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Satellite quantum communications: Fundamental bounds and practical security
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Satellite quantum communications are emerging within the panorama of quantum technologies as a more
effective strategy to distribute completely secure keys at very long distances, therefore playing an important
role in the architecture of a large-scale quantum network. In this work, we apply and extend recent results in
free-space quantum communications to determine the ultimate limits at which secret (and entanglement) bits
can be distributed via satellites. Our study is comprehensive of the various practical scenarios, encompassing
both downlink and uplink configurations, with satellites at different altitudes and zenith angles. It includes
effects of diffraction, extinction, background noise, and fading, due to pointing errors and atmospheric turbulence
(appropriately developed for slant distances). Besides identifying upper bounds, we also discuss lower bounds,
i.e., achievable rates for key generation and entanglement distribution. In particular, we study the composable
finite-size secret key rates that are achievable by protocols of continuous variable quantum key distribution, for
both downlink and uplink, showing the feasibility of this approach for all configurations. Finally, we present a
study with a sun-synchronous satellite, showing that its key distribution rate is able to outperform a ground chain
of ideal quantum repeaters.

DOI: 10.1103/PhysRevResearch.3.023130

I. INTRODUCTION

Satellite quantum communications ([1], Sec. VI) represent
a new collective endeavour of the scientific community, with
pioneering experiments already demonstrated. A number of
quantum protocols have been successfully realized, including
satellite-to-ground quantum key distribution (QKD) [2–4], en-
tanglement distribution [5], entanglement-based QKD [6,7],
and ground-to-satellite quantum teleportation [8]. Further ex-
periments have considered a space laboratory (Tiangong-2
[9]), and microsatellites, such as SOCRATES [10] and Cube-
Sats [11].

An important driving reason behind the development of
free-space quantum communications with satellites is the pos-
sibility to by-pass fundamental limitations that restrict rates
and distances achievable by ground-based fiber communica-
tions. It is in fact well known that the amount of secret bits
or entanglement bits (ebits) that can be distributed through
a lossy communication channel with transmissivity η can-
not exceed its secret key capacity − log2(1 − η) bits/use,
also known as the repeaterless PLOB bound [12] (see also
Ref. [13] for the very first investigation of the fundamental
limits of quantum communication). In a ground-based fiber
link, the transmissivity decays exponentially with the distance
and so does the communication rate of any protocol for QKD
or entanglement distribution.
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One strategy to mitigate such a problem is the introduc-
tion of quantum repeaters or relays ([1], Sec. XII). In QKD,
the cheapest solution is the use of a chain of trusted nodes
between the two end-users. These nodes distribute pairs of
keys with their neighbors, whose composition via one-time
pad generates a final secret key for the remote users. Here a
nontrivial issue is the fact that all the nodes need to be trusted,
so that the longer is the chain, the higher is the probability
that security could be compromised. An alternative strategy
relies in the adoption of nodes able to distribute entanglement,
which is then swapped to the remote users. However, this solu-
tion is rather expensive because it involves the development of
quantum repeaters with long coherence times and distillation
capabilities.

In this scenario, satellites open the way for new opportuni-
ties. Free-space connection with a satellite may have far less
decibels of loss than a long ground-based fiber connection.
Furthermore, most satellites are fast-moving objects, therefore
able to physically travel between two far locations over the
globe. These features have the potential to drastically reduce
the complexity of a ground-based quantum network. In fact, a
chain of nodes could just be replaced by a single satellite act-
ing as a trusted QKD node or as a distributor of entanglement.
In such an exciting new setting, it is crucial to understand
the optimal performances allowed by quantum mechanics,
and also what practical performances may be achieved with
current technology. This work serves for this purpose.

Here we establish the information-theoretic limits of satel-
lite quantum communications and also show their practical
security on the basis of state-of-the-art technology. Our study
extends the free-space analysis of Ref. [14], there developed
for ground-to-ground free-space communications, to the more
general setting of ground-satellite communications, where the

2643-1564/2021/3(2)/023130(29) 023130-1 Published by the American Physical Society



STEFANO PIRANDOLA PHYSICAL REVIEW RESEARCH 3, 023130 (2021)

optical signals travel slant distances with variable altitudes
and zenith angles (in uplink or downlink). This scenario
involves more general models for the underlying physical pro-
cesses occurring within the atmosphere (refraction, extinction
and turbulence), and different descriptions for the background
noise (planetary albedos besides sky brightness). Account-
ing for these accurate models, we study the ultimate rates
for secret key generation and entanglement distribution with
a satellite in all scenarios (uplink/downlink, night/day-time
operations).

Once we established the ultimate converse rates for se-
cret key and entanglement distribution, we also study lower
bounds. In particular, we focus our investigation on the
practical rates that are achievable by a coherent-state QKD
protocol, suitably modified to account for the fading chan-
nel between satellite and ground station, and including the
orbital dynamics of the satellite. Our security analysis con-
siders finite-size effects and composable aspects. We show
that high-rate ground-satellite QKD with continuous variable
(CV) systems [15] is feasible for both downlink and uplink,
during night and day.

Finally, we show that the number of secret key bits per
day that can be distributed between two stations by a sun-
synchronous satellite can be much larger than what achievable
by a standard fiber connection between these stations, even
when a substantial number of repeaters are employed in the
middle and assumed to operate at their capacity level [16].
This analysis proves the potential advantages of satellite links
over ground networks and strongly corroborates their role
for near-future realization of large-scale quantum communi-
cations.

A. Structure of the paper

The paper has two main parts. In the first part, we
investigate the fundamental bounds for satellite quantum com-
munications (Sec. II). We start with some basic geometric
considerations (Sec. II A) and then we present general upper
bounds based on free-space diffraction (Sec. II B). We then
increase the complexity of the description by introducing at-
mospheric extinction and setup inefficiencies (Sec. II C). Next
we describe the fading process induced by pointing errors
and turbulence (Sec. II D), followed by the corresponding
expressions of the loss-limited upper bounds for key and
entanglement distribution (Sec. II E). In our next generaliza-
tion (Sec. II F), we consider the effect of background thermal
noise and derive more advanced thermal-loss upper and lower
bounds for key and entanglement distribution with the satel-
lite.

Once we have established the ultimate performances, we
then study the secret key rates that are achievable in satel-
lite CV-QKD accounting for composable finite-size aspects,
fading and orbital dynamics. This is the second part of the
paper (Sec. III). We start with an overview of the problem
(Sec. III A) and a discussion on the composable security
at fixed transmissivity (Sec. III B). Then, we delve into the
problem of free-space fading by discussing the use of pilots,
post-selection, and a suitable defading technique (Sec. III C).
Next we discuss how to perform parameter estimation and
we provide the general forms of the composable key rates

(Sec. III D). After important observations on the setup noise
(Sec. III E), we analyze the performances of the key rates
accounting for the orbital dynamics (Secs. III F and III G).
Finally, we show how the satellite-based key rates can over-
come the performance of a chain of quantum repeaters on the
ground (Sec. III H). Section IV is for conclusions.

II. FUNDAMENTAL BOUNDS FOR SATELLITE QUANTUM

COMMUNICATIONS

A. Geometric considerations

Consider a ground station (G), at some relatively low al-
titude h0 ≃ 0 above the sea level, and a satellite (S), that is
orbiting at some variable altitude h beyond the Kármán line
(h � 100 km) with a variable zenith angle θ . The latter is
the angle between the zenith point at the ground station and
the direction of observation pointing at the satellite. It takes
positive values between 0 (satellite at the zenith) and π/2
(satellite at the horizon). For a zenith-crossing orbit (studied
later in Sec. III G), it may be useful to associate a sign to θ ,
so that −π/2 represents the “front” horizon and +π/2 is the
“back” horizon. (Including the sign does not change the main
geometric formulas since θ appears in cosine functions).

Calling RE ≃ 6371 km the approximate radius of the Earth,
the slant distance z between the ground station and the satellite
can be written as

z(h, θ ) =
√

h2 + 2hRE + R2
E cos2 θ − RE cos θ. (1)

Equivalently, the altitude h of the satellite reads

h(z, θ ) =
√

R2
E + z2 + 2zRE cos θ − RE. (2)

See Appendix A for more details on this geometry, which can
be easily extended to the case of non-negligible atmospheric
altitudes h0 for the ground station. (We remark that, while this
extension may be useful, in our main text, we investigate the
basic scenario of a low-altitude ground station for which h0

can be considered to be negligible with respect to the typical
satellite altitudes.)

The formulas above are very good approximations for an-
gles θ � 1 (i.e., within about 60◦ from the zenith). For larger
zenith angles, one needs to consider the apparent angle and
the optical-path elongation induced by atmospheric refrac-
tion, which become more and more prominent close to the
horizon. In such a case, the formulas above undergo some
modifications as discussed in Appendix B. In our main text
below, we omit this technicality for two reasons: (i) formulas
above can still be used to provide (larger) upper bounds in the
proximity of the horizon; (ii) when we treat achievable rates
(lower bounds), we will restrict our study to the good window
θ � 1, an assumption which is also justified by the analysis of
turbulence carried out later on in the manuscript.

In terms of configurations, we consider both uplink and
downlink. In uplink, the ground station is the transmitter (Al-
ice) and the satellite is the receiver (Bob); in downlink, it is
the satellite to be the transmitter and the ground station to
operate as a receiver. In these two configurations, the effects
of free-space diffraction and atmospheric extinction are the
same. Different is the case for the fading induced by turbu-
lence (more relevant in uplink) and the thermal noise induced
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by background sources (with further differences between day-
and night-time operations). For the sake of simplicity, we
start by accounting for diffraction and extinction only; then,
we will introduce the other effects, which need to be treated
quite differently with respect to the models that are valid for
ground-to-ground free-space communications.

B. Free-space diffraction

We assume that free-space quantum communication is
based on a quasi-monochromatic optical mode with temporal
duration �t and narrow bandwidth �λ around a carrier wave-
length λ (so that the angular frequency is ω = 2πc/λ and the
wave number is k = ω/c = 2π/λ). This model is represented
by a Gaussian beam with field spot size w0 and curvature R0

[17–20]. Spot size is sufficiently smaller than the transmitter’s
aperture so that the latter does not induce relevant diffraction.
After free-space propagation for a distance z, the beam is
detected by a receiver whose telescope has a circular aperture
with radius aR. To fix the ideas, one can assume that the
propagation direction is uplink so that the ground station is
the transmitter, but the model is completely symmetric and
applies to downlink in exactly the same way.

Because of the inevitable free-space diffraction, the waist
of the beam will broaden during propagation. After traveling
for a distance z, the beam is intercepted by the receiver that
will see an increased spot size

wd (z) = w0

√
(1 − z/R0)2 + (z/zR)2, (3)

where zR := πw
2
0λ

−1 is the Rayleigh range. Due to the finite
aperture aR of the receiving telescope, only a fraction of the
initial beam will be detected, and this fraction is given by the
diffraction-induced transmissivity

ηd (z) = 1 − e−2a2
R/w2

d . (4)

In the far field z ≫ zR, this can be approximated as

ηd ≃ ηfar
d :=

2a2
R

w
2
d

≪ 1. (5)

Using ηd with the PLOB bound [12], one finds that the
maximum number of secret bits that can be distributed by the
most general (adaptive) QKD protocols over the free-space
communication channel is upper bounded by [14]

U (z) =
2

ln 2

a2
R

w
2
d

bits per use. (6)

In other words, the secret key capacity K of the free-space
channel must satisfy K � U and, similarly, this bound also
holds for the channel’s entanglement distribution capacity
E � K (which is the number of ebits per use of the channel
that can be distributed by the most general adaptive protocols
of entanglement distribution; see Ref. [12] for exact mathe-
matical definitions).

Note that a focused beam (R0 = z) optimizes the bound in
Eq. (6) but, at long distances, optical focusing becomes a very
challenging task. For this reason, a better strategy is to just
generate a collimated beam (R0 = ∞) so Eq. (6) is computed
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FIG. 1. Key rate between a ground station and a satellite at
various altitudes h. In dashed we show the diffraction-based bound
U (h, θ ) of Eq. (6) while, in solid, we show the upper bound V (h, θ )
of Eq. (15) which includes the combined effects of diffraction, ex-
tinction and quantum efficiency. The upper black curves refer to
the satellite at the zenith position (θ = 0), while the lower blue
curves refer to the horizon position (θ = π/2). We assume a colli-
mated Gaussian beam with λ = 800 nm and w0 = 20 cm, so that
zR ≃ 160 km (LEO boundary). Then, we assume aR = 40 cm and
ηeff = 0.4.

by assuming

wd (z) = w0

√
1 + z2/z2

R. (7)

We will therefore use the specific case of a collimated Gaus-
sian beam in our numerical investigations.

It is also clear that U (z) can be expressed in terms of
the altitude h and zenith angle θ of the satellite. In fact, we
may replace the function z = z(h, θ ) of Eq. (1) in Eq. (6) to
get the expression for U (h, θ ) = U [z(h, θ )]. The diffraction-
bound U (h, θ ) is numerically investigated in Fig. 1, for a
collimated Gaussian beam and a typical choice of parameters.
In particular, we show this ultimate bound in two extreme an-
gles for the satellite, i.e., zenith position (θ = 0) and horizon
(θ = π/2). The reduction of the rate at the horizon is due
to the greater slant distance to be traveled by the beam. As
mentioned before, in this case the bound is optimistic because
the refraction-induced elongation of the optical path is here
neglected.

C. Atmospheric extinction

Another important physical process that causes loss in
the free-space propagation of an optical beam is atmospheric
extinction; this is induced by both aerosol absorption and
Rayleigh/Mie scattering. For a free-space communication at
fixed altitude h, this effect is described by the simple Beer-
Lambert equation

ηatm(h) = exp[−α(h)z], (8)

where α(h) is the extinction factor ([21], Ch. 11). This is
given by α(h) = α0 exp(−h/h̃), where h is expressed in me-
ters, h̃ = 6600 m, and the sea-level value α0 takes the value
≃ 5 × 10−6 m−1 at λ = 800 nm ([22], Sec. III C).
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It is clear that the model in Eq. (8) needs to be suitably
modified in order to describe free-space optical communica-
tions at variable altitudes h. First suppose that the satellite is
exactly at the zenith, so that its slant range z is equal to its
altitude h. Then, we can easily compute

ηzen
atm(h) = exp

[
−

∫ h

0
dh′α(h′)

]

= exp[α0h̃(e−h/h̃ − 1)]

� e−α0 h̃ ≃ 0.967 (≃ 0.14 dB). (9)

The value in Eq. (9) is valid for any altitude and is already
approximated at h = 30 km, in the middle of the stratosphere,
after which the atmospheric density is negligible. For this
reason, for any satellite at the zenith position, we can use the
estimate ηzen

atm(∞) ≃ 0.967.
Consider now a generic zenith angle θ . Neglecting refrac-

tion, we can therefore use the expressions in Eqs. (1) and
(2), and write the following expression for the atmospheric
transmissivity:

ηatm(h, θ ) = exp

{
−

∫ z(h,θ )

0
dy α[h(y, θ )]

}
= e−α0g(h,θ ),

(10)
where we have introduced the integral function

g(h, θ ) :=
∫ z(h,θ )

0
dy exp

[
−

h(y, θ )

h̃

]
. (11)

For zenith angles θ � 1, one may check that Eq. (10) can be
approximated as follows:

ηatm(h, θ ) ≃
[
ηzen

atm(h)
]sec θ ≃

[
ηzen

atm(∞)
]sec θ

. (12)

This approximation is already good at 30 km of altitude and
becomes an almost exact formula beyond 100 km.

Combining atmospheric extinction with free-space diffrac-
tion and the inevitable internal loss ηeff affecting the setup
of the receiver (due to nonunit quantum efficiency of the
detector and other optical imperfections), we can write
the total amount of fixed loss of the free-space channel from
the generation of the Gaussian beam to its final detection. This
is given by

ηtot(h, θ ) := ηeffηatm(h, θ )ηd (h, θ ), (13)

where ηd (h, θ ) = ηd [z(h, θ )] and we can assume ηeff ≃ 0.4,
i.e., about 4 dB (e.g., as in Ref. [23]). Using this transmissivity
in the PLOB bound, we get an immediate extension of a result
in Ref. [14], i.e.,

K � V (h, θ ) := − log2[1 − ηtot(h, θ )] (14)

= − log2

[
1 − ηeffe

−α0g(h,θ )

(
1 − e

− 2a2
R

wd [z(h,θ )]2

)]
(15)

≃
2

ln 2

a2
Rηeffe

−α0g(h,θ )

wd [z(h, θ )]2
, (16)

where the last approximation is valid for ηtot(h, θ ) ≪ 1 which
is certainly true in the far field regime z ≫ zR.

From Fig. 1, we see that the combined effects of diffrac-
tion, extinction and nonideal quantum efficiency decrease (by
about one order of magnitude) the ultimate communication

bounds that are only based on free-space diffraction. As for
U (h, θ ), also the value of the upper bound V (h, θ ) is over-
estimated at the horizon due to the fact that refraction has
been neglected (see Appendix B for an extension of the bound
which includes refraction). The ultimate performances dis-
cussed so far will further decrease when we include fading
(turbulence/pointing errors) and then background noise.

D. Fading process induced by beam wandering: turbulence

and pointing errors

The combined transmissivity ηtot in Eq. (13) is constant
for a fixed geometry, h and θ , between ground station and
satellite. At each time instant, it corresponds to the maximum
transmissivity which can be reached by a beam that is per-
fectly aligned between transmitter and receiver. In a realistic
scenario, such alignment is however not maintained and we
need to consider a process of beam wandering; this inevitably
induces a fading process for the communication channel
whose instantaneous transmissivity will fluctuate [24–27].

Beam wandering is due to random errors in the pointing
mechanism of the transmitter and also to the action of atmo-
spheric turbulence on a section of the optical path. These two
effects are independent and they sum up. In practice, they have
a different weights depending on the configuration. In down-
link, pointing error is quite relevant, since on-board optics is
limited, while turbulence can be neglected, because it occurs
in the final section of the optical path where the beam has been
already spread by diffraction. In uplink, pointing error can be
reduced, because ground stations may adopt more extensive
and sophisticated optics; by contrast, turbulence represents a
major effect in this case due to the fact that it affects the beam
right after its generation.

In order to treat beam wandering and the corresponding
fading process, we assume the regime of weak turbulence,
which is appropriate for relatively small zenith angles θ � 1.
In this regime, we may separate effects occurring on fast and
slow timescales. Turbulent eddies smaller than the beam waist
act with a fast dynamics; these tend to broaden the beam,
so that the diffraction-limited spot size wd is replaced by a
larger “short-term” spot size wst = wst(z, θ ), also known as
“hot spot.” On the other hand, turbulent eddies that are larger
than the beam waist act on a much slower time scale [28] (of
the order of 10–100 ms [29]); these tend to deflect the beam,
whose centroid will then wander according to a Gaussian dis-
tribution with variance σ 2

TB = σ 2
TB(z, θ ). This slow dynamics

can be fully resolved and closely followed by a fast detector,
e.g., with a realistic bandwidth of the order of 100 MHz. On
top of this process, there are pointing errors whose dynamics
is also slow and causes an additional Gaussian random walk
with variance σ 2

P ≃ (10−6z)
2

for a typical 1μrad error at the
transmitter. Overall, the wandering of the beam centroid has
variance σ 2 = σ 2

TB + σ 2
P .

A crucial theoretical step in our treatment is the explicit
derivation of wst and σ 2

TB according to turbulence models that
are appropriate for satellite communications. As discussed
in detail in Appendix C, we start from the Hufnagel-Valley
(H-V) model [30,31], which provides the atmospheric pro-
file for the refraction-index structure constant C2

n (h) ([32],
Sec. 12.2.1). This altitude-dependent constant measures the
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strength of the fluctuations in the refraction index caused by
spatial variations of temperature and pressure. Assuming this
model, we then compute the scintillation index and the Rytov
variance. The latter allows us to verify that the angular win-
dow θ � 1 is compatible with the regime of weak turbulence,
which is why we choose this angular window for quantum
communication in both uplink and downlink.

From the structure constant C2
n (h), the wave number k

of the beam and the geometry (slant distance z and zenith
angle θ ), one can define the spherical-wave coherence length
ρ0 = ρ0(z, θ ) for uplink (up) and downlink (down). Using
the expression for generic z-long propagation [28,33] and
accounting for the altitude function h = h(z, θ ) in Eq. (2), this
length takes the form

ρ
up/down
0 =

[
1.46k2

∫ z

0
dξ

(
1 −

ξ

z

) 5
3

γ up/down(ξ )

]− 3
5

,

γ up(ξ ) = C2
n [h(ξ, θ )], γ down(ξ ) = C2

n [h(z − ξ, θ )]. (17)

An analysis of ρdown
0 confirms that, within the good angular

window and not-too large receiver apertures, downlink com-
munication can be considered to be free of turbulence, so we
can set σ 2

TB ≃ 0 and wst ≃ wd . This assumption for downlink
is well justified by examining the long-term spot-size of the
beam

w
2
lt = w

2
st + σ 2

TB, (18)

which takes the following form (valid in general conditions of
turbulence) [28]

w
2
lt ≃ w

2
d + 2

(
λz

πρ0

)2

. (19)

A quick calculation of ρdown
0 shows that one has wlt ≃ wd in

downlink at satellite altitudes (e.g., at the LEO lower border,
the difference in these two standard deviations is basically
in the third significative digit). This is equivalent to say that
diffraction is the only relevant effect, i.e., we have the collapse
σ 2

TB ≃ 0 and wlt ≃ wst ≃ wd .
By contrast, for uplink communication, the value of ρ

up
0

becomes rather small (of the order of 1 cm at λ = 800 nm),
meaning that turbulence is relevant in this scenario. In this
case, we can resort to Refs. [28,34] and write analytical for-
mulas for the short-term spot size and the variance of the
centroid wandering.

For satellite distances one can easily check the validity of

Yura’s condition for uplink φ := 0.33(ρup
0 /w0)

1/3 ≪ 1, which
allows us to write [34]

w
2
st ≃ w

2
d + 2

(
λz

πρ
up
0

)2

�, σ 2
TB ≃ 2

(
λz

πρ
up
0

)2

(1 − �),

(20)
where � := (1 − φ)2 ≃ 1 − 2φ. For satellites in the LEO
region and beyond, we can adopt the asymptotic planar ap-
proximation

ρ
up
0 ≃ ρup

p ≃ [1.46k2(sec θ )I∞]−3/5, (21)

I∞ :=
∫ ∞

0
dξC2

n (ξ ), (22)

where ρ
up
p bounds the value of ρ

up
0 from below at any relevant

altitude and any θ � 1 (e.g., see the comparison in Fig. 16 of
Appendix C). This leads to the simpler expressions

w
2
st ≃ w

2
d + z2�(θ ), (23)

σ 2
TB ≃

7.71I∞

w
1/3
0

z2 sec θ, (24)

where we have set

�(θ ) :=
26.28(I∞ sec θ )6/5

λ2/5
−

7.71I∞ sec θ

w
1/3
0

. (25)

In these formulas, I∞ takes different values depending on
the parameters chosen for the H-V model. In particular, we
compute I∞ ≃ 2.2354 × 10−12 m1/3 for the standard H-V5/7

model ([32], Sec. 12.2.1), which is good for describing night-
time operation. During the day, turbulence on the ground is
higher and we consider a typical day-time version of the H-V
model, for which I∞ ≃ 3.2854 × 10−12 m1/3 (see Appendix C
for more details). Numerical investigations at λ = 800 nm
show that wst exceeds wd by one order of magnitude in uplink,
with an almost constant gap in the far field (e.g., see Fig. 17 in
Appendix C). Finally, note that we can re-obtain the downlink
diffraction-limited values by setting I∞ = 0 in Eqs. (23) and
(24).

E. Bounds for the satellite fading channels in uplink

and downlink

Following the theory of the previous section, it follows that
we can adopt a unified approach to treat fading in uplink and
downlink. In fact, we may consider the general parameters
wst and σ 2 = σ 2

TB + σ 2
P , which can then be simplified for the

specific case of downlink, for which we may set wst ≃ wd and
σ 2 ≃ σ 2

P .
In general, the broader short-term spot size wst de-

creases the maximum value of the transmissivity. In fact, the
diffraction-induced transmissivity ηd has to be replaced by the
(lower) short-term transmissivity

ηst(z, θ ) = 1 − e−2a2
R/w2

st , (26)

with far-field approximation

ηst ≃ ηfar
st :=

2a2
R

w
2
st

. (27)

As a result the combined expression ηtot of Eq. (13) has to be
replaced by the more general parameter

η(h, θ ) := ηeffηatm(h, θ )ηst(h, θ ), (28)

where ηst(h, θ ) := ηst[z(h, θ ), θ ] using Eq. (1).
At any fixed geometry h and θ , the loss parameter η(h, θ )

describes the maximum transmissivity that is achievable in
the communication through the generally turbulent free-space
channel, which corresponds to the case where the incoming
beam is perfectly aligned with the receiver’s aperture. Note
that, more generally, one may assume the case of a constant
deflection for the beam; here we omit this technicality for two
reasons: we are interested in the optimal rate performance
of the communication and such a deflection can anyway be
compensated by using adaptive optics.
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As a consequence of beam wandering, the actual instanta-
neous value of the transmissivity will be τ � η and this value
will depend on how far the beam is deflected from the center
of the receiver’s aperture. The Gaussian random walk of the
beam centroid [35] results in a Weibull distribution for the
instantaneous deflection which, in turn, leads to a probability
distribution Pσ (τ ) for the instantaneous transmissivity. Let us
introduce the two functions

f0(x) := [1 − exp (−2x)I0(2x)]−1, (29)

f1(x) := exp (−2x)I1(2x), (30)

in terms of the modified Bessel function In of the first
kind with order n = 0, 1. These are useful to introduce the
geometry-dependent positive parameters [27]

γ (z, θ ) =
4ηfar

st f0

(
ηfar

st

)
f1

(
ηfar

st

)

ln
[
2ηst f0

(
ηfar

st

)] , (31)

r0(z, θ ) =
aR{

ln
[
2ηst f0

(
ηfar

st

)]}1/γ
. (32)

Using these parameters, we may then write

Pσ (τ ) =
r2

0

γ σ 2τ

(
ln

η

τ

) 2
γ
−1

exp

[
−

r2
0

2σ 2

(
ln

η

τ

) 2
γ

]
. (33)

The free-space fading channel Efad can therefore be de-
scribed by an ensemble {Pσ (τ ), Eτ } of pure-loss channels Eτ

whose transmissivity τ is chosen with probability Pσ (τ ). From
the PLOB bound and the convexity of the relative entropy of
entanglement [12], one has that the secret-key capacity of the
fading channel Efad is bounded by the average

K � −
∫ η

0
dτ Pσ (τ ) log2(1 − τ ). (34)

Repeating the steps of Ref. [14], we get

K � B(η, σ ) := −�(η, σ ) log2(1 − η), (35)

where �(η, σ ) is defined by the expression

�(η, σ ) := 1 +
η

ln(1 − η)

∫ +∞

0
dx

exp
(
− r2

0

2σ 2 x2/γ
)

ex − η
. (36)

Note that, while Eq. (35) has exactly the same analytical
form of the free-space bound in Ref. [14], it is here implicitly
extended from the setting of ground-based communications to
that of satellite communications. In B(η, σ ), the component
− log2(1 − η) ≃ η/ ln 2 upper bounds the key rate achiev-
able with a perfectly aligned link between ground station
and receiver, while �(η, σ ) is a correction factor accounting
for beam wandering, induced by turbulence and/or pointing
errors. In order to investigate this bound for satellite com-
munications, we need to include the necessary geometry and
distinguish between downlink and uplink.

By replacing z = z(h, θ ) in the formulas of γ , r0 and the
total variance σ 2, we can express all these parameters in terms
of h and θ . We may then use these functionals together with
η = η(h, θ ) of Eq. (28) in Eq. (35), so as to obtain a geometry-
dependent expression for the bound B = B(h, θ ). In Fig. 2, we
investigate the behavior of B(h, θ ) in uplink and downlink for
a satellite at various altitudes h and for zenith angles equal
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FIG. 2. Key rate between a ground station and a satellite at var-
ious altitudes h. We consider the upper bound in Eq. (35) specified
for downlink (Bdown) and uplink (Bup), the latter being presented for
night time (solid) and day time (dashed). In each case, we show the
performance both at the zenith position (θ = 0) and at θ = 1 radiant.
In the various configurations, the lines upper bound the maximum
number of secret (and entanglement) bits that can be distributed per
use of the channel, considering the combined effects of diffraction,
atmospheric extinction, quantum efficiency, pointing error (1 μrad)
and atmospheric turbulence (night-/day-time H-V model, only for
uplink). As in Fig. 1, we assume a collimated beam with λ = 800 nm
and w0 = 20 cm. Receiver has aperture aR = 40 cm and total effi-
ciency ηeff = 0.4.

to zero or 1. Besides the effects of free-space diffraction,
atmospheric extinction and limited quantum efficiency, the
downlink bound Bdown(h, θ ) includes the centroid wandering
due to pointing error σ 2

P , while the uplink bound Bup(h, θ )
also includes turbulence-induced beam spreading (wst) and
wandering (so that σ 2 = σ 2

P + σ 2
TB).

By comparing the zenith-performance of Bdown in Fig. 2
and that of V in Fig. 1, we can see how the pointing error
decreases the rate already from the beginning of the LEO
region. Then, by comparing the downlink bound Bdown with
the uplink bound Bup in Fig. 2, we see how turbulence induces
a further nontrivial decrease, which is about one-two orders of
magnitude. Also note that Bup is additionally decreased during
day time (while Bdown does not depend on the operation time).

Several important considerations are in order about
Eq. (35). The first is that, as long as the free-space fading
channel Efad can indeed be described by an ensemble of
instantaneous pure-loss channels Eτ , i.e., Efad = {Pσ (τ ), Eτ },
then the bound B in Eq. (35) is also achievable. As discussed
in Ref. [14], this bound is achieved by optimal protocols of
CV-QKD, either based on the use of quantum memories or
employing largely squeezed states to be transmitted in an
extremely biased manner. The bound can also be achieved
by optimal protocols of entanglement distribution, where
distillation is assisted by one-way backward classical commu-
nication. The performance of these protocols is equal to the
(bosonic) reverse coherent information [13], which achieves
− log2(1 − τ ) for each Eτ . As a result, we may write E = K =
B for both the entanglement distribution (E ) and the secret key
(K) capacities of the fading channel Efad.
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The pure-loss assumption Efad = {Pσ (τ ), Eτ }, which im-
plies the achievability of the bound B, is appropriate for
night-time operation at typical satellite altitudes. Different is
the case for day-time operation, where the background noise
becomes nontrivial. In this setting, the quantity B in Eq. (35) is
still an upper bound but no longer guaranteed to be achievable.
In the following (Sec. II F), we will therefore consider a more
refined upper bound and a corresponding lower bound in the
presence of noise. These two bounds are useful for the study
of day-time operation and also clarify the validity of the pure-
loss assumption for night-time operation.

A final observation regards the potential use of slow de-
tection strategies, so that the wandering of the centroid is not
time-resolved but averaged over long acquisition times of the
order of 100 ms or more, i.e., beyond the typical timescales
associated with turbulence and pointing error. In such a case,
the transmissivity of the ground-satellite link has to be aver-
aged over the fading process and is given by

ηslow = ηeffηatm

[
1 − e−2a2

R/(w2
lt+σ 2

P )
]
, (37)

where wlt is the long-term spot size of the beam given in
Eq. (18). As a result, the upper bound takes the simple form
[14]

Kslow � − log2(1 − ηslow) �
2

ln 2

a2
R

w
2
lt + σ 2

P

. (38)

This detection strategy may be helpful to increase the detec-
tion efficiency, but it has the downside to reduce the clock rate
and also involves a larger amount of noise to be collected by
the receiver.

F. Satellite bounds with background noise

Let us account for the presence of background noise. First
of all, it is important to adopt an appropriate model for the
input-output number of photons. Call n̄T the mean number of
photons in the beam at the transmitter. For an instantaneous
transmissivity τ , the mean number of photons reaching the
receiver can be written as

n̄R = τ n̄T + n̄, (39)

where n̄ is the mean number of thermal photons describing the
overall noise affecting the propagation.

It is natural to decompose the thermal number n̄ as follows
[14]

n̄ := ηeffn̄B + n̄ex, (40)

where n̄B is the background thermal noise collected by the
receiver’s aperture, whose detector has quantum efficiency
ηeff and extra setup noise n̄ex. The noise contribution from
the setup n̄ex is sometimes considered to be trusted. It is
assumed to be negligible (n̄ex ≃ 0) in our numerical inves-
tigation of the ultimate bounds since we aim at analyzing
optimal/almost-optimal performances. (A realistic estimate
of n̄ex for a practical receiver setup will be explicitly taken into
account in our subsequent analysis of the composable QKD
rates.)

The value of the background noise n̄B depends on the oper-
ational setting (time of the day/direction of the link), besides
features of the receiver, such as its aperture aR, field of view

TABLE I. Environmental noise in satellite communications
(mean number of thermal photons n̄B per mode). This is shown for
uplink and downlink in various conditions, considering a typical
receiver (ŴR = 1.6 × 10−19 m2 s nm sr).

Day Night

≃ 0.3 (cloudy)
Downlink ≃ 3 × 10−6

≃ 3 × 10−3 (clear)

Uplink ≃ 0.22 ≃ 5.4 × 10−7

�fov, detection time �t , carrier frequency λ and spectral filter
�λ. Let us evaluate n̄B in the various settings. It is convenient
to define the parameter

ŴR := �λ�t�fova2
R. (41)

Assuming �λ = 1 nm and �t = 10 ns for the detector, and
�fov = 10−10 sr and aR = 40 cm for the receiving telescope,
we compute ŴR = 1.6 × 10−19 m2 s nm sr.

Then, for uplink we may write

n̄
up
B = κH sun

λ ŴR, (42)

where H sun
λ is the solar spectral irradiance at the rel-

evant wavelength λ, e.g., H sun
λ = 4.61 × 1018 photons

m−2 s−1 nm−1 sr−1 at λ = 800 nm. In the formula above, the
dimensionless parameter κ depends on the geometry and albe-
dos of the Earth and the Moon. Its value is κday ≃ 0.3 for
day-time and κnight ≃ 7.36 × 10−7 for full-Moon night time
(see Appendix D for more details). For downlink, we instead
have

n̄down
B = H

sky
λ ŴR, (43)

where H
sky
λ is the spectral irradiance of the sky in units of

photons m−2 s−1 nm−1 sr−1. At λ = 800 nm, its value ranges
from 1.9 × 1013 (full-Moon clear night) to 1.9 × 1016 (clear
day time) and 1.9 × 1018 (cloudy day time).

A summary of the resulting values for the mean num-
ber of photons is provided in Table I. These values confirm
that background noise is practically negligible at night time,
while it plays an important role for day time. Under general
sky conditions, day-time operations need to be described by
thermal-loss channels, where loss and fading effects are com-
bined with the thermal bath collected by the field of view of
the receiver.

1. Noise filtering

It is important to observe that these values strongly depend
on the filter �λ. At 800 nm, the filter �λ = 1 nm corresponds
to a bandwidth of �ν = cλ−2�λ ≃ 470 GHz (here c is the
speed of light). This value for the filter is certainly appro-
priate for GEO satellites, while it may become a bit more
challenging for fast-moving satellites in the LEO region where
the Doppler shift need to be compensated by adaptive optics
[36] (so that the central frequency of the beam is suitably
tracked during the flyby of the satellite, with generally differ-
ent speeds at different zenith angles). However, due to other
observations, the value of �λ = 1 nm can also be considered
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TABLE II. Day-time noise n̄B with a narrow filter �λ = 0.1 pm
(corresponding to ŴR = 1.6 × 10−23 m2 s nm sr).

≃ 3 × 10−5 (cloudy)
Day downlink

≃ 3 × 10−7 (clear)

Day uplink ≃ 2.2 × 10−5

to be relatively large, since it can be reduced by employing
specific detection techniques at the receiver. In other words,
the effective value of �ν can be greatly reduced by suitable
interferometric measurements at the receiver.

In fact, an important ingredient of CV quantum com-
munications is the local oscillator (LO). In the method of
“transmitted LO” (TLO), each signal is multiplexed in po-
larization with a bright classical LO pulse, carrying phase
information. Signal and LO pulse are de-multiplexed at the
receiver via a polarizing beam splitter and made to interfere
on balanced beam-splitter(s) in a homodyne or heterodyne
setup. Alternatively, one can use the method of the “local LO”
(LLO) [37]. Here there is the transmission of bright refer-
ence pulses regularly interleaved with the signal pulses (time
multiplexing). The reference pulses are detected and used to
digitally reconstruct the LO at the receiver. Each signal is
homodyned/heterodyned by using an independent LO which
is then rotated according to the phase reconstruction.

In both cases, the output of homodyne is proportional to√
n̄LOx̂, where x̂ is signal’s generic quadrature and n̄LO ≫ 1

is the number of photons of the LO pulse interfering with
the signal. Only thermal noise mode-matching with the LO
will be detected (together with the signal), while all the other
noise will be filtered out. For this reason, the actual filter
of the receiver will be limited by the bandwidth of the LO
pulses. Compatibly with the time-bandwidth product (which
is �t�ν � 0.44 for Gaussian pulses), the bandwidth of the
LO can be made very narrow so that very small values of
�λ are indeed accessible. For �t = 10 ns, one can consider
�ν = 50 MHz, which corresponds to �λ = 0.1 pm around
800 nm. Such small bandwidths can certainly be generated by
current lasers, whose line-widths can easily go down to 1 KHz
(e.g., for continuous-wave lasers).

From this point of view, the value of �ν ≃ 470 GHz is
pessimistic in the setting of LO-based CV quantum commu-
nications. For this reason, we also account for the possibility
of receiver designs that may have such ultranarrow filters.
An effective filter of �λ = 0.1 pm is 10−4 narrower than the
value considered above in Table I. With such a filter, we have a
corresponding 10−4 suppression of thermal noise n̄B, implying
that its day-time values become almost negligible as reported
in Table II (where we do not report the night-time values since
they become � 10−10). In our following analysis, we therefore
include this better regime.

As also noted in Ref. [14], when thermal noise is non-
negligible, there is a general trade-off associated with the
receiver aperture aR. If we increase aR we certainly increase
the transmissivity of the link according to Eqs. (4) and (26).
However, larger values of aR also lead to higher values of
background noise collected by the receiver as is also clear

from Eqs. (41)-(43). As a result, an optimal value for aR can
be determined by optimizing over the rate [or the thermal
bound in Eq. (47) of the next sub-section]. In this regard, it
is clear that the use of an ultra-narrow filter able to suppress
the noise would mitigate this problem and give access to large
apertures for the receiver. However, even in total absence of
thermal noise, too large apertures would encounter other prob-
lems related to enhanced turbulence, in terms of increasing
off-axis scintillation and number of short-term speckles (see
Appendix C for more details on these effects).

2. Accounting for the untrusted noise

It is important to observe that the total input-output relation
of Eq. (39) from transmitter to receiver is equivalent to the
action of a thermal-loss channel Eτ,n̄ with transmissivity τ and
environmental number of photons

n̄e = n̄/(1 − τ ). (44)

From the point of view of the generic quadrature x̂ of the mode
(i.e., position q̂ or momentum p̂), Eq. (39) corresponds to the
following transformation:

x̂T → x̂R =
√

τ x̂T + ξadd, (45)

where the additive-noise variable ξadd can be written as ξadd =√
1 − τ ê, and ê is the quadrature of an environmental mode

with n̄e mean thermal photons. Therefore the overall process
can be represented as an effective beam-splitter of transmis-
sivity τ mixing the input mode of the transmitter with an
environmental thermal mode. At the output of the beam split-
ter, one mode is detected by the receiver, while the other mode
goes back into the environment.

In the worst-case scenario, one assumes that the eavesdrop-
per (Eve) controls the input environmental mode, assumed to
be part of a TMSV state in her hands (which realizes a pu-
rification of the channel, unique up to local isometries on the
environment). One also assumes that all environmental modes
after interaction are stored by Eve in a quantum memory to be
subject to an optimal joint measurement. This active strategy
is known as collective entangling-cloner attack and represents
the most typical collective Gaussian attack [38]. According
to Ref. [12], the relative entropy of entanglement suitably
computed over the asymptotic Choi matrix of the thermal-
loss channel Eτ,n̄ provides an upper bound for its secret key
capacity K . For each instantaneous channel Eτ,n̄ describing the
satellite link, we have K (Eτ,n̄) � �τ,n̄, where [12]

�τ,n̄ =
{− log2 [(1 − τ )τ n̄e ] − h(n̄e), for n̄ � τ ,

0 for n̄ > τ ,
(46)

and we have set h(x) := (x + 1) log2(x + 1) − x log2 x.
For the analysis of the ultimate bounds, we may assume

that n̄ does not depend on τ . Indeed, the external background
noise n̄B does not depend on the transmissivity affecting the
signals, since it is noise collected by the field of view of the
receiver. Then, in the presence of non-negligible values for
the setup noise n̄ex that may depend on τ , we can always
optimize n̄ex over τ (and, in particular, minimize its value for
the study of upper bounds, and maximize it for that of the
lower bounds).
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Thus we can represent the satellite fading channel in the
presence of background noise by means of the channel ensem-
ble Enoi

fad = {Pσ (τ ), Eτ,n̄}. By averaging �τ,n̄ over the fading
process in τ , Ref. [14] computed the general free-space upper
bound

K �

∫ η

n̄

dτ Pσ (τ )�τ,n̄ � B(η, σ ) − T (n̄, η, σ ), (47)

for n̄ � η and where the thermal correction T is given by

T (n̄, η, σ ) =
{
1 − e

− r2
0

2σ2 [ln (η/n̄)]2/γ }

×
[

n̄ log2 n̄

1 − n̄
+ h(n̄)

]
+ B(n̄, σ ). (48)

Similarly, one may write the lower bound [14]

K � E � B(η, σ ) −
∫ η

0
dτ Pσ (τ )h

( n̄

1 − τ

)
(49)

� B(η, σ ) − h

(
n̄

1 − η

)
, (50)

which is based on the RCI and can be approximated by ideal
implementations of CV-QKD protocols [14,39].

The application of these formulas to the specific satellite
models developed above allows us to bound the ultimate rates
for key (and entanglement) distribution that are achievable in
the presence of background noise.

3. Maximum ranges

The presence of thermal noise restricts the maximum
slant distance for secure key generation to some finite
value zmax. From Eq. (47), we see that no key (or entan-
glement) distribution is possible in correspondence to the
entanglement-breaking condition n̄ = η, which automatically
leads to an upper bound for zmax. If we assume ideal condi-
tions, where all the effects are negligible with the exception
of diffraction and thermal noise, the over-optimistic threshold
condition n̄ = ηd would still restricts the range to some finite
value. In fact, the latter leads to

n̄ �
√

f0R(zmax), f0R(z) := [πw0aR/(λz)]2, (51)

where f0R(z) is the Fresnel number product of the beam and
the receiver. Then, using Eqs. (42) and (43), we get the follow-
ing bounds for the maximum ranges in uplink and downlink:

zup
max �

�

κH sun
λ

, zdown
max �

�

H
sky
λ

, (52)

where we have set � := πw0/(λ�λ�t�fovaR). It is also clear
that n̄ � 1 leads to entanglement breaking, so that no key
or entanglement can be distributed when ŴR � (κH sun

λ )−1 in

uplink or ŴR � 1/H
sky
λ in downlink.

While the conditions in Eq. (52) are particularly simple,
tighter bounds on zmax can be obtained by directly imposing
B(η, σ ) = T (n̄, η, σ ) in Eq. (47), and using Eqs. (42) and
(43). For typical parameters, the situation is the one depicted
in Table III, where we observe that thermal noise represents
quite an important limitation for day-time operation. As a
matter of fact, day-time uplink does seem to be particularly
challenging for satellite QKD. For the regime considered,

TABLE III. Bounds on maximum ranges for secure key distri-
bution in uplink and downlink, considering a typical receiver with
ŴR = 1.6 × 10−19 m2 s nm sr (with filter �λ = 1 nm).

Day Night

� 650 km (cloudy)
Downlink � 2 × 105 km

� 6300 km (clear)

Uplink � 110 km � 9 × 104 km

the security range is roughly limited to the Kármán line. In
downlink, day-time limitations appear to be less severe. For
the considered regime, secret key generation is confined to the
LEO region in a cloudy day, but may access MEO altitudes in
a clear-sky day.

In order to reach higher altitudes we need to consider better
setup parameters. For instance, a faster detector working at
1 GHz (instead of 100 MHz) will reduce ŴR and n

up
B by

a factor of 10. As a result, we get a larger bound for the
maximum range in day uplink, i.e., zmax � 340 km, so that
LEO altitudes are reached. It is clear that a strong mitigation
for this problem comes from the use of ultra-narrow filters
�λ, so that the amount of background thermal noise entering
the detector becomes negligible, even for day-time operation.
With an effective filter of �λ = 0.1 pm around 800 nm, day-
time ranges are sensibly increased. Night-time values of the
bounds go well beyond satellite applications, while the bounds
for day-time ranges become large as in Table IV.

4. Analysis of the thermal-loss bounds

Following our preliminary analysis on the security ranges,
we now explicitly study the thermal-loss upper bound in
Eq. (47) and the corresponding lower bound in Eq. (50).
Because we are here interested in investigating optimal per-
formances, we assume the ideal case of negligible setup
noise (n̄ex ≃ 0, noiseless receiver), even though we allow for
nonunit quantum efficiency ηeff. We start with the investi-
gation of the optimal rates that are achievable by using a
relatively large filter (�λ = 1 nm) in low-noise conditions of
night-time downlink/uplink and day-time downlink with clear
sky (see Fig. 3).

For night-time downlink/uplink, one can numerically
check that the thermal correction T (n̄, η, σ ) is practically
negligible, so the thermal-loss upper bound coincides with
the loss-limited bound B(η, σ ) of Eq. (35), with only small
deviations at GEO altitudes. Furthermore, as we can see
from Figs. 3(a) and 3(b), the thermal-loss upper bound of

TABLE IV. Bounds on maximum ranges for day-time secure key
distribution in uplink and downlink, with a narrow filter �λ = 0.1
pm, corresponding to ŴR = 1.6 × 10−23 m2 s nm sr.

� 6.2 × 104 km (cloudy)
Day downlink

� 6.2 × 105 km (clear)

Day uplink � 104 km
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(a) (b) (c)

FIG. 3. Optimal key rate between a ground station and a satellite at altitude h, in low-noise configurations of: (a) night-time downlink,
(b) night-time uplink, and (c) clear-day-time downlink. In each configuration we consider the thermal-loss upper bound B − T of Eq. (47)
(solid lines) and the thermal-loss lower bound of Eq. (50) (lower dashed lines), specified for the zenith position (black lines) and 1 radiant
(blue lines). We also plot the loss-limited upper bound B of Eq. (35) (red dashed lines). We account for diffraction, extinction, quantum
efficiency, pointing error (1 μrad) and atmospheric turbulence (H-V model). Collimated beam has λ = 800 nm and w0 = 20 cm. Receiver has
a telescope with aR = 40 cm and �fov = 10−10 sr, and a detector with filter �λ = 1 nm, �t = 10 ns, ηeff = 0.4 and n̄ex = 0 (no extra setup
noise). Therefore the receiver has ŴR = 1.6 × 10−19 m2 s nm sr and the background thermal photons n̄B are those specified in Table I. For a
receiver implementing a narrow filter �λ = 0.1 pm, the thermal-loss upper and lower bounds in (a), (b) and (c) collapse and coincide with the
corresponding loss-limited bounds at the zenith and 1 radiant (red dashed lines).

Eq. (47) numerically coincides with the lower bound of
Eq. (50) at LEO altitudes. This means that, for LEO satellites,
the two bounds collapse into the loss-limited bound B(η, σ )
which therefore represents the secret key capacity K (and
entanglement-distribution capacity E ) of the satellite channel
[40]. Said in other words, for night-time downlink/uplink and
LEO altitudes, the free-space fading channel can certainly be
approximated by an ensemble of pure-loss channels and we
can write the achievability result E ≃ K ≃ B. At higher alti-
tudes in the MEO region, the presence of a gap does not allow
us to enforce the pure-loss assumption and claim achievability
with respect to the chosen parameters (in particular, for the
value �λ = 1 nm).

For clear-day-time downlink in Fig. 3(c), the gap between
the two thermal-loss bounds of Eqs. (47) and (50) already
appears in the LEO region, even though at low altitudes (of
the order of 160 km) there is a substantial coincidence. We
can appreciate how, for increasing altitudes, not only the gap
increases but the thermal-loss upper bound also substantially
departs from the loss-limited bound B(η, σ ), confirming the
relevant role of the background thermal noise in limiting the
rate performance for day-time operation.

As expected, the role of the thermal background noise
can be strongly mitigated by the use of a narrow filter, e.g.,
�λ = 0.1 pm (as in homodynelike setups at the receiver). In
conditions of low background noise, our numerical investi-
gation shows that the use of such a narrow filter enables the
parties to achieve the loss-limited bound B at the relevant
altitude and zenith angle, expressed by the red dashed lines
in Fig. 3. In other words, the thermal-loss upper and lower
bounds collapse into the loss-limited bound B at all satellite
altitudes, so the remote parties can distribute ebits and secret
bits at the capacity value E ≃ K ≃ B. Such a collapse is more
limited in conditions of stronger background noise, as typical
in cloudy-day-time downlink and day-time uplink, but yet the
use of a narrow filter would allow to reach good communi-
cation rates in such scenarios as shown in Fig. 4. As we can
see from the figure, we can match the loss-limited bound B

in all the LEO region for day-time downlink with cloudy sky,
and for the first part of LEO in day-time uplink. Extending

the achievability of B to all altitudes would require an even
narrower filter.

Before concluding this section, it is important to remark
that, in the various scenarios studied above, the achievability
of the upper bound refers to a satellite at a fixed geometry, i.e.,
with fixed altitude and zenith angle. This means that we ignore
the orbital dynamics or we assume that such a dynamics is
much slower than the timescale of the quantum communica-
tion, so the channel is used many times before the satellite has
substantially moved (fast-clock limit/large repetition rate).
However, apart from GEO satellites, the orbital dynamics is
relevant and, for realistic clocks, we need to modify the lower
bound in order to account for this process. In fact, suppose
that the rate in Eq. (50) can approximately be achieved after
N pulses. For some realistic clock, such a block of N pulses
corresponds to a slice of the orbit over which we identify
the worst-case values for h and θ . An achievable rate would
certainly be given by Eq. (50) computed over such values,
but this rate will no longer match the upper bound in the
slice (to be computed on the best-case values for h and θ ). In
the following, we will consider the problem of orbital slicing
more carefully for the derivation of a composable secret key
rate.

III. COMPOSABLE FINITE-SIZE SECURITY FOR

SATELLITE CV-QKD

Once we have clarified the ultimate limits for distributing
keys (and entanglement) with satellites, we study the rates
that are achievable by practical CV-QKD protocols, where
we explicitly account for finite-size and composable aspects.
We adopt the pilot-based post-selected protocol studied in
Ref. [14], here suitably applied and extended to considering
the underlying physical models valid for satellite communica-
tions.

A. Overview

The idea is to use a coherent-state protocol, where
Gaussian-modulated signal pulses (used to encode the
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FIG. 4. Optimal performances in day-light conditions with a nar-
row filter. As in Fig. 3, we consider the key rate between a ground
station and a satellite at various altitudes h. In each configuration,
we consider the thermal-loss upper bound B − T of Eq. (47) (solid
lines) and the thermal-loss lower bound of Eq. (50) (lower dashed
lines), specified for the satellite at the zenith position (black lines)
or at 1 radiant (blue lines). We also plot the loss-limited upper
bound B of Eq. (35) (red dashed lines). In particular, we consider
cloudy-day-time downlink in (a), and day-time uplink in (b). We
account for diffraction, extinction, quantum efficiency, pointing error
(1 μrad) and atmospheric turbulence (H-V model). Collimated beam
has λ = 800 nm and w0 = 20 cm. Receiver has a telescope with
aR = 40 cm and �fov = 10−10 sr, and a detector with narrow filter
�λ = 0.1 pm, �t = 10 ns, ηeff = 0.4, and n̄ex = 0 (no extra setup
noise). Therefore the receiver has ŴR = 1.6 × 10−23 m2 s nm sr and
the background thermal photons n̄B are strongly suppressed as in
Table II.

information) are randomly interleaved with more energetic
pilot pulses, that are used to monitor the instantaneous trans-
missivity of the satellite link in real-time. In this way, the
parties are able to allocate the distributed data to slots of
transmissivity and to perform classical post-processing slot-
by-slot. In general, one may divide the interval [0, η] by
introducing a lattice with step δτ , so that we have M = η/δτ

slots [τk, τk+1] with τk := (k − 1)δτ and k = 1, . . . , M. When
the kth slot is selected, with probability

pk =
∫ τk+1

τk

dτ Pσ (τ ), (53)

the corresponding data points are associated to its minimum
transmissivity τk .

A more practical post-selection strategy consists of intro-
ducing a threshold value ηth and only accepting data points
with τ > ηth, i.e., within the post-selection interval � =
[ηth, η]. This happens with success probability

pth =
∫ η

ηth

dτ Pσ (τ ). (54)

The data points are then associated with the value of the
threshold transmissivity ηth. In our work, we adopt this
post-selection strategy from Ref. [14], which is more ro-
bust, especially in terms of collecting enough statistics for
parameter estimation. This approach is different from the clus-
terization method of Ref. [41] which may instead be affected
by poor statistics.

In the next subsections, we first discuss the security of the
link for a fixed value of the transmissivity, as if there were no
fading and with a satellite in a fixed geometry. Then, we intro-
duce the fading process, for which we use the post-selection
strategy above, and we subsequently account for orbital dy-
namics in the key rate. These derivations will provide realistic
rates for satellite quantum communications and will also be
used for our comparison with a ground network.

B. Composable key rate at fixed transmissivity

Let us start by considering the link to be a thermal-loss
channel Eτ,n̄ with fixed transmissivity τ and thermal noise
n̄e = n̄/(1 − τ ), where n̄ may take the form in Eq. (40). In
a coherent-state protocol [42,43], the transmitter generates
an input mode with generic quadrature x̂T = x + v̂, where v̂

is the vacuum quadrature and x is a Gaussianly modulated
variable with variance σ 2

x = μ − 1 (with μ being the variance
of the average thermal state generated by the transmitter).
At the output of the thermal-loss channel Eτ,n̄, the receiver
gets a mode with generic quadrature x̂R as given in Eq. (45).
Assuming that the output is homodyned (randomly in q̂ or p̂),
then the receiver’s classical outcome takes the form

y =
√

τx + z, (55)

where z is a random noise variable, distributed according
to a Gaussian with zero mean and variance σ 2

z = 2n̄ + 1. If
heterodyne is used, then the outcome y (for each of the two
quadratures) is affected by thermal noise with larger variance
σ 2

z = 2n̄ + 2. Compactly, we may therefore write

σ 2
z = 2n̄ + νdet, (56)

where νdet = 1 holds for homodyne, and νdet = 2 for hetero-
dyne detection.

For fixed τ and n̄, one computes the mutual information
I (x : y|τ, n̄) which takes simple expressions for the two types
of output detections, i.e.,

Ihom(x : y|τ, n̄) =
1

2
log2

(
1 +

τσ 2
x

2n̄ + 1

)
, (57)

Ihet(x : y|τ, n̄) = log2

(
1 +

τσ 2
x

2n̄ + 2

)
. (58)
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In reverse reconciliation, it is easy to compute Eve’s Holevo
bound χ (E : y|τ, n̄) with corresponding expressions for χhom

and χhet (see Ref. ([14], Sec. III C) for details). Therefore one
may write the asymptotic key rate against collective Gaussian
attacks, which takes the form

Rasy(τ, n̄) = βI (x : y|τ, n̄) − χ (E : y|τ, n̄), (59)

where β ∈ [0, 1] is the reconciliation parameter (here βI cor-
responds to the effective rate of the code which is employed
in the step of error correction).

In an actual practical implementation, there is a number N

of transmitted signals, whose m are randomly selected by the
parties and used for the estimation of the channel parameters τ

and n̄. From mp := mνdet pairs of data points {xi, yi} related by
Eq. (55), the parties build the following unbiased estimators
τ̂ = T̂ 2 and ̂̄n = (σ̂ 2

z − νdet)/2, where [14]

T̂ =
∑mp

i=1 xiyi

mpσ 2
x

, σ̂ 2
z :=

1

mp

mp∑

i=1

(yi − T̂ xi )
2. (60)

Up to O(m−2
p ), these have variances

σ 2
τ := var(̂τ ) ≃

4τ 2

mp

(
2 +

σ 2
z

τσ 2
x

)
, (61)

σ 2
n̄ := var(̂n̄) ≃

σ 4
z

2mp

. (62)

We can therefore build the worst-case parameters

τ ′ := τ̂ − wστ ≃ τ − 2w

√
2τ 2 + τσ 2

z /σ 2
x

mp

, (63)

n̄′ := ̂̄n + wσn̄ ≃ n̄ +
wσ 2

z√
2mp

. (64)

Each of them bounds the corresponding actual value up to an
error probability εpe, with

w =
√

2 erf−1(1 − 2εpe). (65)

Alternatively, one may write a more robust tail bound which
leads to the same expressions as above but with

w =
√

2 ln(1/εpe), (66)

which can be used in the cases where εpe is very small, e.g.,
less than 10−17 ([14], Sec. III D).

It is therefore clear that the effect of parameter estimation
is to modify the asymptotic rate in Eq. (59) as follows

Rasy →
n

N
Rpe, Rpe = Rasy(τ ′, n̄′) (67)

where n = N − m is the number of signals remaining for key
generation. This is valid up to a total error ≃ 2εpe. The rate Rpe

takes specific formulas for the homodyne (Rhom
pe ) and the het-

erodyne (Rhet
pe ) protocol by using Eqs. (57) and (58) together

with corresponding expressions for the Holevo information
χhom and χhet.

Parameter estimation provides the parties with crucial in-
formation about the amount of loss and noise present in the
channel, so they can apply a suitable code to correct their
data. The procedure of error correction is successful with a
probability pec which depends on the rate βI of the code

and a pre-established ε-correctness εcor, which bounds the
residual probability that the local strings are different after
passing a hashing test. Thus only npec pulses are successfully
error-corrected and further processed into a key. This means
that secret-key rate Rpe needs to be rescaled by the pre-factor
npec/N .

The next step is that of privacy amplification which is also
not perfect. This means that there will be some nonzero dis-
tance between the final strings (composing the shared key) and
an ideal classical-classical-quantum state where the eaves-
dropper is completely decorrelated from the parties. Such a
distance is bounded by some target value of the ε secrecy of
the protocol, which is further decomposed as εsec = εs + εh,
where εs is a smoothing parameter εs and εh is a hashing pa-
rameter. Overall, all these imperfections are composed into a
single global parameter which is the ε security of the protocol,
and given by ε = 2pecεpe + εcor + εsec [14].

For a Gaussian-modulated coherent-state protocol [42,43]
with success probability pec and ε security against collective
(Gaussian) attacks [38], we may write the composable finite-
size key rate [14]

R �
npec

N

(
Rpe −

�aep√
n

+
�

n

)
, (68)

where

�aep := 4 log2

(
2
√

d + 1
)
√

log2

18

p2
ecε

4
s

, (69)

� := log2

[
pec

(
1 − ε2

s /3
)]

+ 2 log2

√
2εh, (70)

and d is the size of the alphabet after analog-to-digital con-
version of the continuous variables of the parties (typically
d = 25 for a five-bit digitalization).

For the specific case of the heterodyne protocol, one can
extend the security to general coherent attacks by combin-
ing Eq. (68) with the approach of Ref. [44]. This involves
a suitable symmetrization of the data and performing met =
fetn local energy tests, where they check if their local mean
number of photons is � n̄T + O(m−1/2

et ). This test is certainly
passed for large enough met and for typical communication
conditions with small values of excess noise (as is the case
here, so that we certainly have n̄R = τ n̄T + n̄ � n̄T at the
receiver).

Thus the parties achieve the rate [14]

Rhet
gen �

npec

N

[
Rhet

pe −
�aep√

n
+

� − 2
⌈

log2

(
Kn+4

4

)⌉

n

]
, (71)

where the number of key-generation pulses is now

n = N − (m + met) =
N − m

1 + fet
, (72)

and we have set

Kn = max {1, 2nn̄T �n}, (73)

�n :=
1 + 2

√
ln(8/ε)

2n
+ ln(8/ε)

n

1 − 2
√

ln(8/ε)
2 fetn

. (74)

The final security here is ε′ = K4
n ε/50.
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In a practical implementation, the parties exchange many
pulses [45], which are split into nb ≫ 1 blocks of suitable
size N for data processing; typically, N = O(106) or more.
Assuming that the channel parameters are stable, one can
write Eq. (68) for the generic block, i.e., for N = O(106).
The success probability pec provides the fraction of blocks
that are successfully processed into key generation. Under
conditions of stability, parameter estimation can be performed
in one-go over the entire set of sacrificed pulses mnb, so that
the worst-case estimators are expected to be quite close to
the actual values. However, if the channel is not stable, but
slowing varying with respect to the time-frame associated
with a single block, then parameter estimation has to be done
block-by-block and the final rate will be averaged over the
blocks. In the following, we will assume that parameter es-
timation is based over the single-block statistics, so that we
encompass the possibility of variability.

C. Pilots, post-selection, lattice allocation, and defading

In a fading scenario where the value of the transmissivity
τ fluctuates, as is the case of a free-space quantum communi-
cation, it is useful to use bright pilot pulses to track τ so as to
create a lattice where signals with almost-equal transmissivity
are grouped together. Assume that Alice randomly interleaves
her signals with mPL pilots. These are prepared in an energetic
coherent-state |

√
n̄PLeiπ/4〉, with n̄PL mean photons and fixed

π/4 phase, so as to provide components for both q and p mea-
surements. The first moments of the pilots follow Eq. (55),
where the magnitude of the noise z is negligible with respect
to that of

√
τx. As discussed in Ref. [14], they allow to achieve

an almost perfect estimation of the instantaneous value of τ .
The high energy regime is easily accessible using 10 ns-

long pulses from a 100 mW laser source. At λ = 800 nm, each
1 nJ pulse contains an average of x2 ≃ 4 × 109 photons. Such
energy can be used for the TLO multiplexed with each signal
or pilot. A fraction of this energy, say x2 ≃ 106 photons can be
used for the pilots. Considering ≃ 30 dB loss, i.e., τ ≃ 10−3,
which is the worst-case scenario in the LEO region (reached
in uplink with a 2000-km-high satellite at 1 radiant), we have
that >106 photons are collected for the LO, and about 103 for
the pilots. The LO is bright enough to allow for shot-noise
limited measurements, and the pilots are also bright enough
to provide an almost perfect estimation of τ . It is clear that,
in the case of an LLO, the LO is even brighter since it is not
even attenuated by the transmission.

On the basis of the pilots, Alice and Bob determine a
post-selection interval � = [ηth, η] where η is the maximum
transmissivity and ηth = fthη is computed for some fixed
fth < 1. As a result, only a fraction pth of the pulses will be
post-selected [cf. Eq. (54)]. Within �, they introduce a reg-
ular lattice of M bins/slots with step δτ = (η − ηth)/M and
generic bin/slot �k = [τk, τk+1], with τk := ηth + (k − 1)δτ
and k = 1, . . . , M. The generic slot �k is populated with
probability pk computed according to Eq. (53), i.e., it is asso-
ciated with (an integer approximation of) Sk := (N − mPL)pk

signals and corresponding νdetSk pairs of data points {xi, yk
i }.

For a sufficiently small step δτ , these points satisfy the input-
output relation

yk ≃
√

τkx + zk, (75)

for a Gaussian noise variable zk whose variance σ 2
z (τk ) =

2n̄(τk ) + νdet generally depends on τk .
Instead of processing each slot independently from the

others (with limited statistics), the parties may adopt a defad-
ing procedure mapping all the slots into the first one, with
minimum transmissivity ηth. To the points in slot �k , Bob
applies the classical channel

yk → ỹk :=
√

ηth

τk

yk +
√

1 −
ηth

τk

ξadd, (76)

where ξadd is a Gaussian variable with variance equal to νdet.
By repeating this mapping for all the slots, Bob creates a new
variable

ỹ = √
ηthx + z̃, (77)

where z̃ is non-Gaussian with variance

σ 2
z̃ = 2n̄∗ + νdet, n̄∗ :=

ηth

pth

∑

k

pk

τk

n̄(τk ). (78)

Using the optimality of Gaussian attacks, Alice and Bob
assume that z̃ is Gaussian, thus overestimating Eve’s strat-
egy and underestimating their performance. In this way, the
entire defading procedure reduces the initial non-Gaussian
fading channel into a worst-case thermal-loss Gaussian chan-
nel Eηth,n̄∗ with fixed minimum transmissivity ηth and thermal
number equal to n̄∗.

D. Parameter estimation and composable key rate

Once they have reduced the problem to a worst-case ther-
mal loss channel Eηth,n̄∗ , Alice and Bob build the worst-case
estimators, η′

th and n̄′
∗, for the parameters ηth and n̄∗ associated

with the channel, by using mp pth pairs of data points (coming
from mpth sacrificed signals). Each of these worst-case esti-
mators is correct up to an error εpe, related to the confidence
parameter w according to Eq. (65) or (66). See also Ref. ([14],
Sec. IV.F).

Note that also the threshold transmissivity ηth needs to
be estimated, even though this is agreed by the parties via
the pilots. In this way, in fact, Alice and Bob can detect
and account for Eve’s potential strategies that are aimed at
discriminating signals and pilots, and then applying different
interactions. As a matter of fact, any potential error associated
with the slot allocation of the signals (due to Eve’s action or
coarse-graining imperfections) will be detected and accounted
by directly estimating ηth over the signals ([14], Sec. IV.E).

Assume the realistic case where signals and pilots undergo
the same interaction with the environment, so that the estima-
tion of ηth via the signals confirms the threshold value agreed
by the parties using the pilots. (As said above, in the potential
presence of signal-pilot discrepancies, our general formalism
still applies by generating the corresponding worst-estimators
from the signals.) Then, the worst-case estimators satisfy the
bounds [14]

η′
th � ηLB := ηth − 2w

√
2η2

th + ηthσ 2
wc/σ

2
x

mp pth
, (79)

n̄′
∗ � n̄UB := n̄wc + w

σ 2
wc√

2mp pth

, (80)
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where σ 2
wc = 2n̄wc + νdet is the worst-case value for the total

thermal noise. This value upper bounds σ 2
z̃ and is computed

by taking n̄wc � n̄(τ ) for any τ ∈ �. In order to compute n̄wc,
i.e., maximize the thermal noise over the transmissivity, we
need to introduce a practical expression for the setup noise
(see the next subsection).

Using ηLB and n̄UB, we can lower-bound Alice and Bob’s
key rate affected by parameter estimation

Rpe = Rasy(η′
th, n̄′

∗) � RLB := Rasy(ηLB, n̄UB). (81)

Then, the composable key rate is a direct modification of
Eq. (68) and takes the form [14]

R �
npth pec

N

(
RLB −

�aep√
npth

+
�

npth

)
, (82)

with n = N − (m + mPL) and security ε = 2pecεpe + εcor +
εsec against collective (Gaussian) attacks.

For the heterodyne version of the protocol, we can again
extend the security from collective to general attacks by per-
forming a similar modification as in Eq. (71). In this case, the
secret-key rate becomes [14]

Rhet
gen �

npth pec

N

[
Rhet

LB −
�aep√
npth

+
� − 2

⌈
log2

(
Knpth

+4
4

)⌉

npth

]
,

(83)

where Kn is given in Eq. (73) and the total number of key-
generation pulses is now given by

n = N − (m + mPL + met) =
N − (m + mPL)

1 + fet
. (84)

Final security is equal to ε′ = K4
npth

ε/50.

E. Setup noise and observations about the LO

The setup noise n̄ex strictly depends on what type of LO is
used. In fact, in the case of a TLO, there is no phase error, but
the electronic noise of the detector becomes nontrivial due to
the attenuation that the LO undergoes during its transmission.
By contrast, in the case of an LLO, the electronic noise is
lower due to the fact that the LO is always bright, indepen-
dently from the transmissivity; however, there will be some
nontrivial phase noise that comes from the imperfect digital
reconstruction of the rotating reference frame at the receiver.

The electronic noise can be described by an additive
Gaussian channel with associated variance νel or equivalent
number of photons n̄el = νel/2. Its value depends on various
quantities, namely the noise equivalent power (NEP) of the
amplifiers/photodiodes in the homodyne detectors, the detec-
tion bandwidth W , the duration of the LO pulses �tLO, the LO
power at the detector Pdet

LO , and the frequency of the light ν. Let
us consider the power PLO at which the LO is generated, so
that we have Pdet

LO = τPLO for the TLO and Pdet
LO = PLO for the

LLO. Then, let us introduce the parameter (see also Ref. [14])

�el :=
νdetNEP2W �tLO

2hνPLO
. (85)

In our notation, we may write

n̄TLO
el = �el/τ, n̄LLO

el = �el. (86)
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FIG. 5. Comparison of the setup noise (in terms of equivalent
number of thermal photons n̄el) versus channel transmissivity τ ,
for the LLO (black line) and the TLO (blue line). These are com-
puted using Eq. (88). Parameters are chosen as in the text, i.e.,
λ = 800 nm, lW = 1.6 KHz, W = 100 MHz, NEP = 6 pW/

√
Hz,

PLO = 100 mW, �tLO = 10 ns, C = 10 MHz, σ 2
x = 10, and νdet = 2

(heterodyne detection).

For a detector with bandwidth W = 100 MHz, we may
consider NEP = 6 pW/

√
Hz. Then, let us take an LO power

PLO = 100 mW. At 800 nm and using LO pulses of duration
�tLO = 10ns, we get �el ≃ 1.45 × 10−3 for the case of an
heterodyne setup (νdet = 2). It is clear the advantage of the
LLO in reducing the electronic noise.

Such a reduction of the electronic noise induced by the
LLO comes at the price of introducing phase errors. In our
notation, we quantify this contribution as follows:

n̄LLO
phase =

πσ 2
x lW

C
τ, (87)

where C is the clock of the system and lW is the laser linewidth
[14]. In our investigations we have σ 2

x � 10 and C = 10 MHz,
so a low value n̄LLO

phase can be reached with a linewidth lW ≃ 1.6
KHz.

Overall, we have that the setup noise for the TLO and LLO
takes the following expressions:

n̄TLO
ex (τ ) =

�el

τ
, n̄LLO

ex (τ ) = �el +
πσ 2

x lW

C
τ, (88)

where we see the different monotonic behavior of these quan-
tities versus the transmissivity τ . In particular, the TLO seems
to be preferable for short distances (high values of τ ), while
the LLO is better for long distances (low value of τ ). See also
Fig. 5.

In order to maximize n̄ex over the post-selection interval �,
we therefore compute n̄TLO

ex (τ ) at the minimum border value
τ = ηth, and n̄LLO

ex (τ ) at the maximum border value τ = η.
Thus the worst-case value for the setup noise will be given
by

n̄wc = ηeffn̄B + n̄ex,wc, (89)

where we have set

n̄TLO
ex,wc = �el/ηth, n̄LLO

ex,wc = �el +
πσ 2

x lW

C
η. (90)

As already mentioned, an LLO is more convenient for
long-distance quantum communications (low values of the
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transmissivity). In fact, in such a case, the associated phase
error decreases to zero, and the total setup noise tends to
the constant term �el. For this reason, in the following we
specifically investigate the performances achievable with an
LLO, but we stress that both approaches of TLO and LLO
are encompassed by our theory. We also stress that an LLO
requires a more sophisticated hardware than that needed by a
TLO.

As already mentioned in Sec. II F 1, an important aspect
in the use of an LLO is that each pulse (signal or pilot) must
be transmitted in the middle of two reference pulses, so that
there is a regular interleaving between these bright references
and all the other pulses. From the detection of the references,
Bob reconstructs Alice’s rotating frame and therefore suitably
rotates the outcomes he has obtained from the measurements
of the signals and the pilots (for which a locally generated LO
was employed for the homodyne/heterodyne detection). It is
clear that, in this process, the free-space link is half of the
time used by the phase-synchronizing references. This means
that, in terms of actual throughput (bits/second), there is a
factor of 1/2 to account for the LLO. However, it is also true
that such a time-multiplexing of the LO enables Alice to use
both polarizations for the transmission of the signals, which
therefore leads to a compensation of the 1/2 extra factor. We
assume this scenario.

F. Key rate analysis with orbital dynamics

With all the ingredients in our hands, we now study the
numerical behavior of the composable key rate, accounting
not only for the fading process but also for the variability
associated with the orbital dynamics of the satellite. In fact,
there are two basic reasons why the channel is not stable in
satellite communications: One is the inevitable fading process
affecting the free-space transmission, which occurs even when
the satellite is assumed to be ‘frozen’ at some fixed altitude
and zenith angle; the other is the temporal variation of the
zenith angle (and altitude) due to the specific orbit. Even if
we assume the satellite to be at some fixed (or approximately
fixed) altitude, the variation of the zenith angle is inevitable
for all orbits in the LEO and MEO regions.

Assume that the satellite is on an orbit with a constant
altitude h, which is an assumption valid for polar orbits and
approximately valid for sun-synchronous orbits. Then, during
the quantum communication of a block of size N , the satellite
performs a corresponding slice of its orbit, spanning a range of
different zenith angles. The angular size of this slice depends
on various factors, including the clock of the system C and
the speed of the satellite (which depends on its altitude h).
As a result, we have that the value of the maximum transmis-
sivity η (and that of the threshold transmissivity ηth) sensibly
changes during the quantum communication. It is clear that
this problem also affects the thermal noise n̄, due to the gen-
eral dependence of the setup noise n̄ex on the instantaneous
transmissivity.

There are various strategies to deal with this situation. One
strategy is to minimize ηLB and maximize n̄UB over the slice,
and then use these values to lower bound the achievable key
rate (for an LLO, one could also use a constant maximum
value of n̄UB, as computed at the Kármán line or at the lower

TABLE V. Protocol parameters adopted with respect to collective
attacks and general attacks.

Protocol Collective General
parameter Symbol attacks attacks

Total pulses N 108 108

Pilot pulses mPL 0.01 × N 0.01 × N

PE signals m 0.1 × N 0.1 × N

Energy tests fet − 0.2
KG signals n 0.89 × N ≃ 7.4 × 107

Digitalization d 25 25

Rec. efficiency β 0.96 0.96
EC success prob pec 0.9 0.1
Epsilons εh,s, . . . 2−33 ≃ 10−10 10−43

Confidence w ≃6.34 ≃14.07
Security ε, ε′ ≃ 5.6 × 10−10 � 2.6 × 10−10

Modulation μ optimized 7
Threshold fth optimized 0.75

LEO boundary). Another method, which is more practical, is
to directly minimize the key rate over the orbital slice. Under
typical conditions, the fixed-geometry rate R(h, θ ) decreases
for increasing θ , i.e., from the zenith towards the horizon. For
this reason, we can lower bound the actual rate by taking the
value of R(h, θ ) at the largest zenith angle θ (for any fixed
altitude h). In particular, assume that the slice associated with
the block has zenith angles θ � 1. We can therefore lower
bound the key rate by taking the value R(h, θ = 1). We call
this the “one-radiant” key rate [46].

Let us analyze the one-radiant key rates that are achievable
by a pilot-guided post-selected heterodyne protocol with LLO
at various satellite altitudes for the various configurations.
In particular, we choose the protocol parameters specified
in Table V. We assume a 1% quota for the pilots [47]. The
values of the input modulation μ (i.e., n̄T ) and the threshold
transmissivity fth (i.e., ηth) are implicitly optimized at each
altitude. This is the case for rates under collective attacks
(plotted for each configuration). For the study of the general
attacks (only done in the best configuration of night-time
downlink), we have made the sub-optimal choices of μ = 7
and fth = 0.75. Also note that the security ε′ versus general
attacks depends on the altitude; its maximum value shown in
Table V is achieved for the minimum altitude of h = 100 km.

Then, we follow all the physical parameters and theoret-
ical models considered so far, explicitly listed in Table VI.
However, we allow for the possibilities of different setups on
the basis of the spot-size w0 and receiver aperture aR. With
setup 1, we reproduce the physical conditions adopted for the
study of the ultimate bounds presented in Fig. 3 (under the
assumption of a narrow filter �λ = 0.1pm). The other setups
offer a more generous hardware that allows us to improve the
key rates in the various configurations.

In Fig. 6, we show the performances that are achievable
in downlink with setup 1, which clearly improve when the
better setup 2 is considered, with positive key rates in the LEO
region. By contrast, we need to assume the expensive setup 3
for enabling uplink, whose key rates appear to be restricted
to the sub-LEO region (between 100 and 160 km). Note that,
thanks to the narrow homodyne filter, we may achieve positive
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TABLE VI. Physical parameters and theoretical models.

Physical parameter Symbol Value

Beam curvature R0 ∞
Wavelength λ 800 nm

20 cm (setup 1)

Beam spot size w0

⎧
⎨
⎩ 40 cm (setup 2)

60 cm (setup 3)
40 cm (setup 1)

Receiver aperture aR

⎧
⎨
⎩ 1 m (setup 2)

2 m (setup 3)
Receiver field of view �fov 10−10 sr
Homodyne filter �λ 0.1 pm
Detector shot-noise νdet 2 (heterodyne)
Detector efficiency ηeff 0.4
Detector bandwidth W 100 MHz
Noise equivalent power NEP 6 pW/

√
Hz

Linewidth lW 1.6 KHz
LO power PLO 100 mW
Clock C 10 MHz
Pulse duration �t,�tLO 10 ns
Extinction (at 1 rad) ηatm ≃0.94
Pointing error σ 2

P ≃ (10−6z)2 (1 μrad)
Structure constant C2

n night/day H-V model
Turbulence parameters wst, σ 2

TB Appendix C
Background noise n̄B Eqs. (42) and (43)

key rates for day-time operation. In particular, in downlink,
the suppression of the background is such that the day-time
rate coincides with the night-time rate. For uplink, there is still
a gap though, which is due to the effects of the ground-level
turbulence on the beam. These effects reduce the transmissiv-
ity and are higher during the day.

According to our investigation, all the configurations al-
low for secure quantum communications with a satellite in
the LEO/sub-LEO region, even though with different hard-
ware requirements. The homodyne filter largely suppresses
the background noise, paving the way for day-light implemen-
tations under various weather conditions.

G. Orbital slicing

The one-radiant key rates are pessimistic estimates of what
we can actually achieve with a satellite orbiting at an approx-
imately constant altitude. For this reason, we now consider a
more accurate treatment where we explicitly account for the
fact that different blocks of data correspond to different slices
of the orbit within the one-radiant sector. For each slice we
consider the corresponding minimum rate, which is achieved
at the largest zenith angle along that particular slice. The
overall orbital rate is given by an average over the slices.

Before presenting the improved results, we need to
make some preliminary considerations about an ideal modus
operandi for the ground-satellite link.

In fact, we identify the following ideal conditions.
(i) The transit time of the satellite should allow the parties

to distribute many quantum data points.
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FIG. 6. One-radiant composable key rates (bits/use) achiev-
able by a pilot-guided post-selected heterodyne protocol with LLO
at various satellite altitudes h (km). We consider downlink with
setups 1 and 2 from Table VI. Black lines refer to the key rate of
Eq. (82) while the purple line is the rate of Eq. (83) against general
attacks. Solid lines refer to night time, while the overlapping/almost-
overlapping dashed lines refer to day time (difference becomes
appreciable only for longer distances). We also show the perfor-
mance in uplink (blue lines), considering Eq. (82) and setup 3 from
Table VI. In particular, we compare the night-time uplink (solid blue)
with day-time uplink (dashed blue).

(ii) There should be additional time for classical commu-
nication and data-processing, in such a way that a secret key
is generated before the end of the fly by.

(iii) There should be time for an encrypted communica-
tion, exploiting part of the key already distributed.

To satisfy these ideal conditions, it is better to have a
satellite that is able to reach small zenith angles. Clearly,
an optimal solution is a satellite crossing the zenith point
above the ground station (zenith-crossing orbit). For simplic-
ity, assume that its orbit is circular, with constant radius RS =
RE + h from the center of the Earth. Examples of circular
orbits are polar and near-polar sun-synchronous orbits.

For a zenith-crossing orbit, it is useful to introduce a sign
for the zenith angle θ , so that a negative θ corresponds to the
zenith angle with respect to a satellite which is arising from
the “front” horizon and moving towards the zenith, while a
positive θ corresponds to a satellite that has passed the zenith
point and it is descending towards the “back” horizon (see
Fig. 7).

For a zenith-crossing circular orbit, the slant dis-
tance z = z(RS, α) can be expressed as z(RS, α) =√

R2
E + R2

S − 2RERS cos α in terms of RS = RE + h and

the orbital angle α (which may also be negative). See also
Eq. (A7) and Fig. 12 in Appendix A. Then, we may write the
orbital period (in seconds)

TS = 2π

√
R3

S

μG
, (91)

where μG = GME is the standard gravitational parameter,
with G = 6.674 × 10−11 N m2 kg−2 being the gravitational
constant and ME ≃ 5.972 × 1024 kg the approximate Earth’s
mass. As a result, the orbital angle α varies over time t
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FIG. 7. Orbital sectors for a zenith-crossing circular orbit. Zenith
angle θ has an associated sign and we identify the front and the back
horizons. Quantum communication occurs within the (green) good
sector associated with the angular window −1 � θ � 1 (where the
angle is negative on the left, i.e., for a rising satellite). There is a
transit time tQ associated with this sector. Total transit time tT is
associated with the entire flyby from the front to the back horizon.
The right blue sector 1 < θ < π/2 can be used for data processing
and key generation. The left blue sector −π/2 < θ < −1 can be
used for encrypted communication using a previously generated key
(e.g., the satellite may download the key exchanged with another
station). In practical scenarios, the satellite is not tracked within
5◦ − 10◦ of the horizon (depending on the urban setting etc.). In other
words, there is an effective “mask” angle θm (or minimum acceptable
elevation above the horizon) for the satellite. In the text, we assume
θm = 10◦.

according to the law

α(t, h) =
2πt

TS
= t

√
μG

R3
S

, (92)

where we have implicitly set α = 0 (satellite at the zenith)
for t = 0. Correspondingly, the time-varying zenith angle θ =
θ (t, h) can be computed from

sin θ =
RS sin α

z(RS, α)
. (93)

We can divide the orbit in different sectors as depicted
in Fig. 7. Assuming that the quantum communication occurs
within 1 radiant from the zenith (good sector), we compute a
corresponding quantum transit time tQ. Within |θ | � π/2, we
may certainly invert θ = θ (t, h) into t = t (θ, h). In fact, we
may write

t (θ, h) =

√
(RE + h)3

GME
arccos

[
RE + z(h, θ ) cos θ

RE + h

]
, (94)

where z(h, θ ) is given in Eq. (1) and the initial condition
is t (0, h) = 0. We then compute the quantum transit time
tQ(h) = 2t (1, h), the total transit time tT(h) := 2t (π/2, h) of
the satellite from horizon to horizon, and the effective transit
time tE(h) := 2t (π/2 − θm, h), where θm is the mask angle
(here assumed to be of 10◦). Their behaviors are plotted in
Fig. 8.

As we can see, at 530 km, the total transit time is about
716 seconds, of which 200 seconds are within 1 radiant.
Assuming tQ ≃ 200 and a clock of C = 10 MHz, we have the
quantum communication of CtQ ≃ 2 × 109 pulses. Assuming
blocks of size N = 108 (each corresponding to 2N pairs of
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FIG. 8. Transit times (seconds) versus altitudes (kms) for a satel-
lite passing through the zenith in a circular orbit. We plot the total
transit time tT from horizon to horizon (solid black), the effective
transit time tE accounting for the mask angle (dashed black) and the
quantum transit time tQ within the window −1 � θ � 1 (solid blue).

data points for the heterodyne protocol), we have 20 blocks
distributed within the one-radiant window of each passage.
Since we assume that the protocol runs with an LLO, we also
assume that both polarizations are used for the signals (so that
we compensate for the time multiplexing associated with the
transmission of the reference pulses). Thus condition (i) above
can be met.

In order to realize condition (ii), we exploit the orbital
sector after the one-radiant window (see Fig. 7) where a
530 km satellite spends (tT − tQ)/2 ≃ 258 seconds. In par-
ticular, accounting for the mask angle θm = 10◦, we have
that the satellite is visible for (tE − tQ)/2 ≃ 131 seconds.
During this time, the parties can implement the classical pro-
cedures of error correction and privacy amplification, e.g.,
using the high-speed methods of Refs. [48,49]. Ideally, by
using optimal LDPC codes over a 1GHz GPU, the processing
of ≃ 2 × 109 data points may take ≃ 120 seconds [45,50].
Such performances for data processing require an highly per-
formant computing hardware. High speed data processing is
achievable because of the relatively high signal-to-noise ratio
(so that the number of iterations for syndrome extraction in
the error correcting procedure is low). As a matter of fact, for
downlink from about 500 km, the total loss is less than 10 dB.
Note that there is also a latency time in communications with
the satellite, of the order of 1.6 ms at that altitude. However,
because the procedures can be implemented with limited ses-
sions of one-way CC, this is negligible.

Finally, there is the condition (iii) which is about having
enough time for an encrypted communication between the
satellite and the ground station. This session can be used
for authentication and/or for downloading the key of another
ground station via one-time pad. This step can be imple-
mented during the first sector of the orbit, i.e., at zenith angles
−π/2 < θ < −1. In the basic scenario of Fig. 7, this phase is
symmetric to that discussed above and the satellite is visible
for about 131 seconds, clearly sufficient for the encrypted
communication.

Let us now slice the good sector for quantum commu-
nication (−1 � θ � 1) for a zenith-crossing circular orbit.
Assume that nbks blocks are transmitted during the flyby.
Dividing the quantum transit time tQ by nbks, we get the time
δt that is needed for each block to be transmitted. These time
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FIG. 9. Composable finite-size key rate R of Eq. (82) for a
pilot-guided post-selected heterodyne protocol with LLO. This is
plotted versus the zenith angle θ for downlink from a satellite which
is in a zenith-crossing circular orbit at h = 530 km. We plot the
performance for night time (solid) and day time (dashed, overlap-
ping). Parameters are specified in Table V for collective attacks, and
Table VI for setup 2. In particular, we choose μ = 7.18 and fth =
0.76. Besides the rates we explicitly show the angular lattice in
Eq. (97).

intervals identify corresponding angular slices {θi, θi+1} along
the orbit, that can be computed using Eqs. (92) and (93) for
any fixed altitude h. For slice i = 1, . . . , nbks we consider the
minimum value

Ri = min
θ∈[θi,θi+1]

R(θ ), (95)

where R(θ ) is the θ -dependent key rate for the considered
altitude. Thus the average orbital rate is equal to

Rorb =
1

nbks

nbks∑

i=1

max{0, Ri} � R1-rad, (96)

where the bound R1-rad := max{0, R(θ = ±1)} is the rate as-
sociated with the border values (considered in the previous
subsection and Fig. 6).

As previously said, for a zenith-crossing circular orbit at
h = 530 km, the quantum transit time is about 200 seconds.
Therefore we may consider nbks = 20 blocks, where each
block of size N = 108 corresponds to a transmission time of
δt = 10 seconds for a C = 10 MHz clock. This configuration
identifies angular slices

{θi, θi+1} ≃ {−1,−0.942}, . . . , {0.942, 1}, (97)

that are shown in Fig. 9 together with the rate R(θ ) of Eq. (82)
specified for night-time and day-time downlink.

For the angle-dependent rate R(θ ), we assume the protocol
parameters in Table V for collective attacks, and the physical
parameters in Table VI, by choosing spot size and receiver
aperture according to setup 2. The values for the modulation
and the threshold are chosen in such a way to maximize
the lowest rate in the ensemble {Ri}nbks

i=1 which coincides with
R1-rad. Thus, in the figure, we have chosen μ = 7.18 and
fth = 0.76.

Using Eqs. (82) and (97) in Eq. (95) and then Eq. (96),
we compute the average orbital rate for downlink, which is

approximately the same for night and day, i.e.,

Rdown
orb ≃

{
3.066 × 10−2 bits/use (night time)

3.041 × 10−2 bits/use (day time).
(98)

Here “per use” means per use of the quantum communica-
tion channel, occurring within 1 radiant. When we plug a
clock C = 10 MHz, we have a rate of Rdown

orb ≃ 307 kbits/s
during night time, and Rdown

orb ≃ 304 kbits/s during day time.
Accounting for the time of the quantum communication
(200 s), each night-time zenith-crossing passage distributes
≃ 6.13 × 107 secret bits, while a day-time zenith-crossing
passage distributes ≃ 6.08 × 107 secret bits. Considering that,
within 24 hours, there will also be non-zenith-crossing pas-
sages (exploitable for QKD), the above estimates lowerbound
the number of bits that can be distributed per day via night-
and day-time operation. (Alternatively, in a less-performant
hardware, the other passages can be used for data processing
by the parties).

Now consider uplink to a satellite in the sub-LEO re-
gion. We take h = 103 km, just after the Kármán line. As
we have already mentioned, the main reason for the inferior
performance in uplink is the nontrivial effect of the atmo-
spheric turbulence, with bigger impact during the day. We
consider the rate R(θ ) of Eq. (82) for the case of a pilot-
guided post-selected heterodyne protocol with LLO, specified
for night-time and day-time uplink. We assume the protocol
parameters given in Table V for collective attacks, and the
physical parameters in Table VI, where we assume the more
demanding setup 3. The values for the modulation μ and the
threshold fth are chosen to maximize the lowest rate (R1-rad).
In particular, we choose μ = 6.5 and fth = 0.74.

Because of the lower altitude, we have a total transit time
of just tT ≃ 295 s, an effective transit time of tE ≃ 123 s, and a
quantum transit time of tQ ≃ 40 s. The latter allows the parties
to distribute 4 blocks of size 108 with a clock of C = 10 MHz
(and these blocks may be data-processed in ≃ 24 s, which is
enough for the last sector of the orbit by assuming highly per-
formant error-correcting codes). The orbital slices associated
with the 10 s-long blocks are

{θi, θi+1} ≃ {−1,−0.65}, {−0.65, 0}, {0, 0.65}, {0.65, 1}.
(99)

Both the rate R(θ ) and the slices are shown in Fig. 10.
Using Eqs. (82) and (99) in Eq. (95) and then Eq. (96), we

compute the average orbital rate in uplink, which is equal to

R
up
orb ≃

{
4.244 × 10−2 bits/use (night time)

2.737 × 10−2 bits/use (day time)
. (100)

At 10 MHz this rate corresponds to about 424 kbit/s at night
and 273 kbit/s during the day. Accounting for a quantum
transit time of 40 s, we have that each zenith-crossing pas-
sage distributes ≃ 1.69 × 107 secret bits for night uplink, and
≃ 1.09 × 107 secret bits for day uplink.

According to our analysis, it is indeed feasible to use CV-
QKD protocols to distribute keys with a satellite orbiting in
the LEO/sub-LEO region, accounting not only for the fading
process due to turbulence and pointing errors, but also for the
fast orbital dynamics (which creates additional problems for
the transmission of reasonably large block sizes). Our analysis
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FIG. 10. Composable finite-size key rate R of Eq. (82) for a
pilot-guided post-selected heterodyne protocol with LLO. This is
plotted versus the zenith angle θ for uplink to a satellite which
is in a zenith-crossing circular orbit at h = 103 km. We plot the
performance for night (solid) and day (dashed) time. Parameters are
specified in Table V for collective attacks, and Table VI for setup 3.
In particular, we choose μ = 6.5 and fth = 0.74. Besides the rates
we show the angular lattice generated by the slices of Eq. (99).

shows this possibility not only for the best-considered sce-
nario of night-time downlink, but also for day-time downlink
and for the more challenging scenarios of night- and day-time
uplink.

H. Satellites versus ground-based repeaters

Once we have computed the secret key rates that are
achievable in the most relevant configurations for satellite and
ground station, we now show that satellite quantum communi-
cations are able to provide a nontrivial advantage with respect
to the use of quantum repeaters on the ground, when the aim is
to connect two remote end-users that are sufficiently far apart
on Earth’s surface.

An example of circular orbit is a polar orbit, i.e., with
orbital inclination ι = 90◦. However, a more practical scenario
is considering a near-polar satellite in sun-synchronous orbit
(which is approximately circular). This type of orbit guaran-
tees that the satellite passes over any point on Earth’s surface
at the same local mean solar time. This clearly implies the
possibility of stable conditions for night-time or day-time op-
eration, so that the quantum communication with the satellite
occurs at roughly the same time of the night or the day.

For a sun-synchronous satellite at altitude h, the orbital
inclination is given by

ι =
360

2π
arccos

[
−

(
RE + h

12352

)7/2]
, (101)

where h � 5980 is expressed in km. At h = 530 km, this cor-
responds to ι ≃ 97.5◦. Because the orbital period is TS ≃ 95
minutes, the satellite performs 15 orbits a day, before return-
ing above the initial point. Note that the Micius satellite is
sun-synchronous with ι ≃ 97.4◦ and with altitude between
488 and 584 km. At h = 103 km, we have ι ≃ 96◦, TS ≃ 86
minutes and 16 orbits a day.

Assume that two ground stations are along the orbital path,
so that the satellite crosses both their zenith positions, which
happens once per day. We assume the worst-case scenario in

which the stations interact with the satellite only during the
sections of the orbit where the zenith positions are crossed (of
course this assumption can be relaxed and the ground stations
could also use other passages that are not zenith-crossing).
Also assume that the stations are in similar operational con-
ditions, so that we can simultaneously adopt the results for
night time or day time for both of them. Finally, assume that
the satellite may have the option to communicate with two
stations simultaneously (e.g., using two quantum transmitters
or receivers); this is assumed to address the particular case
where the stations are close, so that the satellite appears within
their one-radiant angular windows roughly at the same time
(clearly this is not the case for very distant ground stations).

Start with the satellite at the zenith of the first station (t =
0) and assume that it reaches the zenith of the second station
after time �t . For �t � TS/2, the distance between the two
stations is equal to

dst = α(�t, h)RE =
2π�tRE

TS
∈ [0, πRE], (102)

where we have used Eq. (92) and accounted for Earth’s curva-
ture. Then, assume that the two stations are also connected by
an optical fiber with standard loss rate of αfib = 0.2dB/km, so
that we have a total fiber transmissivity of ηfib = 10−αfibdst/10.
The maximum fiber-based repeater-less rate (bits per use)
is given by the PLOB bound Rfib = − log2(1 − ηfib) [12].
Multiplying by the clock C = 10 MHz and the number of
seconds in one day #day ≃ 8.6 × 104, we may compute the
maximum number of secret bits that can the distributed in
one day CRfib#day as a function of the station-to-station ground
distance. We also assume the situation where a number Nrep �

1 of ideal repeaters are inserted along the fiber line, so
that we have the fiber-based rate becomes R

rep
fib = − log2(1 −

Nrep+1
√

ηfib) [16]. We have a corresponding number of secret bits
CR

rep
fib #day per day.
In Fig. 11, we consider the maximum number of secret bits

per day (versus ground distance) that can be distributed by a
repeaterless fiber link between the stations and also by fiber
links assisted by ideal quantum repeaters. Assuming the same
clock, we compare these ground-based performances with the
secret-bits per day that can be distributed by using a satellite
moving between the two stations, the latter operating in the
same way with respect to the satellite, i.e., via night/day-time
downlink [Eq. (98)] or night/day-time uplink [Eq. (100)].

We can see how a satellite can beat the fiber-based re-
peaterless bound when the stations are separated by more than
215 km, and how it can achieve the same rate of 30 ideal quan-
tum repeaters when the station-to-station ground separation is
about 6675 km. This performance is achievable in downlink
no matter if during the day or the night (solid red line in
Fig. 11). As expected, in uplink, the performances are worse
than downlink (despite the better setup). That being said, via
uplink to the satellite, the remote users are still able to beat
ground chains of quantum repeaters after similar distances.

IV. CONCLUSIONS

In this work, we have established the ultimate limits and the
practical rates that can be achieved in secure quantum com-
munications with satellites, assuming various configurations
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FIG. 11. Secret-key bits per day versus ground distance (km)
between two stations, assuming a clock of 10 MHz. We consider
the maximum performances achievable by a repeaterless fiber-
connection (PLOB bound) and repeater-based fiber-connections
assisted by 1, 5, and 30 ideal quantum repeaters (solid lines). These
are compared with the constant performances achievable by con-
necting the two ground stations via a near-polar sun-synchronous
satellite. We consider h = 530 km in downlink [Eq. (98) based on
setup 2 in Table VI] and h = 103 km in uplink [Eq. (100) based on
setup 3 in Table VI]. In particular, from the top to the bottom, we
show downlink at night-time (solid red) and day-time (dot-dashed
red, overlapping with the solid line). Then we show uplink at night
(dashed red) and during the day (dotted red).

(downlink/uplink) and operational settings (night or day
time). While our study is based on ideas and tools developed
in Ref. [14] for free-space quantum communications, it also
required a number of nontrivial generalizations in order to
account for the slant propagation at variable altitudes and
beyond the atmosphere. As a matter of fact, the underlying
physical models for atmospheric turbulence and background
noise have crucial differences with respect to the models
adopted for free-space communications on the ground.

We have started our work by establishing information-
theoretic upper limits to the maximum number of secret bits
(and ebits) that can be achieved per use of the satellite link
in all scenarios. Our theoretical analysis considers all relevant
effects, as due to diffraction, atmospheric extinction, limited
efficiency, pointing error, turbulence, thermal background,
and setup noise.

In uplink, turbulence is very important because it affects
the beam close to the transmitter where the spot size is small.
In this case, both pointing error and turbulence effects must
be accounted for. By contrast, in downlink, the spot size is
already very large when it enters the atmosphere, compared
to the typical size of the turbulent eddies. For this reason,
turbulence is negligible and the only relevant effect is the
pointing error.

A further asymmetry is introduced by the background
noise that is induced by sky brightness and planetary albedos
(Moon and Earth), even though this background can be greatly
suppressed by using narrow frequency filters. Such filters are
indeed created by the interferometric process occurring in
homodyne-like setups where the signals are mode-matched
with a strong local oscillator.

For all configurations, we have studied the numerical be-
havior of the ultimate key rates when the satellite is at the
zenith position or at 1 radiant from the zenith, showing that
a large range of altitudes are possible for secure key genera-
tion (and entanglement distribution) when we adopt optimal
protocols. For the same configurations, we have then studied
secret key rates that are achievable in practice by accounting
for finite-size effects and composable security. Our analysis
therefore addresses the problem of block size, which is partic-
ularly relevant for satellite quantum communications (see also
Ref. [51] for the setting of discrete-variable QKD).

In our paper, the use of a pilot-guided post-selected het-
erodyne protocol, combined with a careful consideration for
the orbital dynamics, enables the implementation of CV-QKD
between station and satellite in all configurations of night-time
downlink/uplink and day-time downlink/uplink. It is interest-
ing that all these scenarios represent indeed a viable option for
secure quantum communications, whereas only the setting of
night-time downlink has been considered in other works [52].

As a further analysis beyond this work, it would be in-
teresting to compare the QKD rates that are achievable by
CV protocols with those of discrete-variable protocols in the
various configurations of communication with the satellite.
Since discrete-variable QKD is more robust for long-distance
implementations on the ground, we would expect this ap-
proach to be particularly suitable for the far-LEO and MEO
regions. By contrast, CV-QKD is generally better for high-rate
implementations at shorter ground distances, so it appears
an approach specifically suitable for the LEO and sub-LEO
regions.

Finally, we have shown that a sun-synchronous satellite,
exchanging keys with ground stations, is able to distribute
more secret bits per day than a direct fiber-connection be-
tween the stations, even if the latter communicate at the
ultimate PLOB bound. Remarkably, the satellite is also able
to outperform a chain of many ideal quantum repeaters oper-
ating between the remote stations. These results are obtained
when the distance between the remote stations surpasses
certain thresholds, which depend on the hardware avail-
able for the satellite together with the adopted configuration
(downlink/uplink) and operational setting (night/day time).
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APPENDIX A: BASIC GEOMETRY FOR SATELLITE

COMMUNICATIONS

Here we discuss some geometrical elements about com-
munications with satellites. The slant distance z between a
sea-level ground station and a satellite can be connected with
other two important parameters. The first one is the (positive)
zenith angle θ which is defined as the angle between the
vertical direction (zenith) and the pointing direction from the
ground station to the satellite. The second one is the altitude
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FIG. 12. Basic geometry for satellite communications. A satellite
(S) is at slant distance z from a sea-level ground station (G). The
satellite is at zenith angle θ and altitude h over the Earth’s surface.
Clearly, z = h only at the zenith (θ = 0). The satellite is also at the
orbital angle α and orbital radius RS = h + RE, where RE is the radius
of the Earth. Note that OQ = RE + QG = OS cos α leads to (1) RE +
z cos θ = RS cos α. Now, from QS have (2) z sin θ = RS sin α. By
taking the squared in (1) and (2) and using cos2 α = 1 − sin2 α, we
derive h2 + 2REh − z(z + 2RE cos θ ) = 0 whose positive solution
gives Eq. (A1). In a similar way, one can use cos2 θ = 1 − sin2 θ

and derive Eq. (A7).

h of the satellite, which is defined as the distance from the
satellite to the ground (sea-level) orthogonally to the sur-
face of the Earth. Slant distance z, altitude h, and positive
zenith angle θ ∈ [0, π/2] can be easily connected by means
of simple trigonometric observations. (Note that the following
geometric formulas do not change if we include a sign in the
zenith angle, so that θ ∈ [−π/2, π/2], as considered for the
study with the zenith-crossing orbit in the main text).

It is easy to express the altitude h as a function of z and θ .
A simple trigonometric calculus provides

h(z, θ ) =
√

R2
E + z2 + 2zRE cos θ − RE, (A1)

where RE ≃ 6371 km is the approximate radius of the Earth
(see Fig. 12). In particular, at small angles θ ≃ 0, we can write
the simplified “flat-Earth” approximation

h(z, θ ) ≃ z cos θz + O(θ3), θz := θ

√
RE

RE + z
. (A2)

For θ � 1 and relatively small h (of the order of the atmo-
spheric thickness, i.e., 20 km), one finds that h ≃ z cos θ and
z ≃ h sec θ represent excellent approximations.

It is easy to see that Eq. (A1) can be inverted into

cos θ =
h

z
+

h2 − z2

2zRE
, (A3)

which gives the zenith angle θ in terms of z and h (see
also Ref. ([53], Ch. 13)). Similarly, the slant range z can be
expressed as a simple function of h and θ , i.e., we may write
the slant distance functional (see also Ref. [22])

z(h, θ ) =
√

h2 + 2hRE + R2
E cos2 θ − RE cos θ. (A4)

Note that z(h, θ ) � h sec θ for any h and θ ∈ [0, π/2].
It is easy to verify that the previous formulas can immedi-

ately be generalized to the scenario where the ground station

is located at some nonzero altitude h0. Setting RG := RE + h0

and RS = RE + h, we may in fact write

h(z, θ ) =
√

R2
G + z2 + 2zRG cos θ − RE, (A5)

z(h, θ ) =
√

R2
S + R2

G(cos2 θ − 1) − RG cos θ. (A6)

Another parametrization is in terms of orbital radius RS and
the orbital angle α, i.e., the angle between the position of the
ground station and the position of the satellite as seen from
the center of the Earth. It is immediate to see that

z(RS, α) =
√

R2
E + R2

S − 2RERS cos α. (A7)

This parametrization is useful for circular orbits, where RS is
constant. In this case, we can write α = 2πt/TS, where t is
time and TS is the orbital period, i.e., the time needed for a
complete revolution around the Earth.

APPENDIX B: REFRACTION EFFECTS

In a more refined description, we need to consider atmo-
spheric refraction. Assuming the atmosphere to be modeled
as a set of thin uniform slabs provides the same result of
an atmosphere modeled as a single uniform slab with sur-
face refractive index n0 ([53], Ch. 13, Fig. 13.4). Therefore
atmospheric refraction creates an apparent zenith angle θapp

satisfying Snell’s law

sin θapp = n−1
0 sin θ, (B1)

where n0 ≃ 1.00027 is the surface value of the refractive
index. We see that the angle of refraction �θ := θ − θapp

exceeds one degree when the satellite is at the horizon, where
θ = π/2 corresponds to θmax

app ≃ 1.548 (≃ 88.7◦). Besides the
apparent angle, refraction also increases the optical path by an
elongation factor εelo = εelo(θapp).

Replacing θ = θ (θapp) := arcsin(n0 sin θapp) in z(h, θ ) and
multiplying by εelo, one gets the refracted slant range

zref(h, θapp) = εelo(θapp)z[h, θ (θapp)], (B2)

as a function of the altitude h and the apparent angle θapp.
Replacing θ = θ (θapp) and z = zref/εelo(θapp) in h(z, θ ), we
get the altitude in terms of the refracted parameters, i.e.,

h = href(zref, θapp) := h[zref/εelo(θapp), θ (θapp)]. (B3)

With these modifications in hand, we can formulate the re-
fracted version of the atmospheric extinction in Eq. (10) of the
main text. We need to integrate α(h) = α0 exp(−h/h̃) (with α0

and h̃ given in the main text) using the modified expression for
the slant distance zref(h, θapp) and the expression of the altitude
href(zref, θapp). We get

ηref
atm(h, θapp) = exp

{
−

∫ zref(h,θapp )

0
dy α[href(y, θapp)]

}

= e−α0gref(h,θapp ), (B4)

where we have defined

gref(h, θapp) :=
∫ zref(h,θapp )

0
dy exp

[
−

href(y, θapp)

h̃

]
. (B5)
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FIG. 13. Atmospheric loss (decibels) versus zenith angle (radi-
ants) in the link between a sea-level ground station and a satellite at
h = 780 km, for λ = 800 nm. We plot the refraction-free model for
atmospheric loss −10 log10 ηatm [given by Eq. (10) of the main text]
with respect to the zenith angle θ (solid line), and the refraction-
based model −10 log10 ηref

atm of Eq. (B4) with respect to the apparent
zenith angle θapp (dashed line).

Correspondingly, we can modify the bound in Eq. (15) of the
main text to account for refraction. We obtain

Bref(h, θapp) = − log2

[
1 − ηeffe

−α0gref(h,θapp )

×
(

1 − e
− 2a2

R

wd [zref (h,θapp )]2

)]
. (B6)

For low transmissivity, which is certainly the case in the far
field regime z ≫ zR, we can approximate

Bref(h, θapp) ≃
2

ln 2

a2
Rηeffe

−α0gref(h,θapp )

wd [zref(h, θapp)]2
. (B7)

In Fig. 13, we investigate the effects of refraction on the
channel loss. For typical parameters, we see that refraction
is negligible within ≃ 1 radiant from the zenith, while it be-
comes more and more relevant in the proximity of the horizon.
For a sea-level ground station communicating with a satellite
at h = 780 km and apparent zenith angle θmax

app , we compute

ηref
atm ≃ 7.1dB from Eq. (B4) instead of ηatm ≃ 3.4 dB from

Eq. (10) of the main text (setting θ = θmax
app ). This discrepancy

leads to differences between B and its refraction-based ver-
sion Bref for large angles, i.e., close to the horizon.

Finally, it is worth mentioning that the formula in Eq. (B6)
can also be applied to the case where the ground station is at
some non-negligible altitude h0. In fact, it is sufficient to use
Eqs. (A5) and (A6) in all the previous expressions that lead to
Eq. (B6).

APPENDIX C: ATMOSPHERIC TURBULENCE

1. Weak turbulence

Atmospheric turbulence leads different treatments depend-
ing on its strength. From a physical point of view, turbulence
effects are due to eddies affecting the traveling beam. In a
regime of weak turbulence, one can clearly distinguish the
action of small and large turbulent eddies. Those smaller than
the beam waist tend to broaden the beam (on a fast time scale),
while those larger than the beam waist tend to deflect the
beam, randomly but on a slower time scale [28]. As a result,

the broadening of the beam can be decomposed into a sum of
two contributions, the short-term spot size w

2
st plus the random

wandering of the beam centroid with variance σ 2
TB, so that

there is a long-term spot size ([28], Eq. (32))

w
2
lt = w

2
st + σ 2

TB. (C1)

The slower time scale is of the order of 10–100 ms [29], which
means that this dynamics can be resolved by a fast-enough
detector.

For long-distance communication, if turbulence becomes
stronger, the motion of the centroid becomes negligible
(σ 2

TB ≃ 0). At some point, strong beam deformation comes
into place as a major effect, and the beam will eventually
break up in multiple patches [28,54].

The first step is therefore the correct characterization of the
relevant regime of turbulence, which requires the introduction
of parameters from the theory of optical propagation through
turbulent media. The most important of these parameters is
the refraction index structure constant C2

n [32,55], since this
is at the basis of the others and, in particular, the scintillation
index [32], that characterizes the strength of turbulence, and
the spherical-wave coherence length [28], that directly enters
in the expressions of the spot sizes of Eq. (C1).

2. Refraction index structure constant

The structure constant C2
n measures the strength of the

fluctuations in the refraction index, due to spatial variations
of temperature and pressure. We need to consider an adequate
model for the structure constant C2

n (h), so that this quantity
can be suitably averaged over different altitudes for up- and
down-link communication.

Assuming the Hufnagel-Valley (H-V) model of atmo-
spheric turbulence [30,31], the structure constant reads

C2
n (h) = 5.94 × 10−53

(
v

27

)2
h10e−h/1000

+ 2.7 × 10−16e−h/1500 + Ae−h/100, (C2)

where h > 0 is expressed in meters, v is the windspeed (m/s)
and A is the nominal value of C2

n (0) at the ground in units
m−2/3 (MKS units are implicitly assumed in all these formu-
las). These parameters depend on the atmospheric conditions
and the time of the day.

Similarly to Ref. [29], one can assume the typical night-
time value A = 1.7 × 10−14 m−2/3 and low-wind v = 21 m/s
[56]. This is also known as the H-V5/7 model ([32], Sec.
12.2.1). However, during the day, parameter A can be of the
order of 2.75 × 10−14 m−2/3 [57] and, for high-wind condi-
tions, v can be of the order of v = 57 m/s [23]. In our work,
we adopt H-V5/7 as night-time model, and H-V with param-
eters A = 2.75 × 10−14 m−2/3 and v = 21 m/s as day-time
model. Finally, we may also consider H-V with parameters
A = 2.75 × 10−14 m−2/3 and v = 57 m/s as the worst-case
day-time model.

It is important to remark that there are other models for
C2

n (h). These include the VanZandt model [58], with a simpli-
fied version proposed by Dewan et al. [59], and the Walters
and Kunkel model [60]. For instance, they have been used
in Ref. ([22], Appendix D). These other approaches and the
H-V model are in good agreement with thermosonde data in
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FIG. 14. Optical turbulence profile in the atmosphere, quanti-
fied by the refraction index structure constant C2

n as a function
of the altitude h. More precisely, we plot the predictions of the
Hufnagel-Valley model of Eq. (C2) (black curves) considering the
typical night-time parameters (H-V5/7, lower black curve) and the
worst-case day-time parameters (i.e., the worst-case day-time model,
upper black curve). We compare these predictions with the simplified
model of Eq. (C3) (red curve), which is an approximate upper bound
at most altitudes. We can clearly see the exponential fall of C2

n (h)
after ≃ 15 km (vertical dotted line), compared with the single-layer
average value C̄2

n (h) of Eq. (C5) (dashed blue line).

Ref. [61] (see also Ref. ([22], Fig. 13)). Here we also consider
a simplified version of this model, as originally proposed by
Hufnagel and Stanley ([30], Fig. 6). This is given by ([62],
Eq. (3.1))

C2
n (h) ≃ c1h−1/3 exp

(
−

h

c2

)
, (C3)

c1 = 4.2 × 10−14, c2 = 3200, (C4)

so that C2
n ≃ 10−14 m−2/3 a few meters high. See also

Ref. ([63], Ch. 3) and Ref. ([64], Ch. 8).
In Fig. 14, we show the H-V model of Eq. (C2) and the

simplified Hufnagel-Stanley model in Eq. (C3) which are in
good agreement. We can see that, at higher altitudes, C2

n starts
to decrease exponentially. As a matter of fact, it can be con-
sidered to be negligible beyond hmax ≃ 20 km. This altitude
corresponds to the upper edge of the tropopause, below which
most of the mass of the atmosphere is contained. Taking hmax

as effective thickness of the atmosphere can also be justified
by the following argument. Let us treat the atmosphere as a
single layer of thickness h and structure constant given by the
average

C̄2
n (h) = h−1

∫ h

0
dξC2

n (ξ ), (C5)

computed according to the standard H-V5/7 model. From
Fig. 14, we can see how this quantity exponentially departs
from the previous models after 15 km. At ≃ 20 km, the
difference is about two orders of magnitude.

For a satellite at altitude h and zenith angle θ � 1 commu-
nicating with a sea-level ground station, the effective section
of the atmosphere which is crossed by the beam is given by
zatm(θ ) = z(hmax, θ ) using the slant functional in Eq. (A4).
At one radiant, we have zatm(1) ≃ 37 km, which is of the
same order of magnitude of hmax. For larger angles, refraction
comes into place and one needs to use the elongated slant

distance in Eq. (B2). At the horizon, the section becomes large
even neglecting the elongation by refraction. In fact, we have

zatm(π/2) =
√

h2
max + 2hmaxRE ≃ 505 km. (C6)

An important observation is that, for θ � 1 and h � hmax,
we may certainly use the approximations

z(h, θ ) ≃ h sec θ, h(z, θ ) ≃ z cos θ, (C7)

since the relative error [z(h, θ ) − h sec θ ]/z(h, θ ) remains less
than 0.4%. In the integral of Eq. (C5), the structure constant
C2

n is non-negligible only for values ξ � hmax, so we may
write

C̄2
n (h) ≃ h−1

∫ hmax

0
dξC2

n (ξ ) ≃ h−1

∫ ∞

0
dξC2

n (ξ ). (C8)

This observation leads to a simplification when we write C̄2
n

and similar integrals in terms of the slant distance z = z(h, θ ).
In fact, for zenith angles θ � 1, we may write the approxima-
tion

C̄2
n (z, θ ) := z−1

∫ z

0
dz′C2

n [h(z′, θ )] (C9)

≃ z−1 sec θ

∫ h

0
dξC2

n (ξ ). (C10)

3. Scintillation index and Rytov variance

An important issue in free-space communication with tur-
bulence is the evaluation of the scintillation effects. In general,
scintillation corresponds to irradiance fluctuations, causing
variations of the field intensity across the aperture of the
receiver, both temporally (twinkles) and spatially (speckles).
As a result, for an input Gaussian beam, the intensity profile
at the receiver will not be simply given by

I (z, r) =
w

2
0

wd (z)2
exp[−2r2/wd (z)2], (C11)

but there will be some instantaneous random profile I (z, r),
where r = (x, y) is the radial coordinate at the receiver and z

the longitudinal coordinate.
Mathematically, one defines the scintillation index as the

normalized variance of the field intensity [65]

σ 2
I (z, r) :=

〈I (z, r)2〉
〈I (z, r)〉2

− 1, (C12)

where the average is taken over the random fluctuations. This
index is usually decomposed into a longitudinal (on-axis) and
transverse (off-axis) parts [32,65]

σ 2
I (z, r) = σ 2

I (z, 0) + σ 2
I,r (z, r). (C13)

The condition of weak fluctuation (weak turbulence) corre-
sponds to σ 2

I (z, r) < 1 throughout the beam profile. If this is
the case, the mean intensity can be closely approximated by a
Gaussian spatial profile [66–68].

According to previous studies [65,69], the regime of weak
turbulence holds for zenith angles smaller than 1 radiant (i.e.,
about 60◦) assuming the standard H-V5/7 atmospheric model.
For downlink, this is true for any beam waist w0. For uplink,
the off-axis scintillation index σ 2

I,r (z, r) increases with w0, but
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FIG. 15. Rytov variance versus altitude h (km) for θ = 0 (zenith)
and θ = 1, considering λ = 800 nm. We plot the Rytov variance
assuming the H-V model with night-time parameters (H-V5/7 model,
solid lines) and the H-V model with typical day-time parameters
(dashed lines). In all cases, the Rytov variance saturates at values
that are <1.

still remains reasonably small over the receiver’s aperture if
this is not too large (condition which is typically satisfied at
the satellite). Under the assumption of weak fluctuations, one
can use Rytov approximation for the beam field [70], together
with the Kolmogorov power-law spectrum [71], and develop
a simple formalism for the theory of turbulence.

In a weak-fluctuation theory, the longitudinal scintillation
index σ 2

L := σ 2
I (z, 0) can be easily written for both downlink

and uplink. For a downlink path from a satellite at altitude h

and zenith angle θ � 1, this index equals the Rytov variance
for a plane wave σ 2

R,plane, i.e. [32,69]

σ 2
L,down = σ 2

Rytov := 2.25k7/6h5/6(sec θ )11/6μ(h), (C14)

μ(h) :=
∫ h

0
dξC2

n (ξ )

(
ξ

h

)5/6

. (C15)

Note that, if we impose C2
n to be constant in the integral

of Eq (C15), then σ 2
Rytov becomes 1.23C2

n k7/6z11/6, which is
the expression for the Rytov variance that is valid for fixed-
altitude z-long propagation.

For an uplink path, we may instead write [72]

σ 2
L,up = σ 2

L,down

μ̃(h)

μ(h)
, (C16)

μ̃(h) :=
∫ h

0
dξC2

n (ξ )

(
ξ

h

)5/6(
1 −

ξ

h

)5/6

. (C17)

As noted in Ref. [69], one can approximate μ̃(h) ≃ μ(h),
implying σ 2

L,up ≃ σ 2
Rytov also for uplink.

For these reasons the Rytov variance for a plane wave
in Eq. (C14) can be used as a measure of the scintillation
(in the weak fluctuation regime) and, most importantly, as
a parameter to check if the condition of weak turbulence is
indeed satisfied, corresponding to σ 2

Rytov < 1. As we can see
from Fig. 15, the value of the Rytov variance quickly saturates
within the atmosphere and its values are below unity for zenith
angles within 1 radiant. It is easy to check that the Rytov
variance exceeds 1 for larger zenith angles; for instance, at
h = 20 km, we have that σ 2

Rytov > 1 for θ � 1.2, i.e., beyond
69◦. One can also check that, if we assume not typical but
worst-case day-time parameters for the H-V model (i.e., high-

wind conditions, see Appendix C 2), the Rytov variance tends
to values that are below the unity at the zenith (≃ 0.6), but
quickly violate the unity for increasing zenith angle, e.g., ≃ 2
already at θ = 1.

4. Coherence length

Once we have clarified the working regime of weak turbu-
lence, we introduce the spherical-wave coherence length ρ0,
which directly enters in the explicit expressions of the spot
sizes of Eq. (C1). This is related to the well known Fried’s
parameter rF [62,73], that can be written as rF = 2.088ρ0 [33],
and describes the transverse spatial separation at the receiver
over which the field phase correlations decay by 1/e. At the
optical frequencies, typical values of ρ0 or rF are in cm. When
this value is particularly large, e.g., of the order of meters,
then the effects of turbulence are completely negligible from
the point of view of the receiver. In this regard, we will see a
stark difference between uplink and downlink.

For wavenumber k and propagation distance z, the
spherical-wave coherence length is given by ([28], Eq. (38))

ρ0 = [1.46k2I0(z)]−3/5, (C18)

I0(z) :=
∫ z

0
dξ

(
1 −

ξ

z

)5/3

C2
n (ξ ), (C19)

where the explicit functional dependence of C2
n (ξ ) needs to

be specified and depends on the type of propagation. For
free-space propagation at a fixed altitude, the value of C2

n is
constant and we have the simple form

ρfix
0 =

(
0.548k2C2

n z
)−3/5

. (C20)

For uplink communications where the altitude h increases
with the beam propagation, we assume the H-V5/7 model for
C2

n (h) and we write ρ0 in terms of the slant distance z and the
zenith angle θ , by replacing I0(z) with the following integral:

I
up
0 (z, θ ) :=

∫ z

0
dξ

(
1 −

ξ

z

)5/3

C2
n [h(ξ, θ )], (C21)

where h(z, θ ) is given in Eq. (A1). For downlink, the altitude
decreases with the propagation. This is accounted by replacing
ξ → z − ξ in the structure constant, so we replace I0(z) with
the following integral:

Idown
0 (z, θ ) :=

∫ z

0
dξ

(
1 −

ξ

z

)5/3

C2
n [h(z − ξ, θ )]. (C22)

In downlink, the term (1 − ξ/z)5/3 goes to zero in the
region where C2

n has the higher values (close to the ground).
For this reason, the downlink coherence length ρdown

0 becomes
large very quickly, for any object beyond the tropopause (≃
20 km). For instance, consider an object at the slant distance
of z = 100 km sending down a beam with wavelength λ =
800 nm. We compute ρdown

0 ≃ 1.8m at the zenith (compared
to the uplink value ρ

up
0 ≃ 4.2 cm) and ρdown

0 ≃ 68 cm at θ = 1
(compared to ≃ 2.9 cm in uplink). At λ = 1 μm, we compute
ρdown

0 ≃ 2.4 m at the zenith, and ρdown
0 ≃ 0.9 m at θ = 1. Note

that these values increase both in distance z and wavelength.
In particular, one has ρ0 ∝ λ6/5.
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It is clear that, within 1 radiant from the zenith (weak
scintillation regime), the effect of the atmospheric turbulence
is practically negligible in downlink paths. More precisely,
this is true as long as the receiver’s aperture aR does not
become too large (e.g., of the order of 2 meters). In fact, recall
that the number of turbulence-induced short-term speckles
from a point source is of the order of Ns = 1 + (aR/ρ0)2 [32].
Assuming aR = 40 cm and an object at altitude h = 100 km
communicating at λ = 800 nm, we compute Ns ≃ 1.05 at the
zenith and ≃ 1.35 at θ = 1 radiant. These values are very
close to the perfect coherent limit (Ns = 1).

Then, consider an increased aperture aR = 1 m and a satel-
lite in the LEO region, so that h � 160 km, we compute Ns �
1.11 at the zenith and � 1.82 at θ = 1 radiant. In particular,
for a satellite at h = 530 km (as the one studied in the main
text), we get Ns � 1.01 at the zenith and � 1.07 at θ = 1
radiant. For these reasons, turbulence-induced beam spread-
ing and wandering are negligible in downlink. This means
that long- and short-term spot sizes are both equal to the
diffraction-limited spot size, i.e., we can set wlt ≃ wst ≃ wd .

For uplink the situation is completely different, and turbu-
lence effects cannot be neglected even at the zenith position.
Before proceeding further, it is important to note some simpli-
fications which can be enforced for zenith angles θ � 1 (that
are useful for the spot sizes in uplink discussed in the next
section). First of all, we may simplify the expression of the
slant distance as in Eq. (C10) and write

ρ
up
0 ≃

[
1.46k2 sec θ

∫ h

0
dξ

(
1 −

ξ

h

)5/3

C2
n (ξ )

]−3/5

. (C23)

Then, we observe that, for θ � 1, any satellite slant distance
z is much larger than the thickness of the atmosphere (20 −
37 km). As a result, the term (1 − ξ/z)5/3 in Eq. (C23) is ≃ 1
for all values of ξ falling in the atmosphere, where the quantity
C2

n is non-negligible.
For this reason, we can approximate the spherical-wave

coherence length ρ
up
0 with a plane-wave coherence length

([28], Eq. (51)), which is given by

ρup
p = [1.46k2Ip(z, θ )]−3/5, (C24)

Ip(z, θ ) =
∫ z

0
dξC2

n [h(ξ, θ )] (C25)

≃ sec θ

∫ h

0
dξC2

n (ξ ). (C26)

This planar approximation is numerically investigated in
Fig. 16, where we see how ρ

up
0 rapidly approaches ρ

up
p already

in the LEO region. These coherence lengths are computed
using the exact integrals in Eqs. (C21) and (C25). The secant
approximations in Eqs. (C23) and (C26) provide curves that
are very close to those based on the exact integrals. As a
matter of fact, they practically overlap with them at the zenith
position. (Note that, while Fig. 16 is plotted for the night-time
H-V model, an equivalent behavior is found for the day-time
H-V model, but with different asymptotic values).

It is therefore clear that we can set ρ
up
0 ≃ ρ

up
p and use the

integral in Eq. (C26). We can further simplify the formu-
las above by directly replacing the asymptotic value of the
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FIG. 16. Coherence length (m) versus altitude h (km) for uplink
communication with a collimated Gaussian beam at λ = 800 nm.
Turbulence is modelled by H-V5/7. We compare the spherical-wave
coherence length ρ

up
0 (upper curve) and its plane-wave approxima-

tion ρup
p (lower curve). In (a), we consider the zenith position, while

in (b) we consider θ = 1. In both panels, the solid curves are com-
puted with the exact integrals in Eqs. (C21) and (C25). The dashed
curves are associated with the secant approximations in Eqs. (C23)
and (C26). The latter are not shown in (a) because they overlap
with the solid curves. Note that ρ

up
0 rapidly converges to ρup

p , and
the asymptotic (lower bound) value in Eq. (C27) is approximately
achieved already in the LEO region, i.e., for h � hLEO = 160 km.

coherence lengths. In other words, we may extend the integral
in Eq. (C26) to infinity, and write

ρ
up
0 ≃ ρup

p ≃
[
1.46k2(sec θ )I∞

]−3/5
, (C27)

I∞ :=
∫ ∞

0
dξC2

n (ξ ). (C28)

Assuming the H-V5/7 model of atmosphere (A = 1.7 ×
10−14 m−2/3 and v = 21 m/s), particularly appropriate
for night-time operation, we compute I∞ ≃ 2.2354 ×
10−12 m1/3, leading to

ρ
up
0 ≃ ρup

p ≃ 8.59 × 105λ6/5(sec θ )−3/5, (C29)

which is an excellent approximation for any slant distance
z � hLEO = 160km and zenith angle θ � 1. For the day-time
H-V model (A = 2.75 × 10−14 m−2/3 and v = 21 m/s), we
compute the different value I∞ ≃ 3.2854 × 10−12 m1/3, so the
approximation in Eq. (C29) holds with a different prefactor.

5. Spot sizes for uplink

Consider a Gaussian beam with wavelength λ, spot size
w0 and curvature radius R0, which freely propagates in uplink
for a distance z with a zenith angle θ � 1, so that we are in
the regime of weak turbulence. In particular, we may assume
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a collimated beam (R0 = +∞), even though this assumption
is not necessary for the following theory. The associated
spherical-wave coherence length ρ

up
0 is based on the integral

in Eq. (C21) which can be closely approximated by Eq. (C27).
We now impose Yura’s condition [28,34]

0.33

(
ρ

up
0

w0

) 1
3

≪ 1. (C30)

Using Eq. (C29), it is easy to show that Eq. (C30) is im-
plied by w

1/3
0 ≫ 31λ2/5, which is compatible with typical

satellite communications. For instance, at λ = 800 nm, it
means to considering spot sizes w0 ≫ 1.4 mm. Furthermore,
the condition in Eq. (C30) could also be imposed more
weakly as ρ

up
0 /w0 < 1, in which case the resulting expres-

sions (discussed below) will be valid with a higher degree of
approximation.

The satisfaction of Yura’s condition in Eq. (C30) allows us
to write the decomposition in Eq. (C1) with analytical expres-
sions for the long- and short-term spot sizes. Specifically, we
have the formulas [28,34]

w
2
lt ≃ w

2
d + 2

(
λz

πρ
up
0

)2

, (C31)

w
2
st ≃ w

2
d + 2

(
λz

πρ
up
0

)2

�, (C32)

where wd is the diffraction-limited field spot size and � is
given by [34]

� =

[
1 − 0.33

(
ρ

up
0

w0

)1/3
]2

≃ 1 − 0.66

(
ρ

up
0

w0

)1/3

. (C33)

As a consequence, the variance associated to the centroid
wandering is given by [34]

σ 2
TB = w

2
lt − w

2
st ≃

0.1337λ2z2

w
1/3
0

(
ρ

up
0

)5/3
. (C34)

Note that the expressions in Eqs. (C31) and (C32) are
derived from Ref. ([34], Eqs. (16)–(18)) and Ref. ([28],
Eq. (37)), changing their notation from intensity spot size
(wint) to field spot size (w =

√
2wint). See also Refs. [74–77]

for related derivations.
The formulas above undergo a great simplification by

explicitly accounting for the asymptotic expression of the
coherence length ρ

up
0 given in Eq. (C27). Thus, for uplink

satellite communications with zenith angle θ � 1, we may
write the following approximations:

w
2
lt ≃ w

2
d + aλ−2/5z2(sec θ )6/5, (C35)

� ≃ 1 − bw
−1/3
0 (λ2 cos θ )1/5, (C36)

σ 2
TB ≃ cw

−1/3
0 z2 sec θ, (C37)

where we set a = 26.28I
6/5
∞ , b = 0.2934I

−1/5
∞ and c = ab ≃

7.71I∞, whose numerical values depend on the specific at-
mospheric profile (e.g., for the H-V5/7 model, they become
a ≃ 2.75 × 10−13, b ≃ 63, and c ≃ 1.72 × 10−11). Then, for
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FIG. 17. Spot sizes (m) versus altitude h (km) for uplink commu-
nication by means of a collimated Gaussian beam with λ = 800 nm
and w0 = 20 cm. Here, turbulence is described by the H-V5/7 model
(night time). At the zenith position, we plot the short-term spot size
wst (black solid) and the standard deviation of the centroid wandering
σTB (red solid), to be compared with the diffraction-limited spot size
wd (blue solid). Dashed lines refer to a zenith angle of θ = 1.

the short-term spot size, we may write the following simple
expression:

w
2
st = w

2
lt − σ 2

TB ≃ w
2
d + z2�(θ ), (C38)

�(θ ) := aλ−2/5(sec θ )6/5 − cw
−1/3
0 sec θ. (C39)

By using the geometric expression of the slant distance
z = z(h, θ ) from Eq. (A4) in Eqs. (C35), (C37), and (C38),
we can study the behavior of the spot sizes and that of the
centroid wandering as a function of the altitude h and zenith
angles θ � 1. For a typical optical frequency, it is easy to see
that their values practically coincide with those that can be
computed from Eqs. (C31), (C32), and (C34), while providing
much simpler analytical expressions.

For uplink communication with a collimated beam with
w0 = 20 cm and λ = 800 nm, we perform a numerical study
in Fig. 17. Here we note that the short-term spot size wst

becomes considerably larger than the diffraction-limited spot
size wd , and the standard deviation of the centroid wandering
σTB increases from about 0.5 − 1 m at the Kármán line to
about 200–300 m at the GEO altitude (≃ 36 000 km), depend-
ing on the value of the zenith angle.

APPENDIX D: BACKGROUND NOISE IN SATELLITE

COMMUNICATIONS

Let us discuss the basic theoretical models which describe
the background noise affecting satellite communications.
With good approximation, both the Moon and the Earth can
be considered to be Lambertian disks [78,79]. This means that
the scattering from their surfaces can be approximated to be
uniform (radiance independent from the angle), which in turn
implies that the intensity detected by the satellite’s receiver
strictly depends on its angular field of view �fov.

First consider uplink. In day-time operation, the main
source of noise comes from the sunlight directly reflected by
the Earth towards the satellite. The total amount depends on
the solar spectral irradiance HSun

λ at the relevant wavelength
λ and the albedo of the Earth (AE ≃ 0.3). During night-time
operation, the noise is mainly due to the sunlight reflected
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by the Moon towards the Earth, and then from the Earth
towards the satellite. Therefore this noise also depends on
the albedo of the Moon (AM ≃ 0.12), the radius of the Moon
(RM ≃ 1.737 × 106 m), and the average Earth-Moon distance
(dEM ≃ 3.84 × 108 m).

Considering these parameters, the mean number of en-
vironmental thermal photons impinging on the satellite’s
receiver with aperture aR and (solid) angular field of view
�fov, within the time window �t and the spectral filter �λ,
is given by [80] n̄

up
B = κH sun

λ ŴR. Here the parameter ŴR =
�λ�t�fova2

R only depends on the specific features of the
receiver, while the dimensionless factor κ is equal to κday =
AE ≃ 0.3 for day-time and to κnight = AEAMR2

Md−2
EM ≃ 7.36 ×

10−7 for full-Moon night time (roughly 10−6 of the day-time
value).

At the optical regime, the typical values of n̄
up
B are orders

of magnitude higher than the photon numbers due to the
black-body thermal radiation emitted by the Earth. Recall that
the spectral radiance of a black body at temperature T and
wavelength λ is given by

N (λ, T ) = 2cλ−4[ehc/(λkBT ) − 1]−1, (D1)

in terms of number of photons per unit area, time, wavelength,
and solid angle (photons m−2 s−1 nm−1 sr−1). In the formula
above, it is understood that c is the speed of light and kB is the
Boltzmann constant. Therefore the total number of photons
impinging on the receiver is given by n̄

up
body = N (λ, T )ŴR.

Considering the optical wavelength λ = 800 nm and assum-
ing the average surface temperature of the Earth (T ≃ 288 K),

one has N (λ, T ) ≃ 3 × 106 photons m−2 s−1 nm−1 sr−1. For
a receiver with ŴR = 1.6 × 10−19 m2 s nm sr, we compute
n̄

up
body ≃ 4.8 × 10−13 mean photons, which is clearly negligi-

ble with respect to the values of n̄
up
B given in Table I of the

main text.
In downlink, the transmitter is the satellite and the receiver

is a ground station with aperture aR and angular field of
view �fov. In this case, the number of environmental photons
reaching the receiver within the time window �t and the
spectral filter �λ is given by [23,81] n̄down

B = H
sky
λ ŴR, where

H
sky
λ := πH̃

sky
λ /(h̄ω) and H̃

sky
λ is the background spectral irra-

diance of the sky in units W m−2 nm−1 sr−1. In these units, its
value ranges between 1.5 × 10−6 (full-Moon clear night) to
1.5 × 10−3 (clear day time) and 1.5 × 10−1 (cloudy day time)
([81], Table 1), assuming that the field of view of the receiver
does not include the Moon or the Sun [82,83]. At λ = 800 nm,
we have π/(h̄ω) ≃ 1.27 × 1019 W−1 s−1 sr, which means
that H

sky
λ ranges between 1.9 × 1013 and 1.9 × 1018 photons

m−2 s−1 nm−1 sr−1. Using the same parameters for the re-
ceiver as above (ŴR = 1.6 × 10−19 m2 s nm sr), we find that
n̄down

B ranges between ≃ 3 × 10−6 and ≃ 0.3 mean photons,
which are the values for downlink reported in Table I of the
main text.

Let us conclude by noticing that these estimates for the
background thermal noise can be made more precise by em-
ploying dedicated programs. For instance, a more detailed
calculation of sky brightness can be achieved by using soft-
ware such as MODTRAN [84], LIBRADTRAN [85,86], or 6SV

[87].
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