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Abstract

This paper conveys attitude and rate estimation without rate sensors by performing a
critical comparison, validated by extensive simulations. The two dominant approaches to
facilitate attitude estimation are based on stochastic and set-membership reasoning. The
first one mostly utilizes the commonly known Gaussian-approximate filters, namely the
EKF and UKF. Although more conservative, the latter seems to be more promising as it
considers the inherent geometric characteristics of the underline compact state space and
accounts—from first principles—for large model errors. The set-theoretic approach from
a control point of view is addressed, and it is shown that it can overcome reported defi-
ciencies of the Bayesian architectures related to this problem, leading to coordinate-free
optimal filters. Lastly, as an example, a modified predictive filter is derived on the tangent
bundle of the special orthogonal group 𝕋𝕊𝕆(3).

1 INTRODUCTION

Attitude and rate estimation is an important aspect of aerial
robotics. Throughout the decades, it has proven very accu-
rate and versatile in applications from the first Low Earth
Orbit (LEO) satellites [1] to unmanned aerial vehicles (UAVs)
[2] and from the unmanned aerial systems [3] to recent aerial
robotic workers [4]. At the same time, technological and techni-
cal advances allow for increased specifications of autonomy in
conjunction with precise and agile manoeuvring. Consequently,
position and orientation (attitude) control constitutes a field
of research that is vital component of aerial robotics. In many
cases, the model can be decoupled and attitude control can be
implemented independently from position control [2]. Lately,
more focus has been given to attitude controllers due to the
increased difficulty and complexity of the specific control prob-
lem [5]; the success of these controllers relies upon the accurate
knowledge of the real orientation and the angular rate of the
aerial robot. Thus, it is imperative to develop efficient attitude
filters, to deal not only with the measurement noise but also with
the model errors.

When a-priori statistical information is available, such uncer-
tainties are represented by utilisation of the stochastic frame-
work. Subsequently, model errors and measurement noise are
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then expressed as stochastic inputs to provide a faithful rep-
resentation of the conditions where the real system operates.
Within this probabilistic context, the Bayesian formulation of
estimation appears in the form of Gaussian approximate fil-
ters. In particular, the extended kalman filter (EKF) [6, 7] and
unscented kalman filter (UKF) [8] constitute traditionally used
tools for the problem of attitude and rate estimation, as it
appears in aerial robotics.

From a series of novel works in the existing literature [9–13],
it is evident how the Gaussian approximate solutions interact
with the space of orientations through the various attitude coor-
dinate systems [14–17]. A very fundamental one, being pre-
sented in [18], expresses the motion using the Euler angles.
To avoid the well-known singularity issues, a temporary shifted
reference frame is established that estimates the orientation
angles w.r.t. the previous angle estimates. By doing so, the
representation remains away from singular points. Although
the resulted state space model is highly nonlinear due to the
involved trigonometric functions, the EKF is used for estima-
tion. The EKF accounts for some drawbacks, especially for
highly nonlinear systems. For many applications, derivation of
the Jacobian matrices is hard or time consuming. Furthermore,
linearization results in an unstable filter performance when the
time step intervals for the update are not sufficiently small [19].

IET Control Theory Appl. 2021;1–17. wileyonlinelibrary.com/iet-cth 1
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On the contrary, small time steps increase the computational
load, especially when the Jacobian matrices are not available in
closed form.

Other works address the problem differently by establish-
ing a quasi-linear kinematic expression [10, 20–23]. The only
attitude representation for this purpose is the algebra of unit
quaternions [20], which is closed under the quaternion multi-
plication. This nonsingular, four-parameter representation has
been discussed by many authors including [21]. Nonetheless, the
fact that the correction step of the EKF updates the predicted
quaternion by addition results in a corrected (upper part) state
that does not express an orientation. For this problem, three
solutions exist. The first one proposes a Euclidean normalisa-
tion after the correction step; the second one deploys a pseudo-
measurement equation; and, finally, the third one is a multiplica-
tive approach proposed by [21]. The latter is based on the prod-
uct of the quaternion error and the reference quaternion, both
having unit magnitude.

Alternatively, the UKF has the advantage of handling nonlin-
earities through the unscented transform (UT) more efficiently
compared to the EKF. This makes reasonable the choice for
using it in conjunction with the Euler angles coordinate sys-
tem and the shifted frame of reference method of [18]. An
attempt towards this direction can be found in [24]. On the
other hand, when the quaternion representation is used, the
UKF in a standard format cannot be implemented straight-
forwardly. The reason is again the quaternion’s unit constraint.
There is no guarantee that the predicted quaternion mean of
the UKF will satisfy this constraint and express an orientation.
In [10], the authors tackle this obstacle by the use of the general-
ized Rodrigues parameters (GRP) [25] to represent an attitude-
error quaternion. Lastly, a comparison between the EKF and
the UKF under the quaternion representation can be found in
[26]. The conclusion is that the UKF shows better performance
compared with the EKF, when the kurtosis and the higher
order moments in the state error distributions are significant.
A compelling discussion on the application of the mentioned
Kalman-based filters for gyro-less attitude and rate estimation
can be found in [19]. The EKF and UKF are local methods and
are characterized by relatively small computational complexity.
However, they are strictly suboptimal and, thus, they at most
constitute efficient heuristics, but without explicit theoretical
guarantees [27].

An attempt to set the state estimation problem within the
dual optimal control framework [28] was made in [29]. This
method determines the corrections added to the assumed
model, such that the model and corrections yield an accurate
representation of the system’s behaviour. The model uncertainty
is considered as an unknown but deterministic signal within a
Hilbert space. The goal is to estimate the states for the resulting
measurements to approximate the measured observations, while
keeping the considered model as valid as possible. This is done
by minimising the total norm of the augmented measurement-
model uncertainty vector. The optimization problem incorpo-
rates a covariance constraint in order to ensure that the state
estimates remain statistically consistent. However, the above fil-
ter is based on a two-point boundary condition problem and is,

essentially, an offline optimal state estimator. In [30], the modal
trajectory estimator is derived. This approach is based entirely
on the Hamiltonian formulation of optimal control and results
in a recursive filter.

The importance of the dual optimal control formulation for
the problem of attitude and rate estimation stems from the
nature of orientation itself. Euler’s theorem [31] indicates that
the set of orientations is the special orthogonal group 𝕊𝕆(3),
which is a compact Lie group associated with the Lie algebra
𝔰𝔬(3) of the 3 × 3 skew symmetric matrices. A Lie group is a
differentiable manifold equipped with the algebraic structure of
a group [32, 33]. Therefore, instead of relying on the prefab-
ricated Bayesian architectures, the problem can be directly set
and solved in a coordinate-free fashion as a dual optimal con-
trol problem by applying tools from differential geometry. The
approach of [30], commonly known as minimum energy filter-
ing, was utilised in [34] where the second-order-optimal mini-
mum energy filter on Lie groups was derived.

Conclusively, we observe that within the—Bayesian
framework—success of a gyroless attitude estimation scheme
depends primarily on the chosen coordinate system. Essentially,
there is an incompatibility between the Bayesian architectures
and the space of orientation. This incompatibility is justified by
the fact that the Gaussian approximate filters are primarily built
to approximate the conditional mean, rather than comply with
the geometric characteristics of the underlying state-space.

Furthermore, based on stochastic modelling, the Bayesian
strategies assume second-order statistical knowledge for both
the measurement noise and the model’s uncertainty. Although
aggregating second order statistics for the measurement noise
is feasible through (offline) experimentation, for the case of
the model error—usually referred to as “process noise”—the
assumption that it is a symmetrically-distributed white noise
process of known covariance has no theoretical basis. For phys-
ical systems, model uncertainty represents environmental phe-
nomena; therefore, it is more reasonably expressed by smooth
functions within a Hilbert space.

With regards to the dual optimal control formulation, deter-
ministic filtering originates from set membership estimation,
where the prior and the underlying uncertainties are expressed
as assigned—from the modeller—sets. On the one hand,
although intuitively the set-membership reasoning seems com-
patible with the compact nature of the space of orientations, it
does not provide any accuracy about the belief degree. On the
other hand, dual optimal control provides the machinery to for-
mulate the estimation problem as a well-defined optimization
problem [35].

In this paper, we consider sensors that measure only vec-
tor directions and we incorporate both the kinematic and the
dynamic models for the attitude motion. The set of observa-
tions, are made w.r.t. the inertial frame and obtained from sen-
sors that measure w.r.t. the body frame. The contribution of
this work is the critical assessment of the reasons governing the
superiority of deterministic modelling over stochastic, for the
problem of orientation and rate estimation from vector mea-
surements. Although many works study various attitude filters’
performances in terms of attitude and rate error accuracy, none
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of them is motivated by the fact that deterministic modelling
naturally leads to a coordinate-free problem formulation. To
this extent, the present paper is motivated by the dual optimal
control approach, that accounts directly both for the under-
lying state-space and the environmental phenomena affecting
the existing system without ad-hoc simplification assumptions.
To this direction, we also derive the modified predictive filter
on 𝕋𝕊𝕆(3). Extensive simulations are used to compare the
second-order-optimal minimum energy filter (MEF) [34] and
predictive filter (PF) performance versus the EKF and UKF.
Both the analysis and the simulations’ results conclusively indi-
cate that coordinate-free deterministic filtering tackles the vices
of the stochastic approach.

The paper is structured as follows: In Section 2, the Bayesian
formulation of attitude estimation is presented and analysed
through the Kushner equation [36]. Thereupon, Section 3
shows how the set-membership approach naturally leads to a
control formulation of estimation, which is optimally imple-
mented by the minimum energy filter. In the same section,
we derive the modified predictive filter on 𝕋𝕊𝕆(3) by propos-
ing a novel error function. In Section 4, we provide the algo-
rithm summaries for each filter. To this direction, we utilise the
Lie group symplectic integration. In Section 5 we present the
results for two case studies regarding UAVs and two for satel-
lite attitude filtering. In particular, we demonstrate how the fil-
ters operate under the presence of process noise and significant
deterministic model errors. The paper concludes with Section 6,
where remarks are drawn based on the obtained results.

Notation: The following notation is used throughout the
paper: ℝ is the set of real numbers. With rod : q → R we
declare the Rodrigues formula which maps the quaternion q (or
the principal rotation vector) to the Directional Cosine Matrix
(DCM) R ∈ 𝕊𝕆(3). The matrix expm(X) is the exponential of
X ∈ ℝn×n. The map ( )×:ℝ3 → 𝔰𝔬(3) is an isomorphism from
the arrays in ℝ3 to the Lie algebra of the 3 × 3 skew symmet-
ric matrices 𝔰𝔬(3). The Euclidean norm is denoted by || ||.
∇V is the gradient of the real-valued function V : ℝ → ℝ and
𝜕X ( f ) denotes the partial derivative of f w.r.t. X . The map
⟨X,Y ⟩ : ℝn × ℝn → ℝ denotes the inner product ∀ X,Y ∈ ℝn.
Lastly, the estimate of X is denoted by X̂ , while the optimal
estimate of X by X̂ ∗.

2 BAYESIAN FORMULATION OF
ATTITUDE ESTIMATION AND GAUSSIAN
APPROXIMATE FILTERS

Let (𝛀, F , ) be the filtered probability space and the filtration
𝔽t with respect to which all processes will be adapted. After
establishing a coordinate system map, we consider the following
processes of interest:

dX 1 = f 1(X 1, X 2 ) dt ,

X 2 = f 2(X 2, u) dt + G
1

2 dW ,
(1)

dY = H (X 1, t )dt + dV , (2)

where the state process X = {X t = [X⊤
1,t X

⊤
2,t ]⊤, t ≥ 0} is

defined to be the solution of the stochastic differential equa-
tion (1) and equation (2) defines the observation process Y =
{Y t , t ≥ 0}. Furthermore, W ∈ ℝn2 and V ∈ ℝ6 express envi-
ronmental effects and the measurement noise respectively and
are assumed to be independent Brownian motions. The coeffi-
cients f = [ f

⊤
1 f

⊤
2 ]⊤ ∈ ℝn1+n2 and H ∈ ℝ6 are assumed to

be Lipschitz continuous mappings. Lastly, the control u ∈  ⊆

ℝn2 is considered as known input torques and G
1

2 is the square
root of G ∈ ℝn2×n2 .

The coefficients f 1 and f 2 express the kinematics and
the dynamics of the physical motion respectively, as indi-
cated by the Euler’s equations of motion [17]. The pro-
cess X comprises the orientation and angular rate respec-
tively, where n1 depends on the chosen coordinate system
map.

We denote by ℱ
𝒴
t the 𝜎-algebra generated by {Y 𝜏 , 0 ≤ 𝜏 ≤

t }. The optimal estimate X̂
∗
t is then given as the solution to the

following optimization problem:

X̂
∗
t = arg min

x̂ ∫
ℝn

 (x, x̂)𝜌(x|ℱ𝒴
t )dx , (3)

where 𝜌(x|ℱ𝒴
t ) is the conditional probability density of the

state, given the noisy measurements up to and including time t .
Therefore, knowledge of the posterior density for each t , con-
stitutes the complete solution of the problem (3). For C (x, x̂) =
||x − x̂||22, the optimal mean square error (MSE) estimate is
given by

X̂
∗
t = 𝔼{X t |ℱ𝒴

t } ≡ ∫
ℝn

x𝜌(x|ℱ𝒴
t )dx (4)

In order to derive a differential equation for the optimal MSE
estimate, we can differentiate (4) w.r.t. time. By utilizing the gen-
eralized Leibniz rule [37] we obtain:

dX̂
∗
= ∫

ℝn

x
𝜕𝜌(x|ℱ𝒴

t )

𝜕t
dx (5)

Furthermore, the posterior density 𝜌 = 𝜌(x|ℱ𝒴
t ) evolves

according to the Kushner equation [36]:

𝜕𝜌

𝜕t
= 𝜌

(
dY − 𝔼

{
H|ℱ𝒴

t

}
dt
)⊤ (

H − 𝔼
{

H|ℱ𝒴
t

})

−

n∑
k=1

𝜕

𝜕xk

(
f

k
𝜌
)
+

1
2

n∑
k,l =1

𝜕

𝜕xk𝜕x
l

(Gk,l
𝜌).

(6)

Thus, the optimal nonlinear filter is given by:

X̂
∗
k,t = ∫

t

0
𝔼
{

f
k
||ℱ𝒴

s

}
ds + ∫

t

0


⊤
s

(
dY s − 𝔼

{
H|ℱ𝒴

s

}
ds
)

(7)
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with k = 1, … , n1 + n2 and k,s satisfying the stochastic differ-
ential equation:

dk,t = d
(
𝔼
{

Hkxk
||ℱ𝒴

s

}
− 𝔼

{
Hk

||ℱ𝒴
s

}
𝔼
{

Xk
||ℱ𝒴

s

})

(8)

Nevertheless, actual evaluations of the terms 𝔼{ f
k
|ℱ𝒴

s },

𝔼{Hk|ℱ𝒴
s } are possible only in case where the system is linear

and the noise distributions are Gaussian, resulting in the well
known Kalman filter [38]. In the nonlinear case, both terms
require knowledge of the entire posterior density, yielding an
infinite dimensional filter [39]. The EKF and the UKF are pro-
posed to tackle this issue. The EKF applies the Kalman filter
framework to nonlinear systems, by first linearizing the sys-
tem model using a first-order truncated Taylor series expan-
sion around the current estimates [40]. This linearisation step
affects the accuracy of the posterior predictions and often leads
to divergence of the filter [40]. On the contrary, the UKF [41]
makes explicit use of the scaled unscented transformation (UT)
(stochastic linearization) [42] which is based on the idea that,
it is preferable to approximate a probability distribution instead
of an arbitrary nonlinear function. Since both filters utilize only
the Gaussian parameters (first and second statistical moments),
these methods belong to a broader class entitled as Gaussian
approximate filters.

Implementing both the EKF and UKF with the quater-
nion representation yields bilinear kinematic equations. How-
ever, there is no guarantee that the quaternion mean of the
EKF and UKF will satisfy the unit-norm constraint due to the
addition operator in the correction step of the filters. To over-
come this issue, in this work we use the Euclidean normalization
approach [43]. Although this normalization step leads to mean-
ingful results, it is an external intervention on both the EKF
and UKF algorithms and affects the unbiasedness of both the
quaternion and rate estimates. This phenomenon is discussed
and analysed further in the Appendix A.3.

3 SET MEMBERSHIP STATE
ESTIMATION AND DUAL OPTIMAL
CONTROL FORMULATION

Orientation belongs in a compact space, the special orthogo-
nal group. An assumption that is valid in many applications is
that the angular rate lies within a bounded space. The same can
be inferred for both the model and measurement uncertainty.
Thus, instead of modelling uncertainties utilizing stochastic rea-
soning, we use the more elementary concept of a set [44]. This
section shows how deterministic filtering naturally recasts as a
control problem adopting set-theoretic reasoning.

Consider the system described by the state-space model of
the form:

ẋ1 = f 1(x1, x2 )

ẋ2 = f 2(x2, u) + G𝜹 ,
(9)

Without loss of generality, ti ∈ I , where I is a partition of time.
Thus, the measurement equation is given by

y = h(x1, ti ) + 𝝐 , (10)

where the functions f
k
, k = 1, 2, G and h are defined as in Sec-

tion 2. Regarding (9), (10), the model and measurement uncer-
tainties are considered as unknown and deterministic signals
where 𝜹 ∈  and 𝝐 ∈  , with  ⊂ ℝn2 ,  ⊂ ℝ6. The system’s
state x ∈  ×  , where S declares the space of orientation and
 ⊂ ℝn2 a properly chosen C -set [45]. Assuming complete lack
of knowledge regarding the initial state estimate, we can write
̂0 =  ×  . Set-membership state estimation repeats the fol-
lowing two steps [46]:

The guess ̂i regarding the state x at time ti is projected for-
ward in time, resulting the set

ℛ,ui
= {𝝈|𝝈 = f (xi , ui ) + 𝜹 i , xi ∈ ̂i , 𝜹 i ∈ } (11)

of all reachable states at time ti+1 given ui , for all 𝜹 i ∈ . Sub-
sequently, at ti+1, ℛ,ui

is refined to

 ,y
i
= {x|y

i+1 = h(x1,i+1, ti+1 ) + 𝜺 i+1} , (12)

which consists of all the states in  ×  compatible with the
measurement y

i+1 for some 𝝐 i+1 ∈  . The prediction and cor-
rection of the state are then given as:

̂i+1|i = ℛ,ui
, (13)

and

̂i+1|i+1 = ̂i+1|i
⋂

𝒞 ,y
i+1

, (14)

respectively. Note that (13) and (14) correspond to the predic-
tion and correction step in the optimal Bayesian update [39]
respectively. However, in this case we can go a step further
by defining the input pair (x0, 𝜹 [0,i] ) and write, h(xi+1, ti+1 ) =
h(𝜙(x0, u[0,i], 𝜹 [0,i] ), ti+1 ), where 𝜙 is the solution of (9) and
𝜹 [0,i], u[0,i] declare the model error and input values respectively
within [t0, ti ]. Then, the second step of the method is equiva-
lently modified by defining the set

𝒟 ,y
i+1

= {(x0,i , 𝜹 [0,i] )|h(𝜙(x0,i , u[0,i], 𝜹 [0,i] ), ti+1 ) + 𝝐 i+1 = y
i+1}

(15)

of all input pairs which produce observations compatible with
the measurements. In other words, the goal is to actually deter-
mine the set of different decisions 𝜹 [0,i] and the initial state ̂0,i

that produce—throughout the dynamics—the received mea-
surements for 𝝐 i ∈  . Lastly, it is possible to ask for the pair
(̂0,i , 𝜹 [0,i] ) such that

ℳ ,y
i+1

= {(̂0,i , 𝜹 [0,i] )|
⋀i

k=1
h(𝜙(x0,k, u[0,k], 𝜹 [0,k] ), tk+1 )

+ 𝝐k+1 =y
k+1, 𝝐k+1 ∈  , 𝜹 [0,k] ∈ k} (16)
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and expect ̂0,i ↓ ̂∗
0 , i.e. ̂0,i to be a decreasing sequence with

limit the optimal estimate ̂∗
0 . Nonetheless, the set-theoretic

algorithm in its general form accounts for some difficulties: The
performance of the above method depends on the initial guess
̂0, as well as on our knowledge regarding the sets  and  .
Subsequently, representing the sets 0, ,  , ℛ,ui

and 𝒞 ,y
i+1

(𝒟 ,y
i+1

) in practical applications -at least approximately- by a
finite set of parameters, is not a trivial task [47]. Finally, the
method does not provide any accuracy about the belief degree
regarding the state estimates.

3.1 Minimum energy filtering

The set-theoretic approach determines possible sequences of
decisions. The minimum energy filter considers the sequence
with the minimum norm which creates observations compati-
ble with the obtained measurements, and constitutes one of the
first implementations of this approach. It was first introduced
by Mortensen [30], and consists of a method for deriving non-
linear estimators, based on the value function of the optimal
estimation problem.

Consider the system described by (9). The signals 𝜹 (⋅),
𝝐 (⋅) and the initial condition x0 are now modelled as arbi-
trary disturbances within a Hilbert space. Thus, consider the
cost

J (𝜹 [t0,t ], 𝝐 [t0 ,t ], x0; t ) = S0(x0 ) +
1
2 ∫

t

t0

Φ(𝜹 ) + Q(𝝐 ) d𝜏 , (17)

where 𝜹 [t0 ,t ] and 𝝐 [t0,t ] refer to the model and measurement
error values within the interval [t0, t ]. Furthermore, Φ : ℝn2 →
ℝ+ and Q : ℝ6 → ℝ+ are two quadratic forms that mea-
sure the instantaneous energy of the error signals. In addition,
S0 : ℝn1+n2 → ℝ+ is the initial cost encapsulating the a-priori
knowledge regarding the state at time t0 and is a function with a
global minimum [34]. Since 𝝐 is deterministic, (17) can be writ-
ten as

J (𝜹 [t0 ,t ], x0; t )=S0(x0 ) +
1
2 ∫

t

t0

Φ(𝜹 ) + Q(y − h(x1, 𝜏)) d𝜏 .

(18)
Note that in order for the filter to track the actual measure-
ments, the uncertainties 𝜹 (⋅) and S0(x0 ) should be minimal;

within the estimation context, minimising ∫ t

t0
Φ(𝜹 )d𝜏 is essen-

tial rather than an additional requirement as it is posed in clas-
sic optimal control theory. The minimisation of the uncertainty
regarding the actual system is equivalent to the information
gain. It is impossible to track the actual system or equivalently
estimate the system’s state without minimising the uncertainty
for the actual system. Therefore, the goal is to minimize the
model uncertainty, while tracking the given measurements. This
will yield an optimal minimum energy pair (x∗

0 , 𝜹
∗
[t0 ,t ] ), with the

end point of the optimal trajectory x̂
∗
[t0,t ] = 𝜙(x∗

0 , 𝜹
∗
[t0,t ], u[t0,t ] )

being the minimum energy state estimate x̂
∗
[t0 ,t ](t ) at time t .

Thus, the following optimization problem

min
𝜹 [t0 ,t ] ,x0

J (𝜹 [t0,t ], x0; t )

s.t. ẋ1 = f 1(x1, x2 )

ẋ2 = f 2(x2, u) + G𝜹 ,

(19)

has to be solved for each t as new observations arrive online,
since the optimal decisions 𝜹

∗
[t0 ,t ] are affected from the incoming

information at each time instant t . At this point, we follow [48]
where (19) is tackled by first assuming fixed x0 and finding the
optimal 𝜹∗

[t0,t ] with the Hamiltonian formulation of optimal con-

trol providing the necessary conditions for optimality for 𝜹
∗
[t0 ,t ]

[49]. The value function is defined as

V (x[t0,t ]; t ) = min
𝜹 [t0 ,t ]

J (𝜹∗
[t0 ,t ], x0; t ) . (20)

In order to completely solve the optimization problem of
(19), the minimum of the value function w.r.t. the initial condi-
tion x0 for each t must be considered. The necessary condition
for optimality yields:

∇V (x[t0,t ]; t )xt0
= 0 ∀t , (21)

However, (21) is equivalent with

∇V (x[t0 ,t ]; t )x∗
t
= 0 ∀t , (22)

since determining the optimal end point x∗
t -and given the opti-

mal control decisions 𝜹
∗
[t0,t ]- fully specifies the optimal initial

condition x0 for each t , by running time backwards. Essentially,
this equivalence allows us to express the value function w.r.t.
the optimal estimate x̂

∗
t and, therefore, to derive the minimum

energy filter [30].

3.2 Predictive filter on 𝕋𝕊𝕆(3)

The predictive filter on 𝕋𝕊𝕆(3) is a deterministic filter that pre-
dicts the model error and drives the rate and attitude estimate
towards the real state under the presence of significant model
errors. The filter emerges from the continuous-time nonlinear
controller of [50] along with the covariant constraint from [51].
A predictive quaternion attitude filter based on the nonlinear
controller of [52] was derived in [53]. However, our derivation
is based on a different cost function which leads to a faster tran-
sient response. Furthermore, the output Jacobians are deter-
mined intrinsically, directly on the 𝕋𝕊𝕆(3) as shown in the
Appendix A.1.
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Consider the state space model:

Ṙ(t ) = R(t )𝛀×(t )

𝛀̇(t ) = 𝕀−1
(

(𝕀𝛀(t ))×𝛀(t ) + T (t )
)
+ G𝜹 (t )

y(t ) =

[
y1(t )
y2(t )

]
=

[
R(t )⊤𝜶1(t )
R(t )⊤𝜶2(t )

]
+ D𝝐 (t ) ,

(23)

where R ∈ 𝕊𝕆(3), 𝛀 ∈ ℝ3, 𝜶 i : ℝ+ → ℝ3. The vector 𝝐 rep-
resents the unknown measurement error with D being block
diagonal, namely

D =

[
d1I3×3 0

0 d2I3×3

]
. (24)

Given that the term ŷ
×
i

y
i

forms an error axis between the
estimated output ŷ

i
and the system’s output y

i
, it is reason-

able to target for the model error that minimises the predicted
mean error axis formed by the two measurements. Based on
this observation, the predictive filter on 𝕋𝕊𝕆(3) results from
the following minimization problem:

min
𝜹 (t )

1
2

‖‖‖‖‖‖
∑
i=1,2

ŷ
×
i

(t + h)y
i
(t + h)

‖‖‖‖‖‖

2

Q

+
1
2
||𝜹 (t )||2Σ ,

s.t. ̇̂R(t ) = R̂(t )𝛀̂
×

(t )

̇̂𝛀(t ) = 𝕀−1((𝕀𝛀̂(t ))×𝛀̂(t ) + T (t )) + G𝜹 (t )

ŷ(t ) =

[
ŷ1(t )

ŷ2(t )

]
=

[
R̂T (t )𝜶1(t )

R̂T (t )𝜶2(t )

]
,

(25)

where the matrices Q ∈ ℝ3×3 and Σ ∈ ℝ3×3 penalise the pre-
diction error and the correction term respectively. The value of
the uncertainty term 𝜹 at time t influences the state (R, 𝛀) at
a posterior instant of time t + h and, subsequently, the same is
true for the output since the state-output relation is expressed
via a memoryless system. The constrained optimization prob-
lem of (25) recasts into an unconstrained one by using the
expansion [54, 55]:

ŷ
k
(t + h) ≈ ŷ

k
(t ) + 𝜻

i
(R̂, 𝛀̂, h; t ) + Λ(h)𝕎k(R̂, 𝛀̂)𝜹 (t ) , (26)

where

𝜻
k
(R̂, 𝛀̂, h; t ) = h1

f
(̂y

k
) +

h
2

2!
2

f
(̂y

k
) , (27)

and

Λ(h) =
h2

2
𝕀3×3 . (28)

Term 𝜉
f
(̂y

i
), 𝜉 = 1, 2 denotes the 𝜉-th order Lie derivative of

ŷ
i

w.r.t. the system. After substituting (26) in the cost, the neces-
sary condition for optimality yields the optimal correction term:

𝜹
∗(t ) = −

1
2

(⊤Q−⊤ + Σ⊤
)−1

⋅ ⊤⋅
(
Q−1 + Q−⊤

)
𝜸 (t ) ,

(29)
where  is a function of R̂, 𝛀̂, and h, given by:

(R̂, 𝛀̂, h) =
∑

k=1,2

y×
k
Λ(h)wk(R̂, 𝛀̂) , (30)

𝜸 (t ) is given by:

𝜸 (t ) =
∑
i=1,2

y×
k

ŷ
k
+

∑
k=1,2

y×
k
𝜻

k
(R̂, 𝛀̂, h; t ) , (31)

and wk is given by:

wk(R̂, 𝛀̂) = (R̂⊤𝜶k )×G . (32)

Lastly, by substituting the Lie derivative terms (Appendix A.1),
Equation (27) results in

𝜻
k
(R̂, 𝛀̂, h; t )=

h2

2

{
(R̂𝜶k )×𝕀−1

(
(𝛀̂𝕀)×𝛀̂ + T

)
+(𝛀̂

×
)2R̂⊤𝜶k

}
.

(33)

The main advantage of this method is that the correction
is performed only through the dynamics, while the kinematic
equation remains isolated; consequently, it can be integrated
geometrically. This was not the case in the Gaussian approxi-
mate filters, where the addition operator in the correction step
violates the space’s geometry. Furthermore, there is no need to
initialise the filter with prior information.

Until now, the problem has been treated as a tracking prob-
lem of optimal control. However, the estimates should be sta-
tistically consistent. As can be seen from (29), by decreasing
the model error penalty matrix Σ, the estimates are based more
on the measurements, so the output estimates get closer to the
noisy observations. Assuming white measurement noise, a limit
must be set w.r.t. how much the estimated outputs should match
the noisy observations.

This is accomplished by choosing the model error penalty
matrix Σ such that it approximately achieves the balance
expressed by

𝔼
{

(̂y(t ) − Y t ))(̂y(t ) − Y t )⊤
}

≈ 𝜎𝜖I6×6, (34)

referred as the covariant constraint [51].
For our application, we estimate the output error covariance

by

M =
1
N

N∑
k

(̂y
k
− y

k
)(̂y

k
− y

k
)⊤, (35)
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where N is the total number of samples. To examine (34),
we utilise the L2,2 matrix norm. Since the measurement noise
covariance matrix is of the form D = 𝜎I6×6, (34) is satisfied
when:

𝜎∗ = arg min
𝜎

(∑
k, j

(Mk, j − Dk,k )2

) 1

2

, (36)

which after some calculations, yields

𝜎∗ =
trace(M )

6
. (37)

4 ALGORITHMS AND NUMERICAL
IMPLEMENTATION

An extensive simulation study is carried out to compare the per-
formance of the second-order-optimal MEF and PF against the
EKF and UKF. In this section, the model that is utilised in the
simulations and the error functions used to assess the efficiency
of the methods are presented. Also the algorithmic summaries
are given for each of these four filters and some aspects relating
to the numerical implementation are presented.

The EKF and UKF use the quaternion representation,
whereas the MEF and PF are set directly on the special orthogo-
nal group. Although many works study the performance of var-
ious attitude filters in terms of attitude and rate error accuracy,
none of them does so by considering dynamics with significant
model errors. Attitude and rate estimation from vector mea-
surements should take into account environmental phenomena
which affect the actual system. In [56], the fourth order Runge–
Kutta method is employed for simulation. Nevertheless, these
methods do not preserve the continuous-time motion’s essen-
tial features like kinetic energy and momentum. The main con-
tributions to address these gaps are: Algorithm summaries for
each of the aforementioned attitude filters, as well as a compre-
hensive simulation study that compares the selected stochastic
attitude filters against the deterministic ones. The comparison
considers measurement errors, initialization errors, and model
errors that typically appear in attitude and angular rate filtering
for UAVs and satellite missions.

4.1 Model and error function

For expressing the orientation of the rigid body, we use the
quaternion representation q ∈ 𝕊3 and the matrix representation
R ∈ 𝕊𝕆(3). Then, the rigid body kinematics are given as:

q̇(t ) =
1
2

M (𝛀(t ))q(t ) , (38)

and

Ṙ(t ) = R(t )𝛀×(t ) , (39)

where

M (𝛀) =
1
2

[
0 −𝛀⊤

𝛀 −𝛀×

]
. (40)

Expressed in the body-fixed frame, we denote by 𝕀 ∈ ℝ3×3 the
inertia tensor, by 𝛀 ∈ ℝ3 the angular rate of the rigid body
and by T ∈ ℝ3 the applied torques. The angular rate 𝛀 evolves
according to Euler’s equation [57]:

𝛀̇(t ) = 𝕀−1
(

(𝕀𝛀(t ))×𝛀(t ) + T (t )
)
+ G𝜹 (t ) (41)

up to model uncertainty 𝜹 (t ) ∈ ℝ3, with G ∈ ℝ3×3. Two time
varying directions 𝜶1(t ) and 𝜶2(t ) are measured on board, as
y1(t ) and y2(t ) according to:

y(t ) =

[
y1(t )
y2(t )

]
=

[
r (q(t ))⊤𝜶1(t )
r (q(t ))⊤𝜶2(t )

]
+ D𝝐 (t ) , (42)

y(t ) =

[
y1(t )
y2(t )

]
=

[
R(t )⊤𝜶1(t )
R(t )⊤𝜶2(t )

]
+ D𝝐 (t ) , (43)

where r ∈ 𝕊𝕆(3) is the directional cosine matrix (D.C.M.)
parameterised w.r.t the unit quaternion q(t ), and 𝝐 (t ) is the mea-
surement noise. We assume that the two sensors operate inde-
pendently, so the matrix D is chosen block diagonal:

D =

[
d1I3×3 0

0 d2I3×3

]
(44)

The attitude estimation error is given by the following func-
tions:

eq (t ) = cos−1

(
1 −

tr(I − r (q(t ))⊤r (̂q(t )))

2

)
(45)

and

eR (t ) = cos−1

(
1 −

tr(I − R⊤(t )R̂(t )))

2

)
(46)

w.r.t. the quaternion and matrix representation, respectively. The
angular rate estimation error is calculated as e𝛀 = 𝛀̂(t ) − 𝛀(t )
where both 𝛀(t ) and 𝛀̂(t ) are expressed w.r.t. the inertial frame.

4.2 Numerical implementation

In this section, discrete-time implementations of the
continuous-time filters are presented via algorithm summaries.
Discretisation should be addressed carefully as the Lie group
structure of the underlying state space; the motion’s energy and
momentum have to be preserved under any numerical calcu-
lation. Proper discretization of the continues-time differential
equations requires Lie group variational (symplectic) integration
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Algorithm 1 EKF for attitude and rate estimation

1: x̂0|0 = [q̂0; Ω̂0], P0|0 = P0

2:

3: for k=1,2,...

4:

5: Solve for 𝛀k+1 using a Newton solver

6: Cexp(−h𝛀k+1 )(𝕀𝛀k+1 ) = Cexp(h𝛀k )(𝕀𝛀k ) + hUk

7:

8: Update q̂k using Euler’s theorem:

9: q̂k+1 = M (𝛀k )̂qk

10:

11: x̂k+1|k = [̂q⊤
k+1, 𝛀̂

⊤

k+1]⊤

12:

13: Pk+1|k = F (x̂k+1|k, uk )Pk|kF T (x̂k+1|k, uk ) + W

14:

15: y
i,k+1|k = r (qk+1 )𝜶 i,k, i = 1, 2

16:

17: P
y

k+1|k = H (xk+1 )Pk|k+1H (xk+1 )⊤ + Q

18:

19: P
xy

k+1|k = Pk+1|kH (xk+1 )T

20:

21: Kk+1 = P
xy

k+1|k (P
y

k+1|k )−1

22:

23: x̂k+1|k+1 = x̂k+1|k + Kk+1(y
k+1 − ŷ

k+1|k )

24:

25: Pk+1|k+1 = Pk+1|k − Kk+1P
y

k+1|kK ⊤
k+1

26:

27: x̂k+1|k+1,[1:4] = x̂k+1|k+1,[1:4] || x̂k+1|k+1,[1:4] ||2−1

28:

29: end for

[57]. The numerical integration of the kinematic equation is
made by assuming a short-time step h. Since the attitude motion
is instantaneously a rotation, the discrete orientation update is
obtained using the exponential map as:

qk+1 =
1
2

exp (hM (𝛀k ))qk, (47)

w.r.t. the quaternion representation, and as

Rk+1 = Rk exp
(
h𝛀k

×) (48)

in terms of R ∈ 𝕊𝕆(3). The angular velocity update emerges by
employing a Newton solver for

Cexp
(
−h𝛀k+1

)(
𝕀𝛀k+1

)
= Cexp(h𝛀k )(𝕀𝛀k ) + hUk , (49)

where U is the control vector and

Cexp(X ) = 𝕀3×3 −
1
2

X +
1
12

(
X ×

)2
. (50)

Algorithm 2 UKF for attitude and rate estimation

1: x̂0|0 = [̂q0; 𝛀̂0], P0|0 = P0

2:

3: for k=1,2,...

4:

5: Vk = Pk + R

6:

7: Calculate sigma points Sk based on (xk,C (Vk ))

8:

9: Time update:

10:

11: Sk+1∣k = f (Sk, uk )

12:

13: x̂k+1|k =
∑2L

i=0 w
(m)
i

Si,k+1∣k

14:

15: Pxk+1|k=
∑2L

i=0w
(c )
i

(Si,k+1∣k − x̂k+1|k )(Si,k+1∣k − x̂k+1|k )⊤

16:

17: Calculate output prediction sigma points:

18:

19: Y
p

i,k+1∣k = H (Sx
i,k+1∣k, t )

20:

21: Average

22: ŷ
k+1|k =

∑2L

i=0 w
(m)
i

Y
p

i,k∣k−1

23:

24: Measurement update

25:

Pe =

2L∑
i=0

w
(c )
i

(Y
p

i,k+1∣k − ŷ
k+1|k )(Y

p

i,k∣k−1 − ŷ
k+1|k )⊤ + R

Pxy =

2L∑
i=0

w
(c )
i

(Si,k+1∣k − x̂k+1|k )(Y
p

i,k+1∣k − ŷ
k+1|k )⊤

Kk = Pxy P−1
e

x̂k = x̂k+1|k + Kk(y
k
− ŷ

k+1|k )

Pxk+1|k+1
= Pxk+1|k − KkPeK

⊤
k

26:

27: x̂k+1|k+1,[1:4] = x̂k+1|k+1,[1:4] || x̂k+1|k+1,[1:4] ||2−1

28:

29: end for

In this work, the physical motion, the prediction step of the
EKF, and state propagation of the sigma points in the UKF are
made using the Lie group symplectic integration [58–60].

An important flaw related with the EKF’s and UKF’s imple-
mentation is the singularity of the state estimation error covari-
ance matrix, when the orientation is expressed by the unit
quaternions. The unit norm constraint results in the singular-
ity of the latter covariance matrix [21]. Three solutions to this
problem exist [21]. In this work, regarding the UKF’s implemen-
tation, we utilise the approach that deletes one of the quater-
nion components in order to obtain a truncated state error
covariance expression. Per contra, because the EKF consists of
second order terms only, it does not compute an ill-conditioned
covariance matrix. This claim is mathematically justified in [61].
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Algorithm 3 MEF for attitude and rate estimation

1: K0 = I6×6, R̂0 = I3, 𝛀̂ = [0 0 0]⊤

2:

3: for k=1,2,...

4:

5: rR = −
∑

i=1,2 ŷ
×
i

y
i

6:

7: R̂(k + 1) = R̂(k)expm(h(Ω̂k + K11(k)rR ))

8:

9: Solve for 𝛀̂k+1 using a Newton solver:

10:

11: Cexp(−h𝛀̂k+1 )(𝕀𝛀̂k+1 ) = Cexp(h𝛀̂k+1 )(𝕀𝛀̂k ) + hK21(k)rR

12:

13:

14: A =
⎡⎢⎢⎣
−𝛀̂

×
I3

0 𝕀−1[(𝕀𝛀̂)× − 𝛀̂
×
𝕀]

⎤⎥⎥⎦
15:

16:

17: E =

[∑2
i=1 −(qi∕d 2

i
)(̂y

×
i

y×
i

+ y×
i

ŷ
×
i

)∕2 0

0 03×3

]

18:

19: BR−1B⊤ =

[
03×3 0

0 B2R−1B⊤
2

]

20:

21: W (K, rR ) =

[
1∕2(K11rR )× 0

0 03×3

]

22:

23:

24:

K (k + 1) = −𝛼K (k) + AK (k) + K (k)A⊤

−K (k)EK (k) + BR−1B⊤

−W
(
K (k), rR

)
K (k) − K (k)W

(
K (k), rR

)⊤
25:

26: end for

where C (Vk ) refers to the square root of Vk resulting from
the Cholesky factorization. The second-order-optimal mini-
mum energy filter on 𝕋𝕊𝕆(3) is implemented based on the
(0)−connection function [34].
where K11(k) = K[1:3,1:3](k) and K21(k) = K[4:6,1:3](k)

5 SIMULATION RESULTS

In this section, we describe a series of simulations for two dis-
tinct cases. We demonstrate attitude and rate estimation from
vector measurements for UAVs and LEO satellites. For both
case studies, the measurement noise and model uncertainty are
initially modelled as white Gaussian noises. Subsequently, to
stress the significance of the dual optimal control formulation,
we replace the model error with an unknown deterministic dis-
turbance that exerts on the existing system.

Algorithm 4 PF for attitude and rate estimation

1: x̂0 = (R̂0, 𝛀̂0 )

2:

3: for k=1,2,...

4:

5: Update R̂k

6:

7: R̂k+1 = R̂kexpm(h𝛀̂
×

k )

8:

9: Calculate 𝜻
i
(R̂k, 𝛀̂k, h; t )

10:

11: Calculate wi (R̂k, 𝛀̂k, h)

12:

13: Calculate B(R̂, 𝛀̂, h) and 𝜸k

14:

15: Calculate 𝛿∗
k

16:

17: solve for 𝛀̂k+1 using a Newton solver:

18: Cexp(−h𝛀k+1 )(𝕀𝛀k+1 ) = Cexp(h𝛀k )(𝕀𝛀k ) + h(uk + 𝕀𝜹
∗
k )

19:

20: end for

21:

22: if
trace(M )

6
< 𝜎𝜖

23:

24: Σ ↓

25:

26: else if
trace(M )

6
> 𝜎𝜖

27:

28: Σ ↑

29:

30: else

31:

32: keep Σ

33:

34: end if

5.1 Simulation cases

5.1.1 Case 1: Attitude and rate estimation for
UAVs

In this case, the measurement noise is Gaussian zero mean
random process and it is set relatively large aiming to express
poor sensor quality. In particular, matrix D is chosen so that
the signals di𝜖i (t ), i = 1, 2 have standard deviations of 20◦

degrees. The initial orientation and rate deviation are kept at
normal levels and are initialised with the unit quaternion q0 =
(70◦, [1 1 1]⊤ ) and the angular rate 𝛀0 = [0.3 0.2 0.1]⊤ rad/s.
The initial orientation matrix is obtained by using the Rodrigues
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TABLE 1 UAV parameters

Filter Parameters

Time Step 0.001(s)

Simulation Time 100(s)

Initial orientation q0 = [0.8253, 0.3260, 0.3260, 0.3260]⊤

R0 = rod(1.2, [1, 1, 1])

Initial rate 𝛀0 = [0.2, 0.4, 0.5]⊤

Inertia tensor diag(6, 7, 9)

Reference directions 𝜶1(t ) = [1, 0, 0], 𝜶2(t ) = [0, 1, 0]

Input torque [sin(
2𝜋

3
t ) − sin(

2𝜋

1
t ) cos(

2𝜋

5
t )]⊤

Model error (AWGN)  (0, 0.1)

Model error 0.1 ∗ [sin(
2𝜋

5
t ) − sin(

2𝜋

5
t ) cos(

2𝜋

5
t )]⊤

Measurement error  ∼ (0, 20)

TABLE 2 Filters’ initialisation for UAV’s attitude and rate estimation

Filter Parameters

EKF P0 = I7×7

UKF P0 = I7×7

MEF K0 = I6×6

PF Q = 10−3, Σ = 5 ⋅ 10−3

formula R0 = rod(q0 ) [62]. The control torques are given by

T (t ) = [sin(
2𝜋

3
t ) − sin(

2𝜋

1
t ) cos(

2𝜋

5
t )]⊤. Lastly, we assume

that the two reference vectors 𝜶 i (t ), i = 1, 2 are orthogonal
for every t . Table 1 and 2 summarise the system’s and filter’s
parametrization, respectively.

5.1.2 Case 2: Attitude and rate estimation for
satellite mission

In this case, we consider smaller measurement noise levels. The
input torques are also assumed of lower frequency and the
inertia tensor is increased resulting a slow satellite’s motion. The
initial orientation deviates significantly from the identity since
the spacecraft can be oriented arbitrarily around its centre of
mass. The initial angular rate is set smaller compared to the
previous experimental study declaring the much slower motion
of the satellite. The parameters of the system and the initiali-
sation parameters of the filters are summarised in Table 3 and
Table 4, respectively.

5.2 Results

5.2.1 Case 1: Attitude and rate estimation for a
UAV

In Figure 1(a)–(c), the three components (X,Y, Z ) of the angu-
lar rate estimation error are shown for each case, respectively. In

TABLE 3 Satellite parameters

Filter Parameters

Time Step 0.001(s)

Simulation Time 100(s)

Initial orientation q0 = [0.4085, 0.5270, 0.5270, 0.5270]⊤

R0 = rod(2.3, [1, 1, 1])

Initial rate 𝛀0 = [0.1, 0.3, 0.2]⊤

Inertia tensor diag(102, 105, 103)

Reference directions 𝜶1(t ) = [1, 0, 0], 𝜶2(t ) = [0, 1, 0]

Input torque [sin(
2𝜋

25
t ) − sin(

2𝜋

13
t ) cos(

2𝜋

37
t )]⊤

Model error (AWGN)  (0, 0.1)

Model error 0.1 ∗ [sin(
2𝜋

13
t ) − sin(

2𝜋

12
t ) cos(

2𝜋

17
t )]⊤

Measurement error  ∼ (0, 20)

TABLE 4 Filters’ initialisation for satellite attitude and rate estimation

Filter Parameters

EKF P0 = I7×7

UKF P0 = I7×7

MEF K0 = I6×6

PF Q = 10−3, Σ = 5 ⋅ 10−3

FIGURE 1 Angular velocity estimation error (process noise-case 1).
X–Y–Z component (from top to bottom)
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FIGURE 2 Attitude estimation error eq,R (t ) (process noise-case 1)

the case of the MEF (depicted in yellow), the estimation errors
converge after a very brief transient response providing with
the smallest steady state error value of all filters. In the case of
the PF (depicted in grey), Σ = 0.3 ⋅ 10−3 was selected, which
satisfies the covariance constraint imposed by (34)–(37), with
trace(M ) = 0.63. Note that the covariance constraint induces a
trade-off regarding the PF’s transient response, due to the fact
that increased measurement noise levels require larger value for
Σ; this results in slower transient response. As in the case of the
MEF, the PF has also a short transient response but presents an
oscillatory behaviour in the steady state. This is attributed to the
non-adaptive nature of the filter, and to the fact that measure-
ment error in the optimal correction term 𝜹

∗(t ) is scaled by an
almost constant matrix, as can be seen from (29).

Regarding the stochastic filters, the EKF (depicted in red)
seems to outperform the UKF (depicted in blue) as the former
has a fast convergence, while the latter presents an oscillatory
behaviour. This is because the rate estimates depend on the ori-
entation estimates, which are re-projected many times within the
algorithm. Another reason for the UKF’s noisy asymptotic per-
formance is the ad-hoc fine-tuning in our experiments. Never-
theless, such an approach is necessary to balance efficiency and
extreme computational burden.

For the orientation error presented in Figure 2, the MEF
again shows its superiority by having the fastest transient
response and smallest asymptotic error, while the predictive fil-
ter has a small angle bias due to the remaining angular veloc-
ity error. This is because the PF’s orientation correction is
made exclusively through the axis of rotation, and the kine-
matics remain isolated for geometric integration. However, the
PF achieves the second-lowest estimation error with the low-
est computational cost. The downside of the PF is that it needs
precise tuning and many iterations in order for the estimates to
be statistically consistent. Thus, on the one hand, the PF archi-
tecture avoids an additional re-projection step and an expen-
sive implementation; on the other hand, it leads to a constant
deviation of around 0.056◦ due to the lack of additional kine-
matic correction. Worth noticing, however, is that the kine-
matics express Euler’s theorem and thus cannot be considered
uncertain. The EKF converges smoothly towards zero, whereas
the UKF appears to have an additional peak. This is because the
rotation axis has not been estimated well up to that time step
(Figure 1). At the same time, the EKF outperforms the UKF

FIGURE 3 Angular velocity estimation error (model error-case 1).
X–Y–Z component (from top to bottom)

during the steady-state. The reason is that the latter employs
a stochastic linearisation including mainly addition operations
to produce the prediction and correction state, thus requiring
intermediate normalisation steps. Another compelling observa-
tion is that for the PF, higher scaled gain can result in faster
convergence at the cost of increasing the asymptotic estima-
tion error.

Figure 3(a)–(c) depict the angular rate estimation in the case
where a deterministic model error acts on the system dynamics.
Both deterministic filters perform very well since they deter-
mine the necessary model error that drives the actual system
and produces the obtained observations. In particular, by reduc-
ing the measurement noise, both the MEF’s and the PF’s rate
estimation error converge fast to zero, and the same holds for
the attitude estimation error (Figure 4). For the PF however, the
oscillatory behaviour that has been observed previously, appears
only within the transient state in this case.

On the other hand, the stochastic filters’ rate is affected sig-
nificantly as the model error frequencies are transferred in the
angular velocity error. In terms of the orientation error (Fig-
ure 4), the deterministic model uncertainty influences only the
EKF’s response, while the UKF’s remains unaffected, due to the
stochastic linearisation process. The deterministic model error
is cancelled out in the predicted state covariance step of the
algorithm (proof in Appendix A.1). In particular, it is shown that
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FIGURE 4 Attitude estimation error eq,R (t ) (model error-case 1)

there are sigma-point distributions that block the model error
influence in the orientation estimate; hence, the model error
appears only in the angular velocity’s correction step. Thus, the
UT -for particular sigma point distributions- potentially recasts
the angle estimates uncontrollable from the model error. How-
ever, this does not mean that the UKF estimates the orienta-
tion correctly since the estimated rotation axis deviates signifi-
cantly from its nominal trajectory; the filter remains blind w.r.t.
model errors and trusts more its angle estimates. Additionally,
the fact that the corrected angular velocity is a linear combi-
nation of the model error and the scaled output error, pre-
serves the frequencies of all three components which appear
unaltered in the angular velocity estimation error (Figure 3).
The exact opposite is true in the EKF; both the rate and angle
estimates are affected by the model uncertainty, as the Jaco-
bian matrix (prediction update) is a function of the predicted
rate estimate, and its components appear to all its entries. By
utilising the matrix inversion lemma for the output covariance
matrix, it can be shown explicitly that the model error vector
appears both in the upper and in the lower part of the gain
matrix.

5.2.2 Case 2: Attitude and rate estimation for a
satellite

Figure 5–8(a)–(c) show the performance of all the filters in the
satellite study. Note that the input torques’ low frequency and
the increased moment of inertia result in a much slower attitude
motion. Therefore, the filters converge faster towards zero both
in attitude and rate. The MEF, once again, outperforms the rest
of the filters by showcasing a similar behaviour as in the UAV
case. Furthermore, the Gaussian approximate filters can be re-
tuned to converge faster. In addition, the decreased measure-
ment noise, allows us to opt Σ = 0.3 ⋅ 10−4, for the PF and thus
achieving a fastest transient and an improved asymptotic error.

Regarding the model error case we observe once again that
the deterministic filters outperform the stochastic ones, since
both the axis of rotation and angle estimates present low tran-
sient and asymptotic error. The EKF as well as the UKF trans-
fer the model error unhurt in the rate error as is it is imposed by
their architecture. Once again the UKF’s orientation estimates

FIGURE 5 Angular velocity estimation error (process noise-case 2).
X–Y–Z component (from top to bottom)

FIGURE 6 Attitude estimation error eq,R (t ) (process noise-case 2)

are not affected by the model uncertainty for the same struc-
tural reasons mentioned previously.

6 CONCLUSIONS

This work performed a critical assessment of the reasons gov-
erning the superiority of deterministic modelling over stochas-
tic, for the problem of orientation and rate estimation from vec-
tor measurements. The distinction between the two approaches
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FIGURE 7 Angular velocity estimation error (model error-case 2).
X–Y–Z component (from top to bottom)

FIGURE 8 Attitude estimation error eq,R (t ) (deterministic model error
-case 2)

was emphasised and investigated, with the state space’s geom-
etry and characteristics being the main criterion. By the anal-
ysis and the results of extensive simulations, the determinis-
tic approach was shown to overcome important deficiencies
imposed by the Bayesian architectures, and to handle large
model errors. As an example, the second-order-optimal mini-
mum energy filter (MEF) [34] was presented, and a modified
predictive filter (PF) on the 𝕋𝕊𝕆(3) was derived. Both of these
filters were compared versus the most commonly used repre-
sentatives of the Gaussian Approximate Filters, the EKF and
the UKF. Two different simulation cases were considered, for

a UAV and for a satellite, respectively. The simulations revealed
that the deterministic filters, and in particular the MEF, outper-
form the Gaussian approximate solutions especially in the real-
istic scenario, where a deterministic model error exerts on the
actual plant. The reason is fundamental -from first principles-
and originates in the set-theoretic approach for estimation,
when seen as a dual optimal control problem. The stochastic
filters require at least one re-projection step and are affected by
model errors. In particular, we address that quaternion normal-
isation leads to unbiasedness of the orientation and rate esti-
mates. In addition, for certain sigma point distributions, the
UKF’s estimation angle is uncontrollable from model errors.
While a more efficient implementation of the UKF for attitude
estimation exists [63] where the stochastic linearisation is per-
formed by utilising intrinsic gradient descent algorithms, it is
not robust w.r.t. deterministic model errors and also requires
one re-projection step.

Another remark is that both stochastic filters require the
initial prior information in contrast with the deterministic ones.
In practice this information may not be available. For example,
satellite missions are placed in environments that are not fully
known beforehand, which makes it impossible to obtain data
in advance. Deterministic filters do not require any prior ini-
tialisation, providing exceptional flexibility for the problem at
hand. From the deterministic filters presented in this work, the
predictive filter has to be tuned to provide statistically consis-
tent results. However, this tuning is based on the measurement
noise statistics, which can be determined offline by experi-
mentation. Having the disadvantage of an almost fixed gain,
the predictive filter is still to be investigated as future research
under adapted gain scaling. The EKF and UKF have roughly
the same accuracy. Thus, due to the computational overhead
of the UKF, the simplicity of the Jacobian matrix calculations,
and the quasi-linear nature of the quaternion kinematics the
EKF is considered preferable compared to the UKF for the
task. Per contra, both deterministic filters -and especially the
MEF- perform better as they achieve lower errors in both cases.
Finally, a further analysis for examining the filters’ limitations
is a potential future research objective. Such operating factors
include eclipse conditions, event-triggered change of dynamics
[64], co-linearity of measurements, extreme measurement noise,
risk-averse events [65], etc.
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APPENDIX A

A.1 Intrinsic lie derivatives for predictive filter

The predictive filter on 𝕋𝕊𝕆(3) requires knowledge of the
terms 𝜻

k
(R̂, 𝛀̂, h; t ) and wk(R̂, 𝛀̂, h). It is

𝜻
k

(
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×
, h; t

)
= h1

f
(̂y

k
) +

h2

2!
2

f
(̂y

k
) (A.1)

By defining the inverse map ( )−× : 𝔰𝔬(3) → ℝ3, the system can
be written as:

(R̂⊤ ̇̂R)−× = 𝛀̂

̇̂𝛀 = 𝕀−1
(

(𝕀𝛀̂)×𝛀̂ + T
)
+ G𝜹 .

(A.2)

Furthermore, by declaring

f (𝛀̂) =

[
𝛀̂

𝕀−1
(

(𝕀𝛀̂)×𝛀̂ + T
)
+ G𝜹

]
, (A.3)

with 𝛀̂ ∈ ℝ3, the first term of (A.1) reads:
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(A.4)
In order to calculate the first term in the brackett, we consider

a deviation 𝜹R from R̂ with 𝜹R = exp(𝛀̂
×

) and 𝛀̂ a tangent
vector attached on the identity. Then

𝜕R̂R̂⊤𝜶 i = 𝜕R̂ (R̂⊤𝜶 i )(𝜹R) = 𝜕R̂ (R̂𝜹R)
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i

(A.5)

The latter results using the Taylor expansion of the exponen-
tial matrix, and from the fact that with X = x× ∈ 𝔰𝔬(3)
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(A.6)

Finally, since 𝜕𝛀̂(R̂⊤𝜶k ) = 0 we obtain
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Furthermore, the second-order Lie derivative of (A.1) reads
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where the term 𝜕R̂ (𝛀̂
×

(R̂⊤𝜶k )) is computed using the product
rule:
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A.2 UKF with deterministic model error

Let us declare with u the nominal input to the filter. Then, we
can write ũ = u + 𝕀𝜹 that is, the input torques corrupted by the
model error 𝜹 as they applied to the model. The filter utilises
the equations

d x = f (x, u) = f (x, ũ) − G̃ 𝕀𝜹 (A.10)

where the first n1 rows of G̃ refer to the kinematics and there-
fore are zero. The predicted sigma-points are then calculated
according to

x𝜹
k∣k−1 = f (xk−1, ũk−1 ) − G 𝕀𝜹k−1

= xk∣k−1 − G 𝕀𝜹k−1

(A.11)

and the predicted state according to

x̂
𝜹
k =

2L∑
i=0

w
(m)
i

x𝜹
i,k∣k−1

=

2L∑
i=0

w
(m)
i

f
(
xi,k−1, ũk−1

)
−

2L∑
i=0

w
(m)
i

G 𝕀𝜹k−1

=

2L∑
i=0

w
(m)
i

f
(
xi,k−1, ũk−1

)
− G 𝕀𝜹k−1

2L∑
i=0

w
(m)
i

(A.12)

By utilising the scaled UT

2L∑
i=0

w
(m)
i

=
2L

2(L + 𝜆)
(A.13)

where 𝜆 = 𝛼2(L + k) − L [66]. From here we observe that for
k = 0 and 𝛼 = 1

x̂
𝛿
k =

2L∑
i=0

w
(m)
i

f
(
xi,k−1, ũk−1

)
− G 𝕀𝜹k−1

= x̂k − G 𝕀𝜹k−1

(A.14)

Therefore, the predicted state covariance

P𝜹
xk

=

2L∑
i=0

w
(c )
i

(
x𝜹

i,k∣k−1 − x̂
𝜹
k

)(
x𝜹

i,k∣k−1 − x̂
𝜹
k

)⊤

=

2L∑
i=0

w
(c )
i

(
x

i,k∣k−1 − x̂k

)(
x

i,k∣k−1 − x̂k

)⊤

= Pxk

(A.15)

The same applies to the cross covariance matrix where the
model error term is cancelled out. Thus, the adaptive gain of the
filter is not affected by the model error. The only step where
the error applies is the correction step through the rate-part
of x̂

∗
k.

A.3 Bias due to quaternion re-projection

The last step for both the EKF and UKF is a re-projection of
the corrected quaternion

q̂k|k = q̂k|k−1 + Ku𝝐k|k−1 (A.16)

where Ku = K[1:4,1:6] and 𝜖k|k−1 = yk|k−1 − ŷk|k−1. The nor-
malised corrected quaternion is given by

q̂ ∗
k|k =

q̂k|k
||̂q

k|k||
=

q̂k|k−1 + Ku𝜖k|k−1

||̂qk|k−1 + Ku (𝜖k|k−1 )|| (A.17)

We are interested to examine the function d : ℝ4 → ℝ with
d (X ) = ||X ||−1 in a neighbourhood of q̂k|k ∈ 𝕊3 ⊂ ℝ4 in the
direction of Ku𝜖k|k−1.

We have

d (̂qk|k−1 + Ku𝜖k|k−1 ) =

d (̂qk|k−1 ) + ⟨∇d (X )||X =q̂k|k−1
, Ku𝜖k|k−1⟩+

⟨Ku𝜖k|k−1, ℍ(d )|||q̂k|k−1

Ku𝜖k|k−1⟩ + ⋯

(A.18)

where ℍ : ℝ4 → ℝ4×4 is the Hessian of d . Given that q̂k|k−1 ∈
𝕊3, d (̂qk|k−1 ) = 1.

Furthermore, ∇d (X ) = ∇||X ||−1
= −∇||X || =

||X ||−1X ⊤ and

[ℍ(d )]i, j =

⎧⎪⎨⎪⎩

||X ||2−X 2
i

||X ||3 , i = j

−
Xi X j

||X ||3 , i ≠ j

(A.19)
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Thus, by ignoring the second order terms, (A.17) can be writ-
ten as

q̂ ∗
k|k =

(̂qk|k−1 + Ku𝜖k|k−1 )−

(̂qk|k−1 + Ku𝜖k|k−1 )(̂q⊤
k|k−1Ku𝜖k|k−1 ) + ⋯

(A.20)

The latter equation shows the effect of the normalisation step
on the (unbiased) corrected estimate of the EKF and UKF algo-
rithm. By re-projecting the state on the unit sphere, a bias is
induced that is propagated forward in time in the next itera-
tion of the algorithm. This justifies the bias that appears in the
figures of the orientation error for both the EKF and UKF
filters.
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