
This is a repository copy of Quality Evolvability ES:Evolving Individuals With a Distribution 
of Well Performing and Diverse Offspring.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174461/

Version: Accepted Version

Proceedings Paper:
Katona, Adam, Franks, Daniel Wayne orcid.org/0000-0002-4832-7470 and Walker, James 
Alfred orcid.org/0000-0003-2174-7173 (Accepted: 2021) Quality Evolvability ES:Evolving 
Individuals With a Distribution of Well Performing and Diverse Offspring. In: ALIFE 
2021:Conference on Artificial Life. (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Quality Evolvability ES: Evolving Individuals With a Distribution of Well
Performing and Diverse Offspring

Adam Katona1, Daniel W. Franks1 and James Alfred Walker1

1Department of Computer Science, University of York, UK

ak1774@york.ac.uk

Abstract

One of the most important lessons from the success of deep
learning is that learned representations tend to perform much
better at any task compared to representations we design by
hand. Yet evolution of evolvability algorithms, which aim
to automatically learn good genetic representations, have re-
ceived relatively little attention, perhaps because of the large
amount of computational power they require. The recent
method Evolvability ES allows direct selection for evolvabil-
ity with little computation. However, it can only be used to
solve problems where evolvability and task performance are
aligned. We propose Quality Evolvability ES, a method that
simultaneously optimizes for task performance and evolvabil-
ity and without this restriction. This is achieved by using
nondominated sorting inside the ES update. Our proposed
approach Quality Evolvability has similar motivation to Qual-
ity Diversity algorithms, but with some important differences.
While Quality Diversity aims to find an archive of diverse
and well-performing, but potentially genetically distant indi-
viduals, Quality Evolvability aims to find a single individual
with a diverse and well-performing distribution of offspring.
By doing so Quality Evolvability is forced to discover more
evolvable representations. We demonstrate on robotic loco-
motion control tasks that Quality Evolvability ES, similarly
to Quality Diversity methods, can learn faster than objective-
based methods and can handle deceptive problems.

Introduction

Evolution of evolvability is an unintuitive concept. Even

the question of whether evolvability evolves at all (Pigliucci,

2008) is unclear, and there is still debate as to whether evolu-

tion of evolvability is caused by natural selection, or is a by-

product of other evolutionary mechanisms (Pigliucci, 2008;

Payne and Wagner, 2019). While this subject remains highly

debated among biologists, researchers within the field of

evolutionary computation are also increasingly captivated.

Evolution of evolvability is desirable because it allows the

possibility of accumulating the ability to evolve for a long

time, potentially enabling the speed up of future evolution

by many orders of magnitude, allowing us to utilize evolu-

tion in areas that were not practical before.

Recent work has enhanced our understanding by examin-

ing the evolution of evolvability from a learning theory per-

spective (Watson and Szathmáry, 2016), leading to insights

that are critical to consider when designing an evolution of

evolvability algorithm. The reason it is possible for evolu-

tion to increase its ability to evolve in the future is similar to

how it is possible for learning to generalize to unseen data

(Watson and Szathmáry, 2016). It requires finding general

patterns in past experiences. If some aspect of a genome was

useful for generating adaptations in many different past en-

vironments, it might be useful in new, unseen environments

as well. The job of an algorithm that aims to increase evolv-

ability is to find these general patterns.

Looking at evolvability from a learning theory perspec-

tive, we identify three questions that need to be investigated

before we are able to realize the vision of evolution of evolv-

ability. These cover the three basic blocks of any learning

process, data containing a general pattern, a model with ca-

pacity to learn, and an algorithm to drive learning.

Evolvability Data

The first question is how to provide evolution with suffi-

ciently diverse data that makes it possible for evolvability to

evolve. This requires evaluating the evolvability of genes in

multiple settings, otherwise, generalization is not possible.

This data can come from a single run, but at different stages

of evolution (what worked in the past), like in nature. How-

ever, this makes evolvability prone to forgetting. There is no

way to go back and check if a gene still has the ability to

be evolvable in past environments. A more powerful way to

provide diverse data is to simultaneously evaluate genomes

in a distribution of environments, similarly to the meta learn-

ing problem formulation (Vilalta and Drissi, 2002). Another

key piece of the puzzle might be algorithms that co-evolve

environments with agents in order to maximize learning, like

the POET algorithm (Wang et al., 2019).

Evolvability Model

The second question is how to provide evolution with a

model which has sufficient capacity to learn evolvability. A

powerful source of such capacity is the developmental pro-

gram, which provides the instructions to translate a geno-

type into a phenotype. Different generative encodings can

result in varying amount of evolvabilityTarapore and Mouret



(2015). With a well-chosen developmental program, evo-

lution is able to turn random genotypic variation into an

advantageous distribution of phenotypic variation (Watson

and Szathmáry, 2016). A simple example to demonstrate

how such developmental decisions are able to affect evolv-

ability is to imagine how the leg length of an animal is en-

coded (Huizinga et al., 2018). By utilizing symmetry early

in development, evolution can become more likely to ex-

plore the configurations where both legs are the same length,

and avoid exploring the probably poorly performing pheno-

types with different left and right leg lengths.

Additionally, there is another source of learning capac-

ity, which is simply selecting points in the genotype-space

with good quality neighborhoods. In the case of direct en-

coding, this is the only source, since there is no develop-

mental program. The meta learning algorithm MAML (Finn

et al., 2017) demonstrated the existence of such good quality

neighborhoods in the search space of large neural networks.

MAML is able to find points in the search space which are

a few steps away from good solutions to many previously

unseen problems.

Evolvability Algorithm

The third question is how to efficiently select for evolvabil-

ity. It is not clear under which conditions evolvability can

emerge in nature (Pigliucci, 2008), whether it requires se-

lection, or if it is a result of unsupervised learning (Watson

and Szathmáry, 2016). In the case of evolutionary compu-

tation, we have the ability to directly select for evolvability.

There are several existing algorithms that aim to indirectly

select for evolvability, and a few that directly select for it.

We give an overview of these methods in the Background

Section.

Contributions

The aim of this paper is to contribute to the third question by

finding algorithms that can directly and effectively select for

evolvability. This paper makes the following contributions:

• We propose Quality Evolvability, an approach that di-

rectly selects for evolvability by finding individuals with a

diverse and well-performing distribution of offspring, and

we present Quality Evolvability ES a method based on

Evolvability ES, which is able to select for Quality Evolv-

ability with a low computational cost.

• We demonstrate on robotic locomotion tasks, that Quality

Evolvability ES is able to outperform the objective based

variant of the algorithm, can be applied to problems where

evolvability and performance are not aligned, and is able

to handle deceptive problems.

The main difference between our work, and previous

work (Mouret, 2011; Lehman and Stanley, 2011b) which

uses nondominated sorting to simultaneously select for di-

versity and fitness is that our work selects for the ex-

pected diversity of the offspring, compared to the diver-

sity of the population. This is possible to do efficiently

because of the special properties of ES to estimate gra-

dients of expectations. Our source code is available at:

https://github.com/adam-katona/QualityEvolvabilityES.

Background

In this paper, we define evolvability as the ability to gener-

ate phenotypic variation, a definition used by previous works

(Mengistu et al., 2016; Gajewski et al., 2019). This variation

is measured in certain dimensions of interest defined by the

behavioral characterization (BC) function. In this section,

we discuss why we chose this evolvability definition and ex-

plore other definitions and their relevance to evolutionary

computation. We also review existing algorithms that either

indirectly or directly select for evolvability.

Evolvability Concepts

There is an evolvability concept concerned with the ability

of a population to respond to selection (Flatt, 2005), which

mainly depends on the amount of standing genetic varia-

tion. This is the evolvability concept selective breeders care

about. The term ”introducing new blood” refers to introduc-

ing alleles to the gene pool which were lost during the do-

mestication process (McCouch, 2004). The population be-

comes more responsive to selection as we increase the stand-

ing genetic variation. We argue that this is not as interesting

for evolutionary computation. Standing variation can only

explain short term evolvability, for evolvability to be sus-

tained for a long time, a steady supply of variation needs to

be generated. Differences in long-term evolvability depend

on the ability to generate variation rather than the currently

available variation in the population.

The evolvability concepts that are more interesting for

evolutionary computation are concerned with the ability to

generate phenotypic variation. This kind of evolvability is

about the potential to generate variation, whether it is real-

ized or not. There are several different ways to quantify phe-

notypic variation, we will discuss three of them in the next

section, and why they might be interesting for evolutionary

computation.

Quantifying Evolvability

The decision on how to quantify evolvability should be

based on which kind of evolvability is best suited for gener-

alizing for future environments. We describe three different

ways evolvability can be quantified, all of them capturing a

different aspect of evolvability.

Adaptiveness The first approach to quantify evolvabil-

ity is to measure adaptiveness: which is often a measure

of both how often offspring have higher fitness than their



parents, and the magnitude of the difference in their fit-

nesses. (Wagner and Altenberg, 1996; Altenberg et al.,

1994) define evolvability as “the ability of the genetic op-

erator/representation scheme to produce offspring that are

fitter than their parents”.

One algorithm which directly selects for adaptiveness is

ES-MAML (Song et al., 2019), an evolutionary version of

the meta learning algorithm MAML (Finn et al., 2017). To

evolve evolvability that can generalize to new environments,

ES-MAML is trained in a set of environments with the ex-

pectation that there is a common pattern between the training

environments that allows faster adaptation in the unseen test

environments.

Behavioural Diversity The second approach to quantify

evolvability is to measure the behavioural diversity of the

offspring. Diversity can be measured by the variance or en-

tropy of the distribution of behaviours. This approach re-

quires a user defined behaviour characterization (BC) func-

tion, which turns some aspect of the agents behaviour into

real valued numbers. Examples of what kind of BCs were

used in the past include: final position of the robot (Gajew-

ski et al., 2019), ratio of time each leg of a robot is in con-

tact with the ground (Cully et al., 2015) and the concatenated

RAM state for each step for Atari games (Conti et al., 2017).

Care must be taken to define a BC where achieving diversity

requires individuals to develop skills, so that evolution can-

not simply exploit the BC function in a similar way to how it

can exploit loopholes in not carefully designed fitness func-

tions (Lehman et al., 2020). For example, in a closed maze,

the only way to reach new places is to learn to navigate and

not run into walls. However, if the maze is open on one

side, evolution can create individuals that wander outside of

the maze, achieving high diversity of final positions without

ever learning navigation skills (Lehman and Stanley, 2011a).

Existing algorithms using this definition of evolvability are

Evolvability Search (Mengistu et al., 2016) and Evolvability

ES (Gajewski et al., 2019).

Innovation The third approach is to define evolvability as

the ability to generate innovation. Brookfield (2001) de-

fines evolvability as “the proportion of radically different de-

signs created by mutation that are viable and fertile”. How-

ever, innovation or “radically different” are subjective terms.

Furthermore, something that was an innovation in the past,

may no longer be considered innovative now. One way to

measure innovation is to calculate novelty compared to an

archive of previously observed behaviours. This is a similar

concept to Novelty Search (Lehman and Stanley, 2011a). It

is important to note that while novelty can be used to quan-

tify evolvability, Novelty Search does not directly select for

evolvability. Evolvability search is interested in discovering

individuals which are good at generating novelty, whereas

Novelty Search aims to find novel individuals. The hope

with this kind of evolvability definition is that if we can find

the patterns which made an individual good at generating in-

novation in the past, maybe these patterns will be useful for

generating innovation in the future. An algorithm that di-

rectly selects for this kind of evolvability is Novelty Search

ES (NS-ES) (Conti et al., 2017).

Evolvability Algorithms

There are various existing algorithms which select for evolv-

ability either directly or indirectly.

Indirect Selection There are various mechanisms that

produce indirect selection for evolvability (Mengistu et al.,

2016). One mechanism is to introduce regular mass extinc-

tion events (Lehman and Miikkulainen, 2015), freeing up

many niches. Evolvability is indirectly rewarded because

lineages that have the ability to radiate to the empty niches

faster have a higher chance of surviving the next extinction

event. A similar situation can be achieved with constant goal

switching (Nguyen et al., 2015), which indirectly rewards

individuals that developed the ability to adapt between the

goals faster. Novelty search is another method that rewards

radiating into new niches, and therefore indirectly rewards

evolvability. Another mechanism is innovation protection,

which protects new genes for a few generations. This pro-

tection allows genes that increase evolvability to stay alive

long enough to realize the benefits of increased evolvability

(Stanley and Miikkulainen, 2002; Risi and Stanley, 2019).

These are all indirect methods, because they do not di-

rectly reward evolvability, but create a situation where lin-

eages that are evolvable have some benefit. For this reason,

these methods are vulnerable to being exploited by individ-

uals which happen to be novel without being evolvable.

Direct Selection Even though techniques to increase

evolvability have been discussed for several decades, the

first technique to directly select for evolvability, Evolvability

Search (Mengistu et al., 2016), was only reported recently.

Evolvability Search quantifies evolvability by calculating

the behavioural diversity of offspring. This is achieved by

sampling and evaluating the offspring of every individual

in the population, only to discard all these evaluations after

evolvability is calculated. Discarding all these evaluations

makes this technique extremely computationally expensive.

Another similarly expensive technique is ES-MAML

(Song et al., 2019), the evolutionary version of the meta

learning technique MAML. ES-MAML selects for the adap-

tiveness aspect of evolvability. The adaptiveness can be cal-

culated by applying various adaptation operators. For ex-

ample, the adaptation operator can be another ES update,

which includes evaluating and subsequently discarding the

offspring of each individual in the population.

Finally, there are two algorithms that directly select for

evolvability without a large computational cost; both are



variants of the Evolution Strategy (ES) algorithm (Salimans

et al., 2017). Evolvability ES (E-ES) (Gajewski et al., 2019)

selects for the behavioural diversity aspect of evolvability,

while Novelty Search ES (NS-ES) (Conti et al., 2017) se-

lects for the innovation aspect of evolvability. We discuss

how ES can achieve this without a large computational cost

in Methodology Section.

Quality Evolvability

We propose Quality Evolvability (QE), an approach that

aims to find individuals with both a diverse and well per-

forming distribution of offspring.

The main motivation for Quality Evolvability is to benefit

from an increased ability to evolve in cases where looking

for evolvability alone is not sufficient to find solutions to a

task. This is similar to the motivation behind Quality Diver-

sity (QD) (Pugh et al., 2016): to benefit from the divergent,

stepping stone finder nature of Novelty Search (Lehman and

Stanley, 2011c), even in cases when seeking novelty alone

is not sufficient to find solutions to a task. In short Quality

Evolvability is to Evolvability Search what Quality Diver-

sity is to Novelty Search. Even though Quality Evolvability

and Quality Diversity have similar motivations, there are im-

portant differences between the two approaches, which are

summarized in Table 1.

The unique property of Quality Evolvability is that it is

forced to become more evolvable, because it needs to adapt

a single individual to diverse behaviours. While Quality Di-

versity can benefit from developing evolvability, it is not

forced to do so; it can achieve diversity by collecting a set of

genetically distant individuals, without any enhanced ability

to adapt.

Quality Diversity will explore a large section of the search

space, aiming to find every possible behaviour that exists.

For this reason, it can be used to illuminate search spaces,

or to find many possible solutions to a problem. Quality

Evolvability does not have this property, it focuses its search

on a small volume of the search space.

Quality Diversity excels at solving deceptive problems

because it will increase the pressure to find novelty until

the pressure is high enough to overcome the deceptiveness.

Quality Evolvability should also be helpful at escaping de-

ceptive local minima to some degree since it aims to find off-

spring with diverse behaviours. However, for Quality Evolv-

ability, this pressure is constant and not ever increasing. If

the trap is large enough to allow a large amount of diversity,

Quality Evolvability is expected to stay trapped.

Methodology

In this section, we describe our proposed method, Quality

Evolvability ES (QE-ES), which simultaneously selects for

both evolvability and fitness. We also discuss the methods

which QE-ES is based on, Evolvability ES (E-ES) and ES.

Here, we use the term ES to refer to the recent algorithm

defined in (Salimans et al., 2017). This is not to be con-

fused with what has traditionally been referred to as Evolu-

tion Strategies (ES) (for example, a 1 + 1 ES).

ES

ES is special case of the Natural Evolution Strategies

(NES)(Wierstra et al., 2008) algorithm, which aims to cal-

culate the gradient of the expected fitness of a parameterized

search distribution pφ with respect to the distribution param-

eters φ. In case of ES, this is an isotropic normal distribu-

tion, parametarized by a center individual: θ = N (φ, σ)
where σ ∈ R. The cost function is defined as an expectation

over the distribution J = Eθ∼p(φ)F (θ). The update rule

is derived by applying the “log-likelihood trick” (Wierstra

et al., 2008) so the gradient of the expectation can be ex-

pressed with the expectation of a gradient (eq.1), which can

be approximated with samples.

∇φEθ∼pφ
F (θ) = Eθ∼pφ

{F (θ)∇φlogpφ(θ)} (1)

Previous work found that using a rank based futness shaping

tend to improve performance by reducing the effect of out-

liers in the population (Salimans et al., 2017). We included

this step in the description of the algorithms with the func-

tion fitness shaping.

Algorithm 1: ES

Input: Noise standard deviation σ, initial policy

parameters θ0, population size n, gradient

optimizer, fitness function F

for t = 0, 1, 2, . . . do
Sample ǫ1...ǫn ∼ N (0, I)
Fi = F (θt + σǫi) for i = 1, ..., n
r = fitness shaping(F )

grad = 1
nσ

∑n

i=1 riǫi
θt+1 = optimizer(θt, grad)

end

ES has several differences compared to traditional finite

difference approximators. The effect of optimizing for the

expectation over a normal distribution can be imagined as

using normal gradient descent on a blurred version of the

fitness landscape (Salimans et al., 2017). Another conse-

quence of optimizing for expected fitness instead of the fit-

ness, is that ES aims to find solutions that are robust to per-

turbations (Lehman et al., 2018).

Evolvability ES

Evolvability ES (Gajewski et al., 2019) is a variant of ES

which directly selects for evolvability. Evolvability is de-

fined as either the variance or the entropy of the distribution

of behaviour (as measured by the behaviour characterization

(BC) function). In this work, we use the variance, because

it is simpler and seems to work equally as well as entropy



Table 1: Comparison of Quality Diversity and Quality Evolvability

Metric Quality Diversity (QD) Quality Evolvability (QE)

Approach objective Find an archive of diverse and

well performing individuals

Find an individual with diverse and

well performing offspring

Solving deceptive problems Yes, ever increasing

pressure to escape

Yes, constant

pressure to escape

Illuminating search spaces Yes, will explore many ways

to solve the problem

No, only explores a small volume

of the search space

Encouraging adaptability No, QD is allowed to use an archive of

genetically distant individuals

Yes, QE is forced to adapt a single

individual to many different behaviors

(Gajewski et al., 2019). Therefore, evolvability is defined

as:

Evolvability(φ) = Eθ∼pφ
(BC(θ)−BCmean)

2 (2)

The simplest way to create an ES variant that directly selects

for evolvability is to replace fitness with evolvability in the

cost function: J = Eθ∼p(φ)Evolvability(θ). However, this

way requires the evaluation of the evolvability of the whole

population, which requires sampling the offspring of each

individual in the population, making this approach compu-

tationally expensive.

Gajewski et al. (2019) recognized that there is a differ-

ent way of creating an ES algorithm that directly selects for

evolvability. Evolvability is itself defined as an expectation

(both the variance or entropy versions), so the log-likelihood

trick which is used to derive the ES update rule can be ap-

plied directly to evolvability, instead of the expected evolv-

ability. The resulting algorithm, Evolvability ES, has the

cost function: J = Evolvability(φ). Evolvability ES no

longer needs to calculate the evolvability of every individ-

ual, making Evolvability ES as fast as normal fitness based

ES. It is important to note that the new algorithm no longer

has the blurring and robustness seeking property of ES, and

is more like a traditional finite difference approximator.

Algorithm 2: Evolvability ES

Input: Noise standard deviation σ, initial policy

parameters θ0, population size n, gradient

optimizer, behaviour characterization BC

for t = 0, 1, 2, . . . do
Sample ǫ1...ǫn ∼ N (0, I)
EV Oi = (BC(θt + σǫi)−BCmean)

2 for

i = 1, ..., n
r = fitness shaping(EV O)

grad = 1
nσ

∑n

i=1 riǫi
θt+1 = optimizer(θt, grad)

end

Quality Evolvability ES

Our proposed method Quality Evolvability ES (QE-ES)

combines the objectives of ES and E-ES, to simultaneously

optimize for both evolvability and fitness. To achieve this we

use non-dominated sorting (nd sort) on the evolvability and

fitness objectives. Non-dominated sorting is done the same

way as in the well-known NSGA-II (Deb et al., 2002) algo-

rithm. Individuals are first sorted by which non-dominated

front they belong to, then a crowding metric is used to sort

the individual within the fronts. The crowding metric en-

sures that a diverse set of evolvability-fitness trade-offs are

maintained.

Algorithm 3: Quality Evolvability ES

Input: Noise standard deviation σ, initial policy

parameters θ0, population size n, gradient

optimizer, fitness function F , behaviour

characterization BC

for t = 0, 1, 2, . . . do
Sample ǫ1...ǫn ∼ N (0, I)
Fi = F (θt + σǫi) for i = 1, ..., n
EV Oi = (BC(θt + σǫi)−BCmean)

2 for

i = 1, ..., n
r = fitness shaping(nd sort(F,EV O))

grad = 1
nσ

∑n

i=1 riǫi
θt+1 = optimizer(θt, grad)

end

Experiments

We evaluated our method on the robotics locomotion tasks

Ant and Humanoid. An evaluation is comprised of running

a full episode until the maximum number of allowed time

steps is reached or until the robot falls over. In the default

version of the task, fitness is defined as the distance traveled

in the x direction, while behaviour is characterized by the

final x and y coordinates of the robot.

We used the more accessible PyBullet implementation of

the environments, which has a free software license, rather



(a) Deceptive Ant task (b) Deceptive Humanoid task

Figure 1: For the deceptive variant of the tasks, a trap box

is put in front of the agent. This obstacle creates a decep-

tive local optimum. Once the agent discovers how to walk

into the box, it cannot improve further without developing

the ability to walk around the obstacle. The sides of the trap

however make walking around it difficult, requiring the fit-

ness to decrease first. Greedy objective based algorithms are

susceptible to such deceptive local optima.

than the commonly used MuJuCo commercial implementa-

tion. An important difference between the implementations

is that PyBullet implements the observations differently in

the case of the Humanoid environment, providing only a

∈ R
44 observation vector compared to MuJuCo which pro-

vides ∈ R
376 dimensional observation, containing a more

detailed motion state of the robot. This makes the Humanoid

experiments more challenging in PyBullet. While with pre-

vious experiments using the MuJuCo version of Humanoid,

ES was able to find policies that reliably solved the task.

In our experiments, ES only finds policies that sometimes

solved the task, but not reliably, and not every training run

finds such policies. With the Ant environment, there are no

significant differences between the implementations, and we

could replicate previous results.

Evolution evolves the parameters of a 2-hidden-layer fully

connected neural network with 256 neurons for both hidden

layers, resulting in a total of 75k parameters for the Ant en-

vironment and 81k for the Humanoid environments. The

network maps the observations to the actions, with both be-

ing real numbers.

For all experiments, we used the same hyperparameter

values used in (Gajewski et al., 2019). The population size

was 10,000, the noise standard deviation σ was 0.02. We

used the Adam optimizer with a learning rate α of 0.01 and

L2 regularization of 0.005. We used mirrored sampling and

centered rank normalization. The Ant experiments were run

for 200 generations, the more difficult Humanoid experi-

ments were run for 800 generations.

ES methods are less sample efficient compared to rein-

forcement learning methods. In our experiments, a sin-

gle run consisted of simulating several billion steps. For

example, in the case of the successful humanoid run, we

have a population size of 10,000, which is evolved for 800

generations, where each evaluation takes around 800 time

steps. However, ES parallelizes well (linear scaling (Sali-

mans et al., 2017)). We run our experiments on a distributed

CPU cluster using 120 cores for each run. With this set-

ting, a Humanoid run took around 1-2 days, depending on

the average episode length, while an Ant run took around 6-

12 hours. We used the base ES implementation provided by

(Gajewski et al., 2019).

To test different properties of our method, we used three

modified versions of the environments.

Task 1: Normal Locomotion For the first experiment, we

used the default environments, which we simply refer to as

Ant and Humanoid. In this task, evolvability and fitness are

aligned. Purely maximizing evolvability will also result in

high fitness. This is because evolvability is measured as the

variation of the final positions, and the way to maximize

evolvability is to learn to walk far in every direction. This in-

cludes the forward direction, which means that maximizing

evolvability will also maximize fitness.

Task 2: Directional Locomotion For the second exper-

iment, we used modified environments, which we call Di-

rectional Ant and Directional Humanoid. Our goal with this

experiment is to test our method in a case where evolvabil-

ity and fitness are unaligned. For these experiments, for

each episode, we randomly select a direction from 8 possible

directions that are evenly distributed around a circle in 45

degree increments for each episode. The networks receive

this direction, represented as a unit vector, as an observation

which increases the number of observations by 2.

To perform well in this task, the agent needs to turn in the

correct direction and walk. Maximizing diversity alone is

not enough to achieve high fitness anymore; the agent also

needs to learn to walk in the correct direction. Evolvability

ES is expected to have zero mean fitness on this task because

it equally prefers every direction.

Task 3: Deceptive Locomotion For the third experiment,

we used a deceptive variant of the environments, similarly

to previous work (Conti et al., 2017). We call these environ-

ments Deceptive Ant and Deceptive Humanoid. A U-shaped

trap is placed in front of the agent, which allows it to make

progress for a while until it runs into a wall (Fig.1). The

walls on the side prevent the agent to easily go around the

obstacle, forming a trap, a local optimum, which is hard to

escape. For Deceptive Humanoid, we used the same trap

box configuration as in (Conti et al., 2017), for the Decep-

tive Ant environment we slightly increased the dimensions

of the box from 3 meters to 4 meters in order to make the

trap large enough for the physically wider Ant robot.

Results

We use three kinds of plots to present and compare the re-

sult achieved with the different algorithms. To show the be-

haviour of the population in the final generation of a single



(a) Humanoid, ES (b) Humanoid, E-ES

(c) Humanoid, QE-ES

Figure 2: 2D histogram of the final positions of the popula-

tion from the last generation for the Humanoid environment,

which highlights the different aims of the three algorithms.

(a) ES only cares about fitness, thus only finds policies that

walk forward. (b) E-ES only cares about diversity and finds

policies that walk in various directions. (c) QE-ES cares

about both fitness and diversity, so it finds policies that walk

forward in a diverse way.

run, we use a 2d histogram which shows the frequency of

the final x, y positions of the robot. The box and strip plots

show the mean of the population in the last generation (fit-

ness or distance walked), over repeated runs. Finally, the

learning curves show the mean of the population averaged

over repeated runs throughout the generations.

For each task and each algorithm, we repeated the runs at

least 10 times. We found that there is a high variance in the

results with different random seeds, especially in the case of

the more difficult Humanoid task. This agrees with previ-

ously reported results in this domain (Conti et al., 2017).

Task 1: Normal Locomotion The first experiment was

done with the default environments where fitness and evolv-

ability are aligned (Fig 3.). In case of the Ant environment

we got similar results as presented in the literature previ-

ously (Gajewski et al., 2019). ES performs slightly bet-

ter then Evolvability ES, finding policies which on average

walk further. In the humanoid environment however, Evolv-

ability ES performs better than ES, suggesting that in some

cases, searching for evolvability alone results in better task

performance than searching for fitness. This result is sim-

ilar to how novelty search can outperform objective based

search. By encouraging evolvability, Evolvability ES can

acquire the ability to discover skills which are not immedi-

ately useful for fitness, but can lead to progress in the future.

Since Quality Evolvability ES is a mix of the two methods,

(a) Ant (b) Humanoid

(c) Ant (d) Humanoid

Figure 3: Mean distance walked for the Ant (a,c) and

Humanoid (b,d) tasks where evolvability and fitness are

aligned. The shaded area corresponds to the standard devia-

tion. In (a,c), E-ES finds policies that walk almost as far as

ES. As evolvability and fitness are aligned in this task, QE-

ES performs similarly to E-ES. In (b,d), we found that E-ES

finds policies that on average walk further than ES (looking

for evolvability resulted in faster learning). The performance

of QE-ES is between the two since it simultaneously looks

for fitness (aim of ES) and evolvability (aim of E-ES).

in environments where evolvability and fitness are aligned,

the performance of QE-ES is expected to be between the two

methods (ES and E-ES), which is what we observe. When

we look at the diversity of the population, it is also as ex-

pected, E-ES having the most diversity, ES having the least,

while QE-ES is in between the two (see Fig. 2).

Task 2: Directional Locomotion The second experiment

was done in the directional environments, where evolvability

and fitness are no longer aligned (see Fig 4). Evolvability ES

has zero expected fitness on this problem since it completely

ignores the fitness function. Both on the Directional Ant and

the Directional Humanoid tasks, QE-ES achieves higher fit-

ness than ES. On the Directional Ant environment, the dif-

ference is relatively small and both methods can find good

policies. On the more challenging Directional Humanoid

environment, the challenge to simultaneously learn to walk

and to turn in the correct direction proved to be too difficult

for ES. In contrast, QE-ES makes some progress. These re-

sults show that selecting for evolvability can not only result

in faster learning, but it can also allow making progress in

cases where objective based learning gets stuck.

Task 3: Deceptive Locomotion The final experiment was

done on the deceptive variant of the environment, to test

which algorithm can deal with deceptive problems (see Fig 5



(a) Directional Ant (b) Directional Humanoid

(c) Directional Ant (d) Directional Humanoid

Figure 4: Mean fitness for the Directional Ant (a,c) and Di-

rectional Humanoid (b,d) tasks, where evolvability and fit-

ness are not aligned. In (a), both algorithms are able to find

good policies, but QE-ES receives higher fitness on average.

In the more difficult task (b), ES fails to learn to walk and

turn in the right direction at the same time, while QE-ES is

able to makes progress.

(a) Deceptive Ant (b) Deceptive Humanoid

(c) Deceptive Ant (d) Deceptive Humanoid

Figure 5: Mean distance walked for the Deceptive Ant (a,c)

and Deceptive Humanoid (b,d) tasks. For both environ-

ments, ES gets trapped every time. For Ant (a,c), QE-ES

manages to escape the trap for every run. For the more diffi-

cult Humanoid (b,d), QE-ES escapes for the majority of the

runs.

(a) Deceptive Ant, ES (b) Deceptive Ant, QE-ES

(c) Deceptive Humanoid, ES (d) Deceptive Humanoid, QE-
ES

Figure 6: 2D histogram of the final positions of the popula-

tion from the last generation for the Deceptive Ant and De-

ceptive Humanoid tasks. The red lines represent the walls

of the trap, which makes the problem deceptive. For both

environments, ES ends up trapped, (a) and (c), while QE-ES

is able to overcome the local optimum, (b) and (d). Please

note the change in scale.

and Fig 6). Both with the Deceptive Ant and Deceptive Hu-

manoid environments, ES failed to escape the trap, a result

consistent with previous work (Conti et al., 2017). QE-ES

had no problem escaping the trap in both experiments. This

result demonstrates that Quality Evolvability ES is able to

cope with at least some level of deceptiveness, even though

it does not have the ever increasing pressure to escape like

Quality Diversity algorithms.

Conclusion

We have presented Quality Evolvability ES, a technique to

simultaneously select for evolvability and fitness. QE-ES

allows us to benefit from evolvability in cases when evolv-

ability and fitness are not aligned. While our experiments

demonstrated that evolvability can increase the performance

of evolution in a single environment, it is yet to be deter-

mined whether the learned evolvability is general enough to

be useful in different environments and with different be-

haviour characterizations.Quality Evolvability and Quality

Diversity are not mutually exclusive approaches. In future

work, we aim to explore the direction of looking for an

archive of diverse and evolvable individuals.
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