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Abstract. We introduce Isabelle/UTP, a novel mechanisation of Hoare
and He’s Unifying Theories of Programming (UTP) in Isabelle/HOL.
UTP is a framework for the study, formalisation, and unification of for-
mal semantics. Our contributions are, firstly, a deep semantic model of
UTP’s alphabetised predicates, supporting meta-logical reasoning that
is parametric in the underlying notions of values and types. Secondly,
integration of host-logic type checking that subsumes the need for typ-
ing proof obligations in the object-language. Thirdly, proof tactics that
transfer results from well-supported mathematical structures in Isabelle
to proofs about UTP theories. Additionally, our work provides novel in-
sights towards reconciliation of shallow and deep language embeddings.

1 Introduction

Creation of a tool-chain for formal software development requires that the vari-
ous components have a unified view of the problem domain. This issue is often
tackled with formal semantics, so that the underlying program artifacts have
unambiguous mathematical meanings. However, individual tools are often based
on different semantic models: a simulator might implement an operational se-
mantics, whilst a program verifier might implement an axiomatic Hoare calculus.
Therefore to coordinate the tools in an integrated tool-chain, it is important to
unify their different underlying semantic models. Otherwise the “formalisation
gaps” may lead to incoherent analysis, and therefore ineffective verification.

A solution lies in the Unifying Theories of Programming [15] (UTP), a math-
ematical framework for the formalisation, study, and unification of such semantic
models. UTP provides a layered approach to semantics that is illustrated in Fig-
ure 1, with different tools on top. If we desire an integrated tool-chain we need to
(1) formalise semantic models for the tools, and (2) unify those models through
an underlying denotational semantics that acts as the “gold standard” for com-
paring other semantic models. The order in which these elements are engineered
can vary, but the end result is the same: an end-to-end verified tool-chain.

UTP further considers that denotational models can themselves be decom-
posed into constituent UTP theories. A UTP theory corresponds to a notable
computational idea which can be isolated and studied independently. Though a
large number of languages and notations exist, the paradigms that underlie them



Fig. 1. UTP semantic stack

is much smaller, and therefore theoretical decomposition allows formal links to be
established between similar formalisms. These links can either be built by com-
mon theoretical factors or alternatively by Galois connections, which formalise
the best approximation of objects in one theory by objects in another. UTP
therefore also enables a tool-chain that is semantically heterogeneous; consisting
of a variety of notations that are formally linked [10].

UTP has been applied to theories from a wide area of computer science,
including process calculi, object orientation, and real-time systems. It provides
the basis for the Circus [25] specification language, which unifies Z, CSP, and
refinement calculi, and has been used to formalise the semantics of a number
of languages, such as Safety-Critical Java [6], Handel-C [21], and SysML [26], a
multi-paradigm modelling notation.

In order to verify correctness of semantic models, we need mechanical support
for formalising UTP theories, composing them to produce denotational models,
and providing provably corresponding semantic bases. In a theorem prover like
Isabelle [18], we can go even further and construct proof tactics and proce-
dures for proving properties of theory objects in a particular semantic interface,
such as a Hoare logic solver. This then means that we have an unbroken chain
from proof of program correctness to justification in terms of high-level prop-
erties (like termination and feasibility) in the underlying denotational models
and theories. Though mechanisations of UTP exist, they focus on either theory
engineering [19,27,4,5] or program verification [8,9], but not both.

We have therefore created Isabelle/UTP, a novel mechanisation of UTP in
Isabelle, which we believe can be applied to both tasks. Isabelle/UTP is a frame-
work that allows the formation of theories, semi-automated proof of their prop-
erties, and theory combination to provide semantic models. It provides a deep
model of alphabetised predicates that is also tightly integrated into the Isabelle
type system and supported by high-level proof tactics. Isabelle is an ideal base
due to its definitional nature that allows a natural and scalable representation of
the different abstraction layers of Figure 1. For example when reasoning about
a program using axiomatic semantics, we need not consider details of the under-
lying denotational model, but do retain confidence in its correspondence.

Our mechanisation is inspired by the prior embeddings ProofPower-Z UTP [19]
and Isabelle/Circus [8,9]. We believe that Isabelle/UTP combines their advantages
in having both the expressivity of a deep value and predicate model, but also
taking advantage of host logic facilities, such as type inference and proof au-
tomation, typically only available in a shallow model. This combination is our



main contribution, and substantiates the claim that Isabelle/UTP can be applied
to both the tasks of theory engineering and program verification.

For theory engineering, we support proofs at a high-level of abstraction, aided
by Isabelle’s Isar proof scripting language. This is also important to closing the
formalisation gaps between pen-and-paper proofs and their mechanisation. For
example, the proof from the theory of designs, relating H1-H2 predicates and the
design turnstile, can be written at a similar level of abstraction to book proofs:

theorem H1-H2-is-DesignD :
assumes P is H1 and P is H2
shows ‘P‘ = ‘¬Pf ` P t‘

proof −
from assms have ‘P‘ = ‘$ok ⇒ H2 (P)‘

by (utp-pred-tac)
also have ... = ‘$ok ⇒ (Pf ∨ (P t ∧ $ok´))‘

by (metis H2-split assms)
also have ... = ‘$ok ∧ ¬ Pf ⇒ $ok´ ∧ P t‘

by (utp-pred-auto-tac)
finally show ?thesis by (metis DesignD-def )

qed

It proceeds by (1) expanding H1 and H2 on P using our UTP predicate tactic, (2)
applying the H2-split law to divide P into the two cases, (3) using the predicate
tactic to rearrange, and finally (4) applying the definition of the design turnstile.

In the remainder we present our contributions. Section 2 gives a brief overview
of the UTP. Section 3 gives preliminaries about Isabelle. Section 4 examines the
existing UTP implementations and how Isabelle/UTP relates. Section 5 describes
our deep predicate model. Section 6 describes the polymorphic expression model
with host logic typing. Section 7 outlines our approach to automated proof tac-
tics. Section 8 concludes the discussion and highlights future work.

2 Unifying Theories of Programming

UTP is a semantic framework facilitating study of the commonalities and differ-
ences between computational theories and paradigms. UTP is based on programs
as predicates: every program can be written as a predicative binary relation be-
tween input variables, which are unprimed (x), and output variables, which are
primed (x′). Predicates in UTP are also alphabetised, meaning they explicitly
carry the set of variables to which they can refer. A key component of UTP is the
UTP theory, which describes a particular aspect of a computational paradigm.
For example, the theory of designs characterises specifications P ` Q, where P is
an assumption and Q a commitment. The theory of CSP characterises processes
from the CSP process calculus. A UTP theory consists of three parts:

– an alphabet : set of variables with which to observe theory objects;
– a signature: constructors for objects of the theory;
– healthiness conditions: functions that define theory membership.



The alphabet consists of variables which are used to encode structure in elements
of the theory. For example, tr is a sequence of events representing the trace of
interactions, and ok is a Boolean variable used to encode termination conditions.
The signature consists of constructors that use these variables to encode syntax
for the theory. In CSP, the signature consists of the usual CSP operators, like
a → P , P �Q, and CHAOS. For example, we could define CHAOS , tr ≤ tr′,
that is the predicate in which any observation is possible but the trace must only
increase monotonically. Finally, the healthiness conditions are idempotent func-
tions of which all the theory elements are fixed-points. In the theory of reactive
processes, the condition R1(P ) , P ∧ tr ≤ tr′ states that in all observations the
trace must get longer. Predicates which do not obey this constraint are outside
the theory. Conversely, it trivially follows that R1(CHAOS) = CHAOS.

UTP also provides ways of combining and linking theories. The UTP book [15]
shows how different process calculi can be constructed, beginning from a common
base (reactive processes) and adding specific healthiness conditions for calculi
like ACP and CSP. Moreover, the Circus specification language [25] is a combi-
nation of Z [22], CSP [14], and a refinement calculus. Aside from combination,
theories can also be related using Galois connections, that formulate best ap-
proximations of UTP theory elements in a different theory. For example, there
exists a Galois connection between the theory of CSP and the theory of designs,
such that every CSP process can be written as a “reactive design” [20]. This
therefore allows the import of results from the theory of designs into the theory
of CSP, which provides a theory engineer with additional tools.

In order to mechanise theories we need a UTP implementation with sufficient
expressivity to represent alphabets, theories, and theory links, all of which should
be first-class entities in the language. This in turn means we need a flexible
predicate model, whilst providing high-level proof facilities. Moreover the UTP
implementation should be, to a significant extent, language agnostic inasmuch
as issues concerning concrete implementation should be separated from high-
level abstract concepts. This motivates a modular embedding supporting this
separation of concerns. We consider these motivations in more detail in Section 4.

3 Isabelle/HOL

Isabelle/HOL [18] is a proof assistant for Higher-Order Logic (HOL). HOL
consists of an ML-style functional programming language and a proof system
to assert and prove properties of defined constructs. Functional programming
concepts include recursive functions, algebraic datatypes, and records. HOL is
also polymorphically typed, with type-parametric constructs defined using type-
classes. For instance, we can declare a type-class for semigroups:

class semigroup =
fixes add :: "’a ⇒ ’a ⇒ ’a" (infixr "⊕" 65)
assumes add_assoc: "x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z"

This introduces a polymorphic infix operator “⊕”, with precedence 65, over the
type parameter ’a, and requires that ⊕ be associative. Type classes can be



instantiated for particular types, in which case the operators of the signature
must be defined for that type, and the associated assumptions (here add assoc)
proved. Moreover type classes support a form of inheritance, such that they can
be declared to inherit the signature and properties from one or more existing
type classes. This, for instance, allows the specification of algebraic hierarchies.
For example, we can create the monoid class by extending semigroup:

class monoid = semigroup +
fixes one :: "’a" ("1")
assumes l_one: "1 ⊕ x = x" and r_one: "x ⊕ 1 = x"

Type classes create a local theory context in which the assumptions are available
as axioms to be used in proofs. These are not global axioms, and so even though
it is possible to introduce inconsistent type class axioms, this does not have any
effect on the global theory context. It simply means that the class cannot be
instantiated; conversely if a class can be instantiated with a type, it means the
axioms are consistent with respect to the global context.

Types in HOL can be created in several ways, such as through the algebraic
datatype package. However, the core command for type definition is typedef
which creates a new type based on a subset of values of an existing type. For
instance, we may create the type of even numbers as a subset of the naturals:

typedef even = "{n :: nat. n mod 2 = 0}"
by (rule_tac x="2" in exI, simp)

HOL types must contain at least one value and so the typedef requires a
nonemptiness proof. We satisfy this by introducing 2 as a witness, and applying
the simplifier to show that “2mod 2 = 0”. New types come equipped with an
abstraction and a representation function mapping between the old and new
type, in this case Abs even :: nat ⇒ even and Rep even :: even ⇒ nat; they are
mutual inverses on the characteristic set of even. Functions on the original type
can also be lifted to the derived type using the lifting package [16], provided the
function is closed over the characteristic set. For example, we can define even
number addition by lifting natural addition, as the latter is closed over the even
numbers. This must be proved as part of the definition (here we use auto):

lift definition plus_even :: "even ⇒ even ⇒ even" is "plus" by auto

Proof in Isabelle is performed using tactics, which act on the proof state, trans-
forming a matching goal into subgoals. This process is repeated until all subgoals
are discharged. A proof can be entered as a sequence of commands (apply-style)
or using the ISAR structured proof language, which supports readable proofs.
Proofs are correct by construction with respect to a small core of axioms as part
of the LCF architecture that ensures relative soundness of the system. Though a
consistency proof for the HOL axioms is impossible (à la Gödel), they have been
given a semantics in ZFC set theory [17] and therefore HOL is as consistent as
the “foundation of mathematics”. User theories should ideally be definitional :
constructs are created in terms of existing constructs, rather than by axioma-
tisation that is discouraged and in fact seldom needed. This ensures that no
inconsistency can be introduced by user-defined theories.



Along with elementary deduction tactics, like backward chaining, Isabelle has
a large number of automated proof tactics. This includes the equational simplifier
simp, the classical reasoner blast, and the combination tactic auto. Tactics can
be augmented with additional rules by placing them in appropriate theorem
sets. For instance, the set simp contains simplification laws and intro contains
introduction laws. Isabelle also includes a number of high-level proof tools [1]
such as sledgehammer, a certified integration of third-party automated theorem
provers, and nitpick, a counterexample generator. We believe this combination
sets Isabelle apart as an ideal platform on which to mechanise UTP.

4 Related work: five mechanisation criteria

In this section we consider existing mechanisations of the UTP and motivate
features for Isabelle/UTP. Several prior UTP mechanisations exist, including an
embedding in ProofPower-Z [19,27], a shallower embedding in Isabelle called
Isabelle/Circus [8,9], and the specialised UTP prover U·(TP)2 [4,5]. To aid com-
parison we consider five desirable mechanisation criteria:

1. consistency – it should not be possible to derive contradictions;
2. expressivity – laws can be formulated with sufficient granularity;
3. automated proof – reasoning can be performed at a suitably high-level;
4. well-formedness by construction – so proof effort is minimised;
5. modularity – to enable language-independent reasoning.

Though by no means exhaustive, this list allow us to discriminate between the
current mechanisations and motivate the features for Isabelle/UTP that will allow
both theory engineering and program verification. The summarised comparison
is shown in Table 1 which we now discuss in detail.

Consistency. Mechanising the semantics and proof system of a language is
typically performed through a semantic embedding [2]: the constructs of the
“client-logic” are assigned denotations in a semantic model defined in a suitably
expressive host-logic. This has the advantage that consistency of the client-logic
can be argued from the consistency of the host-logic, such as HOL.

It follows, therefore, that Isabelle/Circus [9] is inherently consistent, as it is
mechanised within the LCF architecture and does not rely on additional axioms.
ProofPower-Z UTP [19] is also consistent, in theory, as ProofPower-Z follows LCF.
However it is also possible to disable consistency checks for Z schemas, which
can introduce problems. U·(TP)2 [4] cannot guarantee consistency as it is a fresh
implementation and, as such, soundness of its axioms has not been established.

ProofPower-Z Isabelle/Circus U·(TP)2 Isabelle/UTP

(1) Consistency 3/? 3 ? 3

(2) Expressivity 3 7 3 3

(3) Proof Auto 7 3 7 3

(4) Well-formedness 7 3 3 3

(5) Modularity 7 ? 3 3

Table 1. UTP mechanisations contrasted



Therefore, like Isabelle/Circus, we embed our mechanisation in Isabelle/HOL and
take a purely definitional approach. Moreover our model will be formed using
Isabelle typedef and lifting, thus ensuring non-vacuity.

Expressivity. U·(TP)2 is a UTP implementation purpose-built from first prin-
ciples. It therefore allows flexible description of UTP laws and theories with a
suitable level of expressivity, and sets a good benchmark for other implementa-
tions which are predominantly semantic embeddings. In a semantic embedding,
expressivity is principally determined by depth. Deeper embeddings introduce
concepts such as variables and typing by custom definitions, whilst shallower
embeddings reuse equivalent concepts in the host-logic. Hence a deeper embed-
ding provides greater potential for expressivity, though at the cost of extra work.
UTP is based on the alphabetised predicate calculus, and so its mechanisation
requires a semantic model in which the predicate operators can be denoted.
Moreover to allow generic theory composition, it must be possible to compose
predicates with different alphabets.

A common predicate model used since the earliest embeddings of Z in HOL
is the binding set [3], where a binding is a mapping from variables to values.
Each predicate is modelled by the set of bindings that satisfy it, e.g. Jx > 1K =
{x 7→ 2, x 7→ 3, · · · }. This approach is used by both ProofPower-Z UTP and
Isabelle/Circus. The major difference between these embeddings is how the bind-
ings themselves are represented. This difference determines both the potential
for automation and expressivity of the resulting predicate model.

Isabelle/Circus, a shallower model, encodes bindings as HOL record types with
each field corresponding to a variable assignment. This limits expressivity: laws
that rely on meta-logical properties, such as variable freshness or comparison,
cannot generally be expressed. Moreover since variables and thus alphabets are
not explicitly modelled, alphabets cannot be arbitrarily decomposed. This limits
the extent to which UTP theories with different alphabets can be composed.

In contrast, ProofPower-Z UTP explicitly defines types for variables (NAME )
and values (VAL): a binding then is a function BINDING , NAME→ VAL and
a predicate is a binding set PRED , PBINDING. This allows greater expres-
sivity than Isabelle/Circus since we can compare variables, and similarly encode
alphabets as variable sets. We therefore choose a deep model for Isabelle/UTP
so we can achieve a faithful UTP encoding; see Section 5.

Proof Automation. To allow effective reasoning about UTP theories, laws of
programming, and eventually programs themselves, it is necessary to provide
high-level proof tactics. U·(TP)2, as a fresh implementation, cannot take ad-
vantage of proof automation as provided by more mature proof assistants. The
ProofPower-Z UTP model, as a deep embedding, also does not have well devel-
oped proof tactics for automated reasoning. Moreover automation at the level of
ProofPower-HOL itself is weak in areas such as automated deductive reasoning
and simplification. This adds to the proof burden making reasoning a challenge,
particularly for non-experts.

Isabelle, by contrast, has powerful tactics for reasoning about different the-
ories, including sets, relations, and lattices. Indeed, Isabelle/Circus makes much



use of these, and simple properties like associativity can be discharged easily by
auto. Moreover, the shallowness of this model means that other proof tools, such
as sledgehammer and nitpick, are directly available. This means the full weight
of Isabelle’s proof facilities can be brought to bear, making Isabelle/Circus ideal
for verification. However, a deeper embedding needs more machinery to enable
access to these. Hence for Isabelle/UTP we engineer tactics that formalise links
between UTP theories and established HOL theories, such as relations. This al-
lows transfer of results from HOL into UTP, thus maximising potential for proof
automation whilst retaining the expressivity of a deep model; see Section 7.

Well-formedness. While ProofPower-Z UTP is expressive, it exhibits prob-
lems with well-formedness and typing. Bindings, and thus predicates, must be
proved well-formed through closure conditions. Also, typing in UTP predicates is
orthogonal to the ProofPower-Z type system. Therefore, it is possible to form ex-
pressions that would normally be rejected by the type system, such as “1+true”.
We are therefore burdened with discharging closure and typing proof obligations.

In contrast, Isabelle/Circus provides direct access to the HOL type-system in
its binding model. Since a binding is a HOL type, inconsistently typed predi-
cates are rejected: there is no need to separately establish well-formedness. This
has several advantages, most notably that program verification is simplified by
harnessing host-logic type checking. However the type system can also be a bar-
rier to composition of predicates with different alphabets and so should only
be enforced when needed. Therefore we retain the intrinsic “deep nature” of
Isabelle/UTP and add an additional “shallow layer” on top of the core predicate
model that imposes host logic typing. This allows us to reason at different levels
of type abstraction depending on the activity. We enable proof of correspondence
between types within the underlying model type system and types in the HOL
type system. We then engineer a polymorphic value model that uses the HOL
type system to expose this information; see Section 6.

Modularity. UTP does not specify a particular value or type system, and hence
it should be possible to reason about UTP predicates and theories indepen-
dently of the underlying value model. This is important so that laws can be
proved generically and then imported into different programming languages. In
this way a programming language can be given a semantics as a composition
of UTP theories. ProofPower-Z UTP fixes a particular notion of value and is
therefore not easily adaptable to different languages. In contrast Isabelle/UTP
formalises a parametric value model that allows the user to precisely specify a
type system and definedness predicate for a particular language, thus enabling
language-independent reasoning. Moreover we use the type class system to im-
pose constraints on the value model in polymorphic predicate constructions.
Thus, UTP theories can demand particular types be available in a model for it
to be instantiable in that theory.

In the remainder we will describe in more detail how each of these five criteria
is met in Isabelle/UTP. We begin in the next section with the predicate model.



5 Predicate Model

In this section, we expound the predicate model for Isabelle/UTP. The core
model is based on [19,27], but uses typedef and function lifting [16] to ensure
well-formedness of predicates by construction. The contributions are:

1. A polymorphic value model enabling modular reasoning about model types.
2. A model of bindings that is well-formed by construction.
3. A layered predicate model consisting of:

– core predicates and expressions;
– alphabetised predicates (alphabet + core predicate).

4. The standard imperative programming predicate transformers.

Our contributions satisfy the criteria of expressivity (2), modularity (5) and
partially satisfy well-formedness (4). We have also implemented an extensible
parser for UTP predicates using Isabelle syntax translations. This means that
UTP predicates can be presented in Isabelle as written in this paper using a
back-tick notation, e.g. ‘P ∧ Q v R‘. We elide these details in the remainder,
but note that this feature makes Isabelle/UTP particularly accessible and helps
to further close the formalisation gap by avoiding an unfamiliar syntax.

Different from [19] our layered predicate model splits predicate types into
“core” and “alphabetised” variants. Alphabets can complicate proof, since equal-
ity proofs about alphabetised predicates must ensure the alphabet remains con-
stant at each step. The layered model gives the ability to ignore the alphabet in
intermediate proof steps, as proofs about alphabetised predicates can be decom-
posed into an alphabet proof and core predicate proof. This gives flexibility in
proof, contributing toward satisfaction of criterion (3). It also means that proof
automation need only act on core predicates; this will be seen in Section 7.

The remainder of this section is heavy in technical content; a casual reader
may wish to skip straight to Section 6.

5.1 Parametric Value Model

The value model provides the basis for the predicate model by constraining the
well-typed values we can construct and assign to variables. Various languages
with differing notions of value and type exist, and so since we desire a general
framework, we opt for a customisable value model. This allows us to separate
general UTP predicate proofs from those that apply to a particular language,
providing modularity (5). Moreover, an embedded type system enables expres-
sion of advanced types, like dependent products, that are useful in constructs
like CSP actions which compose a typed channel with an appropriate value.

We implement value models by using type classes to polymorphically intro-
duce a constraint hierarchy on the value model, which can be refined as required
for a particular UTP theory, as illustrated in Figure 2. At the base of the hi-
erarchy is VALUE, which specifies a basic notion of value model. Below this are
sorts also axiomatising the existence of different values and types in the model,
such as Booleans and sets. Such classes should be non-vacuous to ensure local
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Fig. 2. Value model class hierarchy

consistency. Finally the leaf nodes define classes for particular UTP theories,
including designs which needs a Boolean for ok, and reactive processes, which
additionally requires lists and sets of events to represent traces and refuals, re-
spectively. Hence a UTP theory constrains the value model only as it needs. Our
predicate model is therefore parametric over a value model type-parameter ’a.

Minimally, a value model must introduce a value type ’a, a typing relation for
’a, and a definedness predicate D that determines whether a value is defined.
Formalising definedness at this level allows generic reasoning about variables
containing undefined values. We have used this, for example, in mechanising a
value model for CML with its unique notion of undefinedness [26]. The base of
our parametric value model is therefore specified via the following type classes:

class DEFINED =
fixes Defined :: "’a ⇒ bool" ("D")

class VALUE = DEFINED +
fixes utype_rel :: "’a ⇒ nat ⇒ bool" (infix ":u" 50)
assumes utype_nonempty: "∃ t v. v :u t ∧ D v"

The VALUE class introduces primitives to represent definedness (D) and the typ-
ing relation for values (:u). This provides our UTP predicate model with a set of
fundamental axioms on which to build, manifested through polymorphism. As
type-classes permit only a single type parameter for reasons of decidability, we
use a natural number to represent types; we assume types are purely syntactic
and thus countable. Additionally we require, by assumption utype nonempty,
that the type relation exhibits at least one well-typed and defined value. We
then create a HOL type for UTP types, called ’a utype, which is parametric
over the value model and isomorphic to the set of numbered types for which
there is at least one defined value. We also create the derived typing relation
“ : :: ’a ⇒ ’a utype ⇒ bool” that only accepts feasible types. Additional
sort classes like BOOL SORT and LIST SORT are then declared by extending VALUE
with injections for their respective sort types. We can then, for instance, use
BOOL SORT to constrain constructs requiring the presence of Booleans, and use
the injections to produce correctly typed model values. A concrete model will
usually consist of datatypes for the value and type spaces, and functions for the
typing relation and definedness predicate, which instantiate the value model.

As in [19], we model variables explicitly, and with [27] also encode type data
so bindings can impose well-typedness. We encode type NAME, consisting of a
string label and decorations, and then type ’a uvar as a record with fields name
:: NAME, vtype :: ’a utype and aux :: bool, that denotes whether the vari-



able is an auxiliary or program variable. Auxiliary variables are used to encode
UTP theory variables and we require they be defined in every binding to avoid
unnecessarily reasoning about undefinedness. In contrast, program variables can
have undefined values. We write Dn, for n ∈ N, for the set of variables with n
dashes. We also introduce the syntax vBx, meaning that value v is compatible
with variable x: it is correctly typed and if x is auxiliary then v is defined.

5.2 Well-formed Bindings

Bindings are represented using a typedef as the set of functions from variables
to values, such that each variable is associated with a value of the correct type.
In contrast to [19] the HOL type-system ensures well-formednes by construction.

typedef ’a binding = "{b :: ’a uvar ⇒ ’a . ∀ x. b x B x}"

Effectively a binding is a dependent function: the type of value each variable
points to depends on that variable. Our assumption that there exists at least one
value per type (utype nonempty) is crucial in creating the binding type, as this in
turn ensures that at least one binding exists. We also define a number of functions
necessary for the definition of the predicate operators. Binding override, written
b1 ⊕b b2 on vs, replaces the values of variable set vs in binding b1 with those in
b2. It is defined by lifting the function override operator in HOL that is closed
under well-formed bindings since we are substituting well-typed assignments:

lift definition binding_override_on ::
"’a binding ⇒ ’a binding ⇒ ’a uvar set ⇒ ’a binding"

is "override_on" by (auto simp add:override_on_def)

Binding update, b(x :=b v), replaces the value of x in b with v, under the assump-
tion that v B x. If v is not well-typed, an arbitrary well-typed value is inserted.
Operators written in terms of binding override are therefore subject to typing
proof obligations to ensure injectivity. Proofs about large predicates could re-
quire the discharge of many such obligations, an onerous task, but this problem
will be dealt with in Section 6. We adopt the notation 〈b〉b(x) to refer to the
value assigned to x in b. This function derives well-typedness: 〈b〉b(x)B x.

We also formalise binding permutations, which are used to implement al-
pha conversion. Permutations, borrowed from Nominal Logic [24], are type-
preserving total bijections on variables. We define permutation composition,
written π • b, which precomposes the binding function of b with the permutation
π, yielding a binding where each variable takes on the value of the variable it was
renamed from. Due to the type-preserving nature of permutations, which we also
encode using a typedef, such a composition produces a well-formed binding.

5.3 Core Predicates

Next, we introduce a HOL type to represent core predicates:

typedef ’a upred = "UNIV :: ’a binding set set" ..

Our predicate type is isomorphic to the universe set of well-formed bindings.
A predicate is then simply the set of bindings that satisfy it. Unlike [9] we



JtrueKp = UNIV
J¬P Kp = −JP Kp

JP ∨QKp = JP Kp ∪ JQKp
JP ⇒ QKp = J¬P ∨QKp
J∃vs. P Kp = {b⊕b b

′ on vs | b ∈ JP Kp}
J∀vs. P Kp = J¬∃vs.¬P Kp

J[P ]Kp = J∀UNIV.P Kp

JP v QKp = J[Q⇒ P ]Kp
Je = fKp = {b | JeKe(b) = JfKe(b)}

JP [e/x]Kp = {b | b(x :=b JeKe(b)) ∈ JP Kp}
Jπ • P Kp = {π • b | b ∈ JP Kp}
JLitE vKe = λb.v

JOp1E f xKe = λb.f(JxKe(b))

J$xKe = λb.〈b〉b(x)

Table 2. A selection of predicate and expression operator definitions

do not encode type information about the binding type in predicates and so
can arbitrarily compose predicates that reference disjoint variable sets. Next we
introduce a type to represent core expressions:

typedef ’a uexpr = "{f:: ’a binding ⇒ ’a. ∃ t. ∀ b. f b : t}"

Expressions, unlike in [19], are defined purely semantically; syntax is intro-
duced definitionally and is therefore extensible. An expression, semantically, is
a function from a binding to the value that the binding produces. For example
J2 ∗ xK = {{x 7→ 1} 7→ 2, {x 7→ 2} 7→ 4 · · · }. We also require that there exists
a type that every evaluation of the expression has. This ensures that predicates
containing expressions can be consistently typed.

We now define the predicate operators, as illustrated in Table 2. We introduce
operators denotationally by lifted definition; no formal syntax tree is necessary.
The predicate semantic function J Kp corresponds to the upred representation
function, and similarly J Ke for expressions. Hence the predicate operators are
all certified closed under well-defined predicates by the type-system. Operators
that involve expressions, such as substitution, depend on type correctness of the
expressions to ensure well-formedness.

The lattice operators map to their set equivalents, in common with both [19]
and [9]. The existential quantifier follows [19] and is defined as binding over-
ride comprehension, consistent with our deep encoding of variables. It overrides
the variables quantified (vs) with all possible arbitrary bindings (b′), thus hid-
ing their values. The universal quantifier is then defined using the De Morgan
equivalence. Definitions for universal closure and the refinement relation follow
without difficulty. Application of a permutation to a predicate simply applies it
to every possible binding.

We also denote some basic expression operators using binding functions. LitE,
a literal, returns a value of the model type ’a, Op1E applies a unary HOL func-
tion f :: ’a⇒ ’a to an expression, and $x, returns the value of a variable. These
expression constructs, unlike [9] are not subject to HOL typing, and so associ-
ated laws must prove well-typedness. Hence at the user level the polymorphic
expression model can be used instead (see Section 6).

true[e/x] = true

(P ∨Q)[e/x] = P [e/x] ∨Q[e/x]

(∃vs.P )[e/x] = ∃vs.(P [e/x]) [when x /∈ vs]
($x)[e/x] = e [when eBe x]

Table 3. Substitution laws



–
xs ] true

xs ] P xs ]Q

xs ](P ∨Q)

xs ] P

xs ](¬P )

ys ] P

xs ∪ ys ](∃xs.P )

{x} ] P
P [v/x] = P

Table 4. Unrestricted Variables

Substitution, P [e/x], is normally implemented as a function on syntax, but
since we do not have syntax it has a purely semantic account. This has the
advantage that substitution laws are introduced incrementally by proof and are
thus correct by construction. Substitution is defined as the set of bindings, such
that updating the value of x in b with the evaluation of e under b yields a
binding that is in P . We then prove the usual substitution laws; a selection is
shown in Table 3. Likewise, many of these laws are subject to typing obligations,
for instance to substitute e for x the types must match (written eBe x).

5.4 Alphabetised Predicates

We now extend our core predicate model with alphabets: the maximal set of
variables to which a predicate can refer. We first formalise “unrestricted vari-
ables” to give a semantic account of fresh variables using the UNREST predicate,
adapted from [19]. A variable x is unrestricted in predicate P , written {x} ] P ,
if the satisfiability of P is independent of x. Unrestriction therefore corresponds
to the fresh variables of a predicate’s normal form. For instance it follows that
{x} ](x = 1 ∨ true), even though x is syntactically present. This is a sufficient
notion, as core predicates are equivalent to their normal form. We have likewise
proved many laws about unrestricted variables, a selection of which is shown in
Table 4. These laws are used to satisfy provisos in laws that depend on freshness
of particular variables, and provide predicate alphabet theorems. With unre-
striction formalised we can construct the model of alphabetised predicates:

typedef ’a apred = "{(a, P :: ’a upred). - a ] P ∧ finite a}"

An alphabetised predicate is a core predicate P together with a finite set of
variables a (the alphabet), such that P restricts no more variables that those in a.
If a variable is not in the alphabet it is certainly unrestricted, though variables in
the alphabet may also be unrestricted. Alphabets give a more syntactic account
of fresh variables: it is sufficient to mention a variable for it to be in the alphabet.
Explicit alphabets are a major feature of deep embeddings in contrast to [9] that
can represent alphabets only implicitly as HOL types. As for the core predicate
model, we can use lifting to define the alphabetised predicate operators:

lift definition OrA :: "’a apred ⇒ ’a apred ⇒ ’a apred"

is "λ (a, p) (b, q). (a ∪ b, p ∨p q)"

by (auto intro: UNREST_subset UNREST_OrP)

The definition of OrA takes the union of the two alphabets and uses ∨p to
compose the underlying core predicates. This requires a proof that p ∨ q is un-
restricted on −(a ∪ b) and that a ∪ b is finite. The former follows by the unre-
striction subset law and the latter from the fact that the union of finite sets is
finite. We use lifting to build equivalent alphabetised operators for each of the
core predicate operators in a similar fashion with lifting. This ensures that the
alphabetised predicate operators are closed without need for further proof.



JIIxsKp , {b | ∀x ∈ xs.〈b〉b(x′) = 〈b〉b(x)}

P C bBQ , (b ∧ P ) ∨ (¬b ∧Q)

P #Q , (∃D2.(SS1 • P ) ∧ (SS2 •Q))

p{Q}r , (p⇒ r′) v Q

P˘ , SS • P

x :=xs e , (x′ = e) ∧ IIxs−{x}

b ∗ P , (b ∧ P )? ∧ ¬b′

Q wp r , ¬(Q # ¬r)

Table 5. Relational Operators

5.5 Relations and Imperative Programming

We conclude the section with the relational calculus operators for core predicates,
as shown in Table 5, some of which use permuations. Permutation SS swaps
dashed and undashed variables. SS1 swaps dashed and doubly dashed variables.
SS2 swap undashed and doubly dashed variables. We use doubly dashed variables
to represent “intermediate” variables in a sequential composition.

Skip (IIxs) consists of the set of bindings where the dashed and undashed
variables in xs correspond. Sequential composition is defined using existential
quantification and conjunction. It synchronises the outputs from P with the
inputs from Q by renaming them using SS1 and SS2, respectively, so they cor-
respond. This set of variables is then hidden so that only the inputs from P
and outputs from Q remain visible. Similarly, permuations are used for rela-
tional converse, P ,̆ defined as the application of SS, which effectively flips the
direction. Assignment, x :=xs e, is implemented as a conjunction of an equality
on the post-state of x and a skip on all other variables. We implement a while
loop (b ∗P ) via a link to Kleene algebra [11]. Thus the algebraic hiearchies from
Isabelle can be used to import properties into the UTP predicate model.

In this section we mechanised a predicate model retaining the expressivity of
[19], whilst also being modular in its handling of value models, and partly well-
formed by construction. In the following Sections we will solve the problems of
typing obligations by integrating type inference in expressions, and automated
proof, that will also make the infrastructure practically applicable.

6 Polymorphic expressions

In this section we explore typing in UTP predicates and expressions. In Sec-
tion 5.1 we declared the type-class VALUE that introduces a model type, which
we now refer to as ’m, and an associated typing relation. This typing relation is
orthogonal to HOL’s own type system and therefore it is necessary to manually
prove well-typedness of values, variables and expressions. This is unavoidable as
we need the expressivity of a deep model to express generic laws involving values
and types. Nevertheless it means that in the core expression model type coerci-
sions must be inserted manually and that the proof burden is greatly increased
in comparison to Isabelle/Circus, which directly uses HOL typing. So if we desire
both expressivity and host-logic typing, we need to overcome this problem.

Our solution is to bind the UTP value model typing relation to the HOL
typing relation. This means that the Isabelle type inference system can effec-
tively be harnessed to discharge UTP typing obligations, thus satisfying criterion
(4), whilst also aiding criterion (3). We do this by linking specific types in the



Fig. 3. Mapping HOL types to UTP types

underlying UTP model with types in HOL. This is implemented through two
polymorphic functions, InjU and ProjU, that convert between these two levels
and are inverses; this is illustrated in Figure 3 for a type α.

This allows us to form a polymorphic expression type (’a, ’m) pexpr that
carries, along with value model ’m, the expression type ’a. For example, we can
enter expression “$x+ 5” and HOL will infer that it has the type (int, ’m ::
INT SORT) pexpr, and that x is a variable of type int. Conversley “{1}+ 5” is
correctly rejected. We also implement type erasure, using the injection functions,
which converts a polymorphic expression into a core expression. It disgards the
’a parameter meaning that differently typed expressions can be compared. The
polymorphic expression model can then be grounded in the core predicate model,
the former simply acting as an additional layer.

Implementation of the type injection and projection functions is non-trivial
as HOL type-classes can range over only a single type parameter. However our
injection functions need to range over two parameters: the model type (’m)
and injectable type (’a). Therefore we use Isabelle’s polymorphic constants to
create these functions. Polymorphic constants work in a similar way to type-class
signature functions but can range over multiple type parameters.

consts TypeU :: "’a itself ⇒ (’m :: VALUE) utype"

InjU :: "’a ⇒ ’m :: VALUE"

ProjU :: "’m :: VALUE ⇒ ’a"

TypeU effectively maps HOL types to UTP types. The “itself” type is a spe-
cial HOL singleton type used to refer to types on the value level, and can be
constructed by application of the special TYPE function to a HOL type name.
InjU and ProjU define the injection and projection functions from a type ’a
into model type ’m, which must be a member of the VALUE class. InjU can al-
ternatively be viewed as a type erasure operator, since it converts from a value
containing type data, to one without in the underlying value model. Indeed it is
InjU upon which we base type erasure in polymorphic expressions.

However, just declaring these constants will not suffice, as unlike for type-
classes they are not subject to laws, and we want to reason about injectable types
generically. We could declare axioms, but that would not be definitional. Instead
we create the following definition to act as a pseudo two-parameter type-class.

definition TypeUSound :: "’a itself ⇒ ’m itself ⇒ bool" where
"TypeUSound a m ←→ (∀ x::’a. (InjU x :: ’m) : TypeU a)

∧ (∀ x::’a. D x −→ D (InjU x :: ’m))
∧ (∀ x::’m. x :! TypeU a −→ D (ProjU x :: ’a))
∧ (∀ x::’a. ProjU (InjU x :: ’m) = x)
∧ (∀ x :! TypeU a. (InjU (ProjU x :: ’a) :: ’m) = x)"



TypeUSound asserts that an injectable type ’a can be used soundly in value
model ’m. The five properties within show correspondance between typing in
the UTP value model, and typing in the equivalent HOL type, as in Figure 3.
Note that x :! a means that x is both typed by a and also defined.

Therefore if a given HOL type ’a is TypeUSound for a model ’m, then laws
that would otherwise require proof of type correctness can be applied through
HOL typing. This greatly reduces the proof burden: laws that rely on conversions
between HOL value and UTP values simply need a TypeUSound assertion as an
assumption. This is much simpler than performing a traversal of the equivalent
core expression to prove type-correctness. Using this approach, we construct a
typed version of variables, for variable type ’a and model type ’m:

typedef (’a, ’m) pvar = "UNIV :: (NAME * bool) set" ..

definition PVAR_VAR :: "(’a, ’m) pvar ⇒ ’m uvar"

where "PVAR_VAR v = MkVar (pvname v) (TypeU TYPE(’a)) (pvaux v)"

A pvar is simply a pairing of a NAME and a Boolean auxiliary flag. The type of
the variable is carried by the additional type variable, which is not referred to
internally. Type erasure is then implemented via the function PVAR VAR, which
constructs an untyped UTP variable using the name, auxiliary flag and equiva-
lent model type using TypeU. This, and other type erasure operators, are given
the overloaded syntax x↓. Similarly we also implement polymorphic expressions.

typedef (’a, ’m) pexpr = "UNIV :: (’m binding ⇒ ’a) set"

morphisms DestPExpr MkPExpr ..

A polymorphic expression is a function from a binding to a value of the correct
type. We can use InjU and ProjU to marshal between UTP values in the binding
and HOL typed functions. For instance, we implement variable lookup as follows:

definition PVarPE :: "(’a, ’m) pvar ⇒ (’a, ’m) pexpr" where
"PVarPE x ≡ MkPExpr (λ b. ProjU (〈b〉b (x↓)))"

This constructs a polymorphic expression which (1) erases the incoming poly-
morphic variable, (2) looks up the value associated with this variable in the
binding, and (3) projects it to a HOL value of the correct type. We can also
construct combinators which are typed by HOL. The following definition applies
a HOL unary function to a correctly typed expression:

definition
Op1PE :: "(’a ⇒ ’b) ⇒ (’a, ’m) pexpr ⇒ (’b, ’m) pexpr"

where "Op1PE f v = MkPExpr (λ b. f ([[v]]∗b))"

Using this definition the input types must match the function type, ensuring
type-correctness by construction. Moreover, we can prove a useful type-erasure
law: (Op1PE f v)↓= Op1E (ProjU ◦ f ◦ InjU) (v↓), which allows manipulation of
the expression using laws establised in the core predicate model.

We now have a predicate model that is well-formed by construction down
the level of expressions through the imposition of HOL typing. Proofs need not



handle typing obligations, since the TypeUSound “class” ensures that a well-
typed polymorphic expression is also a well-typed core expression. Nevertheless,
the predicate model is still deep, and we retain all the meta-logical operators
from Section 5, thus partially reconciling deep and shallow.

7 Automating Proof by Transfer

In this section we look at proof automation in Isabelle/UTP, thus satisfying
criterion (3). Equality of UTP predicates is implied by equality of the under-
lying binding sets (the denotation), thus an equality proof can be performed
by decomposing a predicate into its constituent binding functions and showing
their equivalence. However this kind of proof is of too fine a granularity and
the predicate structure is lost. This is evidenced by the complexity of proofs in
ProofPower-Z UTP [19] like that of sequential composition associativity. In com-
parison Isabelle/Circus can discharge such goals instantly by application of the
auto tactic due to Isabelle’s large mechanised theory library for HOL relations.
Although not identical to UTP relations they are very similar, and so use of the
associated laws in UTP relational proofs ought to be possible.

Our approach makes the laws applicable by binding UTP relations to HOL
relations via suitable injections and projections, similar to our approach to typing
in Section 6. Specifically, we link a UTP theory to an existing HOL theory and
prove that results can be transferred. This greatly improves proof automation in
Isabelle/UTP by enabling reuse of HOL theory libraries. So far we have developed
tactics for theories like predicates, relations, and expressions. Conceptually, a
UTP proof tactic consists of three parts, which together form the link:

1. interpretation function – maps elements of a UTP theory to elements of a
target domain, in which we desire to perform the proof;

2. transfer rules – demonstrate how results in the target domain map to results
in the UTP theory;

3. congruence rules – map operators from the signature of the UTP theory to
operators in the target domain.

Such tactics are partial: they apply only to the operators of the theory, leaving
unrecognised operators uninterpreted. For instance our UTP predicate tactic,
utp-pred-tac, only solves problems built using the predicate operators and our
relational tactic, utp-rel-tac, only solves problems in relational calculus. There-
fore, proof automation is all about picking the correct level of abstraction. The
algorithm for performing proof using these tactics is typically of this form:

Interpretation Function

EvalR :: α upred ⇒
(α WF-REL-BINDING) rel (J KR)

Transfer Theorems

(P = Q)←→ (JP KR = JQKR)
(P v Q)←→ (JP KR ⊇ JQKR)

Congruence Rules (Selection)

JfalseKR = ∅
JP ∨p QKR = JP KR ∪ JQKR

JIIKR = Id
JP #QKR = JP KR ◦ JQKR

JP ′KR = (JP KR)−1

JP ?KR = (JP KR)∗

Fig. 4. utp-rel-tac: Transfer function and rules



1. Apply a transfer rule to the proof goal (for a suitable target model);
2. Apply the associated congruence rules, to interpret the UTP theory

operators into operators of the target domain;
3. Apply a builtin HOL tactic, for instance simp, auto or sledgehammer.

We exemplify this with our relational tactic, utp-rel-tac; the main definitions
and theorems are in Figure 4. UTP and HOL relations, though similar, are mis-
matched as the former consists of a set of bindings with undashed and dashed
variables, whilst the latter consists of a set of pairs. We resolve this with the func-
tion EvalR, written JP KR, which converts a UTP predicate into a HOL relation
over a special binding type, WF REL BINDING, which has only undashed variables,
the dashedness replaced by the pairs. We then prove two transfer theorems that
allow equality and refinement conjectures to be transferred to equality and sub-
set conjectures in HOL. Finally we prove a collection of congruence properties
for suitable operators, including sequential composition, skip and Kleene star.

If we apply utp-rel-tac to goal “p #false #q = false”, the following steps occur:

(1) Transfer: Jp # false # qKR = JfalseKR ←→
(2) Map operators: JpKR ◦ ∅ ◦ JqKR = ∅ ←→
(3) HOL tactic: ∅ = ∅ ←→ True �

Thus, this tactic can prove many relational conjectures automatically, providing
a similar level of proof automation to Isabelle/Circus. For example, we can both
express and automatically prove the law of commutativity of assignments:

theorem AssignR_commute:

fixes x y :: "(’a, ’m) pvar"
assumes
"x↓ ∈ D0" "y↓ ∈ D0" "TYPEUSOUND(’a, ’m)" "¬ aux (x↓)" "¬ aux (y↓)"
"D1 ] e" "D1 ] f" "{x↓} ] f" "{y↓} ] e" "x↓ 6= y↓"

shows "‘(x := e); (y := f)‘ = ‘(y := f); (x := e)‘"
using assms by (utp_prel_auto_tac)

We use a variant of utp-rel-tac called utp-prel-tac, that also handles polymorphic
expressions, and compose it with auto. The law is subject to static typing: emust
match the type of x and likewise for f and y. This shows how the deep model,
host-logic typing, and proof tactics combine to provide a mechanisation which
satisfies all the criteria in Section 4. We have used our tactics to develop a large
library of algebraic laws (> 300 at time of writing), which when combined with
sledgehammer further improves automation. This library includes most of the
standard predicate and relation laws from [15] and a proof that UTP relations
form a Relation Algebra [23], thus also partly validating our model.

8 Conclusion

We introduced Isabelle/UTP, a novel mechanisation of UTP in Isabelle. We de-
scribed its modular value model, predicate model, and associated operators. We
showed how to adapt HOL type checking to discharge typing obligations, re-
ducing the proof burden. Finally, we introduced our approach to proof, which



gives a similar level of automation to that of shallower models. All in all we have
shown that Isabelle/UTP combines many advantages of previous the embeddings
in a sound and usable framework. This provides a powerful platform on which
to realise the UTP semantic framework which we hope to apply to both theory
engineering and verification. It remains to be seen what effect the semantic over-
head imposed by our embedding has on proof in larger examples when compared
to, for instance, Isabelle/Circus. Isabelle/UTP can be obtained from our website.1

Along with the work presented in the paper we have also made substantial
progress in mechanising UTP theories, including the theory of designs (total cor-
rectness) for which we have mechanised most laws in the UTP book, the theory
of reactive processes, and the theory of CSP. Indeed, we have found the combi-
nation of Isabelle’s Isar proof language, the sledgehammer tool [1], and our own
tactics provides a very pleasing approach to creating automated readable proofs,
as demonstrated in our UTP tutorial [12] using an early version of Isabelle/UTP.
Isabelle/UTP also provides the basis for a mechanised semantics for CML [26], a
modelling language for Systems of Systems, in the COMPASS project2. It is also
used by the theorem prover plugin of the associated Symphony3 tool-chain to
discharge proof obligations in CML specifications [7]. We believe this goes much
of the way to validating its applicability for verification tasks.

In future work, we will develop more proof tactics based on additional theory
links. For example Design Algebra [13] provides an interesting and potentially
exploitable link between the theory of designs and Kleene algebra over a ma-
trix. We are also developing additional theories in Isabelle/UTP, for example, the
theory of operational semantics, and links to various process algebras. Although
this paper did not formally tie down the notion of UTP theory and their com-
bination, Isabelle/UTP does provide the basis for this when aided by Isabelle’s
HOL-Algebra library which we will fully exploit in the future. Our long-term
goal is to mechanise, and thus firmly validate, all the laws from the UTP book
and associated publications. This is an important step toward a firmly grounded
mechanised repository of UTP theory for engineering semantics.

Acknowledgements: This work is supported by EU FP7 project COMPASS
(grant 287829) and EPSRC grant EP/H017461/1.
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13. W. Guttmann and B. Möller. Normal design algebra. The Journal of Logic and
Algebraic Programming, 79(2):144–173, 2010.

14. T. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
15. T. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
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