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Cardiovascular diseases (CVD) constitute a major fraction of the current major global

diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD

include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart

failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac

Tissue Engineering (CTE) aims to address these conditions, the overall goal being

the efficient regeneration of diseased cardiac tissue using an ideal combination of

biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies

for CTE. These include adult stem cell populations (mesenchymal stem cells) and

pluripotent stem cells (including autologous human induced pluripotent stem cells or

allogenic human embryonic stem cells) with the latter undergoing differentiation to form

functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to

have suitable material properties with the ability to support efficient attachment, growth,

and differentiation of the cardiac cells, leading to the formation of functional cardiac

tissue. In this review, we have focused on the use of biomaterials of natural origin

for CTE. Natural biomaterials are generally known to be highly biocompatible and in

addition are sustainable in nature. We have focused on those that have been widely

explored in CTE and describe the original work and the current state of art. These

include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate,

silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate,

and silk are isolated from natural sources whereas PHAs are produced via bacterial

fermentation. Overall, these biomaterials have proven to be highly promising, displaying

robust biocompatibility and, when combined with cells, an ability to enhance post-MI

cardiac function in pre-clinical models. As such, CTE has great potential for future clinical

solutions and hence can lead to a considerable reduction in mortality rates due to CVD.

Keywords: cardiac tissue engineering, natural biomaterial, engineered heart tissue, alginate, silk,

polyhydroxyalkanoate, collagen, fibrinogen
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NATURAL POLYMER BASED ENGINEERED
HEART TISSUE

Increasing clinical demands have led to myocardial tissue
engineering becoming a prime focus of investigation within the
field of regenerative medicine. This novel approach aims to
provide a viable alternative and improvement to the traditional
pharmacological and interventional therapies, currently available
in cardiac medicine, and also to relatively new cell-based
techniques such as in situ cellular cardiomyoplasty (1–3). The
general strategy for cardiac tissue engineering is to combine
functional cardiomyocytes and biomaterials with carefully
designated characteristics to repair and restore diseased heart
tissue (2–5). The selection of these biomaterials is a challenging
task due to the strict requirements imposed on the heart TE
substrates (2, 3, 6), which are required not only to support
cell attachment and alignment, but also to transmit load,
provide physiologically relevant stiffness, and be degraded and
replaced over time by extracellular matrix (ECM) proteins
secreted by cells. Ideally, the myocardial scaffold should allow
cardiomyocytes to develop a mature contractile phenotype, and
to communicate with adjacent cells. In the native heart tissue,
the ECM provides this crucial physiological environment for
maintaining the vital functions of cardiac cells. It is logical to
assume that the most effective scaffolding materials will be those
which possess biochemical composition, structure, and function
similar to that of the native cardiac ECM.

This review aims to provide an overview of several
naturally occurring biomaterials with particular interest in
their synthesis, examples of their use in a range of CTE
applications as well as the advantages and disadvantages of
each biomaterial assessed. To this end, fibrinogen (through
its application in Engineered Heart Tissue) has been explored
extensively for the maturation of CMs in vitro, disease
modeling, and drug screening in addition CTE applications.
Furthermore, the adaptation of collagen and alginate to
generate biomaterials with properties conducive to CTE
are discussed in addition to the use of alginate for the
delivery of delivery of factors and drugs that can facilitate
cardiac regeneration. Silk and polyhydroxyalkanoates, a family
of naturally occurring biomaterials produced via bacterial
fermentation, are also explored with particular attention paid to
the use of the latter for left ventricular cardiac patches and cardiac
valve replacement.

Fibrinogen and Engineered Heart Tissue
The development of Engineered Heart Tissue (EHT) was
pioneered by Thomas Eschenhagen (7) and was created by
combining cardiomyocytes and or non-cardiomyocytes within
an ECM to form a 3D construct. Such ECM-like gel-based
cardiac patches possess the advantage of being easily shaped or
cast to the complex geometry of the myocardium, so providing
efficient bonding to the native tissue. This platform has developed
considerably in the last twenty years, going through an evolution
from early constructs utilizing glass tubes with Velcro, to a
medium-throughput method using silicone posts and a fibrin
extracellular matrix (8). EHTs are now being used as tools for
drug screening, disease modeling, and in cardiac regeneration to

replace lost myocytes post-myocardial infarction, and are on the
cusp of being approved for clinical trials (9).

Evolution
The first report of EHT, in vitro, used isolated embryonic
chick cardiomyocytes mixed with collagen to form a contracting
3D construct, resembling the in vivo heart tissue (7). After
culturing in vitro, the cardiomyocytes produced a spontaneously
and coherently contracting 3D matrix with a highly organized
myocardium-like structure and typical functions of myocardial
tissue. This seminal piece of work by Eschenhagen reported
that an increased force was generated like in in vivo heart
tissue including: increasing extracellular Ca2+; a positive force
frequency relationship; and a positive Frank-Starling mechanism
(7). Later, the same group reported the long-term survival
of neonatal rat cardiomyocytes in the scaffold obtained by a
similar gelation step of the collagen solution (10). This artificial
heart tissue showed an increase in beating power up to 18
days of culture in vitro with a maximal contraction force of
2–4 mN. The model was then developed by making circular
EHTs using neonatal rat heart cells combined with collagen
I and Matrigel which resulted in more mature cells, better
myofiber alignment, coupling, and contraction force (11), and
then developed further by employing gene transfer (12). These
modifications significantly improved the force of contraction of
the resultant gel. After 12 days in culture, the blended Matrigel-
collagen construct was implanted into infarcted rat hearts. Awell-
organized and vascularized heart muscle structure developed
after 14 days of implantation (13). Moreover, this implant
provided significant improvement to the cardiac function in
terms of attenuation of further myocardial dilation and increase
in the wall thickness. EHTs are used in tissue regeneration
and drug screening approaches and so reproducibility between
constructs is essential. Hence, in 2010 the EHT generation
process was updated to a medium throughput method using
the reaction of fibrinogen and thrombin to create a hydrogel
(8). The fibrin hydrogel forms around two silicone posts
(Figures 1A,B) which give mechanical load to the constructs
in an auxotonic fashion. EHTs beat spontaneously and custom-
made software can detect the deflection of the silicone posts
and can then produce contraction kinetics automatically (8,
14) (Figures 1C–E). EHT contraction kinetics mature over
time in vitro and therefore can be used as a surrogate
marker of adequate construct performance prior to grafting or
drug screening.

Improvements Over Monolayers
The importance of 3D culturing of cells in an EHT platform
has been shown to be superior to conventional 2D monolayer
techniques in many studies. For example, isolated cells from 3D
EHT have larger catecholamine responses than cells obtained
via the standard 2D monolayer techniques (15). However, cell
capacitance levels were reported to be smaller than adult cells
with both 2D and 3D approaches, demonstrating that adult
maturity has yet to be reached (15). 3D EHTs have also been
shown to have 1.8-fold larger sodium current density than 2D
monolayers, with EHT up-stroke times approaching adult human
myocardium levels (16). Tiburcy et al. (17) also investigated 3D
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FIGURE 1 | EHTs and the white box. (A) Four EHTs attached to a silicone rack are shown, and (B) inside media in a 24 well-plate. (C) A contraction is recorded by the

movement of the blue boxes which pick up the contrast difference between the EHT and the background. (D) A picture of the outside of the white box. (E)

Contraction measurements on traces from the white box. An example of an EHT contracting for 2 s is shown indicating how different parameters are calculated from

contractions. Peak contraction is taken at the green boxes and RR scatter as seconds is calculated as time between the two boxes. Time to contraction (T1) is

calculated at 10, 20, and 50% of the peak from the midline to the edge of the curve, and relaxation time (T2) is calculated in the same way. Contraction velocity and

relaxation velocity are calculated as the derivative of the curve and shown by the pink line. Each small box on the Red and Pink lines shows a frame taken by the white

box camera which runs at 100 f.p.s.

vs. 2D culture gene expression and reported a higher level of adult
gene expression with 3D EHTs. These results show that culturing
cells in a 3D environment using an EHT platform with load
can increase multiple parameters associated with cardiomyocyte
maturity; however, further maturation strategies are needed to
reach adult levels.

The Need for Maturation Strategies
Any tissue engineering technology must recapitulate the target
tissue in vitro to enable it to be a reliable model and maximize
efficacy for tissue engineering approaches. In a mature EHT,
human induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs) become aligned and can generate calculable force
contractions with certain adult myocardial characteristics, but
forces are often relatively weak when compared to native adult
heart tissue. A range of strategies have been used to mature EHT
cardiomyocytes to make them adult like, including: (1) electrical
and/or mechanical stimulation; (2) hormones/growth factors; (3)
using different culture techniques; and (4) adding secondary cell

types (17–25). The body of work so far has shown that some
parameters of heart tissue can be matured, however, a true adult
cardiomyocyte phenotype has not been reproduced.

One of the hallmarks of cardiomyocytes is the contraction and
force production from these cells. In early work, force of EHTs
was measured at 0.3 mN which is much lower than heart muscle
(20 mN), however, recent publications have shown improvement
on this method. Mechanical load in an auxotonic fashion and
insulin addition to the media were shown to have a positive
inotropic effect on culturing neonatal rat cardiomyocytes (18).
Custom-made bioreactors also help mature tissue constructs
with the addition of vitamin C, fibroblasts, and increasing static
stress (21). In this publication, stem cell-derived cardiomyocytes
were selected out by using an antibiotic purification method and
made into constructs from clusters without dissociation. This
approach produced forces of 4.4 mN/mm2 which is only five-
fold lower than the adult myocardium. Adult levels of force
have been shown in constructs when comparing force per unit
area (24, 26). In these approaches, the width of the construct
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is thinner, which increases the force per unit area. Force/area is
further increased when stretch is applied. Construct remodeling
and the reduction in width occurs over time and is thought to
be largely accomplished by non-cardiomyocytes. At the time of
peak force of contraction, the fibroblast to cardiomyocyte ratio
was reported at∼1:1 (similar to the adult myocardium), showing
non-cardiomyocyte proliferation since ∼30% of the total cell
number were fibroblasts at baseline (17). Even though all the
studies have reported improvements in maturation parameters to
a certain degree, themost adult-like tissue formed is still relatively
immature when compared to the adult myocardium in terms of
conduction velocity (up to 25.8 cm/s when compared to 60–70
cm/s in adult myocardium) (17, 25). A recent study has reported
new adult morphological characteristics not present in current
in-vitro EHT models. By subjecting early stage iPSC-CMs (day
12 just after beating) to an intense electrical stimulation protocol
over 4 weeks, where constructs were stimulated by increases of
0.33 Hz/day from 2 to 6Hz. Adult tissue ultrastructure including
transverse tubules and functional calcium handling were present
along with oxidative metabolism and a positive force-frequency
relationship. However, the conduction velocity reported (25.0
± 0.9 cm/s) and force generated was still comparable to other
methodologies presently available (25).

Drug Screening
EHTs can be generated easily with minimal variation and they
have similar characteristics to heart tissue which means that they
are suitable for drug toxicology (8, 27). Moreover, because EHT
can be produced reproducibly and quickly, they can be used to
test multiple drugs for contraction abnormalities or cardiotoxic
actions (28, 29). Many of the drug responses of iPSC-CM EHT
are similar to normal human trabeculae, although, there is still
a maturity difference between iPSC-CMs and adult cells (27).
Lemoine et al. (16, 30) showed that cells cultured in EHTs were
suitable for testing IKr block using proarrhythmic drugs, and
also were not overly arrhythmic to clinically safe compounds.
Therefore, iPSC-CM EHT allow for drug toxicology to be carried
out with abundant material and could help pharmaceutical
companies in lowering the rejection rates of drugs during Phase
I clinical trials. EHTs of micro-dimensions based on collagen
type I (31) or a mixture of collagen I and Matrigel with human
embryonic stem cell-derived cardiomyocytes were also used as
cardiac models for preclinical drug screening (32). There has
already been encouraging take-up of hPSC-CM as a platform for
Pharma and the addition of commercially available engineered
heart tissue, from companies such as NOVOHEART or Tara
Biosystems, allows the drug companies to access standardized
and validated constructs.

Disease Modeling
Having heart constructs which are similar to heart tissue allows
for disease modeling in-vitro. Hypertrophic cardiomyopathy
affects 1 in 500 of the population and is difficult to model in
2D culture because it is primarily a defect in cardiac contraction.
Contraction abnormalities have been shown using EHTs caused
by mutations in the Myosin Binding Protein-C (MyBP-C),
including shorter relaxation and contraction times (33–35).

Moreover, mutated EHTs showed an increased Ca2+ sensitivity,
as seen in cardiac muscle from patients, and increased sensitivity
to verapamil, isoprenaline, and EMD 57033. CRISPR/Cas9 is
an exciting technology that can be used in conjunction with
pluripotent stem cells and EHTs to generate tissues with patient
specific diseases (36). This technology has been taken advantage
of in modeling both dilated and hypertrophic cardiomyopathies
(DCM, HCM), where point mutations in MYH6, ACTC1, or
PRKAG2 cause HCM, and mutations truncating the massive
protein titin cause DCM (31, 37–39). These approaches show
that point mutations can be modeled accurately in EHTs and
the mechanistic insights into the patient-specific disease can
be worked out. Taking advantage of the EHT system uses
fewer animals while being able to model complex diseases like
cardiomyopathies. Recently, hydrogel technology has been taken
advantage of to make a chamber resembling a ventricle (40).
The ejection fraction of 2% and stroke volume are far less than
a ventricle of the same size, however, this marks an important
improvement in the field.

A Tool for Cardiac Regeneration
In-vivo cardiac regeneration has always been one of the goals
of tissue engineering, because heart failure is characterized by
the irreversible death of cardiomyocytes and a persistent 5-
year mortality of 50% (41). The current treatments that exist
unfortunately are unable to replace the muscle that is lost post-
myocardial infarction and instead retard progression of the
disease via a variety of other mechanisms. EHT technology
could become a novel and viable treatment option to restore
lost muscle and aid in contraction of the failing heart (42, 43).
EHTs can be fused together to create larger constructs 15mm
in diameter and 1–4mm in length (18). These larger constructs
can be wrapped around rat hearts and have shown improvements
in an infarction model. Larger EHTs (5–7 million cells) were
developed for a guinea pig model with substantial cryo-injuries:
the increased size for guinea-pig relative to rodent was a step
closer to human dimensions (44). Unexpectedly, the cells inside
the EHTs proliferated to such an extent that the constructs
became substantially larger at 28 days. This experiment showed
proof of concept in a larger animal model improving left
ventricular function, including returning fractional shortening
to levels seen before injury. Functional improvement has been
shown with EHTs in rats (18, 45), guinea pigs (44), and large
pigs (46). A number of mechanisms have been proposed for the
positive effect including increased vascularization into the scar
area, secretion of paracrine factors, direct support of contraction,
reduced fibrosis, activation of the immune system, and reduction
of scar size. None have been categorically shown to solely
explain the functional effect, however, an interesting paper from
Vagnozzi et al. (47) have shown activated macrophages elicit
similar responses to directly injected bone marrow mononuclear
cells and cardiac progenitor cells.

Feasibility and efficacy has also been shown in animal models
but clinically relevant EHTs (10 cm × 10 cm) are likely to
be necessary for a regenerative medicine approach in heart
failure patients because of the large number of cells lost during
myocardial infarction (up to one billion) (46, 48, 49). As well
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as creating larger patches, the generation of a suitable number
of cardiomyocytes for human use are needed. There have been
dramatic advances in differentiation protocols used recently.
For example, using a 3D suspension spinner flask method,
cell numbers of the order of 109 have been produced in 1 L
flasks (50). Using microcarriers to increase surface area per
volume may also enable upscaling (51). Another major hurdle
is to maintain viability of the grafts since the typical inter-
capillary distance is just 20µm and clinically relevant grafts
would be from millimeters to centimeters in depth. It is likely
that vascularization of EHT in-vitro will be critical to long-term
survival of grafts. Various methods being explored include co-
culture with endothelial cells, 3D bioprinting, and microfluidic
systems (49, 52–54). Electromechanical integration of the grafts
is another hurdle to overcome, since a fibrotic interface is often
seen and can reduce the chance of definitive electrical coupling
occurring (44). Minimizing the inflammatory response with
adequate immunosuppression may reduce fibrosis. Alternatively,
research is currently being carried out to create universal donor
hiPSC-CM lines which could eventually be used to create hypo-
immunogenic patches which are simply prescribed in clinics as
an off-the-shelf treatment option for patients with heart failure
(49, 55). Finally, the development of pathological ventricular
arrhythmia has been a concern in the field; however, this
may be related to the mode of delivery since intramyocardial
delivery seems to appear more associated with arrhythmia post-
grafting (56, 57). Several published studies using epicardial patch
placement (e.g., Figure 2) have reassuringly not yet shown any
convincing evidence of arrhythmia during the early integration
phase, despite evidence of functional improvement vs. controls
(46, 48).

Overall, these simple collagen and fibrinogen hydrogel
constructs form an excellent substrate to allow stem cell-derived
cardiomyocytes to function and mature and have advantages in
terms of improved stability and low arrhythmogenicity compared
with cell injection only. The ease of reproducibility between
laboratories also confirms their robust nature. While their
simplicity is a virtue, also for the regulatory process, it does not
take advantage of improvements that might be introduced by
design of advanced materials or incorporation of other cell types.
Other advanced natural materials will now be considered.

COLLAGEN MODIFICATION IN
MYOCARDIAL TISSUE ENGINEERING

Advantages of Collagen for Myocardial TE
In the search for an ECM-mimetic substrate, proteins, and
especially ECM-derived biopolymers, have been viewed as
potential resources for many heart TE platforms, owing to
their intrinsic ability to perform very specific biochemical,
mechanical, and structural roles (58, 59). Among them, collagen,
with its inherent biocompatibility (superior to that of many
other natural polymers), bioactivity [due to the presence of
appropriate binding ligands for cardiac cells attachment (60–
64)], modifiable biodegradability, and low antigenicity, has
emerged as a key material for the development of myocardial

3D biomimetic substrates (6, 60, 61). Collagen scaffolds are also
versatile, with many relevant physical, chemical, mechanical,
and morphological properties being tailorable to achieve specific
functions. For example, by varying fabrication conditions,
3D architecture (percolation diameter, pore size, shape, and
alignment) can be controlled to facilitate cell infiltration and
nutrient diffusion (65–69), while by changing composition (e.g.,
by adding other proteins) and crosslinking conditions, scaffold
specific functions can be varied to match the properties of the
native tissue (70–72). Collagen can also be extracted in large
quantities, cheaply and in relatively high purity from awide range
of tissue sources (including skin, tendon, etc.) using a simple acid
extraction procedure followed by neutralization (73–76).

The Collagen Family
Collagen comprises a family of molecules with a common triple
helix configuration of three polypeptide subunits, known as α-
chains. These triple helices comprise a molecule of tropocollagen,
the basic building block of collagen fibers (Figure 3A). To date,
28 types of collagen have been identified and described in varying
detail (62, 63, 77). The best known and the most abundant
are fibrillar collagens I, II, and III, each containing triple-
helical ligands, GxOGEx

′
, that support cellular activity mainly

through their interaction via cell-associated integrins α1β1, α2β1,
α10β1, and α11β1 (62, 63) (Figure 3B). The strength of cellular
adhesiveness of each of these integrins is largely governed by
the intrinsic affinity of the individual receptor toward a specific
collagen ligand. The structural diversity observed across the 28
collagen types is reflected in differences in their cell-adhesive
sequences (62, 63). The distribution of these sequences in the
fibrillar collagens and their resulting affinities toward supporting
integrin ligation have been reported (63). It was established, for
example, that the GFOGERmotif is the highest affinity ligand for
α2β1 and α11β1 receptors while GLOGEN has been identified as
a preferred binding sequence for α1β1 and also α10β1 integrins
(63, 77, 78). The cells found in the heart include cardiomyocytes,
endothelial cells, smooth muscle cells, and fibroblasts. Although
endothelial cells (79) are the most prevalent cell type by number,
cardiomyocytes constitute more than 70% of the total cardiac
tissue volume (80). They express the integrin subunits α1, 3, 5,
6, 7, 9, and 10 which are associated with β1 (81, 82), with α1 and
10 being specifically collagen-binding integrin subunits. Collagen
therefore has an abundance of potential ligand sites to promote
cellular activity during myocardial tissue regeneration.

Collagen in Myocardial ECM
In the human body, collagen, in particular fibrillar type I, is
the main constituent of the ECM of many hard and soft tissues
(2, 6, 60, 61) providing both the structural and biological support
to resident cells. Myocardial ECM in particular consists roughly
of 75–80% fibrillar collagens, mainly type I (up to 85%) and type
III (up to 15%), with up to 5% of type V (2, 83, 84). Synthesized by
cardiac fibroblasts, they provide elasticity and structural integrity
to cardiac tissue and interact with integrins mediating cellular
adhesion (2, 78, 85, 86). Jointly, they support myocyte alignment
and contribute to matrix resistance to deformation during the
cardiac cycle, playing an important role in the maintenance
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FIGURE 2 | Upscaling of EHTs to six well-format and use in a rabbit myocardial infarction model. (A) First generation and second generation EHTs with their Teflon

spacers and silicone posts. (B) A live upscaled EHT in a six well-plate. (Ci) Left Anterior Descending (LAD) coronary artery ligation is shown on a rabbit heart with the

ribs held open. (Cii) The EHT is attached to the heart with sutures. (Ciii) The pericardium is returned over the EHT.

FIGURE 3 | (A) Collagen structure. Three polypeptide subunits (α-chains) with a common triple helix configuration. These triple helices comprise a molecule of

tropocollagen, the basic building block of collagen fibers and fibrils. (B) Distribution of cell-adhesive sequences in fibrillar collagens.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 October 2020 | Volume 7 | Article 554597
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of myocardium shape, thickness, and stiffness. Based on this
knowledge and taking into account that tissue engineering is in
essence a technique for imitating the extracellular matrix, it is
not surprising that much research effort has been focused on
the use of collagen to create bio-mimetic artificial heart tissue
(2–4, 60, 61).

Use of Collagen in Different Cardiac TE
Strategies
There are currently two broad strategies within cardiac tissue
engineering (74, 75):

1) in situ delivery of cells into the infarcted myocardium using
injectable gels, and 2) in vitro construction of cell-populated 3D
scaffolds (in the form of gel or of lyophilized sponges/meshes)
that can subsequently either be implanted in vivo on the infarcted
myocardium or used in vitro as artificial cardiac models for
biomedical studies and pharmaceutical development.

In situ Injectable Gel Substrates
The efficiency of the delivery of cardiomyocytes via epicardial
injection (known as in situ cellular cardiomyoplasty) has been
improved via the use of an injectable gel. This treatment possesses
serious drawbacks, such as, for example, death or migration
of up to 90% of implanted cells and lack of mechanical or
electrical contacts between the injected and host cells (1, 2, 87).
The injectable gel approach (1–3, 87, 88), aims at minimally
invasive surgery, and collagen alone or in combination with
other natural polymers, such as chitosan (89) and fibrin (90) has
been explored as an in situ gel-delivery system. However, the
use of collagen for this application has been restricted due to
insufficient stiffness (20–80 Pa for 1–3 mg/ml of type I collagen)
(2), high hydrophilicity and low viscosity (91) of its hydrogels
which, in turn, may provide insufficient mechanical support to
the diseased myocardium. Recent advances in this field include
biohybrid hydrogels based on collagen and other polymeric
molecules with and without bioconductive properties (92–94).
For example, in 2015, Xu et al. (94) reported the efficiency of
hybrid hydrogels of thiolated collagen with multiple acrylate
containing oligo copolymers for myocardial regeneration. These
hydrogels were populated with bone marrow mesenchymal
stem cells and injected in a rat infarction model. A significant
improvement in cardiac function in comparison to a PBS
control was observed in terms of increase in ejection fraction
and ventricular wall thickness, and a reduction in infarct size.
Van Marion et al. (95) published promising results from the
use of constrained and stress-free collagen/Matrigel systems to
increase efficiency of cardiac stem cell therapy. Results showed
that encapsulation of stem cells in these 3D gels stabilized
cell viability and proliferation and moreover induced mechano-
sensitivity. Recently, injectable conducting hydrogel systems have
been reported (93). In 2017, a novel conductive hydrogel based
on collagen, alginate, and a soluble non-toxic polypyrrole (PPy)
was described (96) as a promising candidate for cardiac muscle
regeneration. Due to incorporation of PPy, high conductivity,
good cardiomyocyte viability, and syringe-ability were achieved.
Although these developments show the potential of bio-hybrid
gels in improving the efficacy of cardiac stem cell therapy, future

clinical validation is needed to convert promising formulations
into medically proven products.

In vitro Engineering of Cell-Populated 3D
Constructs
In the second strategy, the characteristic 3D tissue engineering
approach, collagen is used to provide the in vitro 3D cellular
support (in gel or solid form) for both in vivo and in
vitro applications. In vivo usage includes implantation of the
designed cell populated biomimetic construct (cardiac patch)
on the infarcted myocardium to deliver healthy, functional
cardiomyocytes to the damaged area of the heart, thereby
enhancing the intrinsic regenerative ability of the host. The
cardiac patch is expected to be remodeled and incorporated
into the native cardiac tissue. In vitro applications include
biomedical studies, generation of healthy cells for cell-based
therapy, functional cell differentiation from stem cells, drug
screening, and research into the development of new treatments.

Collagen Hydrogels as 3D Cardiac Patches
The EHT, as described in the section above, was the first attempt
at creating 3D cardiac patches with collagen. It exemplifies the
efficacy of 3D gels in supporting cardiac cell activity within
artificial in vitro models. The EHT work and other similar
investigations (97, 98) demonstrated the possibility of creating
3D constructs, based on collagen gels and cells that develop,
after culturing in vitro, structural, functional, and physiological
characteristics similar to cardiac tissue. Another significant
finding in these studies is that vascularization takes place in
collagen gels when implanted in vivo. Unfortunately, mismatch
of the mechanical and spatial characteristics of these gel-like
systems with those of native myocardium currently precludes
their clinical use. However, significant research effort has
been focused toward their biomechanical properties and other
key parameters. For example, an increase in the mechanical
properties of collagen gels can be achieved by fibroblast-mediated
compaction (99, 100). This phenomenon, first reported in the
late 1970’s (101) and whose mechanism is still not completely
understood (99), has attracted extensive attention in the field
of regenerative medicine and especially wound healing. Gel
contraction increases collagen density and, consequently,
mechanical strength. However, the extent of this contraction
can be limited, and other more controlled methods need to be
considered to reinforce gel mechanics to achieve desirable and
predictable values for TE applications. For example, significant
improvements in physical, mechanical, and biological properties,
that are not readily achievable with individual collagen hydrogels,
have been reported for hybrid silk fibroin-collagen gels (102).
These include tuneable gelation time, stiffness levels covering
important range of physiological values, excellent elastic
behavior, and high resistance to cell mediated contraction. The
incorporation of electroconductive components into collagen
gel-like patches has also been considered as a means to enhance
maturation and physiological properties of the engineered
cardiac tissue by improving electrical coupling within, and
between, the engineered graft and host tissue. For example, in
2018, Roshanbinfar et al. (93) reported a biohybrid hydrogel
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composed of collagen, alginate, and the electroconductive
poly (3,4-ethylenedioxythiophene):polystyrene sulfonate
(PEDOT:PSS) which, after having been seeded with neonatal rat
cardiomyocytes, exhibited extracellular matrix–mimetic fibrous
structures, enhanced electrical coupling and cardiomyocyte
maturation. The presence of PEDOT:PSS in the hydrogel
improved electrical conductivity and prevented arrhythmia of
tissue constructs containing neonatal rat cardiomyocytes. Results
demonstrate the potential of these electroconductive biohybrid
hydrogels to be used for pharmaceutical drug screening or as in
vitro produced tissues for the treatment of heart disease.

Currently, cell-populated collagen gels have demonstrated
their potential as artificial cardiac models in a variety of in vitro
applications (103, 104).

The use of collagen gels has also been investigated in
differentiation and reprogramming approaches for the
generation of functional cardiomyocytes in vitro (105). Successful
stem cell differentiation into cardiomyocytes have been reported
on collagen I and collagen V substrates (106, 107). It was
also shown that direct as well as indirect reprogramming of
fibroblasts into cardiomyocytes may benefit from the use of
collagen gels (108, 109). The introduction of collagen I, for
example, into fibrin-based hydrogels increased the percentage of
contractile colonies out of the total number of cell colonies in
direct proportion to the collagen type I content (108).

However, the low stiffness of gel-like systems and poor ability
to create a spatial bio-mimetic environment somewhat limit
their in vivo application. These restrictions may be overcome by
development of solid porous 3D matrices, in which controlled
porous morphologies and better mechanical characteristics may
be achieved. This approach is described below.

Prefabricated 3D Collagen Matrices
By selecting appropriate processing methods and conditions,
collagenous scaffolds can be obtained with desirable structural
morphology (pore size, interconnectivity, shape, and
orientation), tailorable degradation kinetics, and tuneable
mechanical characteristics (6, 71, 72, 110, 111). Special
care should be taken during collagen processing to avoid
denaturation. Among suitable technologies for engineering
cell supports from naturally-derived collagen, a controlled
freeze drying method represents one of the most successful
procedures (6, 67, 71, 112). In this technique, the polymer
suspension is cooled below its freezing temperature, forming an
interconnected network of ice crystals, subsequent sublimation
of which leads to the creation of a porous scaffold with an
inner morphology that mirrors the structure of ice (Figure 4A).
Pore size in an isotropic scaffold is controlled by the time
at equilibrium (68) during freezing which is influenced by
freezing parameters. These include freezing temperature, cooling
rate, and temperature gradient and these strongly influence
ice crystal morphology and, consequently, spatial architecture
of the resultant scaffold. Anisotropy can be introduced by
controlling temperature gradients in the freezing slurry (114).
By using this approach, collagen matrices with controlled, and
complex pore orientation that closely mimic many normal
multi-oriented tissue arrangements have been produced

(69, 113, 115, 116). Figure 4B shows some examples of different
scaffold morphologies achieved (68, 113) by inducing uniaxial
temperature gradients in collagen slurries during the scaffold
fabrication stage.

To achieve a desirable biological performance from
engineered collagen matrices, other key parameters, such as
availability of cell binding ligands, swelling profiles, degradation
rates, and mechanics should be finely tuned. Different physical
(117–120) and/or chemical (71, 121–126) procedures can
be used to provide strength and durability to collagenous
matrices. Among them, carbodiimide (EDC)-based crosslinking
(65, 71, 72, 127) constitutes one of the most successful, and
as such, one of the most used tools for restoration of collagen
cross-linking density, lost during its extraction and purification.
However, EDC-promoted bonding has a significant drawback
in that it uses carboxylate anions (for example the glutamate
residue, E, of GFOGER), essential for integrin-mediated
cell attachment (Figure 5), which may impinge on scaffold
bioactivity (72, 78, 113, 128). To preserve or restore collagen
native chemistry, different research strategies have been
developed including the optimization of reactant crosslinking
concentration [to reduce the loss of cell-reactive carboxylate
anions (72)] and the attachment to crosslinked collagen of
novel cell-adhesive peptides, designed to control, guide, and
re-establish collagen biological activity after crosslinking
(129, 130).

3D prefabricated matrices require appropriate seeding
densities and homogeneously distributed cells to ensure
electrical connection across the scaffold. Current approaches
include the use of Matrigel as a vehicle for rapid cell delivery
into collagen sponges. This, in conjunction with the immediate
establishment of alternating-flow perfusion enabled rapid and
spatially uniform cell seeding at densities close to physiological
densities, while maintaining cell viability (131). Other strategies
include the application of moderate centrifugal force during cell
seeding resulting in uniform cell distribution (132).

Technological achievements in processing methods
and acquired expertize in modulating essential properties
of collagen-based matrices, have led to the development of
promising formulations successfully employed in a variety of
TE approaches. For example, at the beginning of the 2000s,
Kofidis et al. (133) reported the use of collagen sponges for
seeding of neonatal rat cardiomyocytes. The resultant artificial
tissue, generated after in vitro cell culturing, possessed structural,
mechanical, physiological, and biological characteristics similar
to the native myocardium. Later, the same group investigated
collagen mesh scaffolds (134) populated with undifferentiated
embryonic stem cells for in vivo implantation into the infarct
area of rat hearts. It was revealed that embryonic stem cells
in these scaffolds formed stable intra-myocardial grafts that
were incorporated into the surrounding area without distorting
myocardial geometry, thus preventing ventricular wall thinning.
Collagen type I sponges were also seeded with neonatal rat
heart ventricular cell fractions. These cells developed contractile
properties and were able to survive in these matrices, in vitro,
for up to 135 days (135). In the subsequent investigation of the
same group (136), collagen-I scaffolds were directly sutured to
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FIGURE 4 | (A) Schematic representation of freeze-drying process. Ice structure leads to pore shape, size, and orientation. (B) Examples of different morphologies of

collagen scaffolds. Anisotropy in the microstructures were achieved by imposing temperature gradients during the phase of crystallization of water in collagen

suspensions, using molding technology. Images from Cambridge Center for Medical Materials, University of Cambridge, UK are part of Figure 7 from Davidenko et al.

(113). License for re-using these images had been obtained from Copyright holder (Elsevier).

healthy or injured left ventricles of mice without previous in
vitro cell culture. Encouraging results in terms of vascularization,
scaffold degradation, and foreign body reaction have been
reported. In a study by Xiang et al. (137), scaffolds formed
from type I collagen and GAGs were seeded with adult bone
marrow–derived mesenchymal stem cells and implanted into
infarcted regions of rat hearts. Degradation rate and structural
stabilities of these matrices were manipulated by crosslinking
showing that EDC-treated scaffolds retained their sponge-like
architecture through the entire implantation period, providing
structural support to the failed regions of the heart. In a more
recent study, collagen matrix was embedded with bone marrow
cells and then transplanted into the patient with left ventricular
post-ischemic myocardial scars. At 10 months after implantation
clear improvement in the patient’s condition was observed:
left ventricular end-diastolic volume beneficially decreased and
left ventricular filling deceleration time significantly improved
(138). These effects were attributed to both the enhancement
of cellular retention at the site of tissue injury and to the
improvement of biological performance of cells in 3D substrates.
It has been shown that the appropriate 3D environment of
collagen scaffolds enhances the lineage differentiation capacity
of stem cells (139–145) with a subsequent increase in cell
therapeutic potency (141, 144, 146). The importance of an
appropriate 3D microenvironment was also confirmed when 3D
collagen type I scaffolds were used as artificial models of cardiac
tissue for in vitro generation of functional cardiomyocytes
from mesenchymal stromal cells (67). It was observed that

collagen templates enhanced cellular differentiation into
cardiomyocytes, increasing expression level of cardiomyocyte-
specific proteins. Interestingly, the positive effect of collagen
sponges was mostly attributed to their tri-dimensionality and
biomimetic mechanical properties rather than to biochemical
cues for inducing MSC differentiation. Additional stimuli for
cardiomyocyte generation can be provided by electrical and
mechanical stimulation in bioreactors and microfluidic devices
(2, 104).

The results described above show the potential of collagen in
creating artificial constructs with ECM-mimetic characteristics
in terms of chemical composition, spatial architecture, and
physical and mechanical properties, suitable for hosting cells,
supporting attachment, proliferation, and cell-guided tissue
formation. This results in successful in vitro models of cardiac
tissue for different TE approaches. However, there are still
many challenges to overcome before in vitro generated cardiac
implants, be they built from collagen or other natural or synthetic
material, are converted into clinically effective products. One
of these challenges is associated with a difficulty of designing
scaffolds that have nonlinear elasticity similar to the heart
muscle and thus develop synchronous beating with the recipient
heart (2–4). Other challenges are related to vascularization
which is crucial for adequate mass transport, cell survival,
electromechanical integration, and functional efficiency of the
transplanted cardiac patch (2, 147). Advances in these key areas
will allow translation of successful in vitro formulations into
effective therapeutic tools.
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FIGURE 5 | EDC-crosslinking. (A) In non-XL collagen two adjacent collagen helices: with a lysine (K) amine-containing sidechain and with the integrin-binding motif

GFOGER with its crucial glutamate acidic (E) side chain. The carboxylate anion is free to coordinate a Mg2+ ion bound to the integrin α-subunit I domain, so that α1β1,

α2β1, α10β1, or α11β1 can secure cell binding to the matrix. High cell adhesion. (B) EDC promotes the cross-linking of the glutamate (E) and aspartate (D)

carboxylate group with the adjacent lysine (K) amine group. (C) Amide bond formation between adjacent collagen helices. The glutamate sidechain can no longer

interact with integrins. EDC-crosslinking leads to the increase in scaffold stability to degradation and mechanical properties but affects the number of cell-binding sites

with a negative effect on cell attachment. Data for graphs in the figure were replotted from Davidenko et al. (72) and Davidenko et al. (78).

ALGINATE

Alginates are a group of natural polysaccharides that are
considered to be biocompatible, biodegradable, non-toxic, and
non-immunogenic (148, 149). Alginates were discovered in 1881
by a British pharmacist E.C.C Stanford, while exploring novel
and useful products from kelps (150). In 1896, algin was properly
isolated by Krefting Kelco Co. (151) in California, but it was not
until the end of the 1950s that industrial production of alginates
was expanded to Europe and Japan (152). The composition
and sequence of alginate copolymers consist of 1,4-linked-β-
D-mannuronic acid (M block) and 1,4-α-L-guluronic acid (G
block) units (Figure 6A) interspersed in regular (poly-G, poly-
M) or irregular blockwise pattern of varying proportions of
GG, MG, and MM blocks (153) (Figures 6B,C). The M block
segments provide the linear and flexible conformation of the
main backbone chain due to a linkage in diequatorial position,
β(1–4)mannuronic acid for theMMblocks, whereas the G blocks
serve to introduce folded and rigid structural conformation
by a steric hindrance around the carboxyl groups, and the

existence of a linkage in the diaxial position for the GG blocks,
α(1–4) guluronic acid, responsible for a remarkable stiffness of
the polymer chains. Figure 6 shows the chemical structure of
alginates (154).

The chemical and physical properties of alginates are affected
by structural parameters such as the monomer composition,
sequential structure, and molecular weight of the polymeric
chain. Also, depending on the source and species that produce
the copolymer, alginates, can be obtained with a wide range of
molecular weights (between 32 and 400 kDa) (155–157).

Alginate Production Methods
Alginate production can be carried out via bacterial biosynthesis
since alginates are exopolysaccharides produced by several
bacterial strains including Azotobacter and Pseudomonas
aeruginosa (158). The biosynthesis involves the oxidation of
a carbon source to acetyl-CoA, which via gluconeogenesis is
converted into fructose-6-phosphate (F6P) during the Krebs
cycle (159, 160). However, commercial production of alginates
is based on an extraction process from different marine
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FIGURE 6 | Representative alginate structure: (A) Monomers, (B) Chain conformation, (C) Block distribution (M-block, G-block, and MG or GM block), and (D)

Schematic model of hydrogel formation “egg-box model”.

macroalgae, brown algae, also called seaweeds, Macrocystis
pyrifera, Laminaria hyperborean, and Ascophyllum nodosum
(161, 162). Particularly, the seaweeds commonly known as kelps
(order Laminariales) are most widely used as common raw
material for alginate production worldwide (163–165).

Hydrogel Formation
Alginates have a number of free –COO− and COOH acid
groups which are responsible for their water solubility and
suitability for chemical functionalization (166). Alginates can
be easily converted to hydrogels by using cross-linking agents
such as calcium ions (Ca2+) (Figure 6D). The coordination
of the divalent ions is through the junctions of the G blocks
of one polymer with other G blocks of adjacent polymer
chains, known as the “Egg-box-model” (167) (Figure 6D).
The gelation of alginate is a chemo-reversible process, a
property that is quite useful to form cell-immobilization
matrices (168–170). One critical drawback of this cross-
linking method is the rate of degradation and the stability
of the alginate hydrogel in physiological conditions. In
this sense, the covalent cross-linking offers a permanent
method of gelation, and also, allows the possibility to control
degradation rates and mechanical stiffness using an appropriate
cross-linking agent and by controlling the degree of cross-
linking (171–173). Since mammals lack the alginase enzyme,
alginate is a non-degradable material, however, the partial
oxidation of alginate chains promotes degradation under
physiological conditions.

Alginate-Based Biomaterials for Cardiac
Tissue Engineering
The scope of the applications of alginates in the field of
biomedicine is broad and includes cell transplantation, delivery
systems of drugs, and proteins; wound healing, among other
applications (155, 174). The non-thrombogenic nature of the
alginates is one of the most attractive properties and makes it
an ideal material for cardiac applications (132, 175–177). Such
applications involve the use of alginate hydrogels and porous
3D scaffolds, and focus on four major areas including: (1)
extracellular matrix (ECM) substitute in heart tissues to promote
tissue regeneration due the structural similarity between alginate
and natural heart ECM, (2) delivery system for cardiac stem
cells or adult cardiomyocytes to the injury sites, (3) platform
for sustained delivery of growth factors to mimic the natural
physiology, and (4) gels to control drug release (178).

Alginate Hydrogels as Extracellular
Matrices
The application of alginates as extracellular matrices is generally
carried out through direct local injection into the infarcted
myocardium or via intracoronary injection. Direct injection of an
alginate gel into the infarcted myocardium of rats demonstrated
a persistent improvement of the left ventricular (LV) fractional
shortening and prevention of continued enlargement of the
LV dimensions (179). However, alginate hydrogels have a poor
bioresorbability and low cell adhesiveness, which may lead to
adverse tissue interaction and poor regenerative properties (180).
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The alginate modification with cell adhesion ligands such as
arginine-glycine-asparagine (RGD) can promote the cell-matrix
interaction. Yu et al. carried out a comparative study using
the neat alginate hydrogel and alginate modified with Arg-Gly-
Asp (RGD) in cardiac repair. The alginate hydrogel reshaped a
dilated aneurismal LV and improved LV functions, whereas the
RGD modified alginate enhanced the angiogenic response (181).
Subsequent studies conducted by the group of Randal tested
the efficiency of the alginate hydrogel implants (Algisyl-LVRTM)
in dogs with heart failure (HR) induced by repetitive coronary
microembolization (182). During an open chest surgery, the
final injection (a mixture of sodium-alginate aqueous solution
with calcium cross-linked alginate hydrogel) was applied directly
into the LV wall. The treatment was well-tolerated. Four-month
post-treatment, histological analysis showed that the material
was encapsulated by a thin layer of connective tissue with no
evidence of an inflammation reaction. Compared to the control
(saline-treated animals), the alginate implantation significantly
increased the ejection fraction (EF) from 26% at baseline to
31%, wall thickness, improved the LV sphericity, and reduced
the LV diastolic and end-systolic volume as well as end-diastolic
pressure. These promising results led to the initiation of clinical
trials for intramyocardial delivery of alginate implants, under the
name Algisyl R©, in patients with an enlarged acute LVmyocardial
infarct (MI). The implant is administered directly into the LV
wall using 19 injections (177). In addition, alginate was shown
to reduce the wall stress of the dilated heart and prevent further
dilatation and negative LV remodeling, even in human hearts
(183). Recent studies have shown a persistent effect of LV
augmentation of Algisyl in humans at 12-month post-treatment,
a clinically relevant improvement in exercise capacity and
symptoms was observed for patients with advanced HF (184). On
the other hand, an injectable alginate was developed by Landa
et al. (185) which could be delivered by intracoronary injection
as an aqueous solution. This solution was a mixture of calcium
cross-linked alginate with calcium gluconate solution. Biotin-
labeled alginate was used for temporary tracking of the injectable
material and injected into the infarcted area 7 days after anterior
myocardial infarction. Due to high calcium concentration at the
acute infarct site and the water diffusion from injectable solution
to the surrounding tissue, the gelation process occurs in situ.
The alginate hydrogel was replaced by host tissue within 6 weeks
after the administration. Echocardiography studies showed that
injection of this biomaterial reduced LV dysfunction, diastolic,
and systolic dilatation. Other studies have proven the beneficial
therapeutic effects of this novel in situ forming alginate hydrogel
in acute myocardial infarction (MI) model in pigs (186) and in
acute and chronic models of myocardial infarction in rats (185).

Alginate as Immobilization Matrix for
Cardiac Cells
As previously mentioned, the innate physical properties of
alginate hydrogel facilitate cell retention and they are most
commonly used for intramyocardial delivery of mesenchymal
stem cells (MSC). Several studies have shown that alginate can
provide the required temporal support for cell growth and

function as an artificial biomimetic ECM, until the cells are
able to support themselves (187, 188). However, in contrast
with other studies, Karpov et al. showed that practically all
embedded cells in pure alginate die prior to capsule degradation.
Additionally, a non-significant reduction in the scar size between
non-encapsulated and encapsulated cells was observed compared
to those in the control MI (189).

As we mentioned above, the incorporation of ECM-derived
peptides into the alginate hydrogel enables cell adhesion and
other functions, further maturing the seeded cells. The RGD
peptide is a commonly used alginate modifier because it is
derived from the laminin and fibronectin signal domain. Often
the peptide-cell interaction could be specific to certain types of
cells; however, RGD-peptide modified alginate is versatile since
the peptide mediates the cell adhesion and signaling between
ECM proteins and integrin receptors on the cell surface (190).

Roche et al. tested RGD-modified alginate hydrogels and
chitosan-β-glycerophosphate as delivery systems for improving
MSC retention in a rat MI model and epicardial patch (191).
In comparison to the saline control, treated hearts exhibited a
significant increase in cell retention after 24 h (9% vs. 50–62%
cell retention; Figure 7A). Levit et al. (193) encapsulated human
mesenchymal stem cells (hMSCs) in alginate hydrogel and then
attached it to the heart with a poly(ethylene glycol) (PEG)
hydrogel patch, in a rat MI model. Hydrogels were detectable up
to 2 weeks after implantation but fully degraded by 28 days. In
vivo bioluminescence imaging showed higher retention of cells in
animals treated with encapsulated hMSCs compared to delivery
by direct injection. hMSCs were only visualized in non-cardiac
tissue in the direct injection group, suggesting that minimal
washout or migration from the gel and capsules occurred. A total
increased microvascular density and a significantly decreased
scar size were observed after 28 days.

Injection of RGD-modified alginate microspheres with and
without MSCs in a 1-week rodent model of MI, led to
improvement in the preservation of wall thickness, fractional
shortening, and LV internal diameter—wall thickness with MSCs
alone decreased from 2.5 ± 0.1 to 1.9 ± 0.3mm over 10 weeks
post-injection, but with microspheres alone it was maintained
from 2.8 ± 0.3 to 2.8 ± 0.5mm, and with the MSCs in
microspheres it went from 2.6 ± 0.2 to 2.5 ± 0.4mm. In
vivo experiments with immunodeficient nude rats demonstrated
that at 2 weeks post-injection, the microspheres still indicated
good retention of cells (0.532%). Echocardiography performed
at 10 weeks post-injection demonstrated an improvement in LV
function of microsphere injected groups (194). The conjugation
of the RGDpeptide intomacroporous alginate scaffolds increased
functional cardiac muscle tissue formation and improved the
preservation of the regenerated tissue properties in long-term
in vitro cultures (195). An alginate scaffold modified with the
synthetic cyclic Arg-Gly-Asp-D-Phe-Lys (RGDfK) peptide was
recently reported by Sondermeijer et al. (196). The porous
scaffold was generated using a novel silicone sheet sandwich
technique in combination with freeze-gelation. The cyclic
RGDfK peptide is protease-resistant, highly stable in aqueous
solution, and has a high affinity for cellular integrins. These novel
scaffolds sufficiently adhered to the myocardial surface without
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FIGURE 7 | (A) Two injectable gels (chitosan and alginate) and two epicardial patches (collagen β-glycerophosphate and alginate) were compared in terms of acute

retention of stem cells in the infarcted heart (1, 2). Injection technique and volume, patch size, and attachment were optimized with rat hearts ex-vivo; (3)

Mini-thoracotomy and guide suture placement; (4) Myocardial blanching was observed after ligation of the LAD; (5) Patches were placed at the infarct border zone

cell-seeded side down with a single suture; (6) Patches remained in place for 24 h, when a bilateral thoracotomy was performed and aorta was cannulated for

perfusion (191). (B) Epicardial microsphere patches improve cardiac functioning and VEGF(+) patches improve cardiac morphometry post-MI. (1) Myocardial infarction

(MI) was induced in mice by left anterior descending artery ligation. Patches were transplanted onto the LV surface of the heart 4 days after MI, and fractional

shortening (% FS) was measured for 4 weeks; (2) To compensate for variability at baseline (1-week post-MI, pre-implantation, t = 0) FS was also expressed as a

percentage change over the 4-week time course (%1 FS); (3) Tissue morphometry was assessed using Masson’s trichrome stain. Patch/epicardial interference were

identified under high magnification and are indicated with a broken yellow line (scale bar = 2mm). Insets show vascular structure (arrows) in the patch areas (scale bar

= 50µm); (4) Left ventricular and patch morphometry were quantified using whole-slide scanned trichrome stained cross-sections (192).

sutures, and significantly higher cell retention than unmodified
scaffold was observed. A lower initial seeding density on RGDfk-
modified scaffolds showed significantly more vascularization at
the infarct border zone than scaffolds without cells 1 week after
transplantation, increasing the LVFS (4.7%) compared to saline
controls. Surprisingly, an opposite effect was observed at a higher
dose of hMPSCs. The overcrowding stress may explain this effect.
Sondermeijer et al. estimated the production cost of 1 RGDfk-
modified alginate scaffold to be around US$ 1500 (size 100mm×

0.75mm using 2% RGDfk-modified alginate), excluding cells and
culture materials. Although the production cost was relatively
cheaper compared to other biomaterials, more studies should be
carried out over extended periods of time in order to know its
potential and feasibility in clinical trials.

In addition, macroporous scaffolds made from pristine
alginate modified with RGD and heparin-binding peptide (HBP),
made by the freeze-dried process, displayed a greater stiffness
and stability in culture, compared with the conventional alginate
hydrogel. hESC-CMs and human dermal fibroblasts (HFs) were
seeded in macroporous scaffolds in serum free, chemically
defined medium. The addition of fibroblasts to the 3D culture
allowed the formation of functional cardiac tissues and the

presence of peptides attached to the alginate scaffold further
improves its functionality. By day 35, the polarization of the
connexin-43 to the CM membrane edge indicated improved
maturation of the cardiac tissue (197).

Exosomes are tiny microvesicles released by cells in response
to different physiological states. Their ability to carry cell type-
specific mRNA and miRNA, both implicated in the regulation of
multiple biological processes, result in them playing a principal
role in cell-cell communication (198, 199). Exosomes, from
various types of stem cells, can mimic the effect of their original
parent cell, also they have high stability in biological fluids.
Hence, exosomes have become an attractive strategy for clinical
applications in critical illness.

Exosomes secreted by resident adult cardiac progenitor
cells (CPCs)(CD9+, CD63+, CD1+, heat shock protein 70+,
Alix+, and tumor susceptibility gene 101+) are effective
in cardioprotection and repair of infarcted hearts (200),
Cellular uptake of exosomes is quick, resulting in rapid
dissemination of the vesicular contents to the target cells.
Therefore, an important area for consideration is the long-lasting
beneficial effects after delivery and strategies for enhancing their
therapeutic activity.
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Exosomes loaded in alginate-based hydrogels might be
considered in this area for preserving the exosomes in the
wound site and acting as an extracellular matrix. Monteforte
et al. (201) reported the use of alginate hydrogels loaded
with glioma-derived exosomes to enhance revascularization in
peripheral ischemia. Alginate beads with exosomes induced
angiogenesis in vivo showing their potential therapeutic effect
for isquimia. Also, alginate-based hydrogel loaded with exosomes
was recently proposed as a novel therapeutic approach to skin
tissue engineering. Its impact was compared with alginate-
based hydrogel and conventional sterile gauze on the full-
thickness excisional wound in a rat model. The application of
hydrogel loaded with exosomes greatly enhanced wound closure,
reepithelization, collagen deposition, and angiogenesis at the
wound site (202). Undoubtedly, these results open up a host of
opportunities for exploring alginate-based hydrogel loaded with
exosomes in the cardiovascular field.

Hybrid Hydrogel
In order to improve the interaction and response of cardiac
cells to various stimuli patterns, 3D nanocomposites have been
studied as scaffolds for cardiac tissue repair. 3D macroporous
nanocomposites of gold nanowires with alginate improved
the electrical communication between adjacent cardiac cells,
enhancing the cell organization, synchronous contraction under
electrical stimulation, and higher expression level of sarcomeric
α-actinin and Cx-43 on day 8(203). Another interesting
approach for cell delivery involved alginate-based cardiac patches
with magnetically responsive nanoparticles (204), which were
exposed to an external magnetic stimulation at a physiologically
relevant frequency (5Hz) to determine whether the addition of
nanoparticles would promote the formation of myocardial tissue.
Neonatal rat cardiac cells seeded within these novel scaffolds
were subjected to magnetic stimulation which resulted in a
more mature myocardial tissue characterized by anisotropically
organized striated cardiac fibers that preserved the desirable
features for a longer time than non-stimulated constructs
at 15 days of cultivation. A high activation rate of AKT
phosphorylation in cardiac cell constructs was detected after
applying a short-term 20min external magnetic field, indicating
the efficacy of magnetic stimulation to actuate at a distance.
These results showed a synergistic effect of magnetic field
stimulation together with nanoparticulate features as providing
the regenerating environment for cardiac cells driving their
organization into functionally mature tissue. In the same way,
Hao et al. (205) reported an injectable scaffold based on fullerenol
nanoparticles/alginate hydrogel as a cell delivery vehicle with
antioxidant activity. Brown adipose-derived stem cells (BADSCs)
were seeded in fullerenol/alginate hydrogel and their biological
behavior in the presence of H2O2 was studied. Results suggested
that the nanocomposite hydrogels have no cytotoxicity effects on
BADSCs and also, they can suppress the oxidative stress damage
of the cells, improving their survival capacity under reactive
oxygen species (ROS) microenvironment via activating the p38
and the extracellular-signal-regulated kinase (ERK) pathway
while inhibiting the c-Jun N-terminal kinase (JNK) pathway.
Also, in vivo studies showed that the injectable fullerenol/alginate

hydrogel can effectively decrease the ROS level in the MI zone
and improves the retention and survival of implanted BADSCs
and induces angiogenesis. The retention and survival in the
fullerenol/alginate group are significantly higher than in the pure
alginate hydrogel group.

Exploring new approaches for cell maturation, a conductive
hybrid hydrogel composed of collagen, alginate, and poly(3,4-
ethylenedioxythiophene): polystyrene sulphonate (PEDOT:PSS)
was developed by Roshanbinfar et al. to analyse the contractile
behavior of engineered cardiac tissue. A nonconductive hybrid
hydrogel (CA-gel) (collagen and alginate) exhibited arrhythmic
contraction at a frequency of 8–21 beats min−1 between day 5
and 11 and stopped after 13 days. Surprisingly, the conductive
hydrogel, composed by collagen, alginate, and 0.26% w/w
PEDOT:PPS (eCA-gel, ionic conductivity of 27 ± 8 × 10−4 S
cm−1), exhibited spontaneous rhythmic beating with frequencies
increasing from around 22 at day 5 to 220 beats min−1 at day 11.
High beating frequencies of eCA-gels were detected until day 13,
and spontaneous contraction was still detected at day 40. Non-
significant difference in response was observed between eCA-gels
and CA-gels to external electrical stimuli at 1 and 5Hz. Also,
orientation maps and graphs showed that cardiomyocytes are
oriented unidirectionally in eCA-gels (93).

Controlled Growth Factor Release From
Alginate-Based Matrices
Growth factors, cytokines, and stem cell-mobilizing factors
are bioactive molecules of high interest in the field of
therapeutic myocardial regeneration due to their potential in cell
proliferation, vascularization, apoptosis inhibition, progenitor
cell differentiation, and progenitor cell migration (206, 207).
Hao et al. (208) used an alginate hydrogel consisting of both
high and low molecular weight hydrogel, also known as binary
molecular weight alginate, for studying the sequential delivery
of vascular endothelial growth factor (VEGF) and platelet-
derived growth factor (PDGF)-BB into myocardial infarction.
VEGF is an important initiator of angiogenesis associated
with improvements in cardiac revascularization of the infarcted
myocardium (209) and induces protection of cardiomyocytes
against ischemic death. Zentilin et al. explored the effects of
VEFG-A and VEGF-B167 in cardiomyocytes exposed to hypoxia.
The percentage of apoptotic cells dropped from 17.2% of controls
to 7.6 and 8% in the VEGF-A and VEGF-B treated cultures,
respectively, when cardiomyocytes were exposed for 90min to
the cardiotoxic drug epirubicin (210). The same effect was
obtained from CellBeads containing human mesenchymal stem
cells (MSCs) during the treatment of critical limb ischemia
(CLI). Through secretion of VEGF-A fromCellBeads, an increase
in the muscular blood flow and oxygenation was observed
around the site of administration (211). However, delivery of
this growth factor alone may lead to immature and leaky
vasculature with poor function (212), hypotension, proteinuria,
and cardiac toxicities, among other serious adverse effects (213–
215). Given this consideration, alginate-based matrices become
an appropriate delivery system for this purpose. The cumulative
release of VEGF-A165 and PDGF-BB from alginate hydrogels in

Frontiers in Cardiovascular Medicine | www.frontiersin.org 14 October 2020 | Volume 7 | Article 554597



Majid et al. Natural Biomaterials in Cardiac Regeneration

vitro following incubation in PBS at 37◦C showed that 80% of
the growth factors were released at 30 days. Seven days after the
MI was induced in rats, the alginate hydrogels loaded with the
factors were injected intra-myocardially, along the border zone of
the infarct. Four weeks after injection, the slow sequential growth
factor administration led to a higher density of alpha-actin-
positive vessels (mature) than with a single factor. The sequential
protein delivery enhanced the systolic velocity-time integral and
displayed a superior effect than the single factors. Also, alginate
microspheres have been applied successfully for growth factor
release in cardiac application due to their prolonged release and
tuneable degradation properties. Rodness et al. (192) combined
the approaches of microsphere properties and cardiac patches
to produce a compacted calcium-alginate microsphere patch,
supported by a chitosan sheet to deliver VEGF to the heart after
MI in rats. The microsphere patch-treated hearts showed better
cardiac function than the unloaded chitosan patch. However,
histological studies showed an essential difference between VEGF
(+) and VEGF (–) patches. VEGF (+) patched hearts had thicker
scars characterized by higher capillary density in the border zone
than those treated with VEGF (–) patches (Figure 7B).

Alginate Based-Drug Delivery System
Alginates are widely used in the pharmaceutical industry as gels,
matrices, membranes, nanospheres, microspheres, and coating
material (216). Their chemical and degradation properties
make alginates an ideal candidate for local drug deliveries
including drugs used to treat cardiovascular diseases. Lovich
et al. (217) developed epicardial drug-releasing hydrogels for
applying dobutamine, an ionotropic agent for use in congestive
heart failure, to the left ventricle of rats. Epicardial dobutamine
increased indices of contractility with less rise in heart rate
and lower reduction in systemic vascular resistance than IV
infusion. Alginate polymers are also useful for administration
of poorly water-soluble drugs. A promising system to enhance
drug dissolution rate and maintain drug supersaturation levels
in the gastrointestinal fluid was developed by Franca et al.
(218). Solid dispersions of chlorthalidone were prepared by spray
drying using sodium alginate as carrier and sodium lauryl sulfate
or polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol
graft copolymer (Soloplus), as surfactants. At sink condition,
formulations showed a faster dissolution rate than the crystalline
drug. On another hand, the formulation and the coating
composition of biopolymeric pellets containing ranolazine, an
anti-angina drug, were studied by Segale et al. (219). Coated-
alginate pellets were prepared by ionotropic gelation using
different concentrations of hydroxypropyl cellulose (HPC) and
alginate. The rate and the entity of swelling process were affected
by the polymeric composition, with the increase in the HPC
concentration, the structure of the pellets became more compact,
slowed down the penetration of fluids, and determined a slower
release of the drug.

Finally, alginates have also been applied successfully in
potential treatment for other cardiovascular diseases such as
3D printed aortic valves (220, 221), in blood vessel engineering
(222, 223) and as a direct antihypertensive (224–226).

Alginate has proved its potential and applicability in the
pharmaceutical and biomedical field due to its versatile favorable
characteristics. The most critical features of alginate for this
application include non-toxicity, biocompatibility, and mild
gelation process. However, despite the extensive research of
alginate properties and progress made in cardiac applications,
most of their potential remains unexplored. Future investigations
on alginates may focus on the design of new classes of alginate
with precisely designed and chemical properties which might
respond to different stimuli and ensuring synergistic effects of
alginates on cardiac tissue engineering.

SILK AS A SCAFFOLD BIOMATERIAL FOR
CARDIAC TISSUE REPAIR

For centuries humans have harvested silk from silkworms to
produce clothing and as sutures. Most commonly, silk fibers
are recovered from the cocoons of the silkworm Bombyx mori,
however spiders also produce silk which is researched for its
superior mechanical properties (227, 228). At present a variety
of silk-based biomaterials have been approved by the FDA and
therefore make silk a desirable material to be used in biomedical
applications. For many biomedical applications silk cocoons are
initially degummed under boiling conditions in CaCO3 solution
to remove the sticky sericin protein which accounts for around
30% of the silk weight. The remaining mass (∼70%) is accounted
for by the silk fibroin (SF) protein and it is this that is mostly
used for tissue engineering applications. For further processing
the silk fibers are dissolved in either Ajisawa’s Reagent (Ethanol:
CaCl2: Water) (229) or Lithium bromide (230, 231) to produce
a clear regenerated silk fibroin (RSF) solution also known as
Silk I. Silk is known to exist as three polymorphs, these are
Silk I: a glandular state before crystallization, Silk II: a spun
silk state consisting of its β-sheet secondary structures and
Silk III: an air/water assembled interfacial form with a helical
structure (227, 232) (Figure 8A). Silk I is the commonly used
polymorph to create a variety of biomaterials as this is a water
soluble form of silk and can be easily converted into Silk II
by exposure to different conditions such as heat, shear force,
and a variety of solvents or salt solutions. Some of the first
reports dating back to 2012 for the use of silk fibroin (SF) in
the treatment of myocardial infarction (MI), were reported by
Chi et al. (233), where they create a SF/hyaluronic acid (HA)
patch containing bone marrowmesenchymal stem cells (BMSCs)
in a rat MI model. The BMSC/SF/HA patches were tested for a
duration of 8 weeks and found to be well-adhered, intact, and
showing little to no immunological responses (Figure 8B). They
significantly enhanced the survival of BMSCs and prevented the
apoptosis of cardiomyocytes as well as stimulated the secretion
of important growth factors for cardiac repair. The literature
reveals that in the last few years, there has been an increasing
interest in the development of silk-based scaffold materials (234–
243). For example, Tsui et al. (234) produced electroconductive
acid-modified silk fibroin–poly(pyrrole) (AMSF+ PPy) scaffolds
patterned with nanoscale ridges to enhance structural and
functional properties of cultured human pluripotent stem cell
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FIGURE 8 | (A) Production of aqueous silk solutions from silk cocoons (1),

Fibroin solution (2), Sericin solution (3) (B) Histological image of MI zones of

heart for Bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid

(BMSC/SFH) patch shown after 8 weeks of infarction (233). (C) Nanopatterned

silk substrate of nanopatterned acid-modified silk fibroin (AMSF) with

deposited poly(pyrrole) (PPy) (1 cm2). SEM image of AMSF + PPy

nanopatterned substrate. Cardiomyocytes fluorescently stained for α-actinin

(green) and nuclei (blue). Cells on nanopatterned substrates exhibit elongated

and aligned morphologies. Yellow arrows indicate the direction of the

nanopattern. Scale bar: 25mm; inset 10mm (234). (D) Genipin crosslinked

sericin hydrogel (1) schematic showing the anatomical site (black cross) of the

occlusion of left anterior descending coronary artery (LAD) (green line), the

corresponding infarcted myocardial region (shaded area), and the injection site

of the sericin/genipin hydrogel delivered via a syringe. (2) Macroscopic view of

a wild-type heart with a layer of myocardium at the LAD-supplied area cut to

open showing an in situ forming of genipin-crosslinked sericin hydrogel (yellow

arrowhead). Scale bar, 1mm (235). (E) Schematic representation of the

fabrication of patterned silk films using microgrooved PDMS molds (1).

Biocompatibility of silk films with cardiomyocytes: fluorescent

(Continued)

FIGURE 8 | microscopy images of confluent monolayers displaying

unidirectional alignment of H9c2 (2) and Primary ventricular cardiomyocytes

(PCMs) (3) on patterned silk films. Actin cytoskeleton (red:

Rhodamine–phalloidin), nucleus [Hoechst 33342 (blue)]. White arrows indicate

the direction of the alignment (scale bar−200mm) (236).

(hPSC)-derived cardiomyocytes (234) (Figure 8C). The authors
reported an enhanced organization of cardiomyocytes, in vitro,
exhibiting improved sarcomere and gap junction development
as well as increased expression of genes that are part of the
control for cardiac tissue excitation and contraction functions. To
show the diverse tuneability of silk-based biomaterials in another
study Song et al. (235) demonstrated the promotional effect a
silk/sericin hydrogel has on the cardiac functional recovery after
MI. The authors show how the in situ crosslinking silk gel lead
to an increased micro-vessel density and myocardial recovery
as well as a reduced inflammatory response and attenuated
apoptosis in the infarcted region, leading to an improved
functional recovery. As the gel crosslinks in situ the whole
process is less invasive than other patch methods, however, it is
worth noting that the degradation dynamics reported indicated
a total hydrogel degradation after ∼21 days which is much
shorter compared to other more rigid silk scaffold materials
(Figure 8D).

When looking at natural biomaterials it is important to
look at different aspects such as the species producing the
silk but also the food they consume and how these can affect
their produced biomaterials and reproducibility (244). It is
in this context that in contrast to others Mehrotra et al.
(236) report a comparative study of SF patterned monolayers
produced by Bombyx mori and Antheraea. The silk films were
produced by water vapor annealing under vacuum, cast on a
microgrooved Polydimethylsiloxane (PDMS) mold (Figure 8E).
The authors found that the non-mulberry silk scaffolds from
A. assama exhibited better mechanical strength and elasticity
as well as a lower immunogenicity and better compatibility to
cardiomyocytes compared to the B. mori scaffolds. In another
interesting study Petzold et al. (243) demonstrated the use
of recombinant spider silk protein eADF4(κ16) in Araneus
diadematus to overcome previously reported reproducibility
issues. They reported an engineered modified sequence of ADF4,
where the glutamic acid residue of the repetitive unit was replaced
with lysine in the core domain of the SF. In this study, films were
produced by dip coating glass substrates into an eADF4(κ16)
solution and then letting the solvent dry off naturally. Here,
no patterning of the films was considered, and in vitro studies
of cardiomyocytes grown on eADF4(κ16) films in comparison
with fibronectin films was investigated. The cardiomyocytes
responded well to pro-proliferative factors as well as exhibiting
good cell-to-cell communication and electric coupling similar to
fibronectin films. The authors indicate the potential ability to
print the eADF4(κ16) silk solution without the need of additional
crosslinking agents for future cardiac applications, along with the
potential for further genetic modification to further optimize the
functionality and processability (233).
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FIGURE 9 | (A) The general structure of PHAs. (B) The R groups of various

PHAs that have been utilized in cardiac tissue engineering. The short chain

length PHAs (SCL-PHAs); monomers include 3HB: 3-hydroxybutyrate and

3HV: 3-hydroxyvalerate whilst for medium chain length PHAs (MCL-PHAs) that

have been investigated monomers include 3HHx: 3-hydroxyhexanoate, 3HO:

3-hydroxyoctanoate, 3HD: 3-hydroxydecanoate and 3HDD:

3-hydroxydodecanoate.

Thus current literature indicates that silk-based composite
materials can be used to form excellent tuneable scaffold
materials for cardiac repair with low immunological responses,
good cell adhesion, and proliferation, as well as superior
mechanical properties (234, 242, 243). Silk as a biomaterial gives
the opportunity to create a variety of materials including fibers
(237), foams (241), hydrogels (231), nanoparticles (245), films
(243), and 3D printed structures (246, 247). It also has tuneable
degradation rates as well as the potential for gene and drug
delivery in the created constructs.

PHAs: NATURAL POLYMERS OF
BACTERIAL ORIGIN

While clear improvements in the mechanical and other
functional properties have been made for the natural materials
described so far, they do not approach the range and flexibility
of synthetic polymers. A bridge between these two worlds
is given by polymers produced by bacterial fermentation.
Derived from the monomers of 3-,4-,5-,6-hydroxyalkanoic acids,
Polyhydroxyalkanoates (PHAs) are a family of bioresorbable
aliphatic polyesters normally produced using fermentation of
bacteria under nutrient limiting conditions. Characterized by
their monomer composition, PHAs are classified in to two main
types, short-chain length PHAs (SCL-PHAs) and medium-chain

length PHAs (MCL-PHAs), each with unique properties. SCL-
PHAs contain 3–5 carbon atoms within their monomer unit
whereas MCL-PHAs are produced from monomers containing
6–16 carbon atoms in their monomer unit (Figure 9). The
bacterium and the carbon source used for the fermentation
are crucial in determining which of these two subsets of PHAs
are produced.

Differences in the length of the monomer units results in
variation in the mechanical properties of these two polymer
subsets. Due to their larger monomer units, the side chains
of MCL-PHAs do not readily pack closely together, therefore
these polymers are highly flexible elastomers that exhibit low
crystallinity and in turn, a low glass transition temperature
(Tg). These properties make MCL-PHAs such as Poly(3-
hydroxyoctanoate) (248, 249), Poly(3-hydroxyoctanoate-co-3-
hydroxy-decanoate) (250, 251), ideal for soft tissue engineering
(STE) such as cardiac applications (252). Conversely, SCL-
PHAs are generally semi-crystalline, brittle polymers with high
melting temperatures (Tm). Poly(3-hydroxybutyrate, P(3HB)
(253), the best-studied SCL-PHA, holds great potential for hard
tissue engineering applications. However, whilst also a SCL-
PHA, Poly(4-hydroxybutyrate), P(4HB), is highly elastomeric
and exhibits an elongation at break (Eb) of 1000% and has
received FDA approval for its use as a suture material (254).

The large variability of monomer units (C3-C16), in addition
to the variability in the position of the hydroxyl group
results in numerous configurations of PHAs, each with
bespoke mechanical characteristics. This is in contrast to
conventional synthetic copolymers such as Poly(lactic-co-
glycolic acid) (PLGA) where only the mole% of the two
respective monomers can be adjusted to modify the polymer
characteristics. To this end, the highly crystalline nature of
P(3HB) makes it difficult to biodegrade and thus its biomedical
applications have been limited (255). To address this, numerous
copolymers of P(3HB) have been generated including Poly(3-
hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB),
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), P(3HB-co-
3HHx), and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate),
P(3HB-co-HV), which are less crystalline than the homopolymer
and also have an increased Eb, thus enhancing the potential
medical applications of P(3HB). Additionally, P(3HB) has
been shown to become more crystalline and brittle when aged.
Conventionally, plasticizers are added to polymers to modulate
their mechanical properties, however, these are often at the
expense of biocompatibility. Recently, oligomers of MCL-PHAs
derived via hydrolysis were shown to reduce the crystallinity of
P(3HB), thus reducing stiffness, whilst not compromising on
biocompatibility (256).

Although highly tuneable, the side chains of PHAs do
not conventionally contain polar groups such as hydroxyl
or carboxylic acid groups. As a result, PHAs are relatively
hydrophobic in nature, therefore they degrade via surface erosion
rather than bulk degradation, as observed for conventional,
synthetic polymers including PLGA. As such, PHA derived
tissue engineering scaffolds have the potential to maintain
their structural integrity over a longer period, thus aiding the
endogenous timeline of tissue repair. Upon their degradation,
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PHAs release weak hydroxy acids with high pKa values (4.70 and
4.72 for 3- and 4-hydroxybutyric acid, respectively), in contrast to
the relatively stronger acids, lactic acid (pKa 3.86), and glycolic-
acid (pKa 3.87), the degradation products of PLGA (257).

In addition to being weaker acids, thereby less likely to
instigate an inflammatory response, the degradation products of
PHAs are often naturally occurring metabolites found in-vivo.
For example, 3-hydroxybutyric acid, the breakdown monomer
of P(3HB) is a ketone body found within blood plasma and
urine (258) whilst P(4HB) degrades into 4-hydroxybutyric acid
[γ-Hydroxybutyric acid (GHB)] which is naturally found in
numerous organs including the heart and skeletal muscle (259)
and can be clinically administered for treatment of neurological
disorders (260).

The biocompatibility of PHAs has been demonstrated
in various in-vivo studies using medical grade PHAs.
Microspheres and tubes derived from the co-polymer Poly(3-
hydroxyoctanoate-co-3-hydroxyhexanoate), P(3HO-co-3HHx)
were subcutaneously implanted into a mouse model and
although a thin layer of fibroblasts was observed at 2 weeks, this
did not increase over time (40 weeks) and no macrophages were
identified during this period (261). Subsequent studies of P(4HB)
derived films implanted subcutaneously in rats also revealed a
minimal immune response (262).

Due to their excellent biocompatibility, in addition to their
diverse mechanical properties, PHAs have been assessed for
various aspects of cardiac tissue engineering. Valve replacements
(Figures 10A–C) and regenerative cardiac patches (Figure 10D)
have been investigated, either through fabrication of complete
scaffolds or as coatings to facilitate the functionalization and
mechanical properties of decellularized organ homo-/xeno-grafts
or other polymer derived grafts.

Left Ventricular Regenerative Patches
Numerous studies have investigated PHAs, namely P(3HB), for
their suitability as anti-adhesive pericardial patches (268, 269),
to be used following cardiac surgery to prevent adhesions, or for
artery augmentation (270). More recently, PHAs are beginning to
be evaluated for their suitability as substrates for regeneration of
the myocardium following MI.

During diastole, the Young’s modulus of the human
myocardium is 0.02–0.5 MPa (271). The mechanical properties
of MCL-PHAs are not vastly dissimilar and are therefore
well-suited biomaterials for LV regeneration. Furthermore,
their high processability allows for the fabrication of complex
3D structures, containing defined anisotropic structural cues,
potentially capable of maturing hPSC-CMs toward a more
adult phenotype.

Despite being a brittle SCL-PHA, electrospun P(3HB)
fibers were compared to fibers produced from other well-
studied natural and synthetic biomaterials. Although all of the
investigated biomaterials were shown to be biocompatible with
a range of cell types including the cardiac line HL-1, P(3HB),
(alongside PCL) displayed superior adhesion and growth of
cells when compared to other natural biomaterials like collagen
and silk fibers. Acellular fibrous scaffolds derived from these
biomaterials were implanted into a rat model of MI. Both

P(3HB) and collagen scaffolds commenced degradation within
8 weeks of implantation without evidence of encapsulation of
the scaffold. Rather, these scaffolds were able to instigate the M2
macrophage phenotype which is often associated with enhanced
repair post-MI. This was in contrast to silk and PCL fibers that
were encapsulated following an M1 macrophage response. Of
the scaffolds investigated, P(3HB) was also shown to facilitate
improved angiogenesis as determined by a greater number of
capillaries and arterioles in both the healthy and infarcted
myocardium. Although these effects manifested in reduced scar
formation and a prevention in ventricular dilation, none of
these acellular scaffolds were able to improve systolic function as
assessed via echocardiography 2 weeks post-implantation (272).

As a result, other PHA scaffolds have been generated and
assessed with the addition of cells. Indeed, the elastomeric MCL-
homopolymer P(3HO) has been assessed for its potential as a LV
post-MI regenerative patch. Analysis of its mechanical properties
revealed a Young’s modulus of 3.7 MPa reduced to 1.5± 0.4 MPa
at 37◦C followed by a further reduction upon the introduction of
porosity to 0.41 ± 0.03 MPa. Although marginally greater than
that of the adult myocardium, this can be beneficial in preventing
post-MI cardiac hypertrophy andmyocardial remodeling. A high
degree of elasticity was reported at body temperature (699.3 ±

113%), essential for the beating of the heart. Furthermore, CM
adhesion, cell viability, and proliferation of C2C12 myoblasts
on P(3HO) scaffolds was shown to be comparable to that of
collagen, despite the hydrophobic nature of P(3HO) and the
lack of prior preconditioning with ECM proteins. Given its
processability, P(3HO) was electrospun to generate fibers whilst
the incorporation of the RGD-motif, known to enhance cell
attachment as well as the incorporation of vascular endothelial
growth factor (VEGF), further improved cell proliferation of the
C2C12 myoblasts, thus highlighting the potential of MCL-PHAs
for cardiac regeneration (266).

Furthermore, a 95:5 wt% blend of MCL-PHA/PCL has
been seeded with murine atrial derived cardiac progenitor
cells (CPCs), a heterogeneous population of cells containing,
endothelial, fibroblasts, and cardiac “stem cells.” To address
the poor cellular retention following administration via intra-
myocardial injection, porous films were generated from the blend
as a means of delivering CPCs to the myocardium, allowing for
their release in a controlled fashion. Introduction of PCL resulted
in a reduction in hydrophobicity, thus enhancing cell adhesion.
Cells were tracked in-vivo via (19F) MRS, showing a reduction
in cell density on the scaffold across a 9-day period perhaps as a
result of the cells detaching from the scaffold and entering into
the myocardium (267).

In addition to aiding the delivery of CMs to the myocardium,
PHAs have been investigated for their role in the differentiation
and maturation of CMs. Shijun et al. (273) compared
the cardiomyocyte differentiation efficiency of mouse iPSC
(miPSC) cultured on 2D and 3D Poly(3-hydroxybutyrate-co-3-
hydroxyhexanoate), P(3HB-co-3HHx) relative to TCP. Although
both the 2D and 3D films of P(3HB-co-3HHx) were capable of
superior miPSC adherence and proliferation relative to the TCP
control, the 3D film was able to deliver enhanced cardiomyocyte
differentiation efficiency (273).
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FIGURE 10 | Macroscopic images of (A) Decellularized porcine valves impregnated with P(4HB) and implanted into the pulmonary position of sheep for 12 weeks

display viability and retain the overall structure of the valve (263). (B) A tissue engineered heart valve derived from PGA, coated with P(4HB) and subsequently seeded

with either adult stem cells or vascular cells. It has been placed into a self-expanding stent and is to be delivered to the pulmonary position of sheep for 8 weeks (264).

(C) Aortic grafts derived solely from P(4HB) following molding using a CT generated structure of a human aortic valve. SV highlights the Sinus of Valsalva (265). (D)

Solvent cast film derived from MCL-PHAs that has been utilized for LV cardiac regeneration (266, 267).

Further investigation of stem cell derived CMs was conducted
by Dubey et al. (274) through the assessment of hiPSC-CMs
cultured on either P(3HO) or poly(3- hydroxynonanoate-co-3-
hydroxyheptanoate), P(3HN-co-3HHP) films relative to TCP.

Cellular viability was determined to be upwards of 90%
following 2 weeks of hiPSC-CM culture on films derived from
these PHAs. Subsequent functional assessment of these cells
was completed by way of beating measurements and calcium
handling analysis. P(3HN-co-3HHP) was characterized as a
highly elastomeric biopolymer relative to gelatin and as hiPSC-
CMs displayed an increased beating rate relative to TCP controls.
Furthermore, the time to peak calcium release as assessed by
optical mapping was quicker for cells cultured on P(3HN-co-
3HHP) relative to either P(3HO) or TCP control. Although
no difference in sarcomere length was reported for hiPSC-CM
cultured on films derived from either of these PHAs, cellular
alignment was reported following the culture of hiPSC-CMs on
electrospun fibers derived from either PHA (274).

These studies highlight a promising future for PHAs in the
field of myocardial regeneration. Subsequent studies will aim
to generate PHA-derived 3D tissue mimics of the LV complete
with intrinsic structural cues and a range of cells capable of
facilitating in vitro maturation of CMs followed by their in vivo
retention. Although the use of PHAs for myocardial repair may
be in its infancy, the diversity of mechanical properties observed
in the PHA family is in stark contrast to other biomaterials and
as such, has seen PHAs utilized for a range of cardiac tissue
engineering applications with cardiac valve replacement perhaps
being the best-studied.

Cardiac Valve Replacement
In addition to the development of patches for the treatment
of MI, CTE holds great potential in the treatment of valvular
heart disease. Damage to the cardiac valves results in leaking
or stenosis of the valve and as such, the current gold-
standard treatment is to replace the defective valve with
a mechanical substitute. Although highly durable, they are
poorly biocompatible and present a high risk of stenosis
and thrombus formation, hence the need for life-long anti-
coagulation therapy.

Tissue engineering of heart valves (TEHV) is an alternative
strategy being investigated, however, a number of challenges
including the complex anatomical architecture of the tissue, the
mechanical flexibility of the leaflets in response to physiological
flow and pressure, and a surface that is free from stenosis,
embolism, or generation of abnormal blood flow must first
be addressed.

One way to recapture the complex architecture of the valve
is to use a homo- or xeno-graft. To reduce the immunogenicity
presented by these grafts, decellularization protocols can remove
the pro-immunogenic elements of the tissue, leaving behind
the complex architecture and the extracellular matrix (ECM).
The ECM plays a key role in valve homeostasis by preventing
stenosis and thrombosis whilst also facilitating flow. Upon
decellularization of the valve, however, collagen fibers within
the ECM are often damaged. Not only is their exposure highly
thrombogenic due to their activation of platelets, it also reduces
the mechanical strength of the graft. PHAs have been investigated
to address these limitations through either their incorporation
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into decellularized grafts or the complete generation of valvular
structures from PHAs.

Grabow et al. (275) investigated the generation of PHA-
hybrid valves by impregnating aortic porcine valves with
PHA or dip coating with either P(3HB) or P(3HB-co-4HB).
Although the latter resulted in a solid polymer film, it was
susceptible to delamination under physiological flexure whilst
the impregnated xenograft was capable of generating a mean
transvalvular pressure gradient comparable to that of the native
valve. Decellularized valves were then impregnated with P(3HB)
or P(3HB-co-4HB) resulting in reduced platelet activation in vitro
relative to the uncoated xenograft, thus suggesting that collagen
fibers were less exposed however the same was not observed for
valves impregnated with P(4HB) alone.

In vivo assessment was conducted through implantation
of these impregnated grafts into the rabbit abdominal aorta
resulting in patent valves containing host vasculature and
completing lining of the lumen with host endothelial cells.
Although the P(3HB) impregnated valves were free of blood
clots, there was some evidence of clotting in the P(4HB) hybrid
grafts. Furthermore, a degree of calcification was observed in
P(4HB) grafts. Despite this however, P(4HB) is less crystalline,
more pliable than P(3HB) and also degrades quicker, therefore a
82:18% P(3HB-co-4HB) co-polymer was generated and assessed
in a sheep aorta resulting in the migration of host smooth muscle
cells into the leaflets and the generation of a confluent endothelial
cell lining in addition to no evidence of stenosis (263).

Although polymer impregnation enhanced the mechanical
properties of the decellularized xenografts (275) it did not
recapture the microarchitecture of the ECM. Therefore
Hong et al. (276) utilized the highly processable nature
of PHAs and deposited P(4HB)-derived submicron fibers
onto the surface of porcine aortic xenografts via solution
electrospinning resulting in a fibrous network which also led to
an enhancement of tensile strength and elastic modulus relative
to the decellularized xenograft.

PHA-derived Valvular Grafts
Although decellularized valves have the advantage ofmaintaining
the 3D structure of the leaflets, the low availability of
homografts coupled to the ethical considerations of using
xenografts has resulted in researchers developing valves purely
from biomaterials.

Owing to their thermoplastic properties, it was possible to
mold P(4HB) and P(3HB-co-3HHx) into valvular structures.
This was in contrast to the conventional biomaterial PGA which
exhibited poor mechanical properties, including their stiffness
and lack of pliability, resulting in an inability to fabricate
functioning valves from this biomaterial, even when made into
non-woven meshes (277). Similarly, it was also possible to
mold valves using P(3HO) which were subsequently seeded
with autologous ovine vascular- and endothelial-cells. Fabricated
valves were implanted into the pulmonary artery of a lambmodel
where they remained viable for 17 weeks. Upon follow up, an
increase in the inner diameter alongside the length of the valve
was observed suggesting that the graft was growing with the
animal. The study could not conclude whether this was true
regeneration and growth of the valve or rather expansion of

the construct. The valve did become more elastic over the 17
weeks resulting in a stress–strain curve resembling that of a
native pulmonary artery valve. The Mw of polymer reduced by
30% during this period, potentially indicating that the construct
was degrading and being replaced by tissue. Additionally, ESEM
showed that following cell seeding the surfaces of the leaflets and
conduit wall were smooth. This was in contrast to the non-seeded
P(3HO) control which had not been endogenously populated,
however despite this, there was no evidence of thrombus
formation on the non-seeded control further illustrating the high
biocompatibility of PHAs (278).

Given the highly processable nature of PHAs, it has been
possible to mimic the complex architecture of the native aortic
valve using computer topography (CT). An aortic homograft was
scanned via CT resulting in the generation of a silicon mold
onto which P(4HB) was molded, resulting in the production of a
valvular construct with dimensions that deviated only 3–4% from
the homograft (265). Such an approach relied solely on molding
P(4HB), therefore did not require sutures, which are known
to disrupt blood flow and cause thromboembolism, to attach
the valve leaflets. A dripping technique was then used to seed
the valves with myofibroblasts derived from the differentiation
of cryopreserved human umbilical cord cells (CHUCCS). The
cellularized valves were subsequently incubated in a dynamic
bioreactor system that mimicked developmental conditions by
gradually increasing pulsatile flow and pressure, resulting in an
organized ECM and an enhanced tensile strength relative to
static controls (279). CD133-positive cells were also isolated from
umbilical cord blood and differentiated into myofibroblast and
endothelial-like cells. The valves were populated with these cells
again via a dripping technique followed by culture in a dynamic
bioreactor. Myofibroblasts were seeded first forming a confluent
layer of α-SMA expressing cells. The endothelial cells, seeded on
top of themyofibroblasts, formed amonolayer that behaved like a
functional endothelial network mimicking in-vivo characteristics
as assessed by nitric oxide (NO) and intracellular calcium
signaling, following acetylcholine and histamine stimulation,
respectively (280).

The diversity of the cardiac applications in which PHAs have
been utilized is testament to their excellent biocompatibility
and processability. It has been possible to use a multitude
of fabrication techniques to generate a number of bespoke
structures using PHAs, both homopolymers, and co-polymers
and have been selected over conventional biomaterials due to
their superiormechanical properties. As PHAs continue to attract
attention in the cardiac field, their potential as left ventricular
regenerative patches will further be explored in conjunction
with advanced fabrication techniques and stem cell-derived
cardiomyocytes and endothelial cells.

ACTIVE FACTOR DELIVERY USING
NATURAL BIOMATERIALS

In addition to the natural biomaterial cardiac repair techniques
discussed in this review, extracellular vesicles and exosomes are
also being researched for cardiac repair. Natural biomaterials
can be utilized to deliver acellular biological components to
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TABLE 1 | Advantages and disadvantages of natural materials used for cardiac tissue engineering.

Material Advantages Disadvantages

EHT • Can be easily shaped or cast to the complex geometry of the myocardium, and so

can provide efficient bonding to the native tissue

• Good electrical coupling is possible

• Can be generated easily with minimal variation

• Have similar characteristics to heart tissue, meaning that they are suitable for drug

toxicology

• CRISPR/Cas9 can be used in conjunction with pluripotent stem cells and EHTs to

generate tissues with patient specific diseases

• Can be fused together to create relatively large constructs

• A true adult cardiomyocyte phenotype has not been

reproduced

• Larger EHTs with sufficient cells for clinical relevance have

not yet been produced

• As of yet EHT viability is not maintained as vascularization is

unable to reach the core of the grafts

• A fibrotic interface is often seen between the myocardium

and EHT and this can reduce the chance of definitive

electrical coupling

Collagen • It is inherently biocompatible, superior to that of many other natural polymers

• It is inherently bioactive due to the presence of appropriate binding ligands for

cardiac cell attachment

• It has modifiable biodegradability

• It has low antigenicity

• Collagen scaffolds are versatile, with many relevant physical, chemical, mechanical,

and morphological properties being tailorable to achieve specific functions

• Collagen can be extracted in large quantity from a wide range of tissue sources at

high purity, and at relatively low cost

• It has an abundance of potential ligand sites to promote cellular activity during

myocardial tissue regeneration

• Collagen, in particular fibrillar type I, is the main constituent of the ECM of many hard

and soft tissues

• It supports myocyte alignment and contributes to matrix resistance to deformation

during the cardiac cycle, playing an important role in the maintenance of myocardium

shape, thickness, and stiffness

• The low stiffness of gel-like systems and poor ability to create

a spatial bio-mimetic environment somewhat limits its in vivo

applications

• There is difficulty in designing collagen scaffolds that have

nonlinear elasticity similar to the heart muscle and therefore

it is difficult to develop a scaffold which beats synchronously

with the recipient heart

• There is an unmet need for vascularization which is crucial

for adequate mass transport, cell survival,

electromechanical integration and functional efficiency of

the transplanted cardiac patch

Alginate • Alginates are natural polysaccharides that are considered to be biocompatible,

biodegradable, non-toxic, and non-immunogenic

• The scope of the applications of alginates in the field of biomedicine is broad,

including cell transplantation, drug, and protein delivery, and wound healing

• It has a non-thrombogenic nature

• Can be directly and locally injected into the infarcted myocardium or via intracoronary

injection and therefore it’s use doesn’t require open surgery

• Mammals lack the alginase enzyme, therefore alginate is a

non-degradable material, however, the partial oxidation of

alginate chains promotes degradation under physiological

conditions

• Alginate hydrogels have poor bioresorbability and low cell

adhesiveness, which may lead to adverse tissue interaction

and poor wound-healing properties

PHAs • Many polymers in the PHA family are highly flexible elastomers which make them

ideal for soft tissue engineering

• PHA derived tissue engineering scaffolds have the potential to maintain their

structural integrity over a longer period due to surface degradation vs. bulk

degradation observed in PLA and PLGA

• They are highly biocompatible and bioresorbable

• They have diverse mechanical properties

• PHAs can be used for different aspects of cardiac tissue engineering such as

patches, and valves

• PHA based sutures are FDA approved

• Other commercial products include mesh constructs for ventral and inguinal hernia

repair; patches for tendon and ligament repair; mesh constructs for face and breast

lifts

• Can be processed to make a diverse range of materials, including 3D printed

bespoke structures, electrospun (solution and melt) fiber sheets, gyrospun fiber

sheets, porous 3D scaffolds, melt extruded and dip molded tubular structures,

solvent cast films, hydrogels, microspheres, and nanospheres

• PHAs are sustainable polymers produced using fermentation and do not need to be

isolated from animal/human tissue

• The medical grade PHA production method is mostly quite

expensive and not many commercial sources are available

• Often, different PHAs require blending together in order to

produce a material with suitable mechanical properties for

cardiac applications

• Some PHAs are susceptible to thermal degradation

Silk • A variety of silk-based biomaterials have been approved by the FDA

• Good adherence to native cardiac tissue

• Cause little to no immunological response

• Silk-based biomaterials have diverse tuneability

• Its high elasticity makes silk a good biomaterial for cardiac applications as it has the

mechanical properties to cope with the constant contraction and relaxation of the

muscle

• It has been shown to have good cell adhesion

• Can be used to make a diverse range of structures, including fibers, foams,

hydrogels, nanoparticles, films, and 3D printed structures

• It is bioresorbable

• Silk usually has to be combined with other materials to make

it suitable for cardiac applications

• The natural production of silk by spiders leads to

batch-to-batch variability due to different species and even

within individual spiders

(Continued)
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TABLE 1 | Continued

Material Advantages Disadvantages

Chitin/chitosan • They are biocompatible (287)

• Can be processed into films, membranes (288), hydrogels, fibers, scaffolds, and

sponges (289)

• Chitin and chitosan gels can be used for drug delivery (290)

• Chitin has an adhesive nature (289) which can be useful in applications such as

myocardial patches

• Chitin also has bactericidal and antifungal characteristics, which can reduce the risk

of infection if used in an application that requires implantation (289)

• Chitin has a rigid crystalline structure, making it difficult to

dissolve in common solvents (288)

• Chitin and chitosan are derived from individual organisms

(e.g., crustaceans, insects, fungi) (287) leading to

batch-to-batch variability

Decellularized

heart

• It is biocompatible as it is derived from animal or human donors

• Can be used to make both myocardial patches and cardiac valve replacements (291)

• This has a pre-existing structure; therefore, this material requires less processing

• Decellularized heart can’t be processed into as many

different forms as other natural materials

• It cannot be degraded after implantation

• If any cells remain after decellularization of a xeno- or

homograft, this can elicit an immunogenic response once

implanted (291)

Omentum • Part of a patient’s own omentum can be removed by a minimally invasive procedure

(292)

• It is biocompatible as it is usually taken from the patient being treated

• Omentum-based hydrogels can be made and used to encapsulate cells (293)

• Omentum can be made into a myocardial patch (294)

• Where used to make an implanted myocardial patch, two

surgeries are required—one to harvest the omentum and

one to implant the patch. Surgery comes with risks,

especially for a patient with a heart condition

a site of damage. For example, hydrogels can be used to
encapsulate active factors and provide an injectable material for
efficient delivery. A number of different hydrogels have been
used in acellular cardiac repair research, including those based
on alginate, chitosan, collagen, decellularized myocardium and
pericardium, fibrin, fucoidan, hyaluronic acid, keratin, Matrigel,
and PEG (281).

miRNAs are another active factor which has been researched
in combination with hydrogels for cardiac repair. miRNAs are
an alternative avenue of emerging therapeutic potential, as
these can be used to stimulate repair mechanisms within tissues
without the issues of cell transplantation. Specific miRNAs
have been found to have a role in cardiac protection after
acute myocardial infarction. miRNAs released by cardiac
progenitor cells, including miR-17, miR-103, miR-210,
and miR-292, have been shown to be pro-angiogenic and
able to decrease the levels of profibrotic gene expression,
aiding in the preservation of the myocardium’s contractile
function and therefore overall cardiac function (282). Others,
for example, miR-30a, have been shown to increase post-
myocardial infarction and have a role in the prevention of cell
apoptosis (283).

The main obstacle with miRNA delivery is that they are
degraded rapidly in the body due to the high quantity of
RNases that are present in the body. Natural biomaterials can
provide a solution for both the local delivery of miRNAs
and enhancing their stability within the body for longer
periods of time. In a study by Wang et al., an injectable
hyaluronic acid-based hydrogel was used to encapsulate miR-
302 for its local injection to the heart. They showed that
this treatment enhanced the proliferation of cardiomyocytes
in a mouse model, in a way that mimicked cardiomyocyte
proliferation with miR-302 in vitro. Importantly, they found
that in an MI mouse model, this injection improved the
functioning of the heart (284). Previous research has shown

the use of hydrogel biomaterials as a bioactive scaffold
for the delivery and preservation of exosomes in wound
sites. For example, a study by Shafei et al. (202) used an
alginate-based hydrogel loaded with exosomes for a wound
dressing application and found that it was biocompatible and
biodegradable and increased wound healing in an animal model.
Studies such as these show the huge potential for natural
biomaterial hydrogels to be used as a biocompatible and
bioresorbable delivery vehicle for exosomes that contain pro-
angiogenic and anti-apoptotic factors that can aid in cardiac
function restoration.

Another way of utilizing exosomes for cardiac repair is by
using drugs to promote their release from cells that are either
present in the injured myocardium or being used for cell therapy.
A recent study by Casieri et al. (285) investigated the regulation
of pro-survival exosomes by the drug ticagrelor on human
cardiac-derived mesenchymal progenitor cells. Ticagrelor is an
inhibitor of P2Y12 receptors, and inhibitors of this receptor
have been widely used in the clinic for cardioprotection. This
drug acts by increasing exosome levels and this leads to the
promotion of mitosis in these cells. Whilst this drug is taken
orally, there is also the potential that this could be delivered
directly to the site of cardiac injury via a biomaterial drug
carrier, providing the ability for a controlled release. In other
cases, exosomes can be associated with negative effects on
the heart, for example in the promotion of cardiac fibrosis.
Statins are a drug type that are already widely used in the
clinic in the prevention of heart disease through the lowering
of cholesterol. The mechanism by which simvastatin protects
against cardiac fibrosis was researched by Kuo et al. (286).
They found that it regulated the release of exosomes from
cardiomyocytes and reduced the effect of cardiac fibrosis induced
by angiotensin II. Statins are another orally taken drug, however
again this could be delivered via a biomaterial directly to the site
of interest.
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TABLE 2 | Clinical trials using natural biomaterials in cardiac repair.

Study Description References

Intracoronary delivery of engineered alginate

implants—IK-5001 bioabsorbable cardiac

matrix (BCM) (Bellerophon LLC)

Clinical trial unique identifier: NCT01226563

• Testing safety and feasibility of strategy in patients recovering from an extensive MI

• 27 patients with moderate-to-large ST-segment-elevation MI (STEMI) enrolled after successful

revascularization

• Within 7 days of MI, a 2mm alginate implant was delivered by injection through the coronary

artery related to the infarct

• Implant injection didn’t impair coronary flow or myocardial perfusion, shown by coronary

angiography 3min after injection

• Implant did not cause any further myocardial injury

• Assessment by 12-lead echocardiograms, 24 h Holter monitoring, blood tests, and heart failure

questionnaires were carried out at 30, 90, and 180 days post-treatment

• A 6-month follow-up with these tests showed that the implant was tolerated and caused no

serious arrythmias, blood test abnormalities, other adverse effects, or death

• Left ventricular preservation and ejection fracture was shown to be preserved compared to

previous reports

• Promising results led to a further study with IK-5001

(295)

IK-5001 multicenter, international, randomized,

double-blind, controlled trial

Clinical trial unique identifier: NCT01226563

• Comparing the bioabsorbable cardiac matrix (BCM) with saline control to assess LV dilation and

adverse clinical events within 6-months

• 303 patients with large infarct areas after percutaneous coronary intervention (PCI) of a STEMI

were enrolled

• Randomized into groups and 201 given BCM and 101 given saline injection into the artery related

to the infarct between 2 and 5 days after PCI

• A 6-month follow up showed there was no significant difference in left ventricular end-diastolic

volume index between the groups, with 14.1 ± 28.9 mL/m2 in the BCM group compared to 11.7

± 26.9 mL/m2 in the saline group

• No significant difference in Kansas City Cardiomyopathy Questionnaire score, New York Heart

Association functional class, and 6-min walk time

• Primary safety outcomes (cardiovascular death, further MI, stent thrombosis, target-vessel

revascularization, significant arrhythmia, myocardial rupture) were similar between the two groups

with 11.6% for BCM and 9.1% for saline, p = 0.37

• Concluded that BCM did not reduce left ventricular remodeling or adverse cardiac events

after 6-months.

(296)

Intramyocardial injection of alginate

hydrogel—Algisyl-LVRTM (LoneStar Heart Inc.)

Clinical trial unique identifier: NCT00847964

• Testing safety and feasibility in patients with dilated cardiomyopathy

• 11 patients with symptomatic heart failure were enrolled in the study, but only 3 were reported

• Injection of material into left ventricular wall during scheduled coronary artery bypass graft surgery

(CABG)

• A 3-month follow-up of the three patients showed a substantial decrease in end-systolic and

end-diastolic volume

• The patients also showed an increase in ejection fraction from 32 ± 8% to 47 ± 18%, and a 35%

decrease in myofiber stress

• Promising results, however very small number of patients is a limitation, and the simultaneous

CABG procedure may have an unclear contribution to the results. The results however do show a

greater change and more rapid improvement than reported after CABG treatment alone

(297)

Algisyl-LVRTM international, multi-center,

prospective, randomized, controlled trial

(AUGMENT-HF)

Clinical trial unique identifier: NCT01311791

• A trial to evaluate the safety and benefits of an alginate hydrogel for left ventricular modification

• 78 enrolled patients with advanced chronic heart failure were randomized and 40 treated with

alginate hydrogel injection directly into the left ventricle muscle in combination with the standard

medical therapy, and 38 treated with the standard medical therapy alone

• 35 patients who were treated with the alginate hydrogel had no device-related complications, 3

patients died within 30 days of surgery (8.6%)

• At a 6-month follow-up the alginate hydrogel treatment showed an improvement in peak VO2

compared to the control, where p = 0.014

• The 6-min walk time and New York Heart Association functional class was also more improved in

patients who underwent alginate hydrogel treatment compared to the control group

• 58 of the initial 78 patients with heart failure completed 12-months of follow-up. There were nine

deaths in the alginate hydrogel treatment group and four deaths in the control group

• At the 12-month follow-up, alginate hydrogel was associated with improved peak VO2 compared

to the control, where p < 0.001

• Statistically significant improvements in the 6-minute walk time, New York Heart Association

functional class, and VO2 at anaerobic threshold were reported

• This trial showed that the addition of the alginate hydrogel was more effective in improving

patients’ symptoms and exercise capacity compared to the standard medical treatment alone

(184, 298)

(Continued)
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TABLE 2 | Continued

Study Description References

A Phase I, Open-label Study of the Effects of

Percutaneous Administration of an Extracellular

Matrix Hydrogel, VentriGel, Following

Myocardial Infarction

Clinical trial unique identifier: NCT02305602

• A trial to evaluate the safety and feasibility, and effects of VentriGel, an extracellular matrix

hydrogel, delivered via trans-endocardial injection in post-MI patients

• 15 enrolled patients who had had a first STEMI and treated with PCI in the last 3 years, with

evidence of left ventricular dysfunction and remodeling

• Approximately half of the enrolled patients were treated <12 months after MI and the other half

more than 12 months after MI

• VentriGel was well-tolerated with no deaths or patient dropouts from the trial

• One patient suffered two cardiac events—cardiogenic shock and complete heart block—and one

patient developed an intracardiac thrombus. These were reported as possibly due to the

procedure, and no other adverse events due to either the VentriGel or the injection procedure

were reported

• The 6-min walk time was assessed at 3 and 6-month follow-ups, and VentriGel treatment was

found to significantly increase the maximum distance walked at p = 0.004

• New York Heart Association functional class significantly decreased, p = 0.041, at 1, 3, and

6-month follow-ups, as with the heart failure questionnaire which significantly decreased, p =

0.045, at 1-month and non-significantly decreased at 3 and 6-months

• MRI to evaluate cardiac function at 6-month follow-ups of 14 of the patients showed maintained

or decreased left ventricular end-diastolic or end-systolic volume in comparison to baseline at the

final follow-up, with this occurring predominantly in patients over 12 months post-MI over those

<12 months post-MI

• No significant changes were recorded in the ejection fraction or infarct scar size

• This trial supports the safety and feasibility of VentriGel in post-MI patients, and improvements in

left ventricular remodeling were observed

• This first study using an injectable ECM hydrogel could lead to further randomized, controlled,

larger clinical trials

(299)

CONCLUSION AND FUTURE OUTLOOK

This review establishes clearly the huge potential of natural
biomaterials in cardiac tissue engineering. Table 1 summarizes
the advantages and disadvantages of these materials in the
context of cardiac tissue engineering.

Biocompatibility is the main property that brings these
biomaterials to the forefront of cardiac tissue engineering. In
addition, the mechanical properties and the rate of degradation
are two other crucial properties that have been investigated
and found to be suitable for cardiac applications. Among
these biomaterials, the naturally occurring matrices, fibrinogen,
collagen, alginate, and silk result in hydrogels which are soft
materials, highly suitable for cardiac repair. A small number of
clinical trials have been carried out, to date, using hydrogels
derived from natural biomaterials. A summary of these studies
and the main results are outlined in Table 2.

These natural biomaterials have also been processed to obtain
other types of 3D structures with tailored porosity, in order
to incorporate an additional level of controlled microstructure,
hence better mimicking normal tissue structure, including
cardiac tissue. The other type of natural material discussed
in this review are the ones that are produced using bacterial
fermentation, i.e., PHAs. These have the advantage of being
highly processable using a range of techniques and have varied
mechanical properties, which can be tuned toward bespoke
patient specific requirements. Considerations of promoting
vascularity within the cardiac patches have been addressed
in a number of ways, often by addition of vasculogenic
factors, but production of large perfusable vessels is still a

challenge. More research is needed toward the identification
of methods to promote functional coupling between the graft
and host cardiomyocytes, so as to prevent the arrhythmic
effects that can be produced by bulk injection of cells.
To achieve scaffolds with properties as close as possible to
natural cardiac tissue, multi-material structures produced via
3D printing techniques with structures bespoke to patients,
promise exciting advances in cardiac tissue engineering for the
near future.
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