
This is a repository copy of sParEGO – A hybrid optimization algorithm for expensive 
uncertain multi-objective optimization problems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174218/

Version: Accepted Version

Proceedings Paper:
Duro, J.A. orcid.org/0000-0002-7684-4707, Purshouse, R.C. orcid.org/0000-0001-5880-
1925, Salomon, S. et al. (3 more authors) (2019) sParEGO – A hybrid optimization 
algorithm for expensive uncertain multi-objective optimization problems. In: Deb, K., 
Goodman, E., Coello Coello, C.A., Klamroth, K., Miettinen, K., Mostaghim, S. and Reed, 
P., (eds.) Evolutionary Multi-Criterion Optimization (EMO 2019). International Conference 
on Evolutionary Multi-Criterion Optimization (EMO 2019), 10-13 Mar 2019, East Lansing, 
MI, USA. Lecture Notes in Computer Science, 11411 . Springer International Publishing , 
pp. 424-438. ISBN 9783030125974 

https://doi.org/10.1007/978-3-030-12598-1_34

This is a post-peer-review, pre-copyedit version of an paper published in Deb K. et al. 
(eds) Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer 
Science, vol 11411. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-030-12598-1_34.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



sParEGO – A Hybrid Optimization Algorithm

for Expensive Uncertain Multi-Objective

Optimization Problems

João A. Duro1, Robin C. Purshouse1, Shaul Salomon1,2, Daniel C. Oara1,
Visakan Kadirkamanathan1, and Peter J. Fleming1

1 University of Sheffield, UK {j.a.duro,r.purshouse}@sheffield.ac.uk
2 ORT Braude College of Engineering, Israel, shaulsal@braude.ac.il

Abstract. Evaluations of candidate solutions to real-world problems are
often expensive to compute, are characterised by uncertainties arising
from multiple sources, and involve simultaneous consideration of multi-
ple conflicting objectives. Here, the task of an optimizer is to find a set
of solutions that offer alternative robust trade-offs between objectives,
where robustness comprises some user-defined measure of the ability of
a solution to retain high performance in the presence of uncertainties.
Typically, understanding the robustness of a solution requires multiple
evaluations of performance under different uncertain conditions – but
such an approach is infeasible for expensive problems with a limited
evaluation budget. To overcome this issue, a new hybrid optimization al-
gorithm for expensive uncertain multi-objective optimization problems is
proposed. The algorithm – sParEGO – uses a novel uncertainty quantifi-
cation approach to assess the robustness of a candidate design without
having to rely on expensive sampling techniques. Hypotheses on the rel-
ative performance of the algorithm compared to an existing method for
deterministic problems are tested using two benchmark problems, and
provide preliminary indication that sParEGO is an effective technique
for identifying robust trade-off surfaces.

Keywords: Expensive optimization, surrogate-based optimization, ro-
bust optimization, multi-objective optimization

1 Introduction

The ability of simulations to predict the performance of a candidate design is
constantly increasing. While some simulations can produce high-fidelity outputs
relatively quickly, a typical mesh-based simulation can run for several hours,
and even days. Even if a design team has access to supercomputing resources,
the extensive run-time still implies that perhaps only a few hundred candidate
designs can be explored using high-fidelity modelling resources. Unfortunately,
conventional multi-objective optimization algorithms implemented in commer-
cial packages typically require tens of thousands of function evaluations to con-
verge on a high quality solution [1]. Therefore, the search for a promising design



using expensive evaluation functions on a limited computational budget poses a
great challenge.

To exacerbate this problem, optimizing for a robust solution is itself a com-
putationally demanding task. In order to gain confidence over the robustness of
a solution to uncertainties, the statistical properties of the expected solution’s
performance must be quantified. In a world where the complexity of the high-
fidelity models essentially produces a black-box mapping of inputs to outputs,
such statistical properties would typically be found through repeated evalua-
tion of the same solution using those high-fidelity models. However, repeatedly
sampling a single candidate design is computationally expensive.

To address the above, we propose a framework for expensive uncertain multi-
objective optimization problems (MOPs). The key aims are to: (i) exploit expen-
sive, black-box evaluation function for a candidate design; (ii) account for multi-
ple sources of uncertainty, such as fidelity of evaluation functions and manufac-
turing tolerances; and (iii) provide an understanding of the risk and opportunity
trade-offs between candidate designs with respect to a given robustness metric.
To achieve this the framework leverages ParEGO [2], an algorithm for multi-
objective optimization, which has been demonstrated to provide good results for
optimization runs limited to a small number of function evaluations. ParEGO
itself is a multi-objective extension to Jones et al.’s [3] seminal efficient global
optimization (EGO) algorithm for single-objective problems. The main limita-
tion of ParEGO is that it has not been designed to handle problems featuring
uncertainty (although there is some evidence that it can perform favourably in
noisy environments [4]). Therefore a fundamental part of the framework is how
ParEGO can be extended to consider evaluation functions as samples of random
variates. We refer to this new algorithm as stochastic ParEGO or sParEGO.

In the remainder of this paper, first the robustness metric used is described in
Section 2, and the proposed framework is presented in Section 3. The hypotheses
on the relative performance of the algorithm are introduced in Section 4. The
experimental settings and findings are in Section 5. The paper concludes with
Section 6.

2 Threshold-based robustness metric

A general single-objective robust optimisation problem can be formulated as:

min
x∈Ω

S = f(x,U). (1)

Here, x = [x1, . . . , xnx
] is a vector of nx decision variables in a feasible domain

Ω, U is a vector of random variables that includes all the uncertainties asso-
ciated with the optimisation problem. These uncertainties may be an outcome
of manufacturing tolerances, a noisy environment, evaluation inaccuracies etc.
A single scenario of the variate U is denoted as u. Since uncertainties are in-
volved, the scalar objective S is also a random variate, where every scenario of
the uncertainties, u, is associated with an objective value s.



In a robust optimisation scheme, the random objective value is replaced with
a robustness criterion, denoted by the indicator I[S]. Several criteria are com-
monly used in the literature, which can be broadly categorised into three main
approaches:

1. Worst-Case Scenario. The worst objective vector, considering a bounded
domain in the neighbourhood of the nominal values of the uncertain vari-
ables.

2. Aggregated Value. An integral measure of robustness that amalgamates
the possible values of the uncertain variables (e.g. mean value or variance).

3. Threshold Probability. The probability for the objective function to be
better than a defined threshold.

In our framework the third approach, suggested by Beyer and Sendhof [5], is
used. A threshold q is considered as a satisficing performance for the objective
value s. When s is uncertain, denoted by the random variable S, the probability
for S to satisfy the threshold level can be seen as a confidence level c. For a
minimization problem this can be written as:

c(S, q) = Pr(S < q). (2)

A robustness indicator used in this paper is based on minimization of the thresh-
old q for a pre-defined confidence level c, meaning that the confidence in the
resulting performance can be specified (e.g. by a decision-maker).

A stochastic unconstrained multi-objective optimization problem (MOP),
which is the focus of this study, can be formulated as:

min
x∈Ω

Z = f(x,U). (3)

where Z is a multivariate random vector of nz performance criteria, and f is
a set of functions mapping from decision-space to objective-space. Due to un-
certainties over the problem parameters or the mapping functions themselves,
every evaluation of the same decision vector may result in a different realisation
of the objective vector z = [z1, . . . , znz

].

3 The Framework of the sParEGO Algorithm

sParEGO is a surrogate-based multi-objective optimization algorithm for deal-
ing with stochastic MOPs. The algorithm shares many similarities with ParEGO
including the ability to approximate expensive MOPs over a realistically small
number of function evaluations. The main idea is that the uncertain distribu-
tion in objective space of every candidate solution is not quantified through
uncertainty quantification methods (e.g. Monte Carlo sampling). Instead, ev-
ery solution is evaluated once, and the distribution is approximated based on
the performance of nearby solutions. A pseudo-code of sParEGO is presented in
Algorithm 1 and a general description of its working principles is as follows.



The decision variables and objectives are normalised to non-dimensional units
in the following manner:

x̃i = (xi − xl
i)/(x

u
i − xl

i), i = 1, . . . , nx, (4)

z̃j = (zj − z∗j )/(z
n
j − z∗j ), j = 1, . . . , nz, (5)

where xu
i and xl

i are the upper and lower boundaries of the ith decision variable,
znj and z∗j are the jth components of the estimated nadir and ideal vectors, and
the tilde accent represents a normalised, dimensionaless variable. The normalised
values are used for all operations within the algorithm. Before a candidate design
is evaluated, it is re-scaled to the natural dimensions.

sParEGO decomposes the overall MOP into a number of single-objective
problems by using a set of (reference) direction vectors to guide the search to-
wards different regions of the Pareto front3. The set of all direction vectors is
denoted by D (Line 1). The direction vectors are picked (one at the time) based
on their sequence in the set D. Once all direction vectors have been traversed
by the optimizer the vectors in the set D are shuffled (Line 5). This prevents
any bias that might arise due to repeatedly using the same sequence of direction
vectors during the entire optimization process.

The procedure used to generate the initial set of solutions (X ) is described in
Section 3.2 (Line 2). Following this, all solutions in the set X are evaluated and
their performance is stored in the set Z (Line 3). The ideal and nadir vectors
are then updated (Line 7). A scalar fitness value is obtained for each solution by
using a scalarising function as mentioned in Section 3.1 (Line 8). The robustness
indicator values of the solutions are estimated and stored in the set I (Line 9),
and these are used to construct a surrogate model (Line 10). A search procedure
is then conducted over the model to find a solution xnew that optimizes the given
robustness indicator based on the concept of expected improvement (Line 11).
A new solution xpert is generated by applying a perturbation to xnew (Line 12).
This ensures that all generated solutions have at least one nearby solution. The
new solutions are added to X (Line 13) and, once evaluated, their performance
is stored in Z (Line 14). The algorithm goes back to Line 4 and the procedure
repeats itself until a stopping criteria is satisfied.

The robustness indicator values of the solutions are estimated based on the
procedure in Line 17. The first step is to identify, for each solution, all the nearby
solutions. For this, we define the concept of neighbourhood and consider that two
solutions are neighbours if their distance in normalised decision-space is within
a user-defined neighbourhood distance δ (Line 19). The statistical properties
of the performance of a solution is approximated from the other neighbouring
solutions (Line 23). Finally, the robustness indicator values of the solutions are
estimated for a given robustness criterion I (Line 24).

3 More details about the decomposition strategy are provided in Section 3.1.



Algorithm 1 sParEGO Pseudo-code

Parameters: initial set size ninit, surrogate model maximum set size nmax, maximum distance
between newly generated solutions δpert, robustness criterion I, neighbourhood distance δ

1: D ← set of all reference direction vectors ⊲ Equation 6 (Section 3.1)
2: X ← generate initial set of solutions using ninit and δpert ⊲ Section 3.2
3: Z ← f(X ) ⊲ evaluate the initial set
4: while stopping criteria not satisfied do

5: Shuffle the set D
6: for all d ∈ D do

7: update ideal and nadir vectors
8: S ← calculate scalar fitness value of all solutions ⊲ Equation 7 (Section 3.1)
9: I ← RobustnessApproximation(X ,S, δ) ⊲ Sections 3.3 and 3.4
10: model← fit a Surrogate model to the indicator values I using nmax ⊲ Section 3.5
11: xnew ← maximize the expected improvement based on model
12: xpert ← add a neighbour to xnew using δpert ⊲ Section 3.5

13: X ← X ∪
{

xnew,xpert
}

14: Z ← Z ∪
{

f(xnew), f
(

xpert
)}

⊲ evaluate the new solutions

15: end for

16: end while

17: procedure RobustnessApproximation(X ,S, δ)
18: for all xi ∈ X do

19: update the neighbourhood N (xi) for a given δ ⊲ Equation 10 (Section 3.3)
20: end for

21: I ← ∅
22: for all xi ∈ X do

23: approximate the distribution of Si ⊲ Section 3.3
24: calculate robustness indicator I[Si] ⊲ Section 3.4
25: I ← I ∪ I[Si]
26: end for

27: return I
28: end procedure

3.1 Decomposition

A decomposition-based algorithm decomposes the MOP into a number of single-
objective problems, each approaching the global trade-off surface from a different
direction. The ith sub-problem is associated with a reference direction vector di

which is taken from the set D. The set is constructed by using a Simplex Lattice
design:

D =







d = [d1, . . . , dnz
] |

nz
∑

j=1

dj = 1 ∧ dj ∈
{

0

h
,
1

h
, . . . ,

h

h

}

for all j







, (6)

where h is a parameter that defines the number of divisions for each objective.
Each sub-problem assigns a scalar fitness value to each solution. This is

achieved by using a scalarising function f(z,w) that maps an objective vector
z into a scalar value according to a vector of weights w = [w1, . . . , wnz

]. The
scalarising function used is the weighted Tchebycheff, which is given by:

s = max
1≤i≤nz

{wizi} . (7)

For a given direction vector d there is a corresponding weighting vector that
minimizes the scalarising function [6]. The optimal weighting vector w for the



scalarising function in (7) is defined as:

wi = ti

/

nz
∑

i=1

ti, where ti = (di + ǫ)−1, i = 1, . . . , nz, (8)

where ǫ is a small number to prevent division by zero, and the normalisation
enforces the weighting vector’s elements to sum up to one.

3.2 Initialisation

In sParEGO, the robustness assessment of a candidate design relies on the deter-
mination of its statistical properties, which in turn depends on the information
of the neighbouring solutions. Hence, in order to support the robustness assess-
ment from the beginning of the optimization process, for any solution in the
inital set there is at least one nearby solution in desision-space. Let ninit denote
the size of the initial set, then the procedure is as follows:

1. To provide a good coverage, a space-filling design technique (Latin Hyper-
cube sampling) is used to generate a fraction of the total ninit. We suggest
this fraction to be a quarter.

2. For every existing solution in X , another solution is generated by applying
a random perturbation where the upper bound is within a hypersphere with
a radius of δpert which is smaller than δ.

3. The rest of the solutions are generated by randomly selecting an existing
solution from X and applying a perturbation as in the previous step. This
step is repeated until the number of solutions in X is equal to ninit.

The second step enforces that every solution has at least one neighbour. The
third step seeds the initial population with neighbourhoods of different sizes.

3.3 Uncertainty quantification

The most important difference between sParEGO and ParEGO is that the for-
mer assumes that the outcome of an evaluation function is a realization of a
random variate. Therefore, the scalarised function value cannot be used directly
to construct the surrogate model, and a utility indicator value is used instead.
For every direction vector, the surrogate model is constructed to search for a
design that will optimize a given robustness indicator (described in Section 3.4).
The guiding principle is to avoid having to repeatedly sample every candidate
design to assess its statistical properties in objective-space. Instead, these proper-
ties (specifically, measures of central tendency and dispersion) are approximated
from the available information of other candidate design evaluations.

Approximation of the central tendency The stochasticity of the problem
might originate from a variety of sources, including variations in decision-space.



For this type of uncertainty, two designs with similar nominal values can be iden-
tical when realised. Therefore, the performance of a candidate design should be
calculated from the performance of neighbouring designs as well. Two solutions
xi and xj are considered as neighbours if their Euclidean distance in normalised
decision-space is smaller than or equal to δ, that is:

‖xi − xj‖2 ≤ δ. (9)

For a solution xi with a scalar fitness given by si, the statistical properties of
the scalar fitness are approximated from the neighbouring solutions as follows:
First, the neighbourhood N (xi) of the solution is defined4:

N (xi) =
{

xj ∈ X | ‖xi − xj‖2 ≤ δ
}

. (10)

Next, the approximated mean function value, µs, is derived from the neighbour-
hood. Members that are closer to xi are given a larger weight, denoted as v in
Equation (11), in approximating its properties. Since the weight of most solu-
tions in the neighbourhood is smaller than 1, the overall “neighbourhood size”
ςi is smaller than |N (xi)|:

vj =
δ − ‖xi − xj‖2

δ
, ∀xj ∈ N (xi), (11)

ςi =
∑

xj∈N (xi)

vj , (12)

µs,i =
1

ςi

∑

xj∈N (xi)

vjsj , (13)

where µs,i is the approximated mean of the scalar fitness function for xi.

Approximation of the dispersion Once the expected mean is known, the
expected value for the variance is calculated:

σ2
s,i =

1

ςi

∑

xj∈N (xi)

vj(sj − µs,i)
2
. (14)

An example is shown in Figure 1(a) for an optimization problem with a
single decision variable where 5 solutions are divided into two neighbourhoods.
The mean and variance of the scalar fitness function is estimated based on their
scalar fitness values and their decision-space distance within the neighbourhood.

3.4 Estimating the robustness indicator value

Once the statistical properties of the scalar fitness function have been estimated,
the random variable S(x) is assumed to follow a normal distribution with the

4 Note that according to (10), xi is included in the neighbourhood N (xi).
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(a) Estimation of the mean value and
the variance from the neighbour-
hood

x

S(x)
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Pr(S < q)

Ic[S(x)]

µs(x)

xe

(b) Assuming a normal distribution for S
according to µs and σs. The shaded
area represents a confidence of 80%.

Fig. 1: Approximation of the statistical properties, and estimation of robustness indicator Ic[•].

estimated mean and variance. The robustness indicator is calculated for this
distribution with respect to a desired confidence level c (assuming c ∈ [0, 100]).
The indicator, denoted Ic[S], is then equal to the cth percentile of the normal
distribution with mean µs (Equation 13) and variance σ2

s (Equation 14).
An example for Ic[S] is given in Figure 1(b) where Ic[S] value corresponds

to the 80th percentile of the normal distribution. Following this, the indicator
value Ic[S] is considered as the solution’s fitness at the current iteration.

3.5 Fitting a Surrogate Model to the Fitness

Now that every solution is associated with a scalar fitness value based on the ro-
bust indicator, the algorithm proceeds in a similar fashion to EGO and ParEGO [3,
7]. A surrogate model is fitted to the fitness values, and the expected improve-
ment function is constructed from the model. Above a certain size (approxi-
mately 50 solutions), the surrogate model becomes prohibitively expensive to
construct. When the number of evaluated solutions exceed this size, a subset of
size nmax is chosen according to Algorithm 2.

The first step in Algorithm 2 is to select nmax/2 solutions from the population
set X with the best robustness indicator value, and to add these to the set X ′
(Line 1). The next step is to select from the remaining solutions those that are
closer to the current direction vector d. For this, the normalised objective vectors
are projected to the nz − 1 simplex (Line 4). The Euclidean norm between the
vectors ẑ(x) and d is given by the operator ∆ (Line 5). Finally, the nmax/2
solutions from X ′′ with the smallest ∆ distance are added to X ′ (Line 7).

To use the expected improvement function we need to estimate its variance
(σ̂2). For this, we use the density of the solutions in decision-space by knowing
that the variance has an inverse correlation to the density of the solutions. A



Algorithm 2 Choosing a Subset to Construct the Surrogate Model

Require: population set X , subset size nmax, current direction vector d
Ensure: a subset X ′ of size nmax

1: X ′ ← nmax/2 solutions from X with the best robustness indicator value
2: X ′′ ← X \ X ′

3: for all x ∈ X ′′ do

4: ẑ(x)← project z(x) to the nz − 1 simplex, implying that ẑ(x) = z(x) ‖z(x)‖−1

1

5: ∆(x,d)← ‖ẑ(x)− d‖
2

6: end for

7: X ′ ← X ′ ∪ nmax/2 solutions from X ′′ with the smallest ∆ distance

suitable way to estimate the density at a given point x is to use a non-parametric
statistical approach, and in this case we use a kernel density model given by:

p(x) =
1

nmax

∑

xi∈X ′

1

(2πh2
b)

nx/2
exp

{

−‖x− xi‖2
2h2

b

}

, (15)

where hb is the bandwidth. We suggest setting the bandwidth to be equal to one
hundredth of the mean span of all solutions, that is:

hb =
1

100× nmax

∑

xi∈X ′

(max(xi)−min(xi)). (16)

Based on experimental results we have observed that the kernel density model
can be very sensitive to any changes in the density, thus we have used a smoothing
function (in this case the arctan function), and the estimated variance at x is:

σ̂2(x) =

(

1

π/2
arctan

(

1

p(x)

))2

. (17)

After fitting a surrogate model to the solutions from X ′, the next task is to
find the solution that maximizes the expected improvement function. For this,
any suitable off-the-shelf single-objective optimizer can be used, and we have
chosen ACROMUSE [8]. The identified solution, denoted by xnew, is added to
the population together with a neighbouring solution xpert, generated using the
same perturbation as that described in Section 3.2.

4 Hypothesis testing

We employ a hypothesis testing approach to study the performance of sParEGO
compared with ParEGO in dealing with MOPs on a limited computational bud-
get. We postulate two hypotheses, each relating to anticipated pathological be-
haviour of one of the algorithms:

1. If the problem is deterministic, and the region close to the Pareto front is
highly multi-modal, sParEGO will incorrectly interpret the multimodality as
stochasticity, and converge on seemingly ‘robust’ solutions that are actually
non-optimal. However ParEGO’s convergence will be unaffected.



2. If the problem is highly stochastic, and the region close to the Pareto front
is smooth, ParEGO will identify seemingly high-performance solutions that
are actually non-robust. However sParEGO’s convergence will be unaffected.

To test these hypotheses, we use two variants of the WFG4 problem [9]. Both
variants have two objectives and five decision variables. The first two decision
variables are position parameters and the last three are distance parameters. For
the first problem, namely P1, we have modified WFG4 to increase the density
and the number of local optima in the periphery of the global optimum. This
simulates the effect that stochasticity can have when approaching the Pareto-
optimal Front (PF). The second problem, namely P2, is characterised by having
a more smooth landscape with no local minima surrounding the global optimum,
and stochasticity is added by the toolkit from [10].

The modification applied to WFG4 is as follows. The original formulation of
WFG4 applies a transformation to each input parameter (y) given by:

s multi(y, a, b, c) =
(

1 + cos(r2) + b(r1)
2
)

/(b+ 2),

r1 = |y − c|/(⌊c− y⌋+ c),

r2 = (4a+ 2)π(0.5− 0.5r1),

(18)

where a controls the number of minima, b controls the magnitude of the “hill
sizes” of the multi-modality, and c is the value for which y is mapped to zero.
The number of minima increases up-to 2a+1 which includes the global optimum
at c. We propose a modification to Equation 18 as follows:

s multi∗(y, a, b, c, d, e) = (1 + cos(r2r3) + b|r1|e) /(b+ 2),

r3 = (1− |r1|)2d,
(19)

where d controls the density of the hills around the optimum, and e specifies
the polynomial order of the base curve. The effect of these parameters is shown
in Figure 2, in that: the density of hills around the optimum increases with an
increase in d as shown in Figure 2(a), and; the proximity of local minima from
the value zero decreases with an increase in e as shown in Figure 2(b).

The toolkit from [10] is used here to transform the objective vectors of WFG4
into random vectors. The parameters have been chosen to ensure that uncer-
tainty increases towards more optimal regions. The uncertainty also decreases
up to a point when moving away from the Pareto region, and then starts in-
creasing again for regions that are further away from the PF. The perturbation
is applied to the objective vector by using only its radial component, implying
that the perturbation radius is set to zero. This means that an objective vector
z is perturbed only along one direction, defined by the nz − 1 simplex and given
by ẑ = z/

∑

zi, for i = 1, . . . , nz. In practice, instead of using the deterministic
value of the distance term in WFG4, we consider it as a random variate with
a uniform distribution. The lower bound of the distribution is situated at the
deterministic value from the test problem, and the upper bound increases as so-
lutions approach the Pareto region. As a result, for a given robustness criterion
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Fig. 2: Transformation function in WFG4 as a function of the input parameter (y). For (a) and (b)
the parameters are a = 5, b = 10, and c = 0.35. The difference between P1 and P2 is shown in (c).
Moreover, e = 1 for (a) and d = 3 for (b).

(say, the worst-case scenario as mentioned in Section 2), the worst performance
of the Pareto-optimal solutions can be worse than that of some of the non-
Pareto-optimal solutions. This gives rise to the term Robust Pareto-optimal Set
(RPS), which is defined as the set of solutions with the best performance with
respect to the given robustness indicator.

Following the above, we have chosen c = 0.35 for all test instances. The
remaining parameters are: a = 5, b = 10, d = 3, and e = 1 for P1; and a = 0,
b = 8, d = 0, and e = 2 for P2. The transformation function values for these
settings are shown in Figure 2(c). The PF for P1 corresponds to a quadrant
with extremes of 2 and 4 for objectives f1 and f2, respectively, and it is shown
in Figure 3(a). The PF has been obtained by uniformly generating points along
the quadrant. Figure 3(b) shows the performance of the RPS with respect to
Ic[S] for difference confidence levels c. The RPS has been obtained by using an
enumeration where the uniform distribution over the distance term of WFG4
has been replaced by the cth percentile of the same distribution.
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Fig. 3: Pareto-optimal front is shown for P1 in (a), and in (b) it is shown for P2 the performance of
the RPS with respect to the robustness indicator Ic[S] for difference confidence levels c.



5 Experimental results

5.1 Experimental settings

For both ParEGO and sParEGO the number of direction vectors is set to 10.
Other common parameters are: ninit = 10, nmax = 50 and the optimization
budget is set to 5000 function evaluations. For sParEGO: δ = 0.1

√
nx, δpert =

δ/2, and the confidence level c of the robustness indicator Ic[S] is set to 90%.
Inverted Generational Distance (IGD) [6] is used to measure the quality of the
obtained sets by the optimizers. The 10 solutions that are marked with a filled
circle in Figure 3 are used as the reference sets for IGD, and these solutions
correspond to the best optimal solutions for the chosen direction vectors.

The optimizers report only one solution per direction vector, implying that
only 10 solutions are identified at the end of the optimization process. For each
direction vector the solution with the minimum scalarised fitness value is chosen.
For this, ParEGO uses the scalarised fitness values determined directly by Equa-
tion 7, while sParEGO uses the fitness attributed by the robustness indicator.

5.2 Findings

This section presents the experimental results for problems P1 and P2. The re-
sults shown in Figure 4 provide both a visual and a analytical assessment of the
quality of the solutions obtained by the optimizers in terms of their convergence
to and diversity across the PF. The objective vectors for P2 have been deter-
mined by evaluating 100 times each decision vector, and the performance of each
objective is equal to the 90th percentile of its marginal distribution.

For P1, ParEGO’s approximation to the PF is slightly better than for sParEGO
as shown in Figures 4(a) and 4(c). This indicates that the multi-modality in P1,
close to the vinicity of the PF, is interpreted by sParEGO as a region of high
uncertainty. The performance of the solutions with respect to the robustness
indicator in this region is captured as being poor according to the statistical
inferences made by sParEGO. Hence, most sParEGO solutions are just outside
the region where the magnitude of the hill sizes of the multi-modality become
relatively large. Nevertheless, it is expected for sParEGO to improve its conver-
gence to the PF with more function evaluations, since the statistical assessment
made about the true performance of the solutions that are on the PF is also
expected to improve.

For P2, sParEGO approximation to the PF obtained with respect to the
robustness indicator is better than ParEGO as shown in Figures 4(b) and 4(d).
The convergence of ParEGO deteriorates along the optimization run as shown
in Figure 4(d), while the convergence of sParEGO improves. This indicates that
the selection criterion used by ParEGO that promotes solutions with a better
nominal performance, leads to a deterioration in the convergence towards the
solutions that satisfy the robustness criterion. On the other hand, the uncertainty
quantification approach used by sParEGO that is used to estimate the true
robustness of the solutions is found to be a better approach in dealing with the
task of finding the robust solutions.
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Fig. 4: Comparison of ParEGO and sParEGO for P1 and P2.

6 Conclusion

This paper has proposed a new multi-objective optimization algorithm for deal-
ing with expensive uncertain MOPs, namely sParEGO. The comparative anal-
ysis with the existing algorithm ParEGO has demonstrated that the statistical
inferences made by sParEGO are better equipped to assess the robustness of
the candidate solutions for a given robustness criterion. However, we have also
shown that the existence of a not-so-well-behaved problem landscape can mis-
lead the uncertainty quantification approach when (as is necessary) working on
a limited budget of evaluations. Given this, the assumptions made within the
framework described in this paper, and their associated risks, are as follows:

1. The landscape is well-behaved (i.e. smooth, continuous). The uncertainty
distributions are approximated according to available information for other
candidate solutions. The underlying assumption for approximating in this
way is that similar solutions have similar performance. If the functions are
highly ragged and discontinuous, the surrogate models cannot accurately
predict their behaviour.

2. The problem dimensionality is small to medium. The search is conducted on
a surrogate model fitted to the existing evaluated solutions. The surrogate
model used in this framework typically produces good estimates for problems
with up to 20 design variables.



3. The maximum distance between solutions to be considered as neighbours,
specified by δ, affects the variance of solutions and the convergence rate. For
smooth and continuous functions, a tight neighbourhood is likely to result in
smaller variance, but also uses less information from other solutions, which
reduces the convergence rate.

Further benchmarking of sParEGO5 is now needed to confirm its capabilities
across a wider set of problem instances. This includes conducting a comparative
analysis with other multi-objective robust optimization algorithms, such as those
described in the survey in [11]. Other future research directions include: how to
approximate the statistical inferences of isolated solutions; how to incorporate
constraints; and incorporation of alternative robustness criteria.
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