataset for adalimumab good-responders was in
‘B and T cell signalling in rheumatoid arthritis’ (p = 1.4E
− 10) with TNF identified as one of the top upstream
regulators (p = 1.53E− 06).

RT-qPCR validation
A total of 11 good- and 11 non-responders were avail-
able to validate the top discovery results. Cohort charac-
teristics were broadly similar to the discovery cohort
with a minor difference in the mean baseline DAS28
(good-responders, mean = 6.27; non-responders, mean =
5.33; p = 0.0005). Relative quantification was used to
compare expression between baseline and 3months of
adalimumab treatment for both response groups (Fig. 1).
In good-responders differential expression was validated
for 17 transcripts in the same direction of change as the
initial discovery cohort (fold change > 1.2, FDR p < 0.05;
Table 3). In the equivalent analysis of non-responders,
no transcripts were differentially expressed at a signifi-
cant level.

Discussion
This study sought to identify biomarkers of adalimumab
TNFi therapy. We observed a disease-relevant panel of
transcriptomic changes in good-responders. In particu-
lar, significant differential expression was observed in
good-responders between pre-treatment and 3months,
attributed to genes in RA-associated pathways that are
responsive to relevant upstream regulators including
TNF and CSF2 (otherwise known as Granulocyte-
macrophage colony-stimulating factor (GM-CSF)), a
promising target for therapy in RA [16].
Differential expression of seventeen transcripts ob-

served in good-responders were validated in a small

independent sample (n = 22) using OpenArray qPCR
analysis. The validated transcripts were differentially
expressed in the same direction as the initial discovery
cohort and included ENTPD1 (otherwise known as
CD39), which is primarily expressed on activated lymph-
oid cells. A previous study reported an expansion of
CD39 positive regulatory T cells following successful
treatment with methotrexate [17], whilst a more recent
study reported that a higher genetic score for CD39 ex-
pression on T cells at the ENTPD1 locus was associated
with a poor response to TNFi [18]. Here, we observed
relatively higher levels of ENTPD1 at pre-treatment in
good-responders compared with the 3-month sample.
However, in the current study, we cannot say whether
the observed change in ENTPD1 expression is reflected
at the protein level, if a particular cell type is prominently
affected or if expression is modified by genotype. Further
studies of ENTPD1 locus in relevant cell populations are
now required in RA to resolve these interesting observa-
tions. In addition, this study identified increased expres-
sion of CD40LG in good-responders. The CD40LG gene
encodes the complementary ligand for the CD40 trans-
membrane protein which is expressed on both B cells and
antigen-presenting cells (APCs) and has been associated
with increased TNF expression. Furthermore, transcrip-
tion of both genes is reportedly elevated in the synovial
tissue of RA patients [19]. More recently, increased CD40
transcription and lower CD40 methylation in whole blood
were associated with improved TNFi response [18].
High expression of type I interferon genes has previ-

ously been associated with improved response to TNFi
therapy [20] and, more recently, non-response to metho-
trexate therapy [21]. However, whilst expression of a
number of interferon genes was initially associated with
good-response in this study (IFNG, IFNG-AS1, LY6E,
MX2, SERPING1, OAS2), only an association with IFNG-
AS1 was retained following adjustment for baseline
DAS28 score and none were validated by RT-qPCR.
Overall, this study identified many immune-related

Table 1 Baseline characteristics of RA patients included in the discovery study

Characteristic Good-responders (n = 50) Non-responders (n = 20) p value

Age, mean (SD) 58.1 (13.1) 55.3 (13) 0.42a

Female, n (%) 31 (62) 15 (75) 0.30b

Days on drug at outcome, median (IQR) 113 (92, 147) 109 (93, 147) 0.74c

Baseline DAS28, mean (SD) 5.07 (0.90) 5.09 (0.90) 0.93a

Concurrent DMARD therapy, n (%) 46 (92) 15 (75) 0.06b

Swollen joint count, median (IQR) 8 (5, 11) 6 (3, 8) 0.13c

Tender joint count, median (IQR) 12 (6, 17) 17 (9, 23) 0.15c

Baseline HAQ score, median (IQR) 1.5 (1, 2.13) 1.8 (1.4, 2.3) 0.21c

Patients were stratified by EULAR response at 3 months. All patients receiving concurrent DMARD therapy were receiving methotrexate. DAS28 28-joint count
disease activity score, DMARD disease modifying anti-rheumatic drugs, HAQ health assessment questionnaire, SD standard deviation, IQR interquartile range. p
value: atwo-sample t test, bchi-squared test, cWilcoxon rank-sum test
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genes with increased expression in the whole blood of
good-responders, whilst seemingly paradoxical, this may
represent migration of RA-associated inflammatory fac-
tors out of the affected joint and into the peripheral
blood in a positive response to TNFi therapy.
No differential expression was observed at pre-treatment

when good- and non-responders were analysed, in keeping
with previous results [8, 22]. One possible reason could be
that immune pathways are saturated at baseline since

patients included the study had very high disease activity at
baseline. Only after treatment is administered do the differ-
ent gene expression groups emerge. We found that good-
responders showed enrichment in pathways linked to TNF,
supporting the hypothesis that there are different key
drivers in different subgroups of patients. In future studies,
it will be important to test the differentially expressed tran-
scripts identified herein against different drugs in order to
elucidate whether they are general markers of response or

Table 2 Ingenuity pathway analysis (IPA)

Top canonical pathways

Name p value Overlap

Altered T cell and B cell signalling in rheumatoid arthritis 1.41E− 10 17.3%, 14/81

TREM1 signalling 2.53E− 10 18.6%, 13/70

Dendritic cell maturation 5.68E− 08 9.5%, 16/169

Allograft rejection signalling 1.39E− 07 18.8%, 9/48

Communication between innate and adaptive immune cells 2.06E− 07 13.4%, 11/82

Top upstream regulators

Upstream regulator p value of overlap

TGM2 4.66E− 15

CEBPA 1.16E− 08

CSF2 1.70E− 08

TNF 1.53E− 06

IRF4 2.33E− 06

Top diseases and disorders

Name p value Molecules

Immunological disease 6.30E− 03 to 1.20E− 22 151

Connective tissue disorders 5.32E− 03 to 3.31E− 21 81

Inflammatory disease 6.18E− 03 to 3.31E− 21 116

Skeletal and muscular disorders 5.32E− 03 to 3.31E− 21 106

Infectious diseases 5.76E− 03 to 5.84E− 20 76

Top molecular and cell functions

Name p value Molecules

Cell-to-cell signalling and interaction 6.18E− 03 to 1.99E− 14 100

Cell death and survival 7.09E− 03 to 3.79E− 10 97

Cellular movement 6.44E− 03 to 4.26E− 10 55

Cellular development 6.48E− 03 to 5.54E− 10 49

Cellular growth and proliferation 6.18E− 03 to 5.54E− 10 84

Top physiological system development and function

Name p value Molecules

Haematological system development and function 6.48E− 03 to 6.44E− 13 72

Immune cell trafficking 6.18E− 03 to 6.44E− 13 47

Embryonic development 1.86E− 05 to 1.86E− 05 4

Haematopoiesis 6.48E− 03 to 2.86E− 05 24

Hair and skin development and function 6.18E− 03 to 4.26E− 05 10

The differentially expressed genes in adalimumab good-responders (baseline versus 3 months) were analysed using Ingenuity Pathway Analysis (IPA) software. The
top associated terms for the output themes, which were either up- or downregulated, are presented with associated p values. The table also displays the number
of molecules, or the number of differentially expressed transcripts within the dataset associated with each term
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specific to this class of drug. The inability to identify base-
line markers suggests that further discovery studies should
redirect efforts to other data types or include on-treatment
sampling as part of the study design. It is possible that the
high levels of disease activity seen at pre-treatment in all

study participants may be obscuring detection of pre-
treatment gene expression signatures that are relevant to
future treatment response.
This study benefited from the use of a stringent sam-

ple selection process including good-responders in

Fig. 1 Heatmap of adalimumab good-responders and non-responders following real-time quantitative polymerase chain reaction (RT-qPCR)
analysis of gene expression. Heatmap and hierarchal clustering is based on pairwise similarity in gene expression for the 104 transcripts measured
in the RT-qPCR validation study. Good-responders and non-responders are represented in the upper and lower heatmaps, respectively. Heatmap
rows and columns represent baseline and 3months samples for 11 rheumatoid arthritis patients on adalimumab TNF-inhibitor therapy. BL =
baseline and 3M = 3-months
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clinical remission with absence of anti-drug antibody or
inadequate adherence explaining non-response. In
addition, the use of a longitudinal approach has allowed
the identification of transcripts and pathways that
change in response to successful treatment. The signa-
tures were observed in whole blood which requires fewer
sample processing steps. However, this may dilute subtle
changes that occur in cell types of low abundance that
would otherwise be apparent in cell-specific studies. This
is most likely pertinent to B and T cells, which this study
has highlighted as important contributors to the tran-
scriptomic response in good-responders. Whilst it would
be interesting to identify the cell types in which these
gene expression changes occur, to our knowledge, the
reference datasets required to resolve cell subtypes from
whole blood are not currently available for the array type
used in this investigation.
We recognise that the initial discovery cohort con-

tained more responders than non-responders, which
may contribute towards a lack of power for finding sig-
nificant changes between baseline and 3months in non-
responders. However, in order to maximise power and
mimic a case-control approach, the replication phase
examined an equal number of responders and non-
responders. Furthermore, significant changes were iden-
tified only in the good-responder group, in keeping with
findings in the discovery cohort. Whilst there was no

statistically significant difference in concurrent DMARD
use at baseline, we recognise that confounding could still
occur and so adjusted for this during differential expres-
sion analysis.
Whilst 813 differentially expressed transcripts were

found in responders between baseline and 3months, no
significant differences in gene expression were identified
between responders and non-responders at 3 months.
This is likely due to power and inter-patient differences
in baseline gene expression levels. We also tested for
correlation between change in transcript abundance and
change in DAS28 and sub-components in the good-
responder subgroup (Additional file 3: Figure S1–S4). In
this unadjusted analysis, no significant p values were ob-
served; however, the sample size was small. These ana-
lyses are based on good- and poor-EULAR response.
Future studies should extend this analysis to include pa-
tients across the full spectrum of response, including
intermediate responders, and analyse continuous mea-
sures of response, including the DAS28 composite score
and its sub-components, as secondary outcomes.
We cannot exclude the possibility that other true

associations were not detected in the replication
phase of the study as the sample size was small, lim-
iting power. Nonetheless, the findings support further
testing of transcripts that have been independently
replicated to develop a statistical model to stratify

Table 3 Transcripts validated in adalimumab good-responders by real-time quantitative polymerase chain reaction (RT-QPCR)

Rank Target name Gene Rq Rq min Rq max Adjusted p value

1 Hs00190574_m1 LIN7A 0.69 0.59 0.8 0.01

2 Hs00191719_m1 CREB5 0.62 0.51 0.76 0.014

3 Hs00969559_m1 ENTPD1 0.79 0.71 0.88 0.019

4 Hs01565750_m1 ITGB7 1.51 1.25 1.82 0.02

5 Hs00185435_m1 HLA-DMA 1.34 1.17 1.52 0.023

6 Hs01075666_m1 IL6R 0.76 0.67 0.87 0.023

7 Hs01062258_m1 SLC8A1 0.68 0.59 0.79 0.025

8 Hs01555410_m1 IL1B 0.65 0.52 0.82 0.027

9 Hs00157950_m1 HLA-DOB 1.98 1.5 2.61 0.03

10 Hs01090216_m1 MGAM 0.56 0.41 0.76 0.03

11 Hs01072219_m1 TRAF5 1.47 1.27 1.69 0.031

12 Hs00171280_m1 AES 1.4 1.24 1.59 0.032

13 Hs00231092_m1 E2F5 1.61 1.26 2.07 0.035

14 Hs00207105_m1 ZFYVE16 0.8 0.71 0.9 0.037

15 Hs01109372_g1 HLA-DOA 1.63 1.3 2.03 0.037

16 Hs00152972_m1 TLR8 0.68 0.55 0.83 0.041

17 Hs00201585_m1 STAP1 1.51 1.22 1.86 0.042

The relative quantification (Rq) values are equivalent to linear fold changes for each transcript defined as the inverse log2 of the change in relative cycle threshold
(ΔΔCrt) values between pre-treatment and 3months. Minimum and maximum RQ values and p value are presented for each transcript along with p values
adjusted for multiple tests. Transcripts with an Rq value below 1 exhibited reduced expression at 3 months compared to pre-treatment. Transcripts with an Rq
value above 1 exhibited increased expression at 3 months compared to pre-treatment
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patients according to likely treatment response.
Whilst the transcriptomic response was detected at 3
months, it is possible that changes in transcript levels
could manifest much earlier. Furthermore, it will be
important to test if these findings are specific to ada-
limumab response or generalise to other therapies li-
cenced for use in RA. Future similar studies should
therefore seek to collect samples at earlier time-points
and from patients treated with other classes of ther-
apy to address these important questions. Whilst the
inclusion of the extremes of response phenotype in
the current study maximised the power to detect as-
sociations, the inclusion of intermediate DAS28 re-
sponders in future studies will be necessary to allow
an estimation of the predictive ability of the bio-
marker panel with DAS28 response across the full
spectrum of response.

Conclusions
This study has discovered biomarkers that could po-
tentially be used to identify patients destined not to
respond adequately to adalimumab treatment at an
early stage and to support treat-to-target approaches.
Whilst patients can be withdrawn from a therapy ac-
cording to a limited change in DAS28 at 3 months, in
reality, many patients remain on ineffective treatment
for longer periods. Biomarkers could therefore aid
clinical decisions to rapidly switch non-responder pa-
tients at 3 months or earlier to an alternative therapy.
Much larger studies are now needed to test the utility
of the identified biomarkers as a classifier of future
response.
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sion at 3-months compared to baseline. Transcripts with a negative fold-
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Additional file 2: Table S2. The differentially expressed genes in
adalimumab good-responders (baseline versus 3-months) as analysed
using Ingenuity Pathway Analysis (IPA) software. The -log(p-value) for
each pathway association, the ratio of the number of differentially
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S2. Correlation between change in transcript expression level and
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