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Abstract. This paper explores the use of a novel tuned-inerto-viscous-hysteretic-damper
(TIVhD) for reducing the seismic response of multi-storey building structures. The TIVhD is
an inerter-based damper device consisting of a linear hysteretic damper connected in series
with an inerto-viscous damper. The layout of TIVhD is similar to that of tuned-inerter-
hysteretic-damper (TIhD) with an additional viscous damping element in parallel with an
inerter. The design is motivated by the fact that most inerter designs cannot completely remove
the parasitic damping due to friction, fluid compression, etc. Moreover, the use of linear
hysteretic damping is considered to be a more realistic approach when material damping is
present. In this paper, the TIVhD is installed between the ground and the first-storey and is
tuned by firstly assumed the viscous damping coefficient to be zero. Then the other three
parameters are optimised following the tuning procedure of the TIhD that is based on the fixed-
point theory with additional fine-tuning procedure by targeting the first vibration mode of the
multi-storey structure. The optimum TIVhD parameters are finally obtained using two
scenarios: (1) amplifying its viscous damping coefficient and stiffness while keeping the
inertance constant; (2) amplifying its inertance and stiffness while keeping the viscous
damping constant. Both scenarios are aiming at the same reduction level of that given by the
TIhD. Finally, the effectiveness of the TIVhD on reducing the structural response is
demonstrated for both harmonic and seismic base excitation cases in the time domain. This has
been made possible by a newly developed time domain response of linear hysteretic damping
via the Hilbert transform and a time reversal technique.

1. Introduction

The use of the inerter, a two terminal device generating force proportional to the relative acceleration
between its two terminals, as a seismic protection device has attracted many researchers in the
earthquake engineering community. This is due to the fact that the inerter is capable of generating
inertance — an inerter constant measured in kilograms — several times larger than its physical mass
[1]. As a result, it can amplify the theoretical mass of a structure to which it is attached to without
significantly increasing the physical mass of the structure.

The use of the inerter in building structures is often combined with spring and damping elements.
This device is also called an inerter-based-damper (IBD). The tuned-viscous-mass- damper (TVMD)
[2] is one of the first IBD systems proposed in the literature for use as a vibration suppression device
in civil structures. It has also been referred to as a parallel-connected-viscous-inerter-damper (PVID),
for example in [3] or as a gyro-mass damper, for example in [4]. The device consists of a spring in
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series with a parallel connected inerter-damper. Ikago et al. [2, 5] demonstrated how the TVMD can
be used as a earthquake protection device in building structures. The effectiveness of the device has
also been validated experimentally via a shake table experiment [2].

In 2014, Lazar et al. [6] introduced a device called a tuned-inerter-damper (TID). It consists of a
spring and damper in parallel connected in series with an inerter. If the mass of the inerter is
considered, the TID becomes a tuned-mass-damper-inerter (TMDI) [7]. The TID has been shown in
[6] to have some benefit compared to a traditional tuned-mass-damper (TMD): (1) Its optimum
location is on the base storey; (2) it can reduce the structural response at higher modes, not just the
targeted one. Morever, due to the presence of the inerter, a large mass ratio can be easily achieved
with a small physical mass, hence leading to a larger reduction around resonance.

Most recently, the authors proposed a tuned-inerter-hysteretic-damper (TIhD) in [8]. The device
has a similar layout with the TID with the viscous damping element replaced by a linear hysteretic
damping element represented by a complex stiffness. Similar with the TMDI, when the mass of the
inerter is included, the TIThD becomes a tuned-mass-hysteretic-inerter-damper (TMhDI). This concept
has also been validated via a shake-table experiment [9]. Despite its noncausality, the complex
stiffness approach has been widely used [10] and has been proven to be an accurate and practical
linearization technique for structures with nonlinear dampers [11].

In this paper, an IBD device called the tuned-inerto-viscous-hysteretic-damper (TIVhD) is
proposed. The layout is similar to that of TIhD but with an additional viscous damping element in
parallel with the inerter. Some of the inerter designs cannot completely eliminate the damping to
achieve a pure inertance. This fact has motivated the authors to further explore the effect of the
parasitic damping via a TIVhD device.

2. Structural system
A 3-storey structure adopted from [9] subjected to base excitation r(t) is given in Figure 1. The
equation of motion of the structure in the Laplace domain can be written as follows:

mys2Xy + k(X1 — X3) —ko1(R—X1) —Fi0=0
Mys2Xy 4+ kyz(Xy — X3) — ki ,(X; —X5) =0 (1)
m3s%X3 — kp3(X; —X3) =0

where m; represents the mass concentrated on the i-th storey of the structure; X; and R represent the
Laplace transform of the i-th storey displacement response and base displacement; s denotes the
Laplace transform variable; and F g is the force transferred from the TIVhD to the structure given by

2 .
Fro = (:dsz + ¢45) (ka(1 +]'TI)) (R - X)) @)
dSc +cgs+ kd(l +]77)
here b; and ¢, are the inertance and viscous damping parameters of the TIVhD. The linear hysteretic
damping element of the TIVhD is represented by a complex stiffness k;(1 + jn), where 7 is a loss
factor given by n = s, /ky. As previously mentioned, when c¢; = 0 the layout of the TIVhD becomes
the same as the TIhD. It can be also seen here in Equation 2 when ¢z = 0, the F; , becomes the same
with the Fq ¢ derived for the TThD in [8].
The properties of the structure in Figure 1 are given in Table 1. Note that the natural damping of
the structure is ignored for simplicity.
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Figure 1. (a) 3-storey structure (b) TIVhD
Table 1. Structural properties [9]
Storey Mass (kg) Stiffness (N/m)

1 33.15 1.4048 x 10°

2 24.15 1.6858 x 10°

3 24.15 2.0792 x 10°

3. Practical tuning procedure

The first step of the tuning of the TIVhD assumes that the viscous damping coefficient, ¢4, is zero, so
now its layout becomes the layout of the TIhD. The other parameters are then optimised via the fixed-
point theory adapted from [8]. Next, two scenarios are proposed: (1) amplifying the viscous damping
coefficient c; and stiffness k; while keeping the inertance b, constant; (2) amplifying the inertance
b, and stiffness k; while keeping the viscous damping c; constant. Both scenarios use identical
amplifying factor between c; and k; for Scenario 1 or between b; and k; for Scenario 2. Both
procedures are aiming for a reduction level around the targeted resonant mode to be the same with that
given by the TIhD. The initial viscous damping coefficient of the TIVhD is assumed to be Cheq =

kqn/w,, where w,, is the first natural frequency of the host structure.

Figure 2(a) shows the tuning procedure of the TIVhD via Scenario 1. In this scenario, both c; and
k, are increased until the response around the first resonance mode reaches the same level with the
TIhD. Similarly, Figure 2(b) illustrates the tuning of the TIVhD via Scenario 2. It can be seen that the
response around the first resonance is reduced with the increase of both b; and k,. Finally, the
obtained optimum parameters of the TIVhD via Scenario 1 and 2 are summarised in Table 2.

The optimum parameters obtained via the Scenario 2 are considerably better than Scenario 1. As
can be seen in Table 2, to achieve the same level of reduction in the first resonance, the viscous
damping coefficient and the stiffness of the TIVhD from Scenario 2 are several times less than those
in Scenario 1. Although the required inertance is larger, but it can be easily achieved via several
mechanisms, such as rack-and-pinion, ball screw, and fluid flow mechanisms, see [12, 13]. Despite its
disadvantage, Scenario 1 provides better reduction around the second and third resonances.
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Figure 2. Tuning of the TIVhD (a) Scenario 1 (b) Scenario 2
Table 2. Structural properties [9]
Parameters TIhD TIVhD, Scenario 1 = TIVhD, Scenario 2

Inertance, b, (kg) 21 21 33.6
Viscous damping coefficient, c; (Ns/m) 0 1.77 x 103 0.353 x 103
Stiffness, k4 (N/m) 2.2 x10* 11 x 10* 3.52 x 10*
Loss factor, n 0.53 0.53 0.53

4. Structural time-response to harmonic and seismic base excitation
It is common in practice to convert the loss factor of the linear hysteretic damping into viscous
damping coefficient via the equivalent viscous damping approach [15], where Chog = kqn/wy,,. Here

Cheq is the viscous damping coefficient equivalent to that of loss factor n of the complex stiffness.

However, this practice has been shown, for example in [8], to be only accurate around the frequency
of interest, which in this case is the first resonance frequency wy, . Therefore, the complex stiffness
term must be treated in its original form for maintaining accuracy.

However, treating the complex stiffness in its original form causes a challenge in the time-
response analysis. Using the conventional integration method will lead to unstable responses [11].
Therefore, some techniques have been proposed to deal with this problem, for example see [16, 17].
One of the proposed techniques was proposed by Inaudi and Makris [11]. They introduced the time
reversal technique and the use of the Hilbert transform. However, the proposed method is limited by
the zero-order hold method. Furthermore, it has been shown only applicable for impulse input signals.

In this paper, a time domain method proposed by the authors in [8] is adapted to solve the
equation of motions of the structural system with the TIVhD in the time domain. The method has been
proven to be accurate for both harmonic and seismic base excitation, and for both single and multi-
degree-of-freedom structural systems.

4.1. Harmonic base excitation

To demonstrate the response of the structure in the time domain, new optimum TIVhD parameters
obtained via Scenario 2 with additional fine tuning are selected as given in Table 3. The frequency
response of the structural system is given in Figure 3(a). This Figure also shows how the time-
response of the structural system at steady states when subjected to harmonic base excitation in a good
agreement with the frequency response obtained via an analytical formulation. Some examples of the
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time-response are given in Figure 3(b). The amplitude of the input harmonic signal r(t) is 1, so they
can be directly compared to the frequency response in Figure 3(a).

Table 3. Selected TIVhD optimum parameters

Inertance, by  Viscous damping coefficient, c;  Stiffness, k Loss factor, 1
42 kg 353.47 Ns/m 5.06 x 10* N/m 0.53
15 : - : _
N Uncontrolled g
—— Analytical frequency response = .
o Numerical time response %
= )
5710+ 4
- I ‘ ‘ ‘ ‘ ‘ !
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Figure 3. (a) Analytical frequency response versus numerical time-response of the structure (b)
Structural time-response examples for f = 16.00Hz and f=24.35Hz

4.2. Seismic base excitation

In order to assess the effectiveness of the TIVhD on protecting structures against earthquake, the
considered 3-storey structure is simulated in case of ground motion. The Tohoku earthquake that took
place in Japan on March 11th, 2011 is selected as shown in Figure 4(a). Figure 4(b) shows the time-
response of the structural system when subjected to the selected ground motion.
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Figure 4. (a) Ground acceleration time history (b) Relative displacement response time history
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Figure 4(b) clearly shows the effectiveness of the TIVhD on reducing the structural response in
case of seismic excitation. Note that for the uncontrolled structure the structural damping is no longer
kept null. Small damping coefficient of 20Ns/m is assumed for each storey. The optimum parameters
of the TIVhD are given in Table 3.

0.08

~—=0.04 - T
=
0.02 - |
0 1 1 1
0 1 2 3 4 5 6 7 8 9 10
w (Hz)
(a)
o5 %1073
g I —— Uncontrolled
ol —TIVhD
315 :
S o |
0.5+ T
0 i P bl " Aameharr M -~ i L |
0 1 2 3 4 5 6 7 8 9 10
w (Hz)
(b)
Figure 5. Single sided Fourier spectra: (a) of the ground acceleration (b) of the relative displacement
response

Figure 5(a) and 5(b) shows the single sided Fourier spectra of the selected ground acceleration
and the structural displacement time history, respectively. It should be noted that the first natural
frequency of the structure is w,, = 5.52Hz which is in not in the region of the pre-dominant
frequency of the selected ground motion. Hence, the structure is less sensitive to the chosen
earthquake. However, both Figure 4(b) and 5(b) have shown how the optimised TIVhD can be
effectively used to protect structures against earthquakes.

5. Conclusion

This paper discusses the use of a TIVhD for vibration suppression system in a multi-storey building
structure. The layout of TIVhD is similar to that of TIhD with an additional viscous damping
coefficient in parallel with the inertance. This study has been motivated by the fact that some of the
proposed inerter designs cannot completely eliminate the parasitic damping due to friction,
compressed fluid, etc. The coupled parallel connected inertance-damping is connected in series to a
material damper. The use of a complex stiffness term is considered to be more realistic to represent the
coupled stiffness-damping of the material damping. It has been proven to be an accurate and practical
linearization technique for a class of nonlinear dampers. Two practical tuning procedures for the
TIVhD are proposed in this paper. First the viscous damping coefficient ¢4 of the TIVhD is assumed
to be zero, hence the TIhD tuning rule can be adapted to obtain the optimum stiffness kg and loss
factor i of the TIVhD for a selected inertance b, value. Next the initial value for ¢4 is assumed to be
equivalent to the material damper loss factor via an equivalent viscous damping approach ¢z = Chyy =

kqn/wy,. The optimum TIVhD parameters are then tuned based on the proposed two scenarios

targeting the same reduction level with that given by the TIhD around the first resonance mode.
Scenario 2 gives both ¢4 and kg several times less than that given by Scenario 1. Although the
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required inertance is larger, but it can be easily achieved via a number of different mechanisms as
discussed in the literature. Scenario 1 however, gives a better response around the second and third
resonance modes. Obtaining the time response of the structure equipped with an TIVhD is challenging
due the presence of the complex stiffness term. The authors have proposed an extended time domain
technique for a structural system with complex stiffness in [8]. This technique is adapted in this paper
to analyse the structural system in the time domain. It has been shown that the TIVhD can effectively
reduce the structural response subjected to both harmonic and seismic base excitations.
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