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A DISCONTINUOUS GALERKIN METHOD FOR THREE-DIMENSIONAL

POROELASTIC WAVE PROPAGATION: FORWARD AND ADJOINT PROBLEMS

NICK DUDLEY WARD, SIMON EVESON, AND TIMO LÄHIVAARA

In memoriam, W.K. Hayman, FRS

Abstract. We develop a numerical solver for three-dimensional poroelastic wave propagation, based on
a high-order discontinuous Galerkin (DG) method, with the Biot poroelastic wave equation formulated
as a first order conservative velocity/strain hyperbolic system. To derive an upwind numerical flux,
we find an exact solution to the Riemann problem; we also consider attenuation mechanisms both in
Biot’s low- and high-frequency regimes. Using either a low-storage explicit or implicit-explicit (IMEX)
Runge-Kutta scheme, according to the stiffness of the problem, we study the convergence properties of
the proposed DG scheme and verify its numerical accuracy. In the Biot low frequency case, the wave
can be highly dissipative for small permeabilities; here, numerical errors associated with the dissipation
terms appear to dominate those arising from discretisation of the main hyperbolic system.

We then implement the adjoint method for this formulation of Biot’s equation. In contrast with the
usual second order formulation of the Biot equation, we are not dealing with a self-adjoint system but,

with an appropriate inner product, the adjoint may be identified with a non-conservative velocity/stress
formulation of the Biot equation. We derive dual fluxes for the adjoint and present a simple but

illuminating example of the application of the adjoint method.

Keywords: Discontinuous Galerkin method, Poroelastic waves, Adjoint method
AMS subject classifications: 86-08, 35R30

1. Personal introduction – Nick Dudley Ward

When I gave a talk on the topic of the current paper at Walter’s 90th birthday meeting at Imperial
College in 2016, Walter was singularly unimpressed – why was I dealing with 2d wavefields, 3d are quite
different? At that point Edward Fraenkel weighed in. It is a curious fact that 2d wave models are often
used to interpret seismic data simply because, in many circumstances, they are the only models that are
computationally feasible. But, of course, Walter was right.

I think that Walter would have been pleased with the current paper – or, at least relieved that I
wasn’t being completely stupid! I didn’t really appreciate Walter as a research supervisor at the time.
I used to frustrate him greatly with my cavalier ways. It was only later that I realised that he was an
extraordinary supervisor and how much effort he had put into educating me. He was really attentive
when you gave him a proof written out. For Walter a proof had to be complete and one should make
life easy for the reader. Only Walter would have bothered to give a detailed and idiosyncratic proof of
Green’s theorem in their text; to do so was an expression of his mathematical character. This has served
me exceedingly well over the years. When I remarked to him that I was surprised how much effort he
was making, he said he got the same from Mary Cartwright and it was his duty.

The current work grew out of the Canterbury earthquakes of 2010-11 when we first discussed the idea
of using seismic data to quantify Canterbury’s groundwater system. Ten years later, due much to the
computational challenge, we have largely moved away from using New Zealand’s extensive earthquake
data to map her groundwater resources to interpreting more clearly defined and controllable seismic tests
using explosives. Plainly any such endeavour requires solution to an appropriate inverse problem and
this in turn requires accurate simulation of an appropriate wave propagation model, which is the focus
of the current paper.

The humanitarian application area would have appealed to Walter. He would have had empathy for
the remote communities we are trying to help and I think he would have enjoyed detonating explosives to
generate seismic wavefields. However, he might not have enjoyed the boat journeys to the outer islands
of Tonga.

There is one aspect to the paper which Walter wouldn’t have been greatly amused by and that is
the adjoint method. Functional analysis just wasn’t Walter’s cup of tea. I remember Frank Bonsall’s
enthusiastic lectures on functional analysis in Walter’s seminar. Walter politely listened but he was,

Date: 11 November 2020.
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I think, largely unmoved. Like Sherlock Holmes, Walter was as remarkable for his ignorance as for
his knowledge, in his case, for his deep insight and unparalleled technical ability on matters complex
analytical.

Not surprisingly, given my remark above, Walter wouldn’t have approved of the lack of derivations
and abbreviated form of the current paper due to journal space limitations but they are available on
arXiv.

We met up quite often over the years – I remember with particular fondness one occasion when we
met in Greenwich Village in New York. He was feeling quite lonely and down in the dumps. I noted
the desk in his room covered in calculations and derivations. He said that, even after all these years,
function theory still gave him the same sense of delight that it always had.

2. A brief survey

In [13] we solved the exact Riemann problem for coupled poroelastic/elastic wave propagation in
two dimensions and implemented a solver in the discontinuous Galerkin (DG) framework developed in
[16]. For the poroelastic case, we showed that the usual convergence tests for an explicit time-marching
scheme were satisfied for a plane wave propagating through a square domain provided the wave was
not too dissipative (i.e. convergence order ∼ order of polynomial basis plus 1 provided permeability is
not too small). In the case that the wave is too stiff (which corresponds to a very small permeability
and hence a very slow secondary P-wave) the low storage Runge-Kutta scheme used in the explicit time-
marching scheme performed poorly, while a fourth order IMEX scheme developed in [18] gave satisfactory
results although proved sub-optimal (i.e. convergence order ∼ order of polynomial basis minus 1). We
also showed that for a range of numerical examples our solver gave accurate results and, in particular,
resolved material discontinuities. In this paper we extend the method to three-dimensional poroelastic
wave propagation. (A substantially longer version of this paper with coupled elastic/poroleastic wave
propagation and detailed derivations is available on arXiv, [12].)

Background information and references on numerical approaches to solving the poroelastic wave equa-
tion are given in [13] and are not repeated here. More recent work on numerical approaches to the
poroelastic wave equation in the DF framework in three dimensions can be found in [24, 28, 29]. We
also provided background on our motivation for studying poroelatic wave problems and the application
to delineating aquifers from ground motion data.

Apart from considering three-dimensional poroelastic wavefields the current paper differs from our
earlier paper [13] in one major respect, since we develop the adjoint method for the poroelastic wave
equation using a first order formulation. The adjoint method is an extensively explored area, particularly
in computational seismology, since it is an approach to estimating derivatives of an objective functional
in a more economical fashion than simply running multiple perturbations of the forward mapping, see
for example [26] and [14]. A second order formulation of a wave equation is self-adjoint and therefore
presents little difficulty. For a first order formulation this is no longer the case and more care has to be
taken to obtain the adjoint wavefield as well as numerical fluxes. For the elastic and other simpler wave
equations this has been considered in [27]. In this paper we consider the adjoint method for coupled
poroelatic problems and derive appropriate fluxes.

The structure of this paper is as follows. First, in Section 3 we present a formulation of Biot’s
equations. In Section 4 we describe the DG scheme used in this study including a derivation of upwind
fluxes based on a solution of the associated Riemann problem and in Section 5 we consider briefly
poro-viscoelasticity. Next in Section 6 we discuss the adjoint method for the first order hyperbolic
formulation of the poroelastic wave equation and derive dual upwind numerical fluxes for the adjoint
poroelastic wavefield. In Section 7 we present numerical experiments including a convergence study.
Finally a discussion and concluding remarks are given in Sections 8 and 9 respectively.

3. Biot’s equations of motion for poroelastic wave propagation

In this section we formulate Biot’s equations of motion for poroelastic wave propagation given in the
classical papers [3] and [4]. A more detailed account can be found in [13] or [7].

Denote by us the solid displacement, by uf the fluid displacement, and by w the relative displacement
of fluid w = φ(uf − us), where φ is porosity. Note that w is volumetric flow per unit area of the bulk
medium. Then Biot’s equations of poroelastic wave propagation for the laminar case may be stated as

ρa
∂2us

∂t2
+ ρf

∂2w

∂t2
= ∇ ·T,(1)
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ρf
∂2us

∂t2
+m

∂2w

∂t2
+

η

k

∂w

∂t
= ∇ ·Tf ,(2)

where ρs is the solid density, ρf the fluid density, ρa is the average density

ρa = (1− φ)ρs + φρf

and

(3) m = ρfτ/φ

where τ is the tortuosity. The coefficient of the dissipative term
∂w

∂t
is the ratio of the viscosity η to the

permeability k of the porous medium. The stress tensors T and Tf are isotropic Hooke’s laws and are
discussed in the next section. For a detailed derivation see [7].

The most distinctive feature of Biot’s early papers [3, 4] is the existence of a characteristic frequency
fc, below which the Pouiselle assumption is valid and inertial forces are negligible to viscous forces:

(4) fc =
ηφ

2πτρfk
.

See [7], Section 7.6.1. At higher frequencies, inertial forces are no longer negligible, and the viscous
resistance to fluid flow given by the coefficient of the dissipative term is frequency-dependent. In [5] Biot
introduced a viscodynamic operator to model the high frequency regime.

3.1. Poroelastic Hooke’s laws. In [3] Biot proposed generalised Hooke’s laws to describe the stress-
strain coupling between solid and fluid. Letting E denote the solid strain tensor

(5) E =
1

2
(∇us + (∇us)

T)

and ǫ = ∇ · uf the strain in the fluid, these may be stated in the form:

(1− φ)Ts = 2µE+ λ trace(E)I+QǫI(6)

φTf = Q trace(E)I+MǫI(7)

where µ and λ correspond to the usual Lamé coefficients, and I denotes the identity tensor. As usual,
under the assumption that the fluid does not support shear stress, one may interpret µ as the dry matrix
shear modulus µfr.

Biot and Willis [6] showed that the elasticity coefficients postulated above may be written in terms
of bulk moduli defined by idealised experiments, viz. the frame bulk modulus of the frame κfr, the bulk
modulus of the solid κs and the bulk modulus of the fluid κf . Carcione gives a detailed account in [7].
Since we are interested in the system (1)–(2), we may write

T = 2µfrE+

(

B − 2

3
µfr

)

trace(E)I− CζI(8)

Tf = C trace(E)I−MζI(9)

where T = (1− φ)Ts + φTf is total stress and ζ = −∇ ·w is the variation of fluid content. The moduli
B,C, and M can be written as

B =
κs − (1 + φ)κfr + φκsκfr/κf

(1− κfr/κs)− φ(1− κs/κf)
,(10)

C =
(1− κfr/κs)κs

(1− κfr/κs)− φ(1− κs/κf)
,(11)

and

(12) M =
κs

(1− κfr/κs)− φ(1− κs/κf)
.

One of the less desirable aspects of poroelastic theory is the proliferation of constants. A neater
formulation that is possibly better suited to estimation is to introduce the Biot effective stress constant
α given by

α = 1− κfr

κs
.

Then we can write the solid and fluid stress tensors as

T = 2µfrE+

(

κfr + α2M − 2

3
µfr

)

trace(E)I− αMζI(13)
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Tf = M(α trace(E)− ζ)I.(14)

4. Numerical scheme for the inviscid case

4.1. Hyperbolic system. We use a velocity-strain formulation to express (1)–(2) as a first-order con-
servative hyperbolic system. Introducing the variable

(15) q = (ǫ11, ǫ22, ǫ33, ǫ12, ǫ23, ǫ13, ζ, us, vs, ws, uf , vf , wf)
T

where the ǫij are components of the solid strain tensor, ζ is the variation of fluid content, vs = (us, vs, ws)

are the x, y and z components of the solid velocity
∂us

∂t
and vf = (uf , vf , wf) are the components of the

relative fluid velocity
∂w

∂t
, viz.

(16) E =





ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33





and

ζ = −∇ ·w(17)

(us, vs, ws)
T =

∂us

∂t
(18)

(uf , vf , wf)
T =

∂w

∂t
(19)

we obtain, using the Einstein summation convention

(20) Q
∂q

∂t
+∇ · F = Q

∂q

∂t
+

∂(Aiq)

∂xi
= g + gV

Here F , Q, Ai, g and gV are as follows:

F = [F1, F2, F3] = [A1q, A2q, A3q]

(21) Q =

(

Q1 0
0 Q2

)

where Q1 is the 7× 7 identity matrix and

(22) Q2 =

















ρa 0 0 ρf 0 0
0 ρa 0 0 ρf 0
0 0 ρa 0 0 ρf
ρf 0 0 m 0 0
0 ρf 0 0 m 0
0 0 ρf 0 0 m

















.

The Jacobian matrices Ai, i = 1, 2, 3, may similarly be given in block form

(23) Ai =

(

0 Ai
2

Ai
1 0

)

where the matrices Ai
1 and Ai

2 are in Table 1. For the low-frequency dissipative regime considered in
Section 5 the source term g is given by

(24) g = (010,−
η

k
uf ,−

η

k
vf ,−

η

k
wf)

T

where 010 is a 1× 10 zero row vector and gV is a volume source defined in Section 7.
The eigenstructure of Q−1A1 is derived in detail in the appendix of [13] and summarised below.

Introducing the quantities

Z1 = mρa − ρ2f(25)

Z2 = −2ρfαM + ρaM +mλ+ 2mµfr(26)

Z3 = ρa(4α
2m− 4αρf + ρa)M

2 − 2(2αmρf +mρa − 2ρ2f )M(2µfr + λ) +m2(2µfr + λ)2(27)

Z4 = ρaM −mλ− 2mµfr(28)
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Table 1. The off-diagonal blocks of the Jacobian matrices Ai. Here λ = κfr + α2M − 2
3µfr.

A1
1 = −

















2µfr + λ λ λ 0 0 0 −αM
0 0 0 2µfr 0 0 0
0 0 0 0 0 2µfr 0

αM αM αM 0 0 0 −M
0 0 0 0 0 0 0
0 0 0 0 0 0 0

















A1
2 = −





















1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1/2 0 0 0 0
0 0 0 0 0 0
0 0 1/2 0 0 0
0 0 0 −1 0 0





















A2
1 = −

















0 0 0 2µfr 0 0 0
λ 2µfr + λ λ 0 0 0 −αM
0 0 0 0 2µfr 0 0
0 0 0 0 0 0 0

αM αM αM 0 0 0 −M
0 0 0 0 0 0 0

















A2
2 = −





















0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1/2 0 0 0 0 0
0 0 1/2 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0





















A3
1 = −

















0 0 0 0 0 2µfr 0
0 0 0 0 2µfr 0 0
λ λ 2µfr + λ 0 0 0 −αM
0 0 0 0 0 0 0
0 0 0 0 0 0 0

αM αM αM 0 0 0 −M

















A3
2 = −





















0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 1/2 0 0 0 0
1/2 0 0 0 0 0
0 0 0 0 0 −1





















Z5 = 2(αm− ρf)M(29)

we have the following expressions for the wave speeds for the non-dissipative case:

cIp = ±

√

Z2 +
√
Z3

2Z1
(30)

cIIp = ±

√

Z2 −
√
Z3

2Z1
(31)

cs = ±
√

mµfr

Z1
.(32)

Here cIp is the speed of the fast P-wave corresponding to the P-wave of ordinary elasticity, cIIp is

Biot’s slow P-wave, and cs is the speed of the shear wave, where usually cIp > cs > cIIp . Writing

Λ = diag(−cIp,−cs,−cs,−cIIp , c
II
p , cs, cs, c

I
p) for the non-zero eigenvalues of Q−1A1 corresponding repre-

sentative eigenvectors are given by the columns of

(33) R =













































1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1/2 0 0 0 0 1/2 0
0 0 0 0 0 0 0 0
0 0 1/2 0 0 1/2 0 0

−γ1 0 0 −γ2 −γ2 0 0 −γ1
cIp 0 0 cIIp −cIIp 0 0 −cIp
0 cs 0 0 0 0 −cs 0
0 0 cs 0 0 −cs 0 0

γ1c
I
p 0 0 γ2c

II
p −γ2c

II
p 0 0 −γ1c

I
p

0 −csρf/m 0 0 0 0 csρf/m 0
0 0 −csρf/m 0 0 csρf/m 0 0













































where γ1 = (Z4 +
√
Z3)/Z5 and γ2 = (Z4 −

√
Z3)/Z5.
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4.2. Discontinuous Galerkin method. In this section we outline the DG method. Our formulation
follows Hesthaven and Warburton [16], where a detailed account of the DG method can be found. We
first suppose that the computational domain Ω ⊂ R

3 is divided into tetrahedra using K elements

Ω =

K
⋃

k=1

Dk.

The boundary of element Dk is denoted by ∂Dk. We assume that the elements are aligned with material
discontinuities. Furthermore, for any element Dk the superscript ‘−’ refers to interior information while
‘+’ refers to exterior information.

To obtain the strong form we multiply (20) by a local test function pk and integrate by parts twice
to obtain an elementwise variational formulation

(34)

∫

Dk

(

Q
∂qk

∂t
+∇ · F − g − gV

)

pkdx =

∮

∂Dk

n̂ · (F− −F∗)pkdΓ,

where n̂ is an outward pointing unit normal, qk is the restriction of q to the element Dk and F∗ is the
numerical flux across neighbouring element interfaces. To discretise (34) the elementwise solutions qk

and the test functions pk are approximated using the same polynomial basis functions [16].
To approximate the numerical flux F∗ along the normal n̂ we solve the Riemann problem at an

interface. With this in mind we define

Π = n̂xA
1 + n̂yA

2 + n̂zA
3

so that
n̂ · F = Πq

4.3. Boundary conditions. The ground surface of the porous medium is modelled as as traction-free
surface, viz. Tn̂ = Tf n̂ = 0 while other boundaries are modelled as Dirichlet or absorbing boundaries.

4.4. Riemann problem. Now that the eigenstructure of Q−1A1 has been established we proceed to
solve the Riemann problem for (20) using the same calculations carried out in [13].

In the following calculations it is convenient to work with a local interface basis {n̂, ŝ, t̂} where ŝ, t̂
are orthogonal unit tangent vectors. Using a prime to denote vectors with respect to the interface basis,
we write q = Lq′ where L is the change of basis map from {n̂, ŝ, t̂} to the physical Euclidean basis
{ê1, ê2, ê3}. It is straightforward to show that

(35) q′ = L−1q = (n̂TEn̂, ŝTEŝ, t̂TEt̂, ŝTEn̂, t̂TEŝ, t̂TEn̂, ζ, n̂ · vs, ŝ · vs, t̂ · vs, n̂ · vf , ŝ · vf , t̂ · vf)
T.

Letting P = [n̂ ŝ t̂] the first three terms follow from the change of basis formula for a matrix E′ = PTEP ,
and the last four terms follow from v′ = PTv.

We also have

(36) L−1ΠL = A1 and L−1Q−1ΠL = Q−1A1

To compute an upwind numerical flux across an interface for the two-dimensional locally isotropic
poroelastic system (15) we solve a Riemann problem at an interface. This consists of solving the system
(15) with initial data

q0(x) =

{

q− if n̂ · (x− x0) < 0

q+ if n̂ · (x− x0) > 0

where x0 is a point on the interface.
For each wave speed c, the Rankine-Hugoniot jump condition, [16, 22]

−cQ[q− − q+] + [(Πq)− − (Πq)+] = 0

holds across each wave, where the superscripts − and + refer respectively to the interior and exterior
information on an element. We have six unknown states (qa,qb,qc,qd,qe,qf ) shown in Figure 1, with
the following jump conditions:

(cIp)
−Q−(q− − qa) + Π−(q− − qa) = 0(37)

(cs)
−Q−(qa − qb) + Π−(qa − qb) = 0(38)

(cIIp )
−Q−(qb − qc) + Π−(qb − qc) = 0(39)

Π−qc −Π+qd = 0(40)
6



−(cIIp )
+Q+(qd − qe) + Π+(qd − qe) = 0(41)

−(cs)
+Q+(qe − qf ) + Π+(qe − qf ) = 0(42)

−(cIp)
+Q+(qf − q+) + Π+(qf − q+) = 0(43)

(cIp)
− (cIp)

+(cIIp )
− (cIIp )

+(cs)
− (cs)

+

0

t

n̂

material 1 material 2

q−

qa
qb qc

qd qe
qf

q+

Figure 1. Schematic showing characteristic wave speeds at a poroelastic interface be-
tween two states q− and q+. qa– qf denote the intermediate states.

Thus:

q− − qa = β1r
−

1(44)

qa − qb = β2r
−

2 + β3r
−

3(45)

qb − qc = β4r
−

4(46)

qd − qe = β10r
+
10(47)

qe − qf = β11r
+
11 + β12r

+
12(48)

qf − q− = β13r
+
13(49)

where r±j is an eigenvector corresponding to wave speed c±j and hence

q− − qc = β1r
−

1 + β2r
−

2 + β3r
−

3 + β4r
+
4(50)

qd − q+ = β10r
+
10 + β11r

+
11 + β12r

+
12 + β13r

+
13(51)

Note that r4, . . . , r9 correspond to wavespeed zero and are not referenced in the following derivations.
We now make use of the orthogonality of the P-wave and the S-wave eigenvectors to uncouple the

system (50) and (51). Recall that the eigenvectors r−1 , r
+
13 correspond to fast P-waves, r−4 , r

+
10 to slow

P-waves, and r−2 , r
+
3 , r

+
11, r

+
12 to S-waves. First we deal with the P-wave coefficients β1, β3, β10, β13.

From the interface condition (40) we have

Π−qc = Π+qd

and so

L−1Π−qc = L−1Π+qd.

Using the first equality in (36) this gives

A−(L−1qc) = A+(L−1qd),

that is

(52) A−(qc)′ = A+(qd)′.

Recalling that

T± = 2µ±

frE+ λ± trace(E)I− α±M±ζI

where λ± = κ±

fr + α2±M± − 2

3
µ±

fr and the ± indicates whether T is evaluated on the interior or exterior

of the interface, it follows that

n̂TT±n̂ = 2µ±

fr n̂
TE±n̂+ λ± trace(E±)n̂TIn̂− α±M±ζ±n̂TIn̂

= 2µ±

fr n̂
TE±n̂+ λ± trace(E±)− α±M±ζ±
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= 2µ±

fr n̂
TE±n̂+ λ±(n̂TE±n̂+ ŝTE±ŝ+ t̂TE±t̂)− α±M±ζ±(53)

since the trace is invariant under orthogonal transformations. We also have

(54) ŝTT±n̂ = 2µfrŝ
TE±n̂, t̂TT±ŝ = 2µfrt̂

TE±ŝ, t̂TT±n̂ = 2µfrt̂
TE±n̂.

We obtain similarly for
T±

f = M±(α± trace(E±)− ζ±)I

the following identity:

n̂TT±

f n̂ = M±α± trace(E±)−M±ζ±

= M±α±(n̂TE±n̂+ ŝTE±ŝ+ t̂TE±t̂)−M±ζ±.(55)

Also

(56) ŝTT±

f n̂ = t̂TT±

f ŝ = t̂TT±

f n̂ = 0.

From (52) we obtain the following flux continuity relations

n̂ · vc
s = n̂ · vd

s(57)

ŝ · vc
s = ŝ · vd

s(58)

t̂ · vc
s = t̂ · vd

s(59)

n̂ · vc
f = n̂ · vd

f(60)

n̂TTcn̂ = n̂TTdn̂(61)

ŝTTcn̂ = ŝTTdn̂(62)

t̂TTcn̂ = t̂TTdn̂(63)

n̂TTc
f n̂ = n̂TTd

f n̂(64)

where we have used (53), (54) and (55).
We now proceed with the evaluation of the β terms. From (50) we have

L−1q− − L−1qc = β1(r
′
1)

− + β2(r
′
2)

− + β3(r
′
3)

− + β4(r
′
4)

−

where the (r′j)
− are the j’th columns of the eigenvector matrix R given by equation (33) evaluated in

the interior of an element. Unwrapping, and using (35), we obtain the relationships

n̂TE−n̂− n̂TEcn̂ = β1 + β4(65)

ŝTE−ŝ = ŝTEcŝ(66)

t̂TE−t̂ = t̂TEct̂(67)

ŝTE−n̂− ŝTEcn̂ = β2/2(68)

t̂TE−ŝ = t̂TEcŝ(69)

t̂TE−n̂− t̂TEcn̂ = β3/2(70)

ζ− − ζc = −γ−

1 β1 − γ−

2 β4(71)

n̂ · v−
s − n̂ · vc

s = (cIp)
−β1 + (cIIp )

−β4(72)

ŝ · v−
s − ŝ · vc

s = (cs)
−β2(73)

t̂ · v−
s − t̂ · vc

s = (cs)
−β3(74)

n̂ · v−

f − n̂ · vc
f = (γ1c

I
p)

−β1 + (γ2c
II
p )

−β4(75)

ŝ · v−

f − ŝ · vc
f = −(csρf/m)−β2(76)

t̂ · v−

f − t̂ · vc
f = −(csρf/m)−β3(77)

We derive similar relations on the right-hand side. From (51) we have

L−1qd − L−1q+ = β10(r
′
10)

+ + β11(r
′
11)

+ + β12(r
′
12)

+ + β13(r
′
13)

+

8



Thus:

n̂TEdn̂− n̂TE+n̂ = β5 + β8(78)

ŝTEdŝ = ŝTE+ŝ(79)

t̂TEdt̂ = t̂TE+t̂(80)

ŝTEdn̂− ŝTE+n̂ = β12/2(81)

t̂TEdŝ = t̂TE+ŝ(82)

t̂TEdn̂− t̂TE+n̂ = β11/2(83)

ζd − ζ+ = −γ+
2 β10 − γ+

1 β13(84)

n̂ · vd
s − n̂ · v+

s = −(cIIp )
+β10 − (cIp)

+β13(85)

ŝ · vd
s − ŝ · v+

s = −c+s β12(86)

t̂ · vd
s − t̂ · v+

s = −c+s β11(87)

n̂ · vd
f − n̂ · v+

f = −(γ2c
II
p )

+β10 − (γ1c
I
p)

+β13(88)

ŝ · vd
f − ŝ · v+

f = (csρf/m)+β12(89)

t̂ · vd
f − t̂ · v+

f = (csρf/m)+β11.(90)

Using the continuity condition (57), (72) and (85) we obtain

(91) (cIp)
−β1 + (cIIp )

−β4 − (cIIp )
+β10 − (cIp)

+β13 = n̂ · (v−
s − v+

s ).

Next from (60), (75) and (88) we obtain

(92) (γ1c
I
p)

−β1 + (γ2c
II
p )

−β4 − (γ2c
II
p )

+β10 − (γ1c
I
p)

+β13 = n̂ · (v−

f − v+
f ).

Using the continuity condition (61) and the identity (53) we obtain

(93)
2µ−

fr n̂
TEcn̂+λ−(n̂TEcn̂+ŝTEcŝ+t̂TEct̂)−α−M−ζc = 2µ+

fr n̂
TEdn̂+λ+(n̂TEdn̂+ŝTEdŝ+t̂TEct̂)−α+M+ζd

We now substitute for Ec and Ed using (65), (66), (71), (78), (79) and (84)

(94) (2µ−

fr + λ− + α−M−γ−

1 )β1 + (2µ−

fr + λ− + α−M−γ−

2 )β4 + (2µ+
fr + λ+ + α+M+γ+

2 )β10

+ (2µ+
fr + λ+ + α+M+γ+

1 )β13 = n̂T(T− −T+)n̂.

Finally using the continuity condition (64) and the identity (55) we obtain

M−α−(n̂TEcn̂+ ŝTEcŝ)−M−ζc = M+α+(n̂TEdn̂+ ŝTEdŝ)−M+ζd.

Substituting again for Ec and Ed gives

(95) M−(α− + γ−

1 )β1 +M−(α− + γ−

2 )β4 +M+(α+ + γ+
2 )β10 +M+(α+ + γ+

1 )β13 = n̂T(T−

f −T+
f )n̂.

There is no straightforward solution to the system (91)–(95). Inverting the coefficient matrix








2µ−

fr + λ− + α−M−γ−

1 2µ−

fr + λ− + α−M−γ−

2 2µ+
fr + λ+ + α+M+γ+

2 2µ+
fr + λ+ + α+M+γ+

1

M−(α− + γ−

1 ) M−(α− + γ−

2 ) M+(α+ + γ+
2 ) M+(α+ + γ+

1 )
(cIp)

− (cIIp )
− −(cIIp )

+ −(cIp)
+

(γ1c
I
p)

− (γ2c
II
p )

− −(γ2c
II
p )

+ −(γ1c
I
p)

+









we obtain the following expressions:

β1 = d11n̂
T(T− −T+)n̂+ d12n̂

T(T−

f −T+
f )n̂+ d13n̂ · (v−

s − v+
s ) + d14n̂ · (v−

f − v+
f )(96)

β4 = d21n̂
T(T− −T+)n̂+ d22n̂

T(T−

f −T+
f )n̂+ d23n̂ · (v−

s − v+
s ) + d24n̂ · (v−

f − v+
f )(97)

β5 = d31n̂
T(T− −T+)n̂+ d32n̂

T(T−

f −T+
f )n̂+ d33n̂ · (v−

s − v+
s ) + d34n̂ · (v−

f − v+
f )(98)

β8 = d41n̂
T(T− −T+)n̂+ d42n̂

T(T−

f −T+
f )n̂+ d43n̂ · (v−

s − v+
s ) + d44n̂ · (v−

f − v+
f )(99)

Here the dij are the entries of the inverse of the coefficient matrix above.
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Now we deal with the shear waves. Using the continuity condition (62) with the identity (54)

(100) 2µ−

fr ŝ
TEcn̂ = 2µ+

fr ŝ
TEdn̂.

Substituting for Ec and Ed using (68) and (81)

(101) (µfr)
−β2 + (µfr)

+β12 = ŝT(T− −T+)n̂.

Finally using (58), (73) and (86) gives

(102) (cs)
−β2 − (cs)

+β12 = ŝ · (v−
s − v+

s ).

Therefore,

β2 =
(cs)

+ŝT(T− −T+)n̂+ µ+
fr ŝ · (v−

s − v+
s )

(cs)+(µfr)− + (cs)−(µfr)+
(103)

β12 =
(cs)

−ŝT(T− −T+)n̂− µ−

fr ŝ · (v−
s − v+

s )

(cs)+(µfr)− + (cs)−(µfr)+
.(104)

In a similar manner using the continuity relationships (62) we obtain

β3 =
(cs)

+t̂T(T− −T+)n̂+ µ+
fr t̂ · (v−

s − v+
s )

(cs)+(µfr)− + (cs)−(µfr)+
(105)

β11 =
(cs)

−t̂T(T− −T+)n̂− µ−

fr t̂ · (v−
s − v+

s )

(cs)+(µfr)− + (cs)−(µfr)+
.(106)

4.5. Upwind numerical flux. We define an upwind numerical flux (Πq)∗ along n̂ by

(107) (Πq)∗ = Π−q− +Q−(β1(c
I
p)

−r−1 + β2(cs)
−r−2 + β3(cs)

−r−3 + β4(c
II
p )

−r−4 ).

We now compute the βiri terms. First, noting that ri = Lr′i, a simple computation gives

r−1 =









n̂⊗ n̂

−γ−

1

(cIp)
−n̂

γ−

1 (cIp)
−n̂









, r−2 =









n̂⊗ ŝ

0
(cs)

−ŝ

− (cs)
−ρ−

f

m−
ŝ









, r−3 =











n̂⊗ t̂

0

(cs)
−t̂

− (cs)
−ρ−

f

m−
t̂











, r−4 =









n̂⊗ n̂

−γ−

2

(cIIp )
−n̂

γ−

2 (cIIp )
−n̂









,

where n̂⊗ n̂ = (n2
1, n

2
2, n

2
3, n1n2, n2n3, n1n3)

T is a flattened representation of the tensor n̂⊗ n̂, etc.
In what follows, we make multiple use of the vector/tensor identities

(ŝ · a)ŝ+ (t̂ · a)t̂ = −n̂× (n̂× a)(108)

(ŝ · a) sym(ŝ⊗ n̂) + (t̂ · a) sym(t̂⊗ n̂) = − sym(n̂⊗ (n̂× (n̂× a)))(109)

We define

[[T]] = T−n̂− +T+n̂+

[[Tf ]] = T−

f n̂
− +T+

f n̂
+

[[v]] = n̂−Tv− + n̂+Tv+

[v] = v− − v+

For the fast P-wave term we have

(110) β1(c
I
p)

−r−1 = (cIp)
−(d11n̂

T[[T]] + d12n̂
T[[Tf ]] + d13[[vs]] + d14[[vf ]])×









n̂⊗ n̂

−γ−

1

(cIp)
−n̂

γ−

1 (cIp)
−n̂









,

For the S-wave term we have

(111) β2c
−
s r

−

2 + β3c
−
s r

−

3 =
−(cs)

−(cs)
+

(cs)+(µfr)− + (cs)−(µfr)+











sym(n̂⊗ (n̂× (n̂× [[T]])))
0

(cs)
−n̂× (n̂× [[T]])

−(cs)
−ρ−

f

m−
n̂× (n̂× [[T]])










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− (cs)
−(µfr)

+

(cs)+(µfr)− + (cs)−(µfr)+











sym(n̂⊗ (n̂× (n̂× [[vs]])))
0

(cs)
−n̂× (n̂× [vs])

−(cs)
−ρ−

f

m−
n̂× (n̂× [vs])











Finally for the slow P-wave we have

(112) β3(c
II
p )

−r−1 = (cIIp )
−(d21n̂

T[[T]] + d22n̂
T[[Tf ]] + d23[[vs]] + d24[[vf ]])×









n̂⊗ n̂

−γ−

2

(cIIp )
−n̂

γ−

2 (cIIp )
−n̂









5. Consideration of poro-viscoelasticity

5.1. Introduction. The low-frequency regime is straightforward and follows Biot’s 1956 paper [3]. Using
the conventions of equations (1) and (2), the low-frequency dissipative regime is modelled by the term
η

k

∂w

∂t
. For the hyperbolic system (20) we simply add the source term (24). We note that in certain

physical situations (when the permeability of the solid matrix is very small and the frequency content
of the propagating wave very low) the second P-wave can be essentially static and highly diffusive (so
has a characteristic timescale much smaller than the time step of the non-dissipative hyperbolic system),
rendering the system stiff and requiring extremely small time steps in an explicit scheme to capture
the dissipative effects. This is considered by Carcione and Quiroga-Goode in [8] who used an operator
splitting approach to avoid this issue and treated the viscous dissipation term analytically. In a more
recent paper Lemoine et al. [21] work in a finite volume setting and again implement an operator
splitting on the dissipative part, while an IMEX scheme is implemented in [13]. Here we consider both
operator-splitting and IMEX techniques; see Section 7 below.

5.2. High-frequency case. In the high-frequency case the term
η

k

∂w

∂t
in equation (2) is replaced by a

convolution b ∗ ∂2w

∂t2
where b(t) = η

kΨ(t)H(t), Ψ(t) is a relaxation function of the form

(113) Ψ(t) = 1 +

L
∑

l=1

(

τ lǫ
τ lσ

− 1

)

e−t/τ l
σ

with relaxation times τǫ and τσ, and H(t) is a Heaviside function. Thus the relaxation mechanism
corresponds to a generalised Zener model; see [7]. In practice it is common to deal with a single Zener
model, which is the case we deal with here. We have

b ∗ ∂vf

∂t
=

η

k

∫ t

−∞

Ψ(t− τ)
∂vf

∂τ
dτ(114)

=
η

k

∫ t

−∞

∂vf

∂τ
dτ +

η

k

L
∑

l=1

(

τ lǫ
τ lσ

− 1

)∫ t

−∞

e−(t−τ)/τ l
σ
∂vf

∂τ
dτ(115)

=
η

k
vf +

η

k

L
∑

l=1

(

τ lǫ
τ lσ

− 1

)∫ t

−∞

e−(t−τ)/τ l
σ
∂vf

∂τ
dτ(116)

Introducing memory variables

(117) el =

(

τ lǫ
τ lσ

− 1

)∫ t

−∞

e−(t−τ)/τ l
σ
∂vf

∂τ
dτ

we obtain 3L additional differential equations:

∂el

∂t
=

(

τ lǫ
τ lσ

− 1

)

∂vf

∂t
− el

τ lσ
(118)

and

(119) b ∗ ∂vf

∂t
=

η

k
vf +

η

k

L
∑

l=1

el.
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It is customary to express the relaxation times in terms of a quality factor Q0 and a reference frequency
f0 as

τǫ = (
√

Q2
0 + 1 + 1)/(2πf0Q0)(120)

τσ = (
√

Q2
0 + 1− 1)/(2πf0Q0).(121)

For L = 1 the variable q defined in (15) must now be augmented with three additional variables e1x, e
1
y, e

1
z:

(122) q = (ǫ11, ǫ22, ǫ33, ǫ12, ǫ23, ǫ13, ζ, us, vs, ws, uf , vf , wf , e
1
x, e

1
y, e

1
z)

T

and the various coefficient matrices inflated in an obvious manner.
As noted in [13] implementation of the high-frequency case needs to be carried out with some care.

Solving the sixteen-variable system as an inflated hyperbolic system results in a memory variable that
converges to zero very quickly. An accurate scheme is obtained by treating the memory equations (118)

as an uncoupled system of ordinary differential equations and evaluating
∂vf

∂t
from its gradient and flux

terms.

6. Adjoint method

In applications to inverse problems, we wish to quantify a model’s fit to observed data. In seismic
problems data normally consists of ground motion measurements following a seismic event due to a passive
or active source. Here we are interested in fitting full waveform ground acceleration or velocity data, which
requires simulating a forward model many times. Poroelastic wave inverse problems are particularly
challenging since most nontrivial problems require multiparameter estimation and the computational
cost of the forward problem is expensive and often prohibitive [19, 20]. In both frequentist and Bayesian
approaches to inverse problems, a least squares estimate is a good starting point to solving an inverse
problem. This requires the solution of a PDE-constrained optimisation problem.

We introduce the following notation

(123) L(q) = Q
∂q

∂t
+

∂

∂xi
(Aiq)

where q = (ǫ11, ǫ22, ǫ33, ǫ12, ǫ23, ǫ13, ζ, us, vs, ws, uf , vf , wf)
T and we assume the Einstein summation con-

vention over repeated indices. We consider the hyperbolic system L(q) = g + gV .
Given time-varying data d(xr, t) define the misfit functional

(124) χ(θ) =
1

2

∑

i∈I,r∈R

∫ T

0

∫

Ω

[qi(θ, x, t)− di(xr, t)]
2δ(x− xr)dxdt

where q(θ, x, t) is the forward map evaluated on the parameter set θ, I is an index set over the observed
measurements (i.e. which components of q are measured, usually velocities), and R is an index set
over the receiver locations xr. Gradient-based approaches to minimising (124) require estimation of the
Jacobian of (124) with respect to the parameter space θ which usually requires many evaluations of
the forward map; this is an expensive calculation as noted above. The adjoint method is a standard
approach for computing derivatives of a misfit functional in computational seismology which reduces the
number of evaluations of the forward map to one together with one evaluation of a dual, or adjoint,
map. Fichtner gives an interesting history of the adjoint method in seismology [14]. When the elastic
or poroelastic wave equation is written as a second order system in time, the adjoint map is self-adjoint,
although time-reversed, which means the forward solver can be used to solve the adjoint problem, and
hence estimate the Jacobian of the least squares misfit functional, [26], [14]. With a first order system
this is no longer the case, and more care must be taken to both derive and solve an adjoint equation.
Since adjoints are not unique being specified relative to an inner product, the actual choice of the inner
product turns out to be crucial to obtain an adjoint equation that is physically meaningful. This was
considered in [27] for the elastic wave equation.

We therefore replace (124) by

(125) χ(θ) =
1

2

∑

i∈I,r∈R

∫ T

0

∫

Ω

[qi(θ, x, t)− di(x, t)]
2wiδ(x− xr)dxdt
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where wi are positive weights. We can then define an inner product 〈·, ·〉W and write (125) as

(126) χ(θ) =
1

2
〈q− d, (q− d)δ(x− xr)χI〉W

where χI is an indicator function on the measurement set (=1 if qi is measured, otherwise 0) and for
simplicity we have assumed just one receiver location. In the following we take wi = 1 except for
i = 4, 5, 6 where we set wi = 2. The reason for this is that we may write q in block form

(127) q =

(

q1

q2

)

where q1 contains the 7 strain components q1 = (ǫ11, ǫ22, ǫ33, ǫ12, ǫ23, ǫ13, ζ)
T, while q2 contains the

6 velocity components q2 = (us, vs, ws, uf , vf , wf)
T. Note that the first six entries of q1 is a flattened

representation of the strain tensor (5), and the natural inner product is given by the double dot product
: , and the off-diagonal (shear) terms are counted twice. Hence the specification of weights above. In
practice the inner product 〈·, ·〉W defined above makes no difference to the estimation problem since
ground motion data is measured and not strain data.

In the following derivations we assume, for simplicity, that the source parameters are known. We
define the directional derivative

(128) Dδθχ(θ) = lim
h→0

1

h
[χ(θ + hδθ)− χ(θ)]

Then

(129) Dδθχ = 〈(q− d)δ(x− xr)χI , Dδθq〉W
and

DδθL(q) = (DδθQ)
∂q

∂t
+Q(Dδθ

∂q

∂t
) +

∂

∂xi
(Dδθ(A

iq))

= Q(δθ)
∂q

∂t
+Q

∂

∂t
(Dδθ(q)) +

∂

∂xi
(Ai(δθ)q+AiDδθ(q))

= 0(130)

We now take the inner product of (130) with a dual vector q∗

(131)

〈

q∗, Q(δθ)
∂q

∂t
+

∂

∂xi
(Ai(δθ)q)

〉

W

+

〈

q∗, Q
∂

∂t
(Dδθ(q)) +

∂

∂xi
(AiDδθ(q))

〉

W

= 0

We have

(132) Q
∂

∂t
(Dδθ(q)) +

∂

∂xi
(AiDδθ(q)) = L(Dδθq)

Using the definition of the adjoint map on the second term in (131) gives

(133) 〈q∗, Lδθ(q)〉W + 〈L∗q∗, Dδθ(q)〉W = 0

where

(134) Lδθ(q) = Q(δθ)
∂q

∂t
+

∂

∂xi
(Ai(δθ)q)

Adding (133) to (129) gives

Dδθχ = 〈(q− d)δ(x− xr)χI , Dδθq〉W + 〈q∗, Lδθ(q)〉W + 〈L∗q∗, Dδθ(q)〉W
= 〈(q− d)δ(x− xr)χI + L∗q∗, Dδθq〉W + 〈q∗, Lδθ(q)〉W(135)

Dδθq is an expensive calculation so we define q∗ to be the solution of the adjoint equation defined by

(136) L∗q∗ = −(q− d)δ(x− xr)χI

13



with appropriate initial and boundary conditions given in the next section. Therefore, the derivatives of
the misfit functional may be calculated by

(137) Dδθχ = 〈q∗, Lδθ(q)〉W
6.1. The formal adjoint. We now derive the formal adjoint of L(q) with respect to the inner product
〈·, ·〉W . First we note that

(138)

〈

q∗, Q
∂q

∂t

〉

W

=

∫

Ω

(

(

Q∗q∗,q

)

R13

∣

∣

∣

∣

T

0

−
∫ T

0

(

Q∗ ∂q
∗

∂t
,q

)

R13

dt

)

dx

where (·, ·)R13 is the Euclidean inner product on R
13 with weights wi and Q∗ is the adjoint of Q in the

weighted inner product; in this instance, Q∗ = QT. Typically in applications we assume that q(x, 0) = 0,
while the other boundary term vanishes if we assume q∗(x, T ) = 0, thus the adjoint field q∗ satisfies
a final value problem. Next we deal with the spatial terms which again are integrated by parts using
Gauss’ theorem.

It is convenient to write q in block form as in (127)

q =

(

q1

q2

)

Similarly we write Ai in block form

(139) Ai =

(

0 Ai
2

Ai
1 0

)

Then

〈

q∗,
∂

∂xi
(Aiq)

〉

W

= −
〈

∂

∂xi

(

q∗
1

q∗
2

)

,

(

Ai
2q2

Ai
1q1

)〉

W

+ surface terms

= −
〈(

0 Ai,∗
2

Ai,∗
1 0

)

∂

∂xi

(

q∗
1

q∗
2

)

,

(

q1

q2

)〉

W

+ surface terms(140)

where, for i = 1,

(141) A1,∗
1 = −

















1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

















and

(142) A1,∗
2 = −





















2µfr + λ 0 0 αM 0 0
λ 0 0 αM 0 0
λ 0 0 αM 0 0
0 µfr 0 0 0 0
0 0 0 0 0 0
0 0 µfr 0 0 0

−αM 0 0 −M 0 0





















We now dispose of the surface terms: we may write the boundary term as

(143)

∫

∂Ω

q∗j (A
i
j,kqkni)wjdS

We recall that the first 7 elements of q are the strain components (ǫ11, ǫ22, ǫ33, ǫ12, ǫ23, ǫ13, ζ)
T. Assuming

the traction-free boundary condition in Section 4.3 it follows that the last 6 components of Ai
j,kqkni

vanish. As we will see below, the first 7 elements of q∗ may be identified as the components of the
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stress tensors T and Tf , and so the traction-free condition also implies that the first 7 components of
q∗j (A

i
j,kni)wj vanish. In the case of absorbing boundary conditions at artificial boundaries more care

needs to be taken with implementation to ensure that the boundary terms above vanish.
In a similar fashion we obtain

Ai,∗ =

(

0 Ai,∗
2

Ai,∗
1 0

)

for i = 2, 3 where

A2,∗
1 = −

















0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0

















A2,∗
2 = −





















0 λ 0 0 αM 0
0 2µfr + λ 0 0 αM 0
0 λ 0 0 αM 0
µfr 0 0 0 0 0
0 0 µfr 0 0 0
0 0 0 0 0 0
0 −αM 0 0 −M 0





















(144)

A3,∗
1 = −

















0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1

















A3,∗
2 = −





















0 0 λ 0 0 αM
0 0 λ 0 0 αM
0 0 2µfr + λ 0 0 αM
0 0 0 0 0 0
0 µfr 0 0 0 0
µfr 0 0 0 0 0
0 0 −αM 0 0 −M





















(145)

This gives

(146) L∗q∗ = −Q∗ ∂q
∗

∂t
−Ai,∗ ∂q

∂xi

Therefore, under the inner product 〈·, ·〉W the adjoint or dual map L∗ of L is simply the non-conservative
velocity/stress formulation of the poroelastic wave equation, see [22] for the elastic wave case. This
permits straightforward derivation of dual flux conditions for the adjoint equation, as well as giving
physical meaning to the adjoint.

6.2. Dual numerical fluxes for the adjoint problem. To derive numerical fluxes we again write q

in block form

q =

(

q1

q2

)

where q1 is an element of R7 and q2 of R6. The weighted inner product on R
13 naturally decomposes

to a weighted inner product on R
7 and an unweighted inner product on R

6. Define a dual vector q∗ by
setting

(

q∗
1

q∗
2

)

=

(

Cq1

q2

)

where

(147) C =





















2µfr + λ λ λ 0 0 0 −αM
λ 2µfr + λ λ 0 0 0 −αM
λ λ 2µfr + λ 0 0 0 −αM
0 0 0 2µfr 0 0 0
0 0 0 0 2µfr 0 0
0 0 0 0 0 2µfr 0

−αM −αM −αM 0 0 0 M





















Note that C∗ = C, i.e. C is self-adjoint in the weighted inner product on R
7. Let Dk be an element,

then (recalling equation (21)) we have
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(148)

∫

Dk

(

Q1
∂qk

1

∂t
+

∂

∂xi
(Ai

2q
k
2), Cp1

)

R7

+

(

Q2
∂qk

2

∂t
+

∂

∂xi
(Ai

1q
k
1),p2

)

R6

dx

=

∫

Dk

(

Q1
∂(Cqk

1)

∂t
+ C

∂

∂xi
(Ai

2q
k
2),p1

)

R7

+

(

Q2
∂qk

2

∂t
+

∂

∂xi
(Ai

1q
k
1),p2

)

R6

dx

Using CAi
2 = Ai,∗

2 and Ai
1 = Ai,∗

1 C, the following identities are easily derived:

C
∂

∂xi
(Ai

2q2) = Ai,∗
2

∂q∗
2

∂xi
(149)

∂

∂xi
(Ai

1q1) = Ai,∗
1

∂q∗
1

∂xi
(150)

where for notational convenience we have suppressed the dependency on the element Dk. This gives

(151)

∫

Dk

(

Q1
∂qk

1

∂t
+

∂

∂xi
(Ai

2q
k
2), Cp1

)

R7

+

(

Q2
∂qk

2

∂t
+

∂

∂xi
(Ai

1q
k
1),p2

)

R6

dx

=

∫

Dk

(

Q1
∂q∗

1

∂t
+Ai,∗

2

∂q∗
2

∂xi
,p1

)

R7

+

(

Q2
∂q∗

2

∂t
+Ai,∗

1

∂q∗
1

∂xi
,p2

)

R6

dx

This means that a numerical scheme for the forward model automatically gives a scheme for the adjoint
model by setting the fluxes as follows:

(152) F∗

(

q∗
1

q∗
2

)

= F∗

(

Cq1

q2

)

That is we simply replace q1 by Cq1 in the flux terms for the forward model in Section 4.5.
We obtain the following upwind flux:

(153) β1(c
I
p)

−r−1 + β2c
−
s r

−

2 + β3c
−
s r

−

3 + β3(c
II
p )

−r−4 =

(cIp)
−(d11n̂

T[[T]] + d12n̂
T[[Tf ]] + d13[[vs]] + d14[[vf ]])×









2µ−

fr n̂⊗ n̂+ (λ− + α−γ−

1 M−)I
−(α− + γ−

1 )M−

(cIp)
−n̂

γ−

1 (cIp)
−n̂









− (cs)
−(cs)

+

(cs)+(µfr)− + (cs)−(µfr)+











2µ−

fr sym(n̂⊗ (n̂× (n̂× [[T]])))
0

(cs)
−n̂× (n̂× [[T]])

−(cs)
−ρ−

f

m−
n̂× (n̂× [[T]])











− (cs)
−(µfr)

+

(cs)+(µfr)− + (cs)−(µfr)+











2µ−

fr sym(n̂⊗ (n̂× (n̂× [[vs]])))
0

(cs)
−n̂× (n̂× [vs])

−(cs)
−ρ−

f

m−
n̂× (n̂× [vs])











+ (cIIp )
−(d21n̂

T[[T]] + d22n̂
T[[Tf ]] + d23[[vs]] + d24[[vf ]])×









2µ−

fr n̂⊗ n̂+ (λ− + α−γ−

2 M−)I
−(α− + γ−

2 )M−

(cIIp )
−n̂

γ−

2 (cIIp )
−n̂









6.3. Discussion.

6.3.1. Implementation. It turns out that implementation of the adjoint method to estimating derivatives
of an objective functional is quite straightforward as we now show. Once again it is convenient to write
q and q∗ in block form:

q =

(

q1

q2

)

, q∗ =

(

q∗
1

q∗
2

)
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Then

Lδθ(q) =

(

I 0
0 Q2(δθ)

)

∂

∂t

(

q1

q2

)

+
∂

∂x

(

0 Ai
2

Ai
1(δθ) 0

)(

q1

q2

)

(154)

= Q2(δθ)
∂q2

∂t
+

∂

∂x
(Ai

1(δθ)q1)(155)

since from equation (20) we have

∂q1

∂t
+

∂

∂x
(Ai

2q2) = 0

This means that (137) reduces to computing

(156) Dδθχ =
〈

q∗
2, L

2
δθ(q)

〉

W2

where

L2
δθ(q) = Q2(δθ)

∂q2

∂t
+

∂

∂x
(Ai

2(δθ)q1)

and W2 is the restriction of W to q2, the velocity components of q. This means that to compute Dδθχ
we only need the velocity components q2 and q∗

2 of q and q∗. Thus for implementation it is immaterial
whether we use a conservative velocity/strain or non-conservative velocity/stress (adjoint) formulation
to compute q∗ since we only need q∗

2.

6.3.2. Time reversal. Implementation of a time-reversed adjoint solver needs some care since the down-
wind fluxes given above are with respect to forward time integration. Integrating backwards from the
final time t = T to t = 0 they become upwind fluxes and result in a divergent scheme. To obtain a
downwind scheme one simply has to map the wavespeeds c → −c.

6.3.3. Fréchet kernels of poroelastic parameters. Sensitivity or Fréchet kernels obtained from (137) by
taking the integral with respect to time are a useful tool in computational seismology; we refer to
[14], Chapter 9, and [26] for the elastic case. Due to the nonlinear relationships between the constitutive
parameters in the Hooke’s laws (8)-(9) and the physical parameters in equation (10)-(12), Fréchet kernels
corresponding to the primary physical constants like porosity would be unwieldy. Therefore, in the
following, we use the derived model parameters ρa, ρf and m for densities, κfr and µfr for stiffness
parameters and α and M for coupling parameters.

For the density parameters we obtain kernels kρa
, kρf

and km given by

kρa
=

∫ T

0

(

u∗,
∂u

∂t

)

R3

dt(157)

kρf
=

∫ T

0

(

u∗,
∂uf

∂t

)

R3

+

(

u∗
f ,

∂u

∂t

)

R3

dt(158)

km =

∫ T

0

(

u∗
f ,

∂uf

∂t

)

R3

dt(159)

For the stiffness parameters we obtain kernels kκfr
and kµfr

where

kκfr
= −

∫ T

0

(u∗,∇ trace(E))
R3 dt(160)

kµfr
= −

∫ T

0

(

u∗,∇ · E − 1

3
∇ trace(E)

)

R3

dt(161)

For the coupling coefficients we first define an auxiliary kernel kα,M by

(162) kα,M =

∫ T

0

(u,∇ζ)
R3 − (uf ,∇ trace(E))

R3 dt

This gives kernels kα and kM defined by
17



kα = Mkα,M(163)

kM = αkα,M +

∫ T

0

(uf ,∇ζ)
R3 dt(164)

We may then write

(165) Dδθχ =

∫

Ω

(δρa)kρa
+ (δρf)kρf

+ (δm)km + (δκfr)kκfr
+ (δµfr)kµfr

+ (δα)kα + (δM)kMdx

7. Numerical experiments

In this section, we consider several numerical experiments, which were implemented in MATLAB and,
for the most computationally intensive parts, in C. First, we consider the convergence properties of the
numerical scheme in the inviscid and low- and high-frequency viscous regimes; we verify that, except
in some cases of very small permeability, our code approaches the optimal convergence behaviour of
the DG method (see discussion in [16, Chapter 4] and references therein). We then give an example of
heterogeneous poroelastic material to show that our code naturally handles material discontinuities, a
necessary feature in applications to groundwater tomography. Finally we give an example of the adjoint
method.

In the simulations described below, the length of the time step ∆t is computed from

(166) ∆t = C
hmin

cmaxp2

where C is a constant, cmax is the maximum wave speed over all elements, p is the basis order and hmin

is the smallest distance between two vertices in any element. In the simulations, we set C = 0.4 unless
otherwise stated.

7.1. Convergence analysis. Convergence tests were carried out on a cubical domain Ω = [0, 5]×[0, 5]×
[0, 5]m with four regular grids of different side lengths (formed by dividing the domain into subcubes
and dividing each subcube into tetrahedra) and inhomogeneous Dirichlet boundary conditions. For time-
stepping, in this section we used the five-stage, fourth-order accurate low-storage explicit Runge-Kutta
(LSERK) method originated in [9] and used in [16]. With three-dimensional meshes, the advantages
of low-storage methods, storing fewer intermediate results than general Runge-Kutta methods, become
particularly apparent.

The material parameters are given in Table 2. We consider three cases. In the first case we consider
wave propagation in an inviscid setting, while the other two involve viscous flow in Biot’s low- and high-
frequency settings respectively. In Table 3, we list the assumed frequencies, viscosities, permeabilities,
and the derived wave velocities. The frequency was set at 2,000 Hz so that the test domain captured
around three wavelengths of the fast P-wave. Note that with the high-frequency case we also need to
define the quality factor (see Section 5.2).

Analytic plane wave solutions consisting of fast and slow P-waves and S-waves were constructed from
plane wave solutions of the form

q = q0e
i(kxx+kyy+kzz−ωt)

where i =
√
−1, ω is an angular frequency, and kx, ky and kz are complex wave numbers in the x-, y-

and z-directions, respectively. In the inviscid case, we consider dissipating waves of the form

q = Re





13
∑

j=1

αjrje
i(kx,j+ky,j+kz,j−ωt)





where rj is an eigenvector of the 13× 13 matrix

Π = Q−1(n̂xA
1 + n̂yA

2 + n̂zA
3)

where nx, ny and nz are direction cosines. In the reported examples, we set [kx, ky, kz] to be a vector
parallel to [0.9, 1.0, 1.1], so as not to align with the geometry of the regular grid in use. For the viscous
low- and high-frequency cases the wave speeds and dissipation are frequency-dependent.

The numerical solver was initialised with the analytic plane wave solution at time t = 0, and the
boundary values were set with the values of the analytic plane wave. The tests were carried out using
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Table 2. Material parameters used in the convergence analysis.

variable name symbol

solid density ρs (kg/m
3) 2650

fluid density ρf (kg/m
3) 900

fluid bulk modulus κf (GPa) 2.0
frame bulk modulus κfr (GPa) 10.0
solid bulk modulus κs (GPa) 12.0
frame shear modulus µfr (GPa) 5.0

tortuosity τ 1.2
porosity φ 0.3

Table 3. This table lists the plane wave frequency f0, viscosity η, permeability k,
quality factor Q0, Biot’s characteristic frequency fc, and wave velocities (cIp, c

II
p , cs) for

the three cases studied.

case f0 (Hz) η (Pa·s) k (m2) Q0

inviscid 2000 0 - -
low-frequency 2000 0.001 10−12 -
high-frequency 2000 0.001 10−8 30

case fc (Hz) cIp (m/s) cIIp (m/s) cs (m/s)

inviscid - 2967 1411 1622
low-frequency 44209.71 2817 414 1534
high-frequency 4.42 2967 1411 1622

plane waves with a fixed frequency f0 (see Table 3). The total simulation time was taken to be 1/f0.
The analytic and numerical solutions were compared at the final simulation time over the whole compu-
tational domain Ω by, on each element Dk, interpolating a polynomial of degree at most p through the
exact solution values, calculating the distance in L2(Dk) between this polynomial and the polynomial
representing the simulated solution, and combining the results over all elements to give a distance in
L2(Ω). Errors are reported only for the solid velocity component us in all cases.

The convergence rate is defined by

(167) rate = log

( ‖eℓ‖2
‖eℓ−1‖2

)/

log

(

hℓ
min

hℓ−1
min

)

where ‖eℓ‖2 is the L2 norm of the error eℓ as described above and hℓ
min is the minimal distance between

adjacent vertices in the ℓ’th mesh; here the meshes are ordered in decreasing order of hmin.
Table 4 shows the convergence rate for the inviscid, viscous (low-frequency), and viscous (high-

frequency) cases. The results shows that the method is consistent with the optimal convergence rate of
p+ 1, for basis order p.

7.1.1. The low frequency case: very small permeability. As noted in the introduction to Section 5, the
accuracy of the low-storage explicit Runge-Kutta (LSERK) scheme falls off as the permeability decreases
to zero in the low frequency regime. In this section we give convergence results for an example in which
the permeability is k = 10−14 m2, which may be regarded as a fairly extreme test of a time integration
scheme. On the meshes and basis orders used for Table 4, the LSERK scheme failed in every case, with
all fields rapidly diverging to ∞.

For small k, stiffness is introduced into the system by the low-frequency dissipation terms g described
by (24); having no space derivatives, these play no role in the spatial semidiscretisation of the system,
and appear unchanged in the ODE system, where they are localised on individual nodes. To deal with
them, we tried two techniques: operator splitting and an IMEX (implicit-explicit) Runge-Kutta scheme.
In both approaches, the idea is to regard the right-hand side of the ODE system as the sum of two terms:
the stiff term g and the remaining, non-stiff, conservation terms.

In a recent paper [25] on the Biot equation in two dimensions, it is observed that the ODE system
with only the stiff terms on the right-hand side may be solved explicitly. This remains true in three
dimensions: if we compute Q−1g, we find a matrix that is zero outside the lower-right 6× 6 block; this
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Table 4. The convergence rate and the L2 error for the solid velocity component us as
a function of the grid parameter hmin for three basis orders starting from order 3 (top),
order 5 (middle), and ending with order 6 (bottom).

inviscid low-frequency high-frequency

hmin (m) L2 error rate L2 error rate L2 error rate

0.3125 2.032e-01 — 2.020e-01 — 1.986e-01 —
0.2632 1.051e-01 3.8362 1.046e-01 3.8301 1.031e-01 3.8157
0.2083 4.059e-02 4.0728 4.042e-02 4.0695 3.977e-02 4.0780
0.1786 2.186e-02 4.0140 2.171e-02 4.0323 2.144e-02 4.0088

0.3125 6.640e-03 — 7.196e-03 — 6.476e-03 —
0.2632 2.432e-03 5.8448 2.808e-03 5.4762 2.382e-03 5.8206
0.2083 6.415e-04 5.7045 7.130e-04 5.8679 6.283e-04 5.7043
0.1786 2.446e-04 6.2553 2.594e-04 6.5585 2.397e-04 6.2500

0.3125 1.033e-03 — 1.125e-03 — 1.005e-03 —
0.2632 3.233e-04 6.7586 3.835e-04 6.2620 3.151e-04 6.7513
0.2083 6.375e-05 6.9503 8.913e-05 6.2462 6.237e-05 6.9334
0.1786 2.165e-05 7.0072 3.547e-05 5.9780 2.122e-05 6.9944

block, itself broken down into 3× 3 blocks, acts on the velocity terms as follows

(168)

[

ρaI ρfI
ρfI mI

]−1 [
0 0
0 −(η/k)I

]

















∗
∗
∗
uf

vf
wf

















=
η

(mρa − ρ2f )k

[

0 ρfI
0 ρaI

]

















∗
∗
∗
uf

vf
wf

















Here 0, I represent the 3 × 3 zero and identity matrices and asterisks denote terms that are multiplied
by zero, so have no part to play.

Diagonalising this triangular matrix is entirely straightforward: its eigenvalues are 0 and ρaη/((mρa−
ρ2f )k) and its eigenvectors are readily obtained, leading to a simple, explicit solution to the associated
ODE system.

We can now follow [25] and implement Godunov splitting [22, Section 17.3]: at each time-step, given
an initial value qn at time tn from the previous timestep, we begin by explicitly finding the solution to
the stiff part of the system at the next time-step, tn+1; we then feed this back as a new initial value at
tn and from that use the LSERK scheme to find an approximate solution to the non-stiff part of the
system at tn+1. This serves as our approximate solution qn+1 of the whole system at tn+1, and we can
repeat the process.

This immediately results in a stable scheme, but the errors involved in this splitting method are rather
large: first-order in the length of the time step [22, Section 17.3]. In an attempt to mitigate this, we also
considered Strang splitting [22, Section 17.4]: instead of a whole time-step of the analytic stiff solution
followed by a whole timestep of the LSERK non-stiff solution, this comprises half a time step of analytic
stiff, a whole timestep of LSERK non-stiff, and a final half time step of analytic stiff. As in the Godunov
splitting, the final values of the system at the end of each (partial) time-step are fed back as initial values
to the next (partial) time-step. This has scarcely any more computational cost (compared to an LSERK
step, the cost of the analytic solution is vanishingly small), and should improve the time-stepping error
to second-order accuracy [22, Section 17.4].

Table 5 shows the errors and convergence rates for a few examples, using time-steps ∆t and ∆t/16
(intermediate ∆t/2n results were calculated but are not presented here). As expected, Strang splitting
gives better results than Godunov splitting (although the difference is not huge; it is noted in [22, Section
17.5] that this is not uncommon). Both methods give noticeably better results when the time-step length
is decreased; this is in marked contrast to the non-stiff results in Table 4, which remain unchanged to
four or more decimal places when the time-step is halved. This suggests that, in Table 4, we are seeing
almost entirely spatial discretisation errors, with little contribution from time discretisation, whereas
in Table 5, time discretisation is still making a noticeable contribution to the error, even at 16 times
the base number of steps. At order 3, we can approach the optimal convergence rate of 4, but only
by significantly reducing the time-step. At order 5, even reducing the time-step by a factor of 16 does
not give anything close to the optimal rate, but even so we do see the errors being greatly reduced. In
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Table 5. Convergence rates for the solid velocity component us in the stiff case, using
Godunov splitting (G, top) and Strang splitting (S, bottom), with three meshes and
time steps ∆t and ∆t/16. Some values are highlighted for comparison with Table 6.

Order 3
Time step / 1 Time step / 16

hmin L2 error rate L2 error rate
0.3125 2.062e-01 — 1.779e-01 —
0.2632 1.192e-01 3.1881 9.289e-02 3.7802 (G)
0.2083 6.359e-02 2.6914 3.590e-02 4.0694
0.3125 2.020e-01 — 1.778e-01 —
0.2632 1.147e-01 3.2903 9.286e-02 3.7794 (S)
0.2083 5.839e-02 2.8920 3.589e-02 4.0696

Order 5
Time step / 1 Time step / 16

hmin L2 error rate L2 error rate
0.3125 2.703e-02 — 7.247e-03 —
0.2632 2.200e-02 1.1981 3.491e-03 4.2502 (G)
0.2083 1.709e-02 1.0801 1.640e-03 3.2347

0.3125 2.340e-02 — 7.256e-03 —
0.2632 1.879e-02 1.2752 3.488e-03 4.2625 (S)
0.2083 1.448e-02 1.1165 1.611e-03 3.3057

summary, the splitting methods are an effective, but possibly sub-optimal and certainly costly, way of
addressing the stiffness caused by very small permeability.

For a less costly solution, we turned to an IMEX (implicit-explicit) Runge-Kutta scheme. As for the
explicit scheme, the size of the meshes involved in three-dimensional simulation makes a low-storage
scheme very attractive. Several such schemes are presented in [10]; we used the four-stage, third-order
accurate scheme IMEXRKCB3e [10, equation (30)]. In an IMEX scheme, the ODE is split as above into
a non-stiff and a stiff part; at each stage of each Runge-Kutta step, the non-stiff part of the equation
is handled explicitly (i.e. by evaluating the non-stiff part of the right-hand side) and the stiff part is
handled implicitly (i.e. by solving an equation involving the stiff part of the right-hand side). This
equation-solving process can, in general, be computationally expensive, but for the low-frequency terms
in Biot’s equation this turns out not to be the case. The main reason for this is that the dissipation terms
are localised onto individual nodes; this immediately means that the equations to be solved decouple into
at worst one 13 × 13 linear system for each node. In fact, they are much simpler than that. As above,
the dissipation terms involve only the last six of the thirteen fields in the model, so we only need a 6× 6
system. At each Runge-Kutta stage, we must [10, Section 1.2.1], for each node, solve one linear system
by finding (I − cA)−1A, where c is some scalar depending on the IMEX coefficients and the time-step
length and A is the matrix given above in (168). The simple structure of this matrix leads to a simple
solution: in block form,

(I − cA)−1A =
η

cηρa + kmρa − kρ2f

[

0 ρfI
0 −ρaI

]

where 0, I again represent the 3× 3 zero and identity matrices. For this system, then, the implicit part
of the IMEX scheme becomes fully explicit and the cost of the IMEX scheme is little more than that of
an LSERK scheme of the same accuracy. In fact, we used a four-stage scheme with third-order accuracy,
which is adequate for these tests (this was verified by re-running tests with half the time-step, which led
to changes only in the fourth or more significant figure of the error).

The results of this, on the same meshes as were used for Table 4, are shown in Table 6. As can be seen,
the convergence rates are consistent with the optimal rate of p+ 1 at basis order p for p = 2 and p = 3,
marginal at p = 4 and fall away for p = 5 and p = 6. Unlike in the operator-splitting methods, halving
the time-step had no noticeable effect on this (the results typically agreed to three or more significant
figures), so this seems to be a feature of the spatial discretisation, not of the time-stepping. This is also
consistent with the way that, in the operator-splitting approach (Table 5), the optimal convergence rate
is apparent at basis order p = 3 but not at p = 5.
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Table 6. Convergence rates for the solid velocity component us in the stiff case, IMEX
scheme IMEXRKCB3e for basis orders 2–6 (columns) and four meshes (rows). Some
values are highlighted for comparison with Table 5.

Order 2 Order 3 Order 4
hmin L2 error rate L2 error rate L2 error rate
0.3125 7.010e-01 — 1.770e-01 — 3.092e-02 —
0.2632 5.509e-01 1.4025 9.236e-02 3.7851 1.681e-02 3.5484
0.2083 2.450e-01 3.4676 3.557e-02 4.0840 4.988e-03 5.1996
0.1786 1.526e-01 3.0709 1.917e-02 4.0107 2.616e-03 4.1875

Order 5 Order 6
hmin L2 error rate L2 error rate
0.3125 7.194e-03 — 2.907e-03 —
0.2632 3.428e-03 4.3137 1.948e-03 2.3300
0.2083 1.562e-03 3.3632 1.155e-03 2.2363
0.1786 1.052e-03 2.5655 7.939e-04 2.4342

Comparing the results for operator-splitting and IMEX, we can see that the IMEX method easily out-
performs operator-splitting. As an illustration, at basis order 5, the IMEX results are closely comparable
to the operator-splitting results (shown in bold in Tables 5 and 6), but only with the time-step for the
operator-splitting reduced by a factor of 16.

The loss of the optimal convergence rate for larger basis orders is of some concern. It should be noted,
though, that the optimal convergence rate is derived (e.g. [16, §4.5] in one space dimension) without
source terms; a suggestion, for this rather extreme value of permeability, is that, as the basis order p
increases, the error associated with the dissipation terms g decreases more slowly than that associated
with the conservation part of the equation, and at around p = 4 or p = 5 becomes dominant. From that
point on, the rates are largely determined by the behaviour of g, and we have no reason to expect a
rate of p + 1. Looking back at the non-stiff case in Table 4, we can perhaps see the beginnings of this
phenomenon: at order 3, there is little difference between the inviscid, low-frequency and high-frequency
regimes, but at order 6 the low-frequency rates are noticeably, although not greatly, smaller than those
from other two regimes.

7.2. Heterogeneous model. In the following example we compare output from our code with the
semi-analytic formulae given in [11] using the associated Fortran code “Gar6more3D”. We consider a
domain split into two layers through the (x, y) plane. The upper layer has one set of physical properties
and the lower layer another.

We remark that “Gar6more3D” does not reliably produce a solution for z < 0 for a layered poroelastic
model but, instead, produces many untrapped LAPACK errors. For this reason, we choose receiver
locations in the upper half domain only.

In this experiment, the computational domain is a cube Ω = [−300, 300]× [−300, 300]× [−300, 300]m,
with the plane z = 0 forming the interface between two poroelastic subdomains. Material details and
derived wave speeds are given in Table 7.

We introduce a seismic source using a seismic moment tensor M [1]

M =





Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz





at a point source location

(169) gs = (gx, gy, gz)
T
= −M · ∇δ(xs, ys, zs)g(t),

where δ is a Dirac delta function and g is a time-dependent source function. The source function is
a Ricker wavelet with peak frequency f0 = 20 Hz and time delay t0 = 1.2/f0 and is located at the
point (xs, ys, zs) = (0, 0, 150) m. In addition, we set the off-diagonal components of the seismic tensor
Mxy = Mxz = Myz = 0 and the diagonal terms Mxx = Myy = Mzz = 1010 N·m. The volume source
term gV is then introduced to the model (20) by setting

(170) gV = (07, gx, gy, gz, gx, gy, gz)
T
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Table 7. Material parameters and derived wave speeds used with the poroelastic-
poroelastic case in Section 7.2.

variable name symbol upper lower

solid density ρs (kg/m
3) 4080 2700

fluid density ρf (kg/m
3) 1200 600

fluid bulk modulus κf (GPa) 5.25 2.0
frame bulk modulus κfr (GPa) 2.0 6.1
solid bulk modulus κs (GPa) 20.0 40.0
frame shear modulus µfr (GPa) 6.4 8.0

tortuosity τ 2.0 2.5
porosity φ 0.4 0.2
viscosity η (Pa·s) 0 0

fast pressure wave speed cIp (m/s) 2553 2990
slow pressure wave speed cIIp (m/s) 1097 844

shear wave speed cs (m/s) 1452 1893

where 07 is a 1 × 7 zero vector. Finally, absorbing boundary conditions are applied across the whole
boundary.

The computational domain Ω is partitioned by an irregular tetrahedral grid consisting of 148187
elements and 26778 vertices (hmin = 9.6m and hmax = 49.7m). For the grid, the element size is chosen
to be 2 elements per shortest wavelength in both subdomains. We set the basis order to 6.

The solid velocity components vs, ws as functions of time are shown in Figure 2 at (x, y, z) =
(0,−100, 100)m and (x, y, z) = (0,−150, 100)m. The signal responses show excellent agreement with
the semi-analytic solution “Gar6more3D” [11]. We observe the separation between the fast and slow
P-waves as the distance from the source increases. Note that the model setup is chosen so that we do
not get any unwanted reflections from the outflow boundaries within the computed time window.

7.3. Adjoint method. In this section we present a simple, but illuminating, example of the application
of the adjoint method. The example was motivated by the example for the acoustic wave equation in
section 3 of [15]. We consider an almost everywhere homogeneous cubical domain Ω = [0, 5] × [0, 5] ×
[0, 5]m with one anomalous feature in a single element containing the point [2.5, 2.5, 4]m where the solid
and fluid densities are doubled. The homogeneous parameters are the same as the material parameters
used in the convergence tests, Table 2. A point source is located at [2.5, 2.5, 2] m and modelled as an
explosive source with Mxx = Myy = Mzz = 100 N·m. The central frequency of the Ricker wavelet is
assumed to be 2000 Hz. Velocity data is then generated for the problem at 100 equally spaced receiver
locations on the top surface z = 5m. Free surface boundary conditions were implemented on all 6
boundary surfaces.

On the other hand the reference model is assumed to be everywhere homogeneous with parameters
given in Table 2. Letting θ0 denote the parameter space for the anomalous model, and θ denote the
parameter space for the reference model, we may write the misfit functional as

(171) χ(θ) =
1

2

∑

i∈I,r∈R

∫ T

0

[qi(θ, xr, t)− qi(θ0, xr, t)]
2dt

The forward wavefield is propagated for 6/f0 = 3×10−3 seconds and a snapshot shown in Figure 3. It is
evident that considerable scattering has occurred. Examples of adjoint source wavelets (q−d)δ(x−xr)χI

are shown in Figure 4. Not surprisingly the central four wavelets contain the most information since
they are closest to the anomaly, while the furthest two receivers contain further information due to
the scattering on the sides of the wave field. Figure 5 shown snapshots of the forward wavefield and
adjoint wavefield at times .85 × 10−3, 1.65 × 10−3, 1 × 10−3 seconds. It is evident that the adjoint field
focuses briefly on the anomalous feature, during which time the forward wavefront passes through the
neighbourhood. Therefore the contribution to the Fréchet kernel kρa

is greatest during this non-trivial
overlapping period. Figure 6 shows a snapshot of kρa

. It is evident that the kernel’s centre contains the
anomalous element, which extends into two tooth-like roots. The interference near the top surface is due
to the early time overlap between the scattered forward wavefield and the initial evolution of the adjoint
wavefield.
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Figure 2. Simulation of the two-layered poroelastic model of Section 7.2, showing
time histories of the velocity components vs (left), ws (right) at two receiver locations:
DG (line) and semi-analytic (crosses). The upper row corresponds to receiver location
(x, y, z) = (0,−100, 100) m and the lower row to (x, y, z) = (0,−150, 100)m.

Figure 3. Snapshot of the forward wavefield at the final time t = 3 × 10−3 seconds
through the plane x = 2.5m.
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Figure 4. Examples of the x-component of adjoint source wavelets through the line x = 5.6m.

8. Discussion

As with our previous two-dimensional work [13], our principal motivation for working in the DG frame-
work was to obtain a forward solver for three-dimensional poroelastic wavefields that could accurately
resolve material discontinuities. This is a necessary feature for groundwater tomographic applications,
in which abrupt changes in porosity and permeability commonly occur between water-bearing and non-
water-bearing strata. In our initial studies of related inverse problems we used the well-known SPECFEM
code to simulate forward poroelastic wavefields. However, as discussed in section 6.2.1 of our previous
paper, this approach does not naturally resolve discontinuities in porosity, whereas the DG approach, as
we have shown in Section 7.1, naturally deals with this. Furthermore, in applications to groundwater
tomography, aquifer permeabilities can be quite large (up to k ∼ 10−7 m2, [2]), forcing one to oper-
ate simultaneously in high-frequency regimes (water-saturated subdomains) and low-frequency regimes
(air-saturated subdomains). The elastic/poroelastic coupling is necessary since the usually much slower
secondary P-wave puts a very significant computational burden on the forward solver because the mesh
resolution is controlled by the shortest wavelength. One approach to model reduction in estimation
problems, significantly reducing the computational burden, is to make an elastic approximation in some
subdomains [19, 20] and, of course, the basement of an aquifer is plainly modelled as an elastic layer.
Our implementation permits coupling between low frequency poroelastic, high frequency poroelastic and
elastic subdomains.

With a certain loss of elegance, it is a simple extension to deal with non-isotropic domains and to
add further attenuation mechanisms for modelling a viscoporoelastic system. However, since poroelastic
inverse problems are extremely challenging, and we have been unable to find a satisfactory approach to
solving even modest scale problems in two dimensions, our view is that there is still significant work to
do before tackling inverse problems for non-isotropic domains.

The adjoint method is a necessary approach to reducing the computational burden of non-trivial
inverse problems, especially those using gradient-based approaches to minimising a misfit functional or
maximum a posteriori estimation (MAP) in the Bayesian framework. Again the equations have been
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Figure 5. Snapshots of the forward (left) and adjoint (right) wavefields at times 1.85×
10−3, 1.65× 10−3, 1× 10−3 seconds.

derived with some generality permitting coupling between low and high frequency poroelastic and elastic
domains. To our knowledge, the application of the adjoint method to poroelastic inverse problems has
been little explored [23]. We prefer to work with bulk parameters like the Biot coefficient α and the
coupling coefficient M in estimation problems since it is less cumbersome, and then use sampling to
estimate the real physical parameters of interest like porosity. In [23], on the other hand, Morency and
Tromp have explored the adjoint method for two-dimensional poroelastic problems using the spectral
element framework, and derived lengthy expressions for the Fréchet kernels for the underlying physical
parameters. While they draw some parallels with the elastic case, there is much work to be done to fully
explore the utility of the adjoint method for poroelastic inverse problems.

In our numerical simulations, for smaller examples, we used the well-established MATLAB code of
Hesthaven and Warburton [16]. As they acknowledge in their introduction, this becomes impractical
for larger meshes; for these, we implemented the DG algorithm in C, using MPI for parallelism and
METIS [17] to partition the mesh. Running on a standard desktop computer with four or six cores,
this is typically faster than MATLAB by a factor of about 4 or 5. The limiting factor seems likely to
be the memory speed: in any language, the code must repeatedly traverse arrays much larger than the
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Figure 6. Snapshot of Fréchet kernel kρa
through the plane x = 2.5m.

system’s memory caches (Cavaglieri and Bewley [10], whose low-storage IMEX schemes we used for stiff
cases, mention this point in their abstract). More important than the speed is the scalability of the MPI
code: for a large mesh, both the computational and the memory requirements can be distributed across
many nodes of a cluster. At this point, communication costs become significant, or even dominant: the
parallel processes need to synchronise by exchanging data at every Runge-Kutta stage (so, five times
per time-step for the LSERK method that we used for non-stiff problems) and no computation takes
place until all communication has finished. This tension between computational and communication
costs leads to a not easily predicted optimal number of processes for any given problem. For example, on
a mesh with about 150,000 elements and 84 nodes per element (polynomial degree 6), experimentation
on the Viking cluster at the University of York suggested that execution time would be minimised by
using somewhere around 50-60 cores; in the ever-changing environment of a shared cluster, more precise
statements are impossible.

As permeability becomes smaller, the onset of stiffness in the low-frequency dissipative terms begins
to demand unfeasibly small step lengths in any explicit Runge-Kutta method. In these cases, we used
a hybrid implicit-explicit (IMEX) scheme in which the stiff terms are handled by the implicit part of
the scheme and the rest of the system is handled by the explicit part. Our formulation is ideally suited
to this type of scheme, because the equations in the implicit part can solved simply and explicitly,
entirely eliminating the extra costs usually associated with implicit schemes. This gives convergence
of the scheme but, unlike in all other regimes, we did not observe the convergence rates expected for
the main hyperbolic system. Our interpretation of this is that the numerical errors associated with the
dissipative terms dominate those associated with the hyperbolic system.

9. Conclusions

In this paper we developed a DG solver for a coupled three-dimensional poroelastic/elastic isotropic
model incorporating Biot’s low- and high-frequency regimes in Hesthaven and Warburton’s framework
[16]. Time integration was carried out using both low-storage explicit and (for the stiff case) implicit-
explicit Runge-Kutta schemes. We considered free surface and absorbing boundary conditions, where
the latter were modelled as outflows. Numerical experiments showed that, except for very stiff cases,
the solver satisfied theoretical convergence rates. In stiff examples, IMEX time integration gave weaker
convergence rates. We observed that the exact Riemann-problem-based numerical flux implementation
resolves material discontinuities and showed that the adjoint wavefield has a natural physical interpreta-
tion as a velocity/strain formulation of the Biot equation; this will be further explored in a forthcoming
paper.

In conclusion we would like to extend our thanks to an anonymous referee for their careful reading of
the paper and some very helpful comments. A MATLAB implementation of the DG schemes derived in
this paper to accompany the Hesthaven-Warburton DG library is available from github:
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https://github.com/nickdudleyward/dg_biot_3d_1.0.
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