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INTRODUCTION

Respiratory diseases constitute significant global health 

challenges; five respiratory diseases are among the most 

common causes of death. 65 million people suffer from 

chronic obstructive pulmonary disease (COPD) and 

339 million from asthma.1,2 There are 1.8 million new lung 

cancer cases diagnosed annually and 1.6 million deaths 

worldwide, making it the most common and deadliest 

cancer on the planet.3 Lung imaging is a critical compo-

nent of respiratory disease diagnosis, treatment planning, 

monitoring and treatment assessment. Acquiring lung 

images, processing them and interpreting them clinically 

are crucial to achieving global reductions in lung- related 

deaths. Traditionally, the techniques employed to quantita-

tively analyse these images evolved from the disciplines of 

computational modelling and image processing; however, 

in recent years, deep learning (DL) has received significant 

attention from the lung imaging community.

DL is a subfield of machine learning that employs arti-

ficial neural networks with multiple deep or hidden 

layers. Whilst the fundamental theory was posited several 

decades ago,4 DL gained international interest in 2012 

when AlexNet, a type of neural network referred to as a 

convolutional neural network (CNN), won the ImageNet 

Large Scale Visual Recognition Challenge. That paper 

has been cited over 47,000 times and triggered a renais-

sance in DL research.5 Subsequently, CNNs, and DL more 

generally, began to impact the medical imaging field 

profoundly. Development of fully convolutional networks 

such as V- Net and ConvNet demonstrated how deep- 

layered architectures could provide valuable functions 

in solving some of the field’s most critical applications, 

including common image analysis tasks.6,7 Increased 

computational power due to the reduced cost of graphical 

processing units (GPUs) and publicly available annotated 

imaging data sets have since led to rapid developments 

and applications.8

This review assesses the current literature on DL’s role 

in lung image analysis applications, discusses critical 
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ABSTRACT

The recent resurgence of deep learning (DL) has dramatically influenced the medical imaging field. Medical image anal-

ysis applications have been at the forefront of DL research efforts applied to multiple diseases and organs, including 

those of the lungs. The aims of this review are twofold: (i) to briefly overview DL theory as it relates to lung image 

analysis; (ii) to systematically review the DL research literature relating to the lung image analysis applications of 

segmentation, reconstruction, registration and synthesis. The review was conducted following the Preferred Reporting 

Items for Systematic Reviews and Meta- Analyses guidelines. 479 studies were initially identified from the literature 

search with 82 studies meeting the eligibility criteria. Segmentation was the most common lung image analysis DL 

application (65.9% of papers reviewed). DL has shown impressive results when applied to segmentation of the whole 

lung and other pulmonary structures. DL has also shown great potential for applications in image registration, recon-

struction and synthesis. However, the majority of published studies have been limited to structural lung imaging with 

only 12.9% of reviewed studies employing functional lung imaging modalities, thus highlighting significant opportuni-

ties for further research in this field. Although the field of DL in lung image analysis is rapidly expanding, concerns over 

inconsistent validation and evaluation strategies, intersite generalisability, transparency of methodological detail and 

interpretability need to be addressed before widespread adoption in clinical lung imaging workflow.
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limitations for clinical adoption, and sets out a roadmap for 

future research.

THEORY

Artificial neural networks

An artificial neural network (ANN), inspired by biological 

neurons, can be thought of as a series of connected nodes 

containing weights and biases which are combined using an 

activation function to produce an activation; the activation 

determines the strength of connections within the network. At 

the heart of DL is optimisation; an ANN learns by optimising 

weights and biases for a generalisable solution. This optimisation 

occurs in a two- step process of forward propagation and back-

propagation. A basic diagram of an ANN with two hidden layers 

and generalised examples of forward propagation and backprop-

agation are shown in Figure 1. The use of hidden layers in the 

network allows more freedom for the weights and biases to be 

optimised. Forward propagation refers to the process of feeding 

an example to the network during training where the output of 

the neural network is compared to a desired output and a loss 

is calculated using a loss function. Backpropagation uses this 

loss to propagate changes in weights and biases throughout the 

network; thus by continually providing new examples, known as 

iterations, the model is optimised to approximate the function 

between the input and output domains. Figure 2 provides a glos-

sary of the key technical terms used in this review.

The structure of a DL network is known as an architecture. In the 

medical imaging field, three key architectures, namely, CNNs, 

recurrent neural networks (RNNs) and generative adversarial 

networks (GANs) are particularly prevalent. These structures 

are outlined in Figure  3. Understanding specific architectures 

such as V- Nets and GANs requires an in- depth understanding of 

complex linear algebra and matrix manipulation and is beyond 

this review’s scope; the interested reader is directed to several 

excellent papers on the subject.6,9,10

Preprocessing

Before images are fed into a neural network, they are frequently 

processed, often by accentuating differences between foreground 

and background voxels, to enhance performance and/or reduce 

training time. DL theory suggests that in high- dimensional 

matrices, local minima are very unlikely; instead, saddle points 

are more common due to the improbable likelihood that every 

dimension produces a minimum at the same location. These 

techniques can decrease the likelihood that the algorithm 

reaches a shallow saddle point, thereby causing slower optimi-

sation. This is achieved through regularisation techniques and 

limiting outlier intensities. Cropping is regularly used to restrict 

the processing to voxels within the patient,11 or coarse, manually 

drawn bounding boxes.12 Table  1 summarises commonly used 

preprocessing techniques in the DL lung image analysis litera-

ture. In CNNs, other techniques such as batch normalisation, 

have been shown to reduce training time, acting as secondary 

Figure 1. Simplified diagrams of the processes of forward propagation (left) and backpropagation (right) for a neural network 

with two hidden layers. The neural network is represented as a series of nodes, each of which contains a weight and bias. The 

weight and bias are combined using the activation function to produce an activation that impacts the strength of connections 

within the network. Once an input has been passed through the network, it is compared to a desired output, such as an expert 

segmentation of an anatomical region of interest, to produce a loss. This loss is used to propagate changes to weights and biases, 

hence, changing the strength of connections for the subsequent example. The continued repetition of this two- step process is 

known as network training.
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Figure 2. Glossary of key technical terms related to deep learning and image analysis. ANN, artificial neural network.
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Figure 3. Illustration of three common types of deep learning architectures used in medical imaging: (a) CNN), (b) RNN and (c) 

GAN. In the lung image analysis examples given, the CNN and RNN are used for image segmentation while the GAN is used for 

image synthesis. CNN, convolutional neural network; GAN, generative adversarial network; RNN, recurrent neural network.



5 of 26 birpublications.org/bjr Br J Radiol;94:20201107

BJRDeep learning in structural and functional lung image analysis

Table 1. Summary of common pre- processing techniques used for lung image analysis tasks, including values prevalent in the 
literature

Preprocessing 

technique Description Modality Literature values References

Thresholding The process of 
constraining the pixel 
values of an image to 
be between predefined 
values.

CT, MRI CT intensity:
[-1000,
700 HU]
MRI intensity: [0,667]

Wang et al. (2018),13 Sousa et al. 
(2019),14 Javaid et al. (2018),15 
Hofmanninger et al. (2020),16 Jiang et 
al. (2019),17 Tahmasebi et al. (2018),18 
Z. Zhong et al. (2019),19 Zhou et al. 
(2019),20 Park et al. (2019),21 Gerard 
et al. (2019),22 Yun et al. (2019),23 
Eppenhof & Pluim (2019),24 Fu et al. 
(2020),25 Jiang et al. (2020),26 De Vos 
et al.(2019),27 Stergios et al. (2018),28 
Ren et al. (2019)29

Normalisation and 
whitening

The process of 
transforming the 
distribution of 
image pixels to some 
distribution which is 
standardised across 
images.

CT, MRI, X- ray Normalisation: [0,1]
Mean/variance ≈ 0

Wang et al. (2018),13 Liu et al. (2019),30 
Javaid et al. (2018),15 Hofmanninger 
et al. (2020),16 Akila Agnes et al. 
(2018),31 Novikov et al. (2018),32 Gaal 
et al. (2020),33 Jiang et al. (2019),17 
Tahmasebi et al. (2018),18 Zhou et al. 
(2019),20 Hatamizadeh et al. (2019),34 
Sandkühler et al. (2019),35 Rajchl et 
al. (2017),36 Sentker et al. (2018),37 
Fletcher and Baltas (2020),38 Jiang 
et al. (2020),26 De Vos et al.(2019),27 
Galib et al. (2019),39 Ferrante et al. 
(2018),40 Stergios et al. (2018),28 
Beaudry et al. (2019),41 Duan et al. 
(2019),42 Liu et al. (2020),43 Ren et al. 
(2019),29 Olberg et al. (2018)44

Denoising The process of removing 
noise from images in 
order to improve their 
quality.

CT, MRI Gaussian, adaptive patch- 
based

J.Xu & Liu (2017),45 Zha et al. (2019),46 
Tustison et al. (2019)47

Bias correction A technique to correct for 
the low- frequency bias 
field that corrupts MR 
images.

HP gas MRI, MRI N3/N4 bias correction Tustison et al. (2019),47 Zha et al. 
(2019),46 Rajchl et al. (2017)36

Cropping Cropping refers to the 
process of removing 
unwanted outer pixels 
or voxels of an image 
prior to being inputted 
to the network. This 
includes cropping by 
manually- defined regions 
of interest or external 
body masks. Cropping is 
commonly used to reduce 
computational cost and/
or eliminate the influence 
of background voxels.

CT, MRI, X- ray, 
PET

Cropping to body 
mask, specific organ or 
manually- defined region.

Negahdar et al. (2018),12 Soans & 
Shackleford (2018),48 Zhu et al. 
(2019),49 Hofmanninger et al. (2020),16 
Zha et al. (2019),46 Hooda et al. 
(2018),50 Mittal et al. (2018),51 Jiang et 
al. (2018),11 Zhao et al. (2019),52 Zhou 
et al. (2019),20 Moriya et al. (2018),53 
Kalinovsky et al. (2017),54 Sandkühler 
et al. (2019),35 Anthimopoulos et al. 
(2019),55 Gao et al. (2016),56 Rajchl et 
al. (2017),36 C. Wang et al. (2019),57 
Juarez et al. (2019),58 Juarez et al. 
(2018),59 Eppenhof & Pluim (2019),24 
Sentker et al. (2018),37 Fletcher 
and Baltas (2020),38 Blendowski 
& Heinrich (2019),60 Zhong et al. 
(2019),61 Liu et al. (2020),43 Olberg et 
al. (2018)44

HU, Hounsfield unit; PET, Positron emission tomography.

Modalities included are those for which the pre- processing techniques have been used in the reviewed studies. This is not an exhaustive list of 

pre- processing techniques used.
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regularisation techniques to minimise outliers and improve 

performance.62,63

Validation

Validation is used to evaluate the performance of trained DL 
networks and assess their generalisability to non- experimental 
settings. The goal is to develop a validation strategy that best 
represents the situation in which the algorithm is to be deployed.

Evaluation metrics

It is imperative to evaluate the performance of DL algorithms 
accurately. Evaluation metrics can be categorised into overlap, 
distance, error and similarity metrics and are summarised in 
Figure 4.

Validation techniques

Aside from the training set, an internal validation set is 
commonly used for tuning DL parameters to improve perfor-
mance. A testing set is then used to provide an unbiased evalu-
ation of performance on unseen data. In this review, validation 
sets used throughout the training phase are counted as training 
sets as the network has previously seen these images before 
testing. Therefore, the data split is the percentage of the total 

data used for training and internal validation vs that used for 
testing. Maintaining completely separate testing sets is some-
what uncommon in the literature and represents the ideal form 
of validation.22,23,64 Validating on external multicentre data sets 
that have not been used for training should be the gold- standard 
in ensuring comparison between methods and generalisability.65 
However, this is uncommon as single- centre data sets, split into 
training and testing sets, are frequently used. To make the valida-
tion process more robust and generalisable, specific techniques 
are applied, such as k- fold cross- validation. In fourfold cross- 
validation, the datas et is randomly partitioned into a 75/25% 
training/testing split; this process is repeated with four different 
25% blocks. Another approach is leave- one- out cross- validation 
which uses all of the data for training except one case for testing 
and repeats until all cases have been evaluated.

METHODS

The protocol for this literature review was performed using 
the preferred reporting items for systematic reviews and meta- 
analyses (PRISMA)- statement.66 The literature search was 
conducted on 1 April 2020 using multiple databases (Web of 
Science, Scopus, PubMed) and aimed to identify studies written 
in English published between 1 January 2012, the same year that 

Figure 4. Overview of four key categories of evaluation metrics (overlap, distance, error and similarity) used to evaluate the 

performance of deep learning methods in medical image analysis. Each category contains brief descriptions and mathematical 

formulations for some common metrics. In these equations, ‘x’ and ‘y’ denote the prediction and target of any deep learning task, 

respectively.



7 of 26 birpublications.org/bjr Br J Radiol;94:20201107

BJRDeep learning in structural and functional lung image analysis

the seminal AlexNet paper was published,5 and the date of the 
search. The search strategy is defined in Figure 5. Further studies 
that met the selection criteria were identified by handsearching 
references and through the authors’ input.

Several recent reviews have focussed primarily on DL- based 
lung classification and detection67–69; accordingly, this review 
was limited in scope to the lung image analysis applications 
of segmentation, registration, reconstruction and synthesis. 
Both published peer- reviewed scientific papers and conference 
proceedings were included due to recent developments in the 
field.

RESULTS AND DISCUSSION

Study selection

479 non- overlapping papers were retrieved. 355 papers were 
excluded due to not meeting the eligibility criteria. In partic-
ular, many papers focused on classification or used traditional 
machine learning techniques beyond this review’s scope. Upon 
reviewing the remaining papers, 82 studies were included for 
analysis. The PRISMA flowchart is shown in Figure 6.

No studies that met the inclusion criteria were published before 
2016 with the majority appearing since 2018. Image segmenta-
tion applications accounted for 65.9% of the studies reviewed. 
The remaining 34% are divided between synthesis, reconstruc-
tion and registration applications. Full details are shown in 
Figure 7.

The majority of studies reviewed used structural imaging modal-
ities (87.8%), with most using CT (63.5%). Functional lung 
imaging studies only constitute 12.1% of the reviewed studies 
and are spread across PET, SPECT and hyperpolarised gas MRI. 
Graphical summaries of the studies reviewed with respect to 
disease present in patient cohorts, imaging modality and archi-
tecture are shown in Figure 8.

Segmentation

Image segmentation is the process of partitioning an image into 
one or more segments that encompass anatomical or patholog-
ical specific regions of interest (ROIs), such as the lungs, lobes, 

or a tumour. Studies describing DL- based segmentation applica-
tions of pulmonary ROIs are summarised in Table 2.

CT segmentation

CT is the most common modality for clinical lung imaging due 
to superior spatial resolution, rapid scan times and widespread 
availability. This is reflected in the DL lung segmentation liter-
ature with the majority of studies to date focusing on CT. For 
whole- lung segmentation, 3D networks are often used, whereas 
in interstitial lung disease (ILD) pattern segmentation, only 2D 
networks have been applied to date. The application often dictates 
the use of 2D and 3D networks; segmentation of the whole lung 
leads to a volumetric 3D region in which features such as overall 
lung shape, or the position of the trachea can be encoded. In 
contrast, segmenting ILD patterns is often conducted on central 
2D slices; hence, a 2D network may be more appropriate as, in 
this approach, no features are conserved between slices.55,83

Across the CT papers reviewed, both the median and mode 
training/testing data splits were 80/20%, with many using k- fold 
cross- validation with less than 50 patients. Even as an indepen-
dent testing set, using only 5–10 patients for testing limits gener-
alisability. Moreover, some studies cite the number of images or 
2D slices rather than the number of subjects. If data from the 
same subject are included in both the testing and training phases, 
it is likely that the algorithm has already seen a similar slice 
from the same patient as the individual data points are spatially 
correlated and do not strictly represent independent data points.

The Dice similarity coefficient (DSC) overlap metric is the 
most common evaluation metric used. Most studies tackling 
whole- lung segmentation report DSC values above 0.90, with 
some achieving values above 0.98. For other pulmonary ROIs, 
the highest DSC values reported are often lower (e.g. DSC 
(airways) ≈ 0.85). However, overlap metrics such as the DSC can 
be insensitive to errors in large volumes as the percent error is 
low compared to the overall pixel count.87 Frequently, high DSC 
values are reported despite errors that require significant manual 
intervention before a segmentation is clinically useful. As the 
airways occupy smaller volumes, the DSC metric is more sensi-
tive. In terms of Hausdorff- based distance metrics, whole- lung 

Figure 5. The search strategy used on Scopus, Web of Science and PubMed to identify relevant studies for inclusion in the review. 

Further studies that met the selection criteria were identified by handsearching references and through the authors’ input.
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segmentation studies report HD95 values ≈10 mm; however, 
Dong et al70 report a HD95 as low as 2.249 ± 1.082 mm aver-
aged across both lungs. The lack of a standardised evaluation 
metric can make direct comparisons between different methods 
challenging.

Image segmentation is challenging to evaluate. Currently, manual 
segmentations by expert observers are used as the gold- standard; 
however, it is well- known that expert segmentations are suscep-
tible to interobserver variability.88 Often, only one observer 
segments all the images in a training data set; hence, if a different 
observer segments the testing images, the algorithm may not 
perform as expected. This poses problems for widespread gener-
alisation if certain biases in segmentation are preserved as there 
is no clear ‘true’ expert segmentation; therefore, differences in 
DL segmentations and expert segmentations may not be solely 
the result of DL errors. Most expert segmentations are conducted 
using semi- automatic software and image editing tools; the tools 
given to the user can convey a propensity for features, such as 

smooth lung borders, which may, in fact, be inaccurate. In other 
anatomical sites such as the liver, a DSC of 0.95 was obtained by 
DL; the interobserver variability for the DL approach was 0.69% 
compared to 2.75% for manual expert observers.89 The low 
degree of interobserver variability in DL segmentations may be 
a positive step towards consistent segmentations between insti-
tutions. Using multiple expert segmentations and averaging the 
error may reduce interobserver variability effects; however, this 
is unlikely to be widely adopted due to the time required. In addi-
tion, medical imaging grand challenges can provide diverse data 
from multiple institutions with corresponding expert segmenta-
tions, limiting the extent of individual researcher bias.

MRI segmentation

There are limited studies to date regarding pulmonary MRI 
segmentation, attributable perhaps to less widespread clinical 
use of the modality and lack of large- scale annotated pulmonary 
MRI data sets. However, pulmonary MRI techniques, such as 
contrast- enhanced lung perfusion MRI and hyperpolarised gas 

Figure 6. PRISMA flowchart of studies identified, screened, assessed for eligibility and included in the literature review analysis. 

PRISMA, preferred reporting items for systematic reviews and meta- analyses.
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ventilation MRI, can provide further insights into pulmonary 
pathologies currently not possible with alternative techniques.90 
Quantitative biomarkers derived from hyperpolarised gas MRI, 
including the ventilated defect percentage, require accurate 
segmentation of ventilated and whole- lung volumes which can 
be very time consuming when performed manually. Example 
images of DL- based hyperpolarised gas MRI segmentations are 
provided in Figure 9.

Tustison et al47 used CNNs to provide fast, accurate segmen-
tations for hyperpolarised gas and proton MRI.47 A 2D U- Net 
was used for hyperpolarised gas MRI segmentation whilst a 3D 
U- Net was used for proton MRI segmentation. They introduced 
a novel template- based data augmentation method to expand the 
limited lung imaging data. Hyperpolarised gas and proton MR 
images were segmented with DSC values of 0.94 ± 0.03 and 0.94 
± 0.02, respectively. Zha et al evaluated DL- based proton MRI 
segmentation, which yielded an average DSC of 0.965 across 
both lungs, outperforming conventional region growing and 
k- means techniques.46

X-ray segmentation

Although the majority of segmentation studies reviewed used 
CT and MRI, early studies focused on X- ray segmentation.77,79 
This was due to the public availability of large- scale, annotated 
X- ray datasets, such as the Japanese Society of Radiological 
Technology (JSRT)91 and Montgomery92 data sets, enabling 
researchers to experiment with large numbers of images not 
previously accessible. The majority of X- ray studies reviewed 
used these datasets, making comparisons between methods 
more applicable.32,50,51,64,78,79

Registration

Image registration is the process of transforming a moving image 
onto the spatial domain of a fixed image. Registration is used in 
numerous applications within the lung imaging field, including 
adaptive radiotherapy,93 computation of functional lung metrics 

such as the VDP94 and generation of surrogates of regional lung 

function from multi- inflation CT95 or 1H MRI.96

However, most image registration algorithms assume that the 

moving and fixed images’ topology are the same. This is not 

always the case in lung imaging as often functional images do 

not follow the same topology as structural images, especially 

in individuals with severe pathologies where functional lung 

images may show substantial heterogeneity.97 Studies describing 

DL- based pulmonary registration applications are summarised 

in Table 3.

Eppenhof and Pluim24 built upon previous work by Lafarge et 

al98 using publicly available data sets to directly map displace-

ment vector fields from inspiratory and expiratory CT pairs using 

a 3D U- Net with extensive data augmentation. Synthetic trans-

forms were used to directly train the network as the deformation 

fields are known. The approach achieved fast, accurate registra-

tions, reducing mean TRE from 8.46 to 2.17 mm. The results 

are further validated using landmarks from multiple observers, 

indicating the level of interobserver variability. Notwithstanding, 

only 24 images for testing and training were used, limiting the 

study’s generalisability. In addition, synthetic transforms do not 

directly represent real transforms likely found in patients.

Other approaches use a CNN to learn expressive local binary 

descriptors from landmarks before applying Markov random 

field registration.60 This is compared to a method using hand-

crafted local descriptors with high self- similarity, facilitating 

faster computation. The results suggest that a combination of 

both CNN- learned descriptors and handcrafted features produce 

the best registration results.

In a generic registration approach, a U- Net- like architecture with 

a differentiable spatial transformer that can register both X- ray 

and MR images was used.40 The algorithm was evaluated using 

the contour mean distance (CMD). CMD was approximately 

Figure 7. Graphical overview of the number of studies per year for the four image analysis applications considered in this review. 

2020 values calculated up to 1 April 2020.
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5 mm on average across the testing data. Whilst this is a less 
accurate registration than other methods reviewed, it is more 
broadly applicable; the generic algorithm (in this case trained on 
X- ray and MR images) can learn features that are independent of 
modality. By fixing these weights and adding additional layers, 
transfer learning can then be applied to a specific modality; the 
additional data across modalities may lead to improved results.104

Reconstruction

Image reconstruction is the process of generating a usable image 
from the raw data acquired by a scanner. CT and SPECT recon-
struction fundamentally differ from MRI reconstruction and, as 
such, the role of DL in these applications is also different. CT and 

SPECT reconstruction use analytic (e.g. filtered backprojection) 

or iterative algorithms to produce 3D images from projections 

taken at multiple angles around a subject. MRI reconstruc-

tion, in contrast, produces images by transforming raw k- space 

data via Fourier transforms. Full details of image reconstruc-

tion methods have been described elsewhere.105,106 Studies 

describing DL- based lung image reconstruction applications are 

summarised in Table 4.

CT/SPECT images can be reconstructed accurately using Monte- 

Carlo- based iterative reconstruction110; however, this process is 

computationally expensive and time- consuming.111 In addition, 

multiple studies have demonstrated the success of analytical 

Figure 8. Graphical overview of breakdown of deep learning lung image analysis studies reviewed by (a) disease present in patient 

cohorts, (b) imaging modality and (c) architecture. Absolute numbers of papers are provided in (a, b).
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Table 2. Summary of reviewed studies on deep learning for lung image segmentation. The entries are arranged alphabetically by pulmonary region of interest (ROI), 
followed by modality

Study Modality ROI Disease

Number 

of subjects Dimentionality Architecture Pre- processing

Percentage 

data split

(training*/
testing) Performance

Wang et al. (2018)13 CT Whole lung COPD, IPF 575 2D ResNet-101 Clipped −1000 
to +1000 HU, 

Normalisation [0,1]

5- fold CV DSC = 0.988 ± 0.012
ASD = 0.562±0.52 mm

Dong et al. (2019)70 CT Whole lung Lung cancer 35 3D U- Net- GAN   LOOCV DSC = 0.97±0.01
HD95 = 2.29±2.64 mm
MSD = 0.63±0.63 mm

Liu et al. (2019)30 CT Whole lung NR 100 2D SegNet Class grouping, 
Normalisation 

[−1000,800]

40/60 DSC = 0.98

Lustberg et al. 
(2018)71

CT Whole lung Lung cancer 470 NR CNN   95/5 DSC = 0.99±0.01
Median HD = 

0.4±0.2 cm

Negahdar et al. 
(2018)12

CT Whole lung Multiple 83 3D V- Net Bounding box for 
lung, cropped to 

bounding box

  58/42 DSC(n = 
12)=0.983±0.002

DSC(n = 
23)=0.990±0.002

Soans & Shackleford 
(2018)48

CT Whole lung Lung cancer 422 3D CNN with spatial 
constraints

ROI extraction for 
organ localisation

71/29 ROC(Left)=0.954
ROC(right)=0.949

Soliman et al. 
(2018)72

CT Whole lung NR 95 3D Deep- CNN Post- processed hole 
filling

LOOCV DSC = 0.984±0.068
HD95 = 2.79±1.32 mm

PVD = 3.94±2.11%

Sousa et al. (2019)14 CT Whole lung Lung lesion 908 3D Modified V- Net Clipped [−1000, 400 
HU]

98/2 ASD = 0.576 mm
DSC = 0.987

X. Zhou et al. 
(2017)73

CT Whole lung NR 106 2D/3D FCN VGG16 Transfer learning 
from ImageNet 
ILSVRC‐2014

95/5 JSC = 0.903±0.037

Zhu et al. (2019)49 CT Whole lung Lung Cancer 66 3D U- Net Cropping to ROI 55/45 DSC = 0.95±0.01
MSD = 1.93±0.51 mm
HD95 = 7.96±2.57 mm

Gerard et al. (2018)74 CT Whole lung COPD, IPF 1749 3D Course- Fine ConvNet Transfer learning 
from COPDGene 
and SPIROMICS, 

fine- tuned on animal 
model

92/8 JSC = 0.99
ASD = 0.29 mm

Javaid et al. (2018)15 CT Whole lung Lung cancer 13 2D Dilated U- Net Only axial slices 
selected, clipped 

−1000 to 3000 HU, 
Normalisation [0,1]

94/6 DSC = 0.99 ± 0.01
HD ≈ 4.5 mm

J. Xu & Liu (2017)45 CT Whole lung NR 20 2D MFCNN gaussian denoising 50/50 DSC = 0.754

(Continued)
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Hu et al. (2020)75 CT Whole lung NR 75 2D Mask R- CNN +k- 
means

  NR DSC = 0.973 ±0.032

Hofmanninger et al. 
(2020)16

CT Whole lung Multiple 266 2D U- Net Body mask, Clipped 
[−1024, 600 HU], 

Normalisation [0,1]

87/13 DSC = 0.98 ±0.03
HD95 = 3.14 ±7.4 mm

MSD = 0.62 ±0.93

Xu et al. (2019)76 CT Whole lung Lung cancer, 
COPD

224 2D one layer CNN Post- processed hole 
filling

8- fold CV DSC = 0.967 ±0.001
HD = 1.44±0.04 mm

Tustison et al. 
(2019)47

HP gas MRI
Proton MRI

Functional lung
Whole lung

NR
NR

113
268

2D
3D

U- Net
U- Net

Template- based data 
augmentation, N4 bias 
correction, denoising

65/35
77/23

DSC (HP gas)=0.92
DSC (Proton) = 0.94

Akila Agnes et al. 
(2018)31

LDCT Whole lung NR 220 2D   CDWN Normalised [mean 
= 0]

91/9 DSC = 0.95 ± 0.03
JSC = 0.91 ± 0.04

Zha et al. (2019)46 UTE proton 
MRI

Whole lung Healthy, CF, 
asthma

45 2D CED (U- Net and 
autoencoder)

Denoising, bias field 
correction, body mask

5- fold CV DSC (right) = 
0.97±0.015

DSC (left) = 0.96±0.012

Hwang & Park 
(2017)77

X- ray Whole lung Healthy, lung 
nodules

247 2D U- Net   2- fold CV DSC = 0.980±0.008
JSC = 0.961±0.015

ASD (mm) = 
0.675±0.122

ACD (mm) = 
1.237±0.702

Souza et al. (2019)78 X- ray Whole lung Healthy, 
Tuberculosis

138 2D ResNet-18 with FC 
layer

Scaled to same input 
size, post processing 

erosion, dilation, 
filtering

73/27 DSC = 0.936
JSC = 0.881

Dai et al. (2018)64 X- ray Whole lung Healthy, 
Tuberculosis, lung 

nodules

385 2D SCAN (structure 
correcting adversieral 

network)

Scaled to same input 
size

85/15 IoU = 94.7±0.4%
DSC = 0. 973 ± 0.02

C. Wang (2017)79 X- ray Whole lung Healthy, lung 
nodules

247 2D Multi task U- Net Scaled to same input 
size, post processing 

hole filling

NR JSC = 0.959 ± 0.017
AD = 1.29 ± 0.80 mm

Novikov et al. 
(2018)32

X- ray Whole lung Healthy, lung 
nodules

247 2D InvertedNet + All- 
dropout

Normalised [mean = 
0, SD = 0]

3- fold CV DSC = 0.974
JSC = 0.949

Hooda et al. (2018)50 X- ray Whole lung Healthy, 
Tuberculosis, lung 

nodules

385 2D FCN-8+dropout Scaled to same input 
size, random cropping

75/25 DSC = 0.959

Mittal et al. (2018)51 X- ray Whole lung Healthy, 
Tuberculosis, lung 

nodules

385 2D LF- SegNet Scaled to same input 
size, random cropping

48/52 DSC = 0.951

Table 2. (Continued)

(Continued)
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of subjects Dimentionality Architecture Pre- processing

Percentage 

data split

(training*/
testing) Performance

Gaal et al. (2020)33 X- ray Whole lung Healthy, 
Tuberculosis, lung 

nodules

1047 2D Adversarial attention 
U- Net

Scaled to same 
input size, CLAHE, 

Normalisation [−1,1]

24/76 DSC = 0.962±0.04

Chen et al. (2019)80 CT Lung tumour Lung cancer 134 3D HSN (2D + 3D CNN)   78/22 DSC = 0.888±0.033

Jiang et al. (2018)11 CT, MRI Lung tumour Lung cancer 400
CT (377)
MRI (23)

2D Tumour aware semi- 
supervised Cycle- 

GAN

Scaled to same input 
size, Image synthesis 

from CT to MRI, 
body mask

98/2 DSC = 0.63 ± 0.24
HD95 = 11.65±6.53

Jiang et al. (2019)17 CT, MRI Lung tumour Lung cancer 405
CT (377)
MRI (28)

2D Tumour aware pseudo 
MR and T2w MR 

U- Net

Scaled to same input 
size, Image synthesis 

from CT to MR, 
Clipped [−1000,500 

HU] and [0,667], 
Normalised [−1, 1]

95/5 DSC = 0.75±0.12
HD95 = 9.36±6.00 mm

VR = 0.19±0.15

Tahmasebi et al. 
(2018)18

MRI Lung tumour Lung cancer 6 2D Adapted FCN Rescaled 10–95% 
of intensities, 

Normalisation [0,1]

5- fold CV DSC = 0.91 ± 0.03
HD = 2.88 ± 0.86 mm
RMSE = 1.20 ± 0.34

Z. Zhong et al. 
(2019)19

FDG PET, CT Lung tumour Lung cancer 60
PET (60)
CT (60)

3D DFCN Co- Seg U- Net Scaled to same 
input size, Clipped 
[−500,200 HU] and 

[0.01,20]

80/20 DSC (CT) = 0.861±0.037
DSC (PET) = 
0.828±0.087

Zhao et al. (2019)52 PET, CT Lung tumour Lung cancer 84
PET (84)
CT (84)

3D V- Net +feature fusion Cropped to ROI 57/43 DSC = 0.85±0.08
VE = 0.15±0.14

Zhou et al. (2019)20 CT Lung tumour NR 1350 3D P- SiBA Transfer learning 
from ImageNet 
ILSVRC‐2014, 

Cropped to ROI, 
Rescaled by +1000 HU 
and dividing by 3000 
and Normalisation 

[0,1]

NR DSC = 0.809 ± 0.12
HD = 7.612 ± 5.03 mm

vs = 0.883 ± 0.13

Moriya et al. (2018)53 Micro CT Lung tumour Lung cancer 3 3D JULE CNN + k- means Body mask, patch 
extraction

  NMI = 0.390

Imran et al. (2019)81 CT Lobes COPD, ILD 563 3D Progressive dense 
V- Net

  48/52 DSC (n = 
84)=0.939±0.02

DSC (n = 
154)=0.950±0.007

DSC (n = 55)=0.934

Table 2. (Continued)

(Continued)
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Park et al. (2019)21 CT Lobes COPD 196 3D U- Net Clipped [-1024,–400 
HU]

80/20 DSC = 0.956 ± 0.022
JSC = 0.917 ± 0.031

MSD = 1.315 ± 0.563
HSD = 27.89±7.50

Wang et al. (2018)13 CT Lobes COPD, IPF 1280 3D DenseNet Clipped −1000 
to +1000 HU, 

Normalisation [0,1]

5- fold CV DSC = 0.959±0.087
ASD = 0.873±0.61 mm

Hatamizadeh et al. 
(2019)34

CT Lung lesion NR 87 3D DALS CNN Scaled to same input 
size, Normalisation 

[NR]

90/10 DSC = 0.869 ± 0.113
HD = 2.095 ± 0.623 mm

Kalinovsky et al. 
(2017)54

CT Lung lesion Tuberculosis 338 2D GoogLeNet CNN Images cropped into 
four quadrants

80/20 IoU = 0.95
ROC = 0.775

Gerard et al. (2019)22 CT Lung fissure COPD, Lung 
cancer

5327 3D Two Seg3DNets Clipped [-1024,–200 
HU], Linear rescaling

30/70 ASD = 1.25
SDSD = 2.87

Sandkühler et al. 
(2019)35

MRI Lung defect 
region

NR 35 2D GAE- LAE RNN with 
LCI Loss

Z- normalisation 
[−4,4], Lung mask, 

Normalisation [0,1], 
Histogram stretching

80/20 Qualitative evaluation - 
42% images rated ‘very 

good’, 19% rated ‘perfect’

Vakalopoulou et al. 
(2018)82

CT ILD pattern ILD 46 2D AtlasNet   37/63 DSC = 0.677
HD = 3.981 mm
ASD = 1.274 mm

Anthimopoulos et al. 
(2019)55

CT ILD pattern ILD 172 2D FCN- CNN Pre- computed lung 
mask

5- fold CV Accuracy = 81.8%

B. Park et al. (2019)83 CT ILD pattern COP, UIP, NSIP 647 2D U- Net   88/12 DSC = 0. 988 ± 0.006
JSC = 0.978 ± 0.011

MSD = 0.27 ± 0.18 mm
HSD = 25.47 ± 

13.63 mm

Gao et al. (2016)56 CT ILD pattern ILD 17 2D CNN based CRF 
unary classifier

Transfer learning 
from ImageNet, Pre- 
computed lung mask

  Accuracy = 92.8%

Suzuki et al. (2020)84 CT Diffuse lung 
disease

NR 372 3D U- Net   5- fold CV DSC = 0.780±0.169

Wang et al. (2018)85 MRI Foetal lung NR 18 2D BIFSeg P- Net Trained on different 
organs, Image specific 

fine- tuning

66/33 DSC = 0.854±0.059

Table 2. (Continued)

(Continued)
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Study Modality ROI Disease

Number 

of subjects Dimentionality Architecture Pre- processing

Percentage 

data split

(training*/
testing) Performance

Rajchl et al. (2017)36 MRI Foetal lung Healthy, IUGR 55 3D DeepCut CNN + CRF Bounding box for 
ROI, Bias correction, 
Normalisation [mean 
= 0], Transfer learning 

from LeNet

5- fold CV DSC = 0.749±0.067

Edmunds et al. 
(2019)86

Cone- beam CT Diaphragm Lung cancer 10 2D Mask R- CNN Scaled to same input 
size

9- fold CV Mean error = 4.4 mm

C. Wang et al. 
(2019)57

CT Airways NR 38 3D Spatial- CNN (U- Net) Random cropping 92/8 3- fold 
MCCV

DSC = 0. 887 ± 0.012
CO = 0.766 ± 0.06

Juarez et al. (2019)58 CT Airways Lung cancer 32 3D U- Net GNN Bounding box for ROI 63/37 DSC = 0.885
Airway completeness 

= 74%

Yun et al. (2019)23 CT Airways COPD 89 2D 2.5D CNN Clipped [−700,700 
HU]

78/22 Mean Branch detected 
= 65.7%

Juarez et al. (2018)59 CT Airways Healthy, CF, CVID 24 3D U- Net Bounding box for ROI 75/25 DSC = 0.8

ACD, Average contour distance; AD, Average distance; ASD, Average surface distance; CDWN, Convolutional deep wide network; CE, Classification error; CF, Cystic fibrosis; CLAHE, Contrast limited 
adaptive histogram equalisation; CNN, Convolutional neural network; CO, Centreline overlap; COPD, Chronic obstructive pulmonary disorder; CV, Cross- validation; CVID, Common variable immunodeficiency 
disorders; DSC, Dice similarity coefficient; FDG, Fluorine-18‐fluorodeoxyglucose; GAN, Generative adversarial network; HD95, Hausdorff distance 95%; HD, Hausdorff distance; HSD, Hausdorff surface 
distance; HU, Hounsfield unit; ILD, Interstitial lung disease; IPF, Idiopathic pulmonary fibrosis; IUGR, Intrauterine growth restriction; IoU, Intersection over union; JSC, Jaccard similarity coefficient; LOOCV, 
Leave- one- out cross- validation; MAP, Mean average precision; MCCV, Monte carlo cross- validation; MSD, Mean surface distance; NMI, Normalised mutual information; NR, Not reported; NSIP, Nonspecific 
interstitial pneumonia; PVD, Percent ventilated defect; RMSE, Root mean square error; ROC, Receiver operating characteristic; ROI, Region of interest; SD, Standard deviation; SDSD, Standard deviation of 
surface distances; UIP, Usual interstitial pneumonia; VE, Volume error; VR, Relative volume ratio; VS, Volumetric similarity.

The entries are arranged alphabetically by pulmonary ROI, followed by modality.
aThe training data set includes internal validation data.

Table 2. (Continued)
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methods such as filtered backprojection.105 Building upon this, 
CNNs have been used to speed up the process of filtered back-
projection to shorten reconstruction times.109 The results suggest 
DL can accurately reconstruct SPECT images in under 10 sec. 
Furthermore, the authors compare clinical metrics, such as the 
lung shunting fraction (LSF), between methods in a specific 
time frame. DL produced an LSF of 4.7% comparable to 5.8% for 
Monte- Carlo methods, indicating the potential for use in clinical 
applications.109

Multiple studies have employed DL for MRI reconstruction112 
but only one published study has applied it to pulmonary MRI.42 
MRI of the lungs can take upwards of 10 sec to acquire, often 
requiring that patients maintain inflation levels for a signifi-
cant period; this can be particularly challenging for patients 
with severe lung pathologies. Compressed sensing can be used 
to reconstruct randomly undersampled k- space in conjunction 
with regularisation methods to produce accurate reconstructions 
in hyperpolarised gas MRI113,114 and enables reduced acquisi-
tion time without significantly reducing image quality. A coarse- 
to- fine neural network has been proposed to yield an accurate 
hyperpolarised gas MRI scan with an accelerating factor of 8 
(undersampled 1/8 of k- space).42 The method can also improve 

inherent spatial coregistration accuracy when acquiring proton 
and hyperpolarised gas MRI in the same breath,115 possibly 
alleviating the need for substantial post- acquisition image 
registration.

Tangentially related to the goal of image reconstruction, images 
can also be improved further using image enhancement at the 
post- acquisition stage. Multiple studies have shown the effec-
tiveness of using CNNs combined with gradient regularisation 
and superresolution modules to enhance low- dose CT images 
with noise and artefacts, potentially limiting radiation exposure 
without degrading image quality.116,117

Synthesis

Image synthesis, also referred to as regression, is the process of 
generating artificial images of unknown target images from given 
source images. Synthesis has been applied to a range of applica-
tions, such as generating functional or metabolic images from 
structural images. For example, estimating contrast- based func-
tional images from routinely acquired non- contrast structural 
modalities reduces the need for additional scans, specialised 
equipment and administration of contrast agents. Even within 
traditional model- based techniques, accurate synthesis has 

Figure 9. Example images from the authors’ own work using deep learning for hyperpolarised gas MRI segmentation. The 129Xe 

MR ventilation images are taken from three subjects in a testing set, a healthy volunteer, asthma patient and cystic fibrosis patient. 

The patient images selected are characterised by significant ventilation defects. These are compared to expert segmentations of 

the same image. DSC values are displayed for all images. DSC, Dice similarity coefficient.



17
 o

f 2
6

 
b

irp
u

b
lic

a
tio

n
s.o

rg
/b

jr
B

r J
 R

a
d

io
l;9

4
:2

0
2
0

110
7

B
J
R

D
e
e
p

 le
a
rn

in
g

 in
 stru

c
tu

ra
l a

n
d

 fu
n

c
tio

n
a
l lu

n
g

 im
a
g

e
 a

n
a
ly

sis
Table 3. Summary of reviewed studies using deep learning for lung image registration

Study Modality Disease Public data set

Number 

of 

subjects Dimensionality Architecture Preprocessing

Percentage data split

(training*/testing) Performance

Eppenhof et 
al. (2018)98

4DCT Lung cancer DIR- LAB, CREATIS 17 3D Modified VGG Synthetic DVFs for 
data augmentation

42 (CREATIS) / 58 (DIR- 
LAB)

TRE = 4.02±3.08

Eppenhof 
& Pluim 
(2019)24

4DCT Lung cancer DIR- LAB, CREATIS 17 3D Modified U- Net Synthetic DVFs for 
data augmentation, 

Resized, Pre- 
computed body mask, 
intensity- based lung 

mask < −250 HU

42 (CREATIS) / 58 (DIR- 
LAB)

TRE = 2.17±1.89 mm

Ali & Rittscher 
(2019)99

4DCT Lung cancer DIR- LAB, CREATIS 17 2D Conv2Wrap (Linear 
and Deformable 

ConvNet)

  58 (DIR- LAB) / 42 
(CREATIS)

DSC = 0.90
JSC = 0.84

Sentker et al. 
(2018)37

4DCT Lung cancer DIR- LAB, CREATIS 86 3D GDL- FIRE4D U- Net 
with VarReg

Normalisation [0,1], 
Cropped to same 
input size, Pre- 

computed body mask

69/31 (DIR- LAB, CREATIS, 
In house)

TRE (DIR- LAB) = 
2.50±1.16 mm

TRE (CREATIS) = 
1.74±0.57 mm

Fletcher 
and Baltas 
(2020)38

4DCT Lung cancer DIR- LAB, CREATIS, 
Sunnybrook

31 3D U- Net one- shot 
learning

Pre- computed body 
mask, Normalisation 
[mean = 0, SD = 1]

LOOCV (DIR- LAB)
0/100 (CREATIS)

TRE (DIR- LAB) = 
1.83±2.35 mm

TRE (CREATIS) = 
1.49±1.59 mm

Fu et al. 
(2020)25

4DCT Lung cancer DIR- LAB 20 3D LungRegNet 
(CourseNet, 

FineNet)

Vessel enhancement, 
Clipped at −700 HU

5- fold CV, DIR- LAB testing MAE (in 
house)=52.1±18.4

TRE (in 
house)=1.00±0.53
TRE (DIR- LAB) = 

1.59±1.58 mm

Jiang et al. 
(2020)26

4DCT Lung cancer DIR- LAB, SPARE 32 3D MJ- CNN Clipped [-1000,–200 
HU], Normalisation 

[0,0.2]

75 (SPARE, DIR- LAB) / 25 
(DIR- LAB)

TRE = 1.58±1.19 mm

De Vos et 
al.(2019)27

4DCT, CT Lung cancer DIR- LAB, NLST 2070 3D DLIR framework 
ConvNet

Clipped [-1000,–200 
HU], Normalisation 

[0,1]

99 (NLST) / 1 (NLST, DIR- 
LAB)

DSC (NLST) = 
0.75±0.08

HD (NLST) = 
19.34±13.41

TRE (DIR- LAB) = 
5.12±4.64 mm

Sokooti et al. 
(2017)100

CT COPD   19 3D RegNet CNN Synthetic DVFs for 
data augmentation, 

Initial affine 
registration

63/37
(SPREAD)

TRE = 4.39 ± 
7.54 mm

Sokooti et al. 
(2019)101

CT, 4DCT Lung cancer, 
COPD

SPREAD, DIR- LAB 39 3D RegNet CNN (U- 
Net)

Synthetic DVFs for 
data augmentation, 

Initial affine 
registration

54 (SPREAD, DIR- LAB 
COPD) / 46 (SPREAD, DIR- 

LAB)

TRE (DIR- LAB) = 
1.86±2.12 mm

(Continued)
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Study Modality Disease Public data set

Number 

of 

subjects Dimensionality Architecture Preprocessing

Percentage data split

(training*/testing) Performance

Blendowski 
& Heinrich 
(2019)60

CT COPD DIR- LAB 10 3D CNN Cropped to lung 
region

LOOCV
(DIR- LAB)

TRE = 3.00 ± 
0.48 mm

Qin et al. 
(2019)102

CT, MRI COPD COPDGene 1000 2D UMDIR- LaGAN Cross- modality 
registration, 

transformation into 
domain invariant 

latent space

90/10
(COPDGene)

DSC = 0.967±0.03
HD = 8.257±4.43 mm

MCD = 
0.71±0.44 mm

Galib et al. 
(2019)39

CT, CBCT Healthy, 
COPD, 

Lung cancer

DIR- LAB, VCU 27 3D CNN Normalisation [0,1] 37 (DIR- LAB) / 63(VCU) AUC- ROC = 
0.882±0.11 CI=68%

Ferrante et al. 
(2018)40

X- ray Healthy, 
Lung nodule

JSRT 247 2D U- Net Normalisation [0–1], 
Domain adaption 

Cardiac MR

81/19
(JSRT)

MAD ≈ 6.3
CMD ≈ 5 mm

DSC ≈ 0.9

Mahapatra et 
al. (2018)103

X- ray Multiple NIH- ChestXray14 420 2D JRSNet (cycleGAN 
with U- Net)

Joint segmentation 
and registration

NR
(SCR, NIH- ChestXray14)

TRE = 7.75 mm

Stergios et al. 
(2018)28

MRI Systemic 
sclerosis, 
healthy

  41 3D CNN with 
transformation layer

Clipped [0, 1300], 
Normalisation [0,1]

68/32 DSC = 0. 915 ± 2.33
Euclydian error = 

4.358 mm

AUR- ROC, Area under curve- receiver operator characteristic; CMD, Contour mean distance; CNN, Convolutional neural network; COPD, Chronic obstructive pulmonary disorder; CV, Cross- validation; DLIR, 
Deep learning image registration; DSC, Dice similarity coefficient; HD, Hausdorff distance; HU, Hounsfield unit; JSC, Jaccard similarity coefficient; LOOCV, Leave- one- out cross- validation; MAD, Mean absolute 
differences; MAE, Mean absolute error; MCD, Mean contour distance; MRF, Markovian random field; TRE, Target registration error; VGG, Visual geometry group.

Table 3. (Continued)
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Table 4. Summary of reviewed studies using deep learning for lung image reconstruction

Study Modality Disease

Number of 

patients Dimensionality Architecture Preprocessing

Percentage 

data split

(training*/
testing) Performance

Beaudry et al. 
(2019)41

4D cone beam CT Lung cancer 16 2D Sino- Net (Modified 
U- Net)

Cropped to same 
input size, Sinogram 
Normalisation [0,1]

88/12 RMSE Translational = 
1.67 mm

(other metrics given)

Lee et al. 
(2019)107

CT COPD 60 2D FCN No sinogram used Dataset 1: 80/20
Dataset 2: 40/60

Mean reduction 
RMSE (Dataset 1) = 

65.7±15.8%
Mean reduction 

RMSE (Dataset 2) = 
59.6±5.5%

Ge et al. 
(2020)108

CT Liver lesion 5413 2D ADAPTIVE- NET 
CNN

Convert from HU 
to linear attenuation 

coefficient

90/10 PSNR = 43.15±1.9
SSIM = 0.968±0.013
Normalized RMSE = 

0.0071±0.002

Duan et al. 
(2019)42

HP Gas MRI COPD, 
nodule, PTB, 

healthy, 
asthma

72 2D C- Net and F- Net (U- 
Net based)

Under sampled 
K- space (AF = 4), 

Removed SNR below 
6.6, Normalisation 

[0,1]

NR MAE = 4.35%
SSIM = 0.7558

VDP bias = 
0.01±0.91%

Dietze et al. 
(2019)109

99mTc- MAA 
SPECT

Liver Cancer 128 2D CNN Initial filtered back 
projection

94/6 LSF = 5.1%
CNR = 12.5

CNN, Convolutional neural network; CNR, Contrast to noise ratio; COPD, Chronic obstructive pulmonary disorder; EIT, Electrical impedance tomography; HU, Hounsfield unit; LSF, Lung shunting 

fraction; MAE, Mean absolute error; PSNR, Peak signal to noise ratio; PTB, Pulmonary tuberculosis; RMSE, Root mean square error; SSIM, Structural similarity index metric; VDP, Ventilation defect 

percentage; VDP, Volume defect percentage; 99mTc- MAA, Technetium- 99m macroaggregated albumin.
aThe training data set includes internal validation data
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proved challenging due to the complex mathematical functions 

mapping input to output images. The development of DL archi-

tectures such as GANs enables a more unsupervised approach, 

which lends itself to the complex problem of synthesis.9 Studies 

describing DL- based lung image synthesis applications are 

summarised in Table 5.

DL has been used to generate synthetic fluorine-18‐fludeoxy-

glucose (FDG) PET images from CT images via a GAN.118 The 

GAN’s inputs were varied to include either a CT image, label, 

or both CT and corresponding label; the multichannelled GANs 

(M- GAN) provided the most accurate synthetic PET images, 

demonstrating that multiple inputs increase synthesis accuracy. 

To explore this further, the authors also evaluate the synthetic 

PET images by feeding them into a network as training data. 

The network aims to delineate tumours by learning relationships 

from the training data; the data were then divided into real PET 

images and synthetic PET images. The trained model was then 

evaluated on unseen tumour detection problems. The synthetic 

PET- trained network produced 2.79% lower recall accuracy. This 

indicates that, as a whole, the synthetic PET images are closely 

related to the real images in terms of tumour identification. The 

paper posits that synthetic PET images can be used as additional 

training data in other DL tasks. However, it is unclear if synthetic 

PET images can be used in treatment planning and other clinical 

tasks with this level of accuracy.118

GANs have continued to show promise in synthesis problems.119 

CT images have been used to generate SPECT images via a condi-

tional GAN (cGAN) instead of a CNN.29 The method used a 2D 

GAN with 49 patients consisting of 3054 2D images as training 

data; the testing data contains 5 patients. cGANs differ from the 

regular GAN architecture by using both the observed image 

and a random noise vector, mapping these to the output image 

instead of only the noise vector. The generator used is based on 

the U- Net architecture with multiple inputs. Synthetic and real 

SPECT images were compared using the multiscale structural 

similarity index measure (MS- SSIM), yielding MS- SSIM = 0.87. 

Further analysis used a γ index with a passing rate of 97.7±1.2% 

with 2%/2 mm. The authors note qualitatively that errors occur 

more frequently at the base of the lungs, possibly caused by 

the increased deformation in this region. A key limitation for 

synthesis methods is the errors introduced by the registration of 

source and target images. Consequently, it has been suggested 

that images that are not matched anatomically due to breathing 

discrepancies are excluded,119 complicating validation for clin-

ical adoption.29,119

A major application of DL image synthesis is for MR- guided 

radiotherapy. The current paradigm in radiotherapy is to derive 

electron density information required for dose calculations 

directly from CT scans; MRI does not directly provide this infor-

mation. DL has been invoked to generate pseudo- CT images for 

use in MR- guided stereotactic body radiotherapy using GANs, 

precluding the need for CT.44

Zhong et al used a CNN to synthesise ventilation images from 

4DCT scans.61 Whilst good performance was observed, the 

major limitation of this study is that the target images in the 

training phase were CT- based surrogates of ventilation generated 

from aligned inspiratory and expiratory CT scans via deformable 

registration and computational modelling. These images are still 

the subject of intense validation efforts.121 Using more direct 

measures of regional lung function, such as hyperpolarised gas 

MRI, and larger data sets are critical to the success of future work 

in structure- to- function DL synthesis applications.

FUTURE RESEARCH DIRECTIONS

The studies reviewed show that DL has significant potential to 

outperform more traditional methods in a wide range of lung 

image analysis applications. Novel ways of using DL to synthe-

sise more training examples122 or combine segmentation and 

registration in one process103 have been shown to enhance 

performance. The scope of such innovation is still in its infancy, 

providing an opportunity for novel technical developments.

As shown through the improved performance observed by 

combining traditional approaches with machine learning and 

DL for registration, great synergy can be achieved by combining 

DL and conventional image processing approaches.60

In image synthesis, researchers have developed techniques to 

synthesise CT images from MRI scans of the brain123; similar 

advancements in lung imaging would allow patients to receive 

less radiation exposure as well as reduce the cost and time for 

additional scans. Using synthesis to generate functional lung 

images from routinely acquired structural images would allow 

clinicians to understand which areas of the lungs are ventilated 

or perfused without the need to acquire dedicated functional 

scans, which often require contrast agents and specialised equip-

ment, reducing costs and acquisition times. Such applications 

require further DL research in architectural development and the 

input of lung imaging experts. Using DL for CT enhancement to 

reduce radiation dose or improve compressed sensing methods 

in MRI has the potential to reduce scan times, improving image 

quality and patient compliance.

Promising results have been shown for both proton MRI and 

hyperpolarised gas MRI segmentation47; however, further work 

is required to demonstrate accurate MRI segmentation in an 

independent multicentre validation. The importance of collab-

orative research to boost training data and inject heterogeneity 

of centre and scanner will lead to more robust and generalisable 

models. The paucity of published DL studies in functional lung 

imaging (only 12.9% of reviewed studies here) provides signifi-

cant opportunities for innovations and further research in this 

field.

The literature on CT segmentation provides a positive picture 

of the success of DL methods in providing fast, accurate auto-

matic segmentations. However, producing impressive results in 

a research setting is no substitute for clinical validation. Long- 

term clinical case studies are required with large numbers of 

patients before these novel developments have a real impact. The 

‘black box’ nature of DL methods and the lack of explainability 

of generated outputs can undermine clinicians and patients’ 
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Table 5. Summary of reviewed studies using deep learning for lung image synthesis

Study

Modality

(original ⇒ target) Disease

Number of 

subjects Dimensionality Model Preprocessing

Percentage 

data split

(training*/
testing) Performance

Bi et al. 
(2017)118

CT ⇒ FDG PET Lung cancer 50 2D Multichannel- GAN 
(U- Net)

Manual segmentation 
of tumour/lymph 
nodes, axial slices 

containing tumours 
only

50/50 MAE = 4.6
PSNR = 28.06

Jang et al. 
(2019)119

CT ⇒99mTc- MAA 
SPECT perfusion

Lung cancer 54 2D Conditional GAN Resized images, 
segmentation and 

removal of bone, soft 
tissue and heart

91/9 MS- SSIM = 0.87
γ index 2%/2mm = 

97.7±1.2%

Zhong et al. 
(2019)61

4DCT ⇒ CT 
ventilation

Lung cancer, 
COPD

82 2D Deep CNN Images cropped to 
ROI

10- fold CV MSE = 7.6%
γ index 5%/5mm = 

80.6±1.4%
SSIM = 0.880±0.035

Liu et al. 
(2020)43

4DCT ⇒99mTc- 
Technegas SPECT 

ventilation

Lung cancer, 
oesophageal 

cancer

50 2D U- Net Pre- computed lung 
mask, normalisation 

[0,1], post- processing 
normalisation [90th 

percentile]

10- fold CV Spearman’s ρ = 
0.73±0.17

DSC = 0.73±0.09

Ren et al. 
(2019)29

CT ⇒99mTc- MAA 
SPECT perfusion

Lung cancer 30 3D U- Net Clipped [-1000,–
300 HU] for 

segmentation, 
normalisation [0,1]

83/17 Correlation 
coefficient = 0.53 

± 0.14

Preiswerk et 
al. (2018)120

Ultrasound ⇒ MRI NR 7 3D LRCN PCA = 10 
components

66/33 (conducted 
in time segments)

SSE = 39.0 ± 12

Olberg et al. 
(2018)44

MRI ⇒ CT NR 41 NR GAN (U- Net) Normalisation [NR], 
pre- computed body 

mask

90/10 3D γ index passing 
rate 99.2%

Lung V20% 
difference = 0.11%

CNN, Convolutional neural network; COPD, Chronic obstructive pulmonary disease; FDG, Fluorine-18‐fluorodeoxyglucose; GAN, Generative adversarial network; HU, Hounsfield unit; LRCN, Long- 

term recurrent convolutional network; MAE, Mean absolute error; MSE, Mean square error; MS- SSIM, Multi- scale structural similarity index metric; NR, Not reported; PCA, Principle component 

analysis; PSNR, Peak signal to noise ratio; ROI, Region of interest; SSE, Sum of squared error; 99mTc- MAA, Technetium- 99m macroaggregated albumin.
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trust, despite, or even because of, an unprecedented level of 
hype. Another challenge is transparency; although most soft-
ware used for DL is well documented and open source, a require-
ment for continued use, the open- source nature also generates 
safety concerns relating to software edits and bugs. Developing 
a standardised literature consensus on validation and evalua-
tion procedures is key to ensuring transparency. All of these 
challenges need to be overcome before DL can live up to its full 
potential.

CONCLUSIONS

We have reviewed the role of DL for several lung image analysis 
tasks, including segmentation, registration, reconstruction and 

synthesis. CT- based lung segmentation was the most prevalent 
application where exceptional performance has been demon-
strated. However, research in other applications and modali-
ties, including functional lung imaging, is still in its infancy. A 
concerted effort from the research community is required to 
develop the field further. Before widespread clinical adoption is 
achievable, challenges remain concerning validation strategies, 
transparency and trust.
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