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A numerical investigation of convection-driven dynamos is carried out in the plane layer
geometry. Dynamos with different magnetic Prandtl numbers Pm are simulated over a
broad range of the Rayleigh number Ra. The heat transport, as characterized by the
Nusselt number Nu, shows an initial departure from the heat transport scaling of non-
magnetic Rayleigh-Bénard convection (RBC) as the magnetic field grows in magnitude;
as Ra is increased further, the data suggests that Nu grows approximately as Ra2/7,
but with a smaller prefactor in comparison with RBC. Viscous (ǫu) and ohmic (ǫB)
dissipation contribute approximately equally to Nu at the highest Ra investigated; both
ohmic and viscous dissipation approach a Reynolds number dependent scaling of the
form Rea scaling, where a ≈ 2.8. The ratio of magnetic to kinetic energy approaches a
Pm-dependent constant as Ra is increased, with the constant value increasing with Pm.
The ohmic dissipation length scale depends on Ra in such a way that it is always smaller,
and decreases more rapidly with increasing Ra, than the viscous dissipation length scale
for all investigated values of Pm.

1. Introduction

Planetary and stellar magnetic fields are ubiquitous throughout the observable uni-
verse. These magnetic fields are thought to be actively generated by the convection-driven
motion of electrically conducting fluid (Ossendrijver 2003; Jones 2011). Rayleigh-Bénard
convection (RBC), consisting of a fluid layer contained between plane parallel boundaries,
is a common system in which to study convection due to its simplicity, whilst retaining the
primary physical features expected to be important in many natural systems (Meneguzzi
& Pouquet 1989; Cattaneo 1999). Although RBC has been investigated in great detail
with regard to electrically-insulating fluids, the influence of dynamo action on heat and
momentum transport is less well understood. This study reports on numerical results of
a broad parameter survey of RBC-driven dynamos.

Natural dynamos can be distinguished by the characteristic length scale of the self-
generated magnetic field, relative to that of the forcing length scale. Large-scale dynamos
generate magnetic fields that are both system-scale and forcing scale, whereas small-scale
dynamos generate magnetic fields with typical length scales that are comparable with, or
less than, the typical velocity length scale (Meneguzzi et al. 1981; Tobias 2019; Rincon
2019). Breaking the reflectional symmetry of the flow field via the Coriolis force, for
instance, is known to be conducive to large-scale dynamo action (Parker 1955; Steenbeck
et al. 1966; Moffatt 1970; Childress & Soward 1972; Calkins et al. 2015); such effects
are likely important for the generation of the global-scale components of planetary and
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stellar magnetic fields. However, small-scale dynamos are also relevant, especially with
regard to the Sun’s outer convective layer where intense small-scale field is generated.
Two global diagnostic quantities of central interest in convection are the rate of

heat transport through the layer and the typical flow speed, as measured by the non-
dimensional Nusselt number, Nu, and the Reynolds number, Re, respectively. For a
fixed value of the thermal Prandtl number, Pr = ν/κ (where ν is the kinematic
viscosity and κ is the thermal diffusivity), convective flow regimes depend on the non-
dimensional Rayleigh number, Ra; functional relationships of the form Nu = f(Ra) and
Re = g(Ra) (where f and g denote generic functions) are sought. For heat transport
with Pr = O(1) in non-rotating systems, theory has suggested both a Nu ∼ Ra1/3

scaling from marginal stability analysis of the thermal boundary layer (Malkus 1954)
and a Nu ∼ (Ra/Pr)1/2 scaling which assumes an ultimate regime in which the entire
fluid layer becomes turbulent (Kraichnan 1962; Spiegel 1965); the former is independent
of the fluid layer depth, whereas the latter is independent of diffusion coefficients (ν, κ).
The convective ‘free-fall’ scaling of Re ∼ (Ra/Pr)1/2, thought to arise from a balance
between nonlinear advection and the buoyancy force, and expected to be valid when
Re ≫ 1, is consistent with the Nu ∼ (Ra/Pr)1/2 heat transport scaling (e.g. Ahlers
et al. 2009). Laboratory experiments and numerical simulations observe a Nu ∼ Ra2/7

scaling over a significant range in Ra (e.g. Castaing et al. 1989; Shraiman & Siggia 1990;
Cioni et al. 1997), and a transition to a Nu ∼ Ra1/3 scaling at the largest values of Ra
(e.g. Cheng et al. 2015). Two-dimensional numerical simulations find another transition
to a still steeper scaling near Ra ∼ 1013, where Nu ∼ Ra0.35 is observed (Zhu et al. 2018).
Scaling behaviour close to Re ∼ Ra1/2 has been observed in both low Prandtl number
fluids (Vogt et al. 2018) and Pr = O(1) fluids (Qiu & Tong 2001). Numerical simulations
in a triply periodic geometry show both the Nu ∼ Ra1/2 and Re ∼ Ra1/2 scaling (Lohse
& Toschi 2003), providing evidence that these ‘ultimate’ scalings are indeed relevant for
RBC, and that the presence (or absence) of thermal and kinetic boundary layers dictates
the observed scaling exponents.
The work of Meneguzzi & Pouquet (1989) showed that RBC acts as an efficient source

of energy for dynamo action, provided the flow is driven sufficiently. Subsequent numerical
investigations, both Boussinesq and compressible, have shown that magnetic field tends
to be localized to the upwelling and downwelling regions (Cattaneo et al. 2003; Bushby &
Favier 2014). A common belief is that small-scale non-rotating dynamos equilibrate when
both the kinetic and magnetic energy are comparable to each other, a hypothesis that
seems to be supported by numerical studies (Cattaneo et al. 2003; Haugen et al. 2004).
However, the heat and momentum transport in RBC-driven dynamos remains largely
unexplored; it is currently unknown what influence dynamo action has on the scaling
behaviour of both Nu and Re with varying Ra.

Viscous dissipation plays a fundamental role in heat transport in non-magnetic RBC.
In a statistically stationary state, the viscous dissipation ǫu is directly related to Nu
(e.g. Chandrasekhar 1961). The scaling behaviour of Nu with Ra is therefore intimately
connected with the scaling of ǫu, and therefore also with the scaling of Re. The non-
dimensional Taylor microscale λu is often used to characterize the length scale at which
viscous dissipation becomes dominant; the scaling behaviour of λu with Re is therefore
thought to control the observed Nu − Ra scaling (e.g. Grossmann & Lohse 2000).
In RBC-driven dynamos, both viscous and ohmic dissipation are present. Clearly, the
presence of ohmic dissipation provides an additional degree of freedom when determining
heat transfer scaling laws (e.g. Zürner et al. 2016); understanding heat and momentum
transport in RBC-driven dynamos therefore requires an understanding of both λu, and
an analogous ohmic dissipation scale λB .
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Two additional parameters that are important in dynamos are the magnetic Prandtl
number, Pm = ν/η (where η is the magnetic diffusivity), and the magnetic Reynolds
number Rm = PmRe. The magnetic Reynolds number characterizes the relative size
of magnetic induction to magnetic diffusion. Planetary interiors (French et al. 2012;
Pozzo et al. 2013) and liquid metal experiments (e.g. Cioni et al. 2000; Aurnou & Olson
2001) are characterized by Pm ∼ O(10−5), and typical values in the Sun range from
Pm ∼ O(10−6) to Pm ∼ O(10−3) (Ossendrijver 2003). These physical values lead one
to conclude that Rm ≪ Re in planets and stars. On the other hand, Pm can be as large
as O(1022) in protogalactic plasmas, in which case the opposite limit Rm ≫ Re occurs
(Schekochihin et al. 2002a). Although natural dynamo systems have a widespread range
of Pm, direct numerical simulation (DNS) studies are limited to relatively modest values
of 10−2 . Pm . 10, due primarily to limitations in accessing large values of Re and/or
Rm (Sheyko et al. 2016; Schaeffer et al. 2017; Rincon 2019).
Simulations of isothermal, mechanically forced dynamos in triply periodic domains

have yielded insight into the behaviour of (λu, λB) with varying Re and Rm, and the
scaling behaviour of the magnetic and kinetic energy. Brummell et al. (2001) found a
scaling of the form λB ∼ Rm−1/2 that arises when a balance between magnetic field
generation and diffusion is present. A scaling law for magnetic energy (at small Rm),
Emag ∼ Re−1Rm1/2, was also derived based on a balance between Lorentz force and
the part of the viscous force that is induced by the magnetic field. Haugen et al. (2004)
showed that, for a fixed value of Pm, the ratio of magnetic energy to kinetic energy
(Emag/Ekin) converges to a constant value as the Reynolds number increases. It was
also found that the ratio of ohmic dissipation to viscous dissipation (ǫu/ǫB) converges
for large Re, while the converged value is weakly influenced by Pm.
A phenomenological model has been proposed to address the saturation of the ratio of

magnetic energy to kinetic energy (Emag/Ekin) for large Pm (Schekochihin et al. 2002b;
Tobias et al. 2013). The saturation process begins when the magnetic energy becomes
comparable with the kinetic energy at the viscous scale. The magnetic field and velocity
are modified scale-by-scale until, eventually, an equipartition between the two energies
is reached at the integral scale. When Pm is large but Pm < Re1/2, only a fraction of
the equipartition is reached, and a saturated level of Emag/Ekin ∼ Pm/Re1/2 is derived.
For small Pm where Pm ≪ 1, it is expected that the saturated level of the energy ratio
becomes independent of Pm, and the energy ratio Emag/Ekin approaches a constant
value (Fauve & Pétrélis 2007).
The primary goal of the present study is to investigate the scaling behaviour of heat

and momentum transport in RBC-driven dynamos, and the associated balances in the
momentum and induction equations. The scaling of viscous and ohmic dissipation and
their contribution to heat transport are analyzed. The influence of the magnetic Prandtl
number on the length scales associated with the velocity and magnetic fields, as well as
the ratio of magnetic energy to kinetic energy will also be discussed. In section 2 the
governing equations and numerical methods are discussed; in section 3 the results of the
numerical simulations are presented; and concluding remarks are given in section 4.

2. Governing equations and methods

We consider a fluid layer of depth H that is confined between plane parallel boundaries
with temperature difference ∆T = Tbot − Ttop > 0, where Tbot and Ttop are the
temperatures of the bottom and top surfaces, respectively. The gravitational acceleration
has constant magnitude g, and points perpendicular to the bottom boundary. The fluid
has density ρ, kinematic viscosity ν, thermal expansion coefficient α, thermal diffusivity
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κ, magnetic permeability µ and magnetic diffusivity η. The governing equations are non-
dimensionalized using the layer depth H, the large-scale magnetic diffusion timescale
H2/η, and magnetic field scale B =

√
ρµνη/H. The equations are then given by

(
∂t − Pm∇2

)
u = u× (∇× u) + Pm (∇×B)×B+

RaPm2

Pr
θẑ−∇p, (2.1)

(
∂t −∇2

)
B = ∇× (u×B) , (2.2)

(
∂t −

Pm

Pr
∇2

)
θ = −u · ∇θ, (2.3)

∇ · u = 0, (2.4)

∇ ·B = 0, (2.5)

where u = (u, v, w) is the velocity field, B = (Bx, By, Bz) is the induced magnetic field,
θ is the temperature, p is the pressure and the Cartesian coordinate system is denoted
by (x, y, z).
The Rayleigh number (Ra), thermal Prandtl number (Pr) and magnetic Prandtl

number (Pm) are defined as

Ra =
gα∆TH3

νκ
, Pr =

ν

κ
, Pm =

ν

η
. (2.6)

The particular values used for the fluid properties, as specified by Pr and Pm, are
determined by computational restrictions, and an interest in accessing dynamical regimes
that are applicable to geophysical and astrophysical systems. Planetary interiors are
characterized by Pr ≫ Pm, with a ratio Pr/Pm ≈ 105. In contrast, the Sun and other
stars are composed of plasmas that typically have Pr 6 Pm. Both the Pr/Pm < 1
and Pr/Pm > 1 regimes are therefore of physical interest, though both are also
computationally demanding. Extreme spatial resolutions are required to reproduce the
wide separation of magnetic and velocity scales (Tobias et al. 2013). In this study, Pm
is varied from 0.8 to 7, while for the majority of our cases Pr is fixed to unity; a set of
simulations with Pr = 0.05 and Pm = 1 is also presented.
The mechanical boundary conditions are impenetrable and stress-free such that

w =
∂u

∂z
=

∂v

∂z
= 0 at z = 0, 1. (2.7)

The thermal boundary conditions are isothermal,

θ = 1 at z = 0, and θ = 0 at z = 1. (2.8)

The magnetic field is enforced to be vertical at the boundaries,

Bx = By = 0 at z = 0, 1. (2.9)

Since the magnetic field is solenoidal, the above boundary conditions automatically
imply that

∂Bz

∂z
= 0 at z = 0, 1. (2.10)

Note that although the boundary conditions on the magnetic field allow for the devel-
opment of a non-zero horizontally averaged (mean) magnetic field, no appreciable mean
field has been observed in the simulations reported here. As the system is non-rotating
this is to be expected.



Scaling behaviour in small-scale dynamos 5

2.1. Energy relations

If we dot the momentum equation (2.1) with u and volumetrically average the result
we obtain

∂t

[
1

2
u2

]
= Pm [u · J×B] +

RaPm2

Pr
[wθ]− Pm

[
ζ2
]
, (2.11)

where the square brackets [·] denote a volumetric average only (no time average) and the
vorticity vector and the current density vector are denoted by ζ = ∇×u and J = ∇×B,
respectively. Similarly, by dotting the induction equation (2.2) with B we obtain

∂t

[
1

2
B2

]
= − [u · J×B]−

[
J2
]
. (2.12)

Multiplying the kinetic energy equation (2.11) by (1/Pm2) and the magnetic energy
equation (2.12) by (1/Pm), and adding the results gives

∂t [ekin + emag] =
Ra

Pr
[wθ]− 1

Pm

[
ζ2
]
− 1

Pm

[
J2
]
, (2.13)

where we define the kinetic energy density and the magnetic energy density as, respec-
tively,

ekin =
1

2Pm2
u2, (2.14)

emag =
1

2Pm
B2. (2.15)

The only requirement for the scalings of the energy densities is that their ratio differs by a
non-dimensional factor of Pm. The scalings used above are essentially in viscous diffusion
timescale units, and therefore facilitate comparison with RBC simulations (including
those reported here). If we now time average equation (2.13) we obtain

0 =
Ra

Pr
〈wθ〉 − 1

Pm
〈ζ2〉 − 1

Pm
〈J2〉, (2.16)

which simply states that the work done by the buoyancy force is exactly balanced by the
combined effects of ohmic and viscous dissipation.
The energy balance relationship (2.16) can be put into a slightly more useful form by

introducing the Nusselt number, Nu, which is defined as the ratio of total heat transfer
(convective and conductive) to conductive heat transfer. In our non-dimensional units
this becomes

Nu = 1 +
Pr

Pm
〈wθ〉. (2.17)

Therefore, the energy balance becomes

Ra

Pr2
(Nu− 1) = ǫB + ǫu, (2.18)

where we define the ohmic and viscous dissipation as

ǫB =
1

Pm2
〈J2〉, ǫu =

1

Pm2
〈ζ2〉. (2.19)

We note that, given our isothermal boundary conditions, an equivalent definition of
the Nusselt number is given by

Nu = −∂θ

∂z

∣∣∣∣
z=0

. (2.20)
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where θ is the horizontally and time averaged (mean) temperature. Multiplying the
heat equation by θ and space-time averaging the resulting equation then gives another
equivalent definition of the Nusselt number

Nu =
Pm

Pr
〈|∇θ|2〉, (2.21)

where the quantity on the righthand side is often referred to as the thermal dissipation.
In reporting our numerical results we shall only make use of the volume and time-

averaged kinetic and magnetic densities, which we denote by, respectively

Ekin ≡ 〈ekin〉, (2.22)

Emag ≡ 〈emag〉. (2.23)

Similarly, the Reynolds number is computed as

Re =
√
2Ekin. (2.24)

.

2.2. Simulation details

The equations are solved using a standard toroidal-poloidal decomposition of the
velocity and magnetic field such that the solenoidal conditions are satisfied exactly (e.g.
Jones & Roberts 2000). A fully spectral code (Marti et al. 2016) is used for simulating
the above equations with Fourier series in the horizontal dimensions and Chebyshev
polynomials in the vertical dimension. The non-linear terms are de-aliased with the
standard 2/3-rule. The equations are discretized in time with a third-order implicit-
explicit Runge-Kutta scheme (Spalart et al. 1991). The code was benchmarked with the
studies of Meneguzzi & Pouquet (1989) and Cattaneo et al. (2003).
While the most extreme three-dimensional RBC simulations have reached Rayleigh

numbers as large as Ra ≈ 1012 (e.g. Stevens et al. 2011), the accessible range of
Rayleigh numbers in dynamo simulations is restricted to significantly smaller values
of Ra. As shown below, the ohmic dissipation scale is always smaller than the viscous
dissipation scale for the cases studied here, implying that much higher spatial resolution
is required to simulate dynamos in comparison to RBC. For example, for a Pm = 5
dynamo, the required resolutions in both the horizontal and the vertical directions are
up to approximately two times the resolution needed for an equivalent Rayleigh number
for RBC. Moreover, the existence of Alfvén waves in dynamos requires a significantly
smaller numerical timestep in comparison to RBC. As Pm (or Rm) is increased the
spatiotemporal resolution requirements become increasingly severe.
The aspect ratio of the computational domain is defined as

Γ =
L

H
, (2.25)

where L is the periodicity length in the x and y dimensions (only domains of square cross-
section are considered here). The horizontal dimensions are scaled by integer multiples
(n) of the critical horizontal wavelength λc = 2π/kc, where kc is the critical horizontal
wavenumber. For the impenetrable, stress-free, isothermal boundary conditions used in
the present work, the critical Rayleigh number and critical wavenumber for the onset of
hydrodynamic convection are Rac = 27π4/4 ≈ 657.5 and kc = π/

√
2 ≈ 2.22, respectively.

Thus, the aspect ratio is given by

Γ =
2πn

kc
≈ 2.83n. (2.26)
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Figure 1: Estimated values of the critical magnetic Reynolds number Rmd and the critical
Rayleigh number Rad for the onset of dynamo action: (a) exponential growth rate (γ) of
magnetic energy versus magnetic Reynolds number (Rm); (b) exponential growth rate
(γ) of magnetic energy versus Rayleigh number (Ra). The interpolated critical magnetic
Reynolds number (Rmd) and the critical Rayleigh number for dynamo action (Rad) for
each magnetic Prandtl number (Pm) are shown by a ‘×’ symbol; (c) Rmd versus Pm;
(d) Rad versus Pm.

While large aspect ratios are generally preferred, they are obviously more computation-
ally demanding due to the larger resolution requirements. The aspect ratio is known to
have an influence on many computed quantities, though it is expected that simulation
statistics will converge as Γ is increased. Three-dimensional RBC simulations using
aspect ratios up to Γ = 128 show that whereas bulk quantities such as Nu and Re
asymptote to nearly constant values near Γ ≈ 4 for Ra > 2 × 107, other statistical
quantities such as integral scales require significantly larger values of Γ to observe
convergence (Stevens et al. 2018). Nevertheless, there is a trade-off between reaching
larger aspect ratios and reaching larger Rayleigh numbers. In the present work we strive
to reach large Rayleigh numbers while achieving convergence in Nu and Re; the smallest
aspect ratio used here is Γ ≈ 5.7. All simulation parameters are listed in the Appendix.

3. Results

3.1. Onset of dynamo action

Dynamo simulations were carried out with five different values of the magnetic Prandtl
number, Pm = (0.8, 1, 3, 5, 7). Approximate values for the critical magnetic Reynolds
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number for the onset of dynamo action, Rmd, were determined for each value of Pm by
iterating the Rayleigh number Ra. Each simulation was started from an initial state with
small random noise in the magnetic field. In this regime the influence of the Lorentz force
is negligible in comparison to other forces, and the magnetic energy would undergo an
exponential growth (on average) if Rm(Ra) > Rmd and exponential decay (on average)
when Rm(Ra) < Rmd. The growth or decay rate of magnetic energy is denoted by γ, and
was computed by a least-squares fit of the form ln(Emag) = γt+ b, where b is a constant
coefficient for individual cases. We note that γ is twice the dynamo growth rate.

As shown in figure 1(a, c), the critical magnetic Reynolds number is estimated by
a linear interpolation between the cases close to the onset of dynamo action. Some
additional cases not shown on the plot were also simulated, however, these cases were
found to be so close to Rmd that the magnetic energy oscillated over a wide range and
no clear exponential growth or decay was observed, confirming that our estimated Rmd

values are very close to the exact values. The critical magnetic Reynolds number shown
in figure 1(a) suggests that Rmd decreases with increasing Pm; this result is expected
and in agreement with previous studies (e.g. Schekochihin et al. 2007; Käpylä et al. 2018).

Bushby et al. (2012) and Käpylä et al. (2018) showed that dynamo action can be
excited at a smaller value of Rmd with the use of a larger aspect ratio. Käpylä et al.

(2018) found that, when Pm = Pr = 1, an aspect ratio Γ & 3 is needed for the growth
rate to saturate. In all of our simulations (including those cases with Pr < 1), an aspect
ratio of at least Γ & 8.5 is used for the determination of Rmd, thus the simulation domain
should be sufficiently large to avoid the issue arising from the use of small values of Γ .

While a small subset of simulations were performed with Pr = 0.01 and Pr = 0.05,
we did not systematically test the role of the aspect ratio for these cases. A single set of
tests for Pr = 0.05 (where we increased the aspect ratio Γ from ≈ 8.5 to ≈ 14.1) showed
that increasing the aspect ratio did decrease the growth rate. However, the estimated
values of Rmd and Rad were influenced only slightly.

The critical Rayleigh numbers for dynamo action (Rad) are estimated using the same
procedure that is used for computing Rmd. As shown in figure 1(b, d), Rad decreases
as Pm is increased. For Pm = (0.8, 1, 3, 5, 7) the estimated Rayleigh numbers for the
onset of dynamo action are Rad = (4.9 × 105, 2.2 × 105, 1.6 × 104, 5.2 × 103, 3.1 × 103).
As we will show in the following sections, these computed values of Rad can be useful
for collapsing specific data.

A selection of Pr = (0.01, 0.05) cases with Pm = 1 was also carried out to understand
how Pr influences dynamo action. Figure 1(a, c) shows that a smaller value of Pr yields
a lower value of Rmd when Pm is held constant. For Pr = (0.01, 0.05, 1) with Pm = 1 we
find critical magnetic Reynolds numbers ofRmd = (135, 138, 167). This effect might occur
because cases with lower Pr (at the same Rm and Pm) tend to have a more coherent
flow structure (e.g. Goluskin & Spiegel 2012; Vogt et al. 2018; Pandey et al. 2018), which
might be more beneficial to dynamo action. At the same Rm, dynamos with coherent
flow are found to have a larger growth rate than dynamos without coherent structures
(Tobias et al. 2013). However, a previous study of rotating spherical dynamos suggested
that higher values of Rm are required for dynamo action if Pr becomes too small, though
this effect is due to the influence of rotation (Simitev & Busse 2005). Nevertheless, the
Prandtl number appears to play an important role for the onset of small-scale dynamo
action; a more systematic investigation, beyond the scope of the present work, is needed
to understand this effect in detail.
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Figure 2: Heat transport for all cases: (a) Nusselt number (Nu) versus Rayleigh number
(Ra); (b) compensated Nusselt number, Nu/Ra2/7, versus Rayleigh number.

3.2. Heat transport

In all results presented hereafter we focus solely on the nonlinear regime of small-
scale dynamos. Figure 2(a) shows the Nusselt number (Nu) versus Ra for all the cases
investigated; the Nu ∼ Ra2/7 scaling is shown for reference. The compensated Nusselt
number (Nu/Ra2/7) is also plotted in figure 2(b). RBC cases without magnetic fields,
shown as the black circles, are also plotted for comparison. When the dynamos are
activated, the (Nu,Ra) curves depart from the RBC scaling. For each value of Pm,
a scaling slope slightly smaller than 2/7 (typically found in RBC at these parameter
values) appears. However, as Ra is increased further, these slopes appear to approach
a 2/7 scaling again, suggesting that the influence of Pm on the scaling of Nu is weak.
For a fixed value of Ra, the heat transfer is reduced as Pm is increased, or, equivalently,
as the strength of magnetic field is increased. Though not shown, the dynamos exhibit
similar mean temperature profiles in comparison to RBC, as suggested by the similar
heat transport scaling.
In figure 3 both the viscous dissipation, ǫu, and the ohmic dissipation, ǫB , are plot-

ted versus the Reynolds number. As suggested in figure 3(a) and the corresponding
compensated plot shown in the inset, the viscous dissipation strongly depends on the
Reynolds number; a numerical fit of ǫu = 1.14Re2.78 is found and shown. We find that
the influence of Pm on ǫu is negligible. A scaling of ǫu ∼ Re3 has been derived for
the viscous dissipation in the bulk of the turbulent thermal convection (outside of the
boundary layers), while ǫu ∼ Re5/2 has been derived for the boundary layer (Grossmann
& Lohse 2000; Scheel & Schumacher 2017). We find that our computed scalings are
intermediate between these predicted scalings. Although ohmic dissipation cannot be
purely determined by Re, we observe that in figure 3(b), ohmic dissipation is approaching
the viscous dissipation scaling line as Re increases. The compensated plot in figure 3(b)
shows the asymptotic scaling behaviour of ǫB ∼ Re2.78 when Re is large enough for each
individual Pm. This result suggests that the hydrodynamics properties of the fluid might
be controlling both viscous and ohmic dissipation, and inertia appears to play a more
important role in the energy cascade than the Lorentz force.
A quantity that provides a useful comparison between viscous and ohmic dissipation

is the fraction of ohmic dissipation defined by

fohm ≡ ǫB
ǫu + ǫB

. (3.1)
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Figure 3: Dissipation for all cases: (a) viscous dissipation, ǫu, versus Reynolds number
Re; (b) ohmic dissipation ǫB versus Re; (c) fraction of ohmic dissipation fohm versus Ra;
(d) fohm versus Ra/Rad, where Rad is the critical Rayleigh number for dynamo action.
A compensated plot is also shown as an inset in (a) and (b).

Figure 3(c) shows fohm versus Ra for the dynamo cases. As expected, the flow is
dominated by viscous dissipation near the onset of dynamo action. For each value of Pm,
fohm initially increases rapidly with increasing Ra, but appears to flatten and approaches
fohm → 0.5 as Ra is increased. For our most extreme case of Pm = 5 and Ra = 1× 107

(our largest value of Rm), a value of fohm ≈ 0.5 is reached, suggesting that in the regime
of large Ra both ohmic dissipation and viscous dissipation are contributing equally to
heat transport.

As shown in figure 3(d), fohm (for a given Pr) collapses when plotted versus the
rescaled Rayleigh number Ra/Rad, where Rad is the critical Rayleigh number for dynamo
action estimated in the previous section. This result suggests that fohm only has a weak
dependence on Pm, while the degree of supercriticality of the Rayleigh number Ra/Rad is
playing the dominant role. Similar convergent behaviour of fohm that is weakly dependent
on Pm was also observed in the hydromagnetic study of Haugen et al. (2004), although
their converged fraction of ohmic dissipation is fohm ≈ 0.7. We notice that our Pr = 0.05
cases suggest that Pr appears to not have a strong influence on the saturated level of
fohm, though the convergence rates appear to be affected.

Vertical profiles of the horizontally and time averaged local dissipation ǫu(z) and ǫB(z)
are shown in figure 4(a) for a typical dynamo with Pm = 5 and Ra = 6 × 105 (Rm =
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1122). Note that here

ǫu(z) =
1

Pm2
(∇× u)2, (3.2)

ǫB(z) =
1

Pm2
(∇×B)2. (3.3)

The ohmic dissipation is dominant near the boundary, while viscous dissipation is
dominant in the bulk when Rm is not too large. We also observe that ohmic dissipation
has a markedly thinner boundary layer in comparison to that of the viscous dissipation.
Moreover, both profiles show similar structure within the interior, suggesting that both
dissipation mechanisms are dynamically linked. The vertical profile of viscous dissipation
for the equivalent RBC case is also shown in figure 4(a) for comparison. The viscous
dissipation structure of the dynamo remains very similar to that of the RBC case
(although their magnitudes are different), suggesting that viscous dissipation has a direct
influence on ohmic dissipation in the bulk. The dissipation profiles for our most extreme
(largest value of Rm) dynamo case corresponding to Pm = 5 and Ra = 1 × 107 are
plotted in figure 4(b). Here the boundary layers become much thinner and the dissipation
is dominated by the contribution in the bulk. Again, we find that both profiles show
similar structure within the bulk, while the magnitudes are approaching similar values
as the Rayleigh number is increased.
The behaviour of the dissipation near the boundaries is likely influenced by the choice

of boundary conditions. Although we did not perform simulations with no-slip mechanical
boundary conditions (as opposed to the stress-free conditions used here), three additional
simulations with Pm = 5 and Ra = (1 × 104, 1 × 105, 6 × 105) were performed in
which electrically insulating electromagnetic boundary conditions were used. With these
insulating boundary conditions we found that the depth-dependence of the dissipation
profiles remained essentially unchanged relative to the vertical magnetic field boundary
conditions. Though we found differences in magnitudes of the total dissipation, no
systematic variation was investigated. We note that although the ohmic dissipation tends
to be largest near the boundaries, the integrated contribution of this boundary layer
region to the total dissipation is relatively small due to the thinness of the layer.

3.3. Flow speeds and energy

Figure 5(a,b) shows the Reynolds number Re and compensated Reynolds number
Re/Ra1/2 versus Ra for all cases. The convective free-fall scaling (Re ∼ Ra1/2) is shown
for reference. Curve fits to the data yield Re ∼ (Ra0.45, Ra0.43, Ra0.43, Ra0.44, Ra0.44)
for Pr = 1, Pm = (0.8, 1, 3, 5, 7), respectively. We observe that for a given value of Pr
and Ra, the dynamos tend to have smaller flow speeds in comparison to the RBC data
since the magnetic energy comes at the cost of kinetic energy. As Ra is increased, the
dynamos show a departure from the RBC scaling. The compensated Reynolds number
shown in figure 5(b) shows that this departure is very slight, though there is a trend of
increased departure with increasing Pm. The Pr = 0.05 cases show the most rapid growth
of Re with increasing Ra, though there is insufficient data to suggest any significant
difference in scaling behaviour between the different Prandtl numbers. Despite the fact
that approximately half of the dissipation is ohmic (i.e. fohm ≈ 0.4) for the Pr = 0.05
cases, there is very little difference in flow speeds between the dynamos and RBC. Of
course, the Nusselt numbers for these Pr = 0.05 cases are rather small: Nu . 4.

The efficiency of the dynamos can be measured by the ratio of the magnetic energy to
the kinetic energy (Emag/Ekin). As shown in figure 6(a), cases with different values of Pm
show similar behaviour: (Emag/Ekin) increases as Ra is increased, and it appears that
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Figure 4: Vertical profiles of horizontally and time averaged viscous dissipation ǫu(z) and
ohmic dissipation ǫB(z). (a) Pm = 5, Ra = 6 × 105 (Rm ≈ 1100). The corresponding
non-magnetic case (RBC) is also plotted for comparison. (b) Pm = 5, Ra = 1 × 107

(Rm ≈ 3900). The total dissipation ǫu and ǫB is calculated by depth averaging the
profile.
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Figure 5: Flow speeds for all cases: (a) Reynolds number versus Rayleigh number; (b)
Compensated Reynolds number (Re/Ra1/2) versus Rayleigh number.

the ratio approaches constant values at large Rayleigh number. The convergence of the
energy ratio was also observed in the mechanically forced dynamo simulations of Haugen
et al. (2004), however, the dependence on magnetic Prandtl number was not discussed.
The data can be reasonably collapsed by rescaling the energy ratio with Pm2/3, and
rescaling the Rayleigh number with Rad, as shown in figure 6(b). Since the growth of
Re depends on Pr (e.g. figure 5(a,b)), we do not expect the Pr = 0.05 data to follow
the same trend as the Pr = 1 data. When Ra/Rad is large enough, dynamos with larger
Pm can transfer kinetic energy to magnetic energy more efficiently. We note that for
Ra = 5 × 105 and Pm = 5 the energy ratio Emag/Ekin ≈ 0.2 agrees with the result of
Cattaneo et al. (2003). Our results suggest that this value represents the approximate
asymptote for the energy ratio when Pm = 5, and that the asymptote is Pm dependent.

The magnetic energy is plotted versus Rayleigh number in figure 7(a). The Emag ∼ Ra
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Figure 6: (a) The ratio of magnetic energy to kinetic energy (Emag/Ekin) versus the
Rayleigh number Ra; (b) rescaled energy ratio Emag/(EkinPm2/3) versus the rescaled
Rayleigh number (Ra/Rad) where Rad is the critical Rayleigh number for dynamo action.
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Figure 7: Magnetic energy for all cases: (a) Magnetic energy versus Rayleigh number;
(b) Compensated magnetic energy (Emag/(RaPm2/3)) versus rescaled Rayleigh number
Ra/Rad.

scaling is shown for reference. The magnetic energy increases relatively rapidly with Ra
beyond the onset of dynamo action, but appears to flatten and approaches Emag ∼ Ra
at large values of Ra/Rad. Note that since the energy ratio (Emag/Ekin) saturates at
large Ra/Rad, we expect that the magnitude of the magnetic energy must grow with
Ra/Rad at the same rate as the flow speed squared. The compensated magnetic energy
(Emag/(RaPm2/3)) versus the rescaled Rayleigh number Ra/Rad is shown in figure 7(b).
The Pm2/3 dependence is purely an ad-hoc fit to the data and is only meant to provide
a rough scaling with Pm in the asymptotic regime The curves become relatively flat at
large Rayleigh numbers, suggesting that the Emag ∼ Ra scaling might be an asymptotic
result for high Rm RBC dynamos.

3.4. Length scales

The characteristic length scales are computed for all simulations. Two length scales
are computed: (1) the Taylor microscale; and (2) the integral length scale. The Taylor
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microscale is the length scale at which the influence of viscous or ohmic dissipation
becomes important, and can thus provide an estimate for the dissipation length scales.
In contrast, the integral scale is the correlation length scale for the corresponding field.
The magnetic Taylor microscale λB and the velocity Taylor microscale λu are defined
by, respectively,

λB =

√
〈B2〉

〈(∇×B)2〉 , (3.4)

and

λu =

√
〈u2〉

〈(∇× u)2〉 . (3.5)

Note that these length scales are computed over the entire fluid layer, including the
boundary layers. Some tests were done in which the boundary layers were excluded from
the calculation, and showed their influence was negligible. We therefore only present
calculations that included the entire fluid layer.
The velocity and magnetic Taylor microscales are plotted versus the Rayleigh number

in figure 8(a), which shows in detail how these length scales are modified by Pm. The
velocity Taylor microscale λu shows very little change with increasing Pm. Some of
the data points show a small increase in λu with increasing Pm; this effect can be
understood by the fact that the dynamo converts kinetic energy into magnetic energy
and therefore results in a slight decrease of the Reynolds number for a given value of Ra.
However, there is no appreciable difference in the scaling behaviour of λu with Ra for
the various values of Pm used here: curve fits to the data yield λu ∼ (Ra−0.153, Ra−0.171,
Ra−0.170, Ra−0.167, Ra−0.169) for Pm = (0.8, 1, 3, 5, 7), respectively. The scaling of λB

is noticeably steeper than the scaling for λu; the corresponding curve fits are λB ∼
(Ra−0.235, Ra−0.242, Ra−0.245, Ra−0.251, Ra−0.245), for Pm = (0.8, 1, 3, 5, 7), respectively.
We emphasize that for all of our simulations use Pm = O(1).

Figure 8(b,c) shows the velocity and magnetic Taylor microscales versus Reynolds
number and magnetic Reynolds number. We observe that Pm only has an influence on
the magnitude of λu and λB , however, the scaling behaviour of these length scales remains
basically the same for all Pm. The scaling λB ∼ Rm−1/2 is also plotted in figure 8(c)
for reference. Previous studies of mechanically forced isothermal dynamos suggested that
λB scales as Rm−1/2 for fixed Re at moderate Rm (Brummell et al. 2001). Both results
have a Rm−1/2 dependence, however, we note that they are in a relatively low Re and
Rm regime, and they assume λB does not depend on Re and the magnetic length scale
is determined by the balance between advection and diffusion in the induction equation.
Our result suggests that λB cannot be purely determined by Rm. As we will show in a
later section, there does exist a subdominant balance in the induction equation between
induction and diffusion for our cases. Of course, given the very different forcing and
boundary conditions between our investigation and that of Brummell et al. (2001), one
might expect differences in the scaling behaviour.
As shown in figure 8(d), the magnetic Taylor microscale collapses when rescaled with

Pm, a best-fit yields λBPm0.30 = 1.29Ra−0.25. Since Re scales with Ra, we also plot
the magnetic Taylor microscale as a function of Re in figure 8(e), where a scaling
law λBPm0.35 = 1.1Re−0.56 is found. Figure 8(e) shows the velocity Taylor microscale
collapses very well when plotted against Re, which suggests that the influence of Pm on
the velocity length scale is very weak, and the magnetic field has a small effect. Curve
fits for all dynamo cases as well as RBC cases yields λu = 0.97Re−0.39. For Kolmogorov
turbulence, a scaling law of λu ∼ Re−1/2 is obtained (Pope 2000). However, dynamos
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Figure 8: Scaling behaviour of the magnetic Taylor microscale (λB) (solid marks) and
velocity Taylor microscale (λu) (empty marks). (a) Taylor microscale plotted against
Rayleigh number; (b) Taylor microscale plotted against Reynolds number; (c) Taylor
microscale plotted against magnetic Reynolds number; (d) The rescaled magnetic Taylor
microscale (λBPm0.30) versus Rayleigh number; (e) The rescaled magnetic Taylor
microscale (λBPm0.35) (solid marks) versus the Reynolds number and the velocity Taylor
microscale (λu) (empty marks) versus the Reynolds number.

in the Rayleigh-Bénard convection geometry cannot be characterized by homogeneous
isotropic turbulence, so it is reasonable to expect a modified scaling here. The absence
of Pm in this scaling law is also expected, as the viscous dissipation appears to be
independent of Pm within our accessible parameter range.

It is commonly hypothesized that the ohmic dissipation length scale will occur within
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Figure 9: Depth-averaged length scales for Pm = 5. The velocity Taylor microscale (λu)
calculated from energy and dissipation, velocity Taylor microscale (λ′

u) calculated from
energy spectra, and velocity integral scale (ℓu) plotted versus Rayleigh number. The
corresponding magnetic length scales are also shown.

the inertial range of the turbulence when Pm ≪ 1 (Re ≫ Rm) (e.g. Rincon 2019; Tobias
2019). Such a regime requires, at a minimum, that λB ≫ λu. Though the simulations in
the present study are obviously limited with respect to the accessible parameter range,
especially in the restriction to Pm = O(1), we observe λu > λB in all cases. Moreover, the
results (especially the Pm = 0.8 cases) shown in figure 8 indicate that the scaling slope
(as a function of Ra, Re, Rm) for the ohmic dissipation length scale is always steeper
than the corresponding slope for the viscous dissipation length scale, and that this slope
remains mostly independent of Pm. The case Pm = 0.8 was chosen to allow Pm < 1,
while retaining a sufficiently large Rm; while this particular case is certainly not a small
magnetic Prandtl number, we do not observe a change in the scaling slope with this case
relative to Pm > 1. Thus, at least for the limited parameter range of the present study,
there is no indication that the slopes change drastically either with increasing Ra or
decreasing Pm. However, the Pm we explored here are Pm ∼ O(1), it remains unclear
whether there would be a change in the scaling slope for ohmic dissipation scale when
Pm ≪ 1. In that case, we might expect a larger ohmic dissipation scale than the viscous
scale.
The depth-dependent integral scales for the magnetic field and velocity field are defined

by, respectively (e.g. Meneguzzi & Pouquet 1989),

ℓB =

∫
k−1Êmag(k)dk∫
Êmag(k)dk

, ℓu =

∫
k−1Êkin(k)dk∫
Êkin(k)dk

, (3.6)

where Êmag(k) and Êkin(k) are the magnetic and kinetic energy spectra, k = (kx, ky)

is the horizontal wavenumber vector and k =
√
k2x + k2y. The corresponding depth-

dependent Taylor microscales can be computed with the definitions

λ′

B =

( ∫
Êmag(k)dk∫

k2Êmag(k)dk

)1/2

, λ′

u =

( ∫
Êkin(k)dk∫

k2Êkin(k)dk

)1/2

. (3.7)

We observe a weak dependence on the depth for all of the computed length scales defined
above, and therefore only report the depth-averaged values.
The time averaged values of the spectra-based length scales are calculated for many
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Figure 10: Energy spectra. (a) Kinetic energy spectra for Pm = 5 dynamos; (b) Magnetic
energy spectra for Pm = 5 dynamos; (c) Energy spectra at Ra = 1× 107 for Pm = 0.8
(Rm = 742) and Pm = 5 (Rm = 3948); (d) Kinetic energy spectra for RBC. The spectral
slopes of k1/3 and k−5/3 are plotted for reference only.

of the Pm = 5 cases. As shown in figure 9, we find nearly identical scaling behaviour
between both λ′

B and λB , and λ′

u and λu. As expected, a divergence between the velocity
Taylor microscale and the velocity integral scale occurs as the Reynolds number (Rayleigh
number) increases. However, figure 9 also shows that the scale separation for the magnetic
field is relatively weak since the scaling slopes for the two magnetic length scales are close
to one another. The integral scale for the velocity appears to be sensitive to the change
of aspect ratio (e.g. Stevens et al. 2018). As a result, some velocity integral scale data
does appear to follow a clear scaling trend. We should note that the magnetic integral
scale appears to have a slope very close to the velocity Taylor microscale, which indicates
that there is correlation between the viscous force and the Lorentz force (or magnetic
induction).

3.5. Energy spectra

Figure 10(a, b) show how the kinetic and saturated magnetic energy spectra change

with Rayleigh number for Pm = 5 dynamos. The Êkin(k) ∼ k−5/3 scaling (typically
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found in the Kolmogorov inertial subrange) is also plotted for reference in figure 10(a),
which shows the development of an inertial subrange. The magnetic energy spectra appear
to flatten over a large range of wavenumber as Ra is increased. For a fixed Rayleigh
number, kinetic energy dominates over magnetic energy at large scales. However, for
all our (Pm ∼ O(1)) cases, magnetic energy spectra exceed kinetic energy spectra for
large wavenumbers. As shown in figure 10(c), the magnetic energy becomes slightly
larger than kinetic energy at small scales, even for the Pm = 0.8 cases. A k1/3 scaling
behaviour for the magnetic energy spectra at large scales has been observed in the
previous hydromagnetic turbulence study of Haugen et al. (2004); they also found a k−5/3

subrange after the peak of the magnetic energy spectra. These two slopes are plotted in
figure 10(b) only for reference, since we do not expect the scalings to be the same for
the two different systems. We note that the change in magnetic energy spectra occurs
at the wave number where the magnitudes of magnetic energy and kinetic energy are
comparable. The kinetic energy spectra for RBC (and the k−5/3 slope) are also plotted in
figure 10(d) for reference. We observe that when compared with the RBC cases, dynamo
action reduces the amplitude of the peak of kinetic energy spectra and makes the spectra
tail less steep. The reduction in the peak amplitude is the result of transferring kinetic
energy to magnetic energy by dynamo actions, while the slight increase in the spectra at
high wavenumber is due to the Lorentz force driving motion at small scales as Pm > 1.

3.6. Forces

In this section we analyze the force balance in the momentum equation to understand
the role of the Lorentz force. For the vertical component of the momentum equation we
remove the hydrostatic part by decomposing the flow variables into a horizontal average
and a fluctuation. For instance, u = U+u′, b = B+b′, Θ = Θ+θ′, whereU,B and Θ are
the horizontal mean components, u′, b′ and θ′ are the fluctuating components, and p′ is
the reduced pressure. Under the present circumstances we find the mean components
U, B are much smaller than the corresponding fluctuating components u′, b′. The
fluctuating vertical component of the momentum equation is found by subtracting the
mean (hydrostatic) balance to give

∂tw
′

︸︷︷︸
Ft

= Pm∇2w′

︸ ︷︷ ︸
Fv

+(−u′ · ∇w′ + ∂zw′2)︸ ︷︷ ︸
Fa

+Pm(b′ · ∇b′z − ∂zb′2z )︸ ︷︷ ︸
Fl

+
RaPm2

Pr
θ′

︸ ︷︷ ︸
Fb

− ∂zp
′

︸︷︷︸
Fp

.

(3.8)
We use the same symbols for denoting the various terms in the horizontal components
of the momentum equation.

The time averaged rms values of the different terms in the momentum equation are
calculated at the midplane (z = 0.5) and shown in figure 11(a,b). The vertical dependence
of the forces was also analyzed using vertical profiles as in Yan et al. (2019), and it was
found that the data shown in figure 11(a,b) was representative of all depths. The Lorentz
force initially grows rapidly with increasing Ra, then slows once it becomes comparable
in magnitude with the viscous force. We note that even for the largest value of Ra,
the Lorentz and viscous forces are approximately the same magnitude. We observe that
the time derivative term (inertia) grows at the fastest rate with increasing Ra among
all terms in the horizontal components of the momentum equation. The corresponding
forces for RBC (without magnetic field) are plotted in figure 11(c,d) for comparison. We
observe that the scaling of the buoyancy force is basically the same for both the dynamo
and RBC, whereas the scaling slopes for all other forces in the dynamos are reduced
relative to RBC.
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Figure 11: Time-averaged rms values of forces in the momentum equation at the midplane
(z = 0.5) for (a,b) dynamos with Pm = 5; and (c,d) RBC. (a,c) Forces in the horizontal
direction versus Rayleigh number; (b,d) forces in the vertical direction versus Rayleigh
number. Advection and the Lorentz, viscous, buoyancy, pressure gradient and inertia
forces are denoted by Fa, Fl, Fv, Fb, Fp and Ft, respectively.

Horizontal spectra are computed for all forces in the momentum equation at the mid-
plane, and are shown in figure 12 for (a) Pm = 5 dynamo and (b) RBC at Ra = 6× 105.
A convective free-fall balance in which the pressure gradient force, buoyancy force and
advection are comparable, is present at the largest spatial scales (smallest wavenumbers)
for both cases. For the dynamo the Lorentz force is subdominant at large spatial scales
(k . 70), and is in a near perfect balance with the viscous force at small spatial scales
(k & 40). The spectra of the sum of the Lorentz force and the viscous force are calculated
and plotted as the dashed line. At small scales, the sum of the two forces is one order of
magnitude smaller than both Lorentz force and viscous force, suggesting that there is an
almost exact balance between Lorentz force and viscous force locally. Part of the velocity
driven by the Lorentz force is dissipated by viscosity locally and almost instantaneously.
This result suggests that the viscous length scale might be controlling the magnetic field
length scales, which explains the similar scaling slopes for the velocity Taylor microscale
and the magnetic integral scale. A similar argument for the balance between the viscous
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Figure 12: Horizontal spectra of the various forces in (a) dynamo with Pm = 5 and
(b) RBC. For both cases Ra = 6 × 105. (c) Lorentz force and viscous force spectra for
Pm = 5 dynamos.

force and the Lorentz force is also discussed in previous studies (Brummell et al. 2001;
Schekochihin et al. 2002c), and our spectral result serves as direct evidence for this local
balance. Note that the spectra we show here are for Pm = 5 cases. For small Pm, it is
possible that the Lorentz force might behave quite differently at small scale, though in
all of our cases we find that the Lorentz force is driving the flow at small scale. When
compared with the RBC case of figure 12(b), broader spectra are observed for the dynamo
case; advection, viscous and inertia forces are slightly reduced at large scales and larger
in magnitude at small scales, which suggests that the Lorentz force is consuming kinetic
energy at large scales while driving the flow at small scales.
Figure 12(c) shows the Lorentz force and viscous force spectra for Pm = 5 dynamos

at Ra = (4 × 104, 2 × 105, 6 × 105, 1 × 106), respectively. Initially (Ra ∼ 4 × 104), the
Lorentz force is weaker than the viscous force at large scales, and is in balance with the
viscous force at small scales. When Ra increases, the Lorentz force exceeds the viscous
force at large scales, this result is also reflected in the relatively rapid initial growth of
Fl in figure 11(a,b). However, as Ra is increased further (Ra > 2 × 105), the growth of
the Lorentz force at large scales appears to slow down; both the Lorentz force and the
viscous force spectra appear to shift to larger wavenumber, and the length scale where
the two forces are balanced becomes smaller. We note that the spectra of the Lorentz
force appears to flatten and saturate at small wavenumber as Ra is increased. This result
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suggests that the Lorentz force might be limited by the viscous force (at least at small
length scales), and the growth rate of the Lorentz force appears to saturate.

3.7. Induction equation balances

Analogous to the force balance analysis of the momentum equation in the previous
section, here the relative sizes of the different terms in the magnetic induction equation
are analyzed in both physical and spectral space. Figure 13(a,b,c,d) shows vertical profiles
of the instantaneous horizontal rms of each term in the induction equations, for two
typical cases both with Ra = 106, and Pm = 1 and Pm = 5, respectively; these cases
correspond to magnetic Reynolds numbers of Rm ≈ 310 and Rm ≈ 1340. Though not
shown, cases with different values of Pm and Ra show similar behaviour. Not surprisingly,
given that Rm ≫ 1, the primary balance indicates that advection of magnetic field
dominates,

∂tB+ u · ∇B ≈ 0. (3.9)

In addition, a sub-dominant balance is observed between magnetic induction and mag-
netic diffusion,

B · ∇u ∼ ∇2B. (3.10)

We also find that the magnitude of ∂tB+ u · ∇B is of the same order as induction and
diffusion.
The depth-dependence of the different terms is similar for the two different cases

shown. Interestingly, even though Rm is approximately an order of magnitude larger for
the Pm = 5 case, the relative difference in magnitude between the leading order balance
and the subdominant balance changes only slightly; for instance |u ·∇B|/|∇2B| ≈ 3 and
|u · ∇B|/|∇2B| ≈ 4 for Pm = 1 and Pm = 5, respectively. This result could be due to
the small-scale magnetic Reynolds number not changing appreciably.
The spectral space representation of the different terms in the induction equation is

given in figure 13(e,f) for the same Ra = 106, Pm = 1 and Pm = 5 cases, respectively.
Again, the data is computed at one instant in time. Whereas ∂tB and u·∇B are balanced
at all length scales, the stretching (B · ∇u) and diffusion (∇2B) terms are balanced at
different length scales. This scale-dependent balance can be understood by a simple scale
analysis of the sub-dominant balance. For instance, equation (3.10) yields

Rm

Lu
∼ 1

L2

B

, (3.11)

where the velocity has the non-dimensional units of magnetic Reynolds number, Lu is
a characteristic length scale for the velocity and LB is a characteristic length scale for
the magnetic field. Since the magnetic length scale is in the diffusion term (∇2B), it
is natural to assume that this length scale can be captured by the magnetic Taylor
microscale LB = λB . Thus we have

Rm ∼ Lu

λ2

B

. (3.12)

However, it is not obvious what Lu represents. We plug in the magnetic Taylor
microscale (λB) and test the velocity Taylor microscale (λv) as well as the velocity integral
scale (ℓu) , the results are shown in figure 14. We find that when using the velocity Taylor
microscale (λv), the curve for the compensated magnetic Reynolds number Rmλ2

B/λu is
relatively flat, however we can still see a systematic increase of Rmλ2

B/λu with increasing
Ra. When we apply the velocity integral scale ℓu, the compensated magnetic Reynolds
number Rmλ2

B/ℓu stays nearly constant over a large range of Ra, suggesting that the
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Figure 13: Instantaneous balances in the induction equation. Vertical profiles of the
horizontal rms of each term present in the vertical component [(a),(b)] and in the
horizontal component [(c),(d)] of the induction equation and the corresponding power
spectra (of all three components) at the mid-plane [(e),(f)] are shown. Case Pm = 1,
Ra = 1×106 is shown in [(a),(c),(e)]. Case Pm = 5, Ra = 1×106 is shown in [(b),(d),(f)].
Magnetic induction, diffusion, advection, and time derivative are denoted by B · ∇u,
−u · ∇B, ∇2B, and ∂tB. w and Bz represent the vertical component of u and B, while
uh and Bh represent the vertical component.
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Figure 14: Rescaled magnetic Reynolds number versus Rayleigh number for Pm = 5
cases. Both Rmλ2
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B/ℓu results are shown.

velocity integral scale ℓu can better characterize the length scale in the induction terms
than the Taylor microscale. This result implies that the magnetic diffusion length scale
is controlled by Rm and the velocity integral scale:

Rm ∼ ℓu
λ2

B

. (3.13)

4. Discussion

RBC-driven dynamos have been investigated numerically over a range of Rayleigh
numbers and magnetic Prandtl numbers. Heat transport in dynamos is reduced relative
to RBC, primarily because of the associated reduction in kinetic energy required for
the generation of magnetic energy. Simulations at the largest values of Ra suggest a heat
transport scaling with Ra that is similar to RBC, i.e. Nu ∼ Ra2/7 within our investigated
range of Ra. The scaling behaviour of the flow speeds with increasing Rayleigh number
is also similar to RBC (Re ∼ Ra1/2). An asymptotic scaling for the magnetic energy
Emag ∼ Ra is also observed at large Ra/Rad. Given a large enough value of Ra/Rad, the
ratio of magnetic energy to kinetic energy Emag/Ekin appears to saturate for individual
Pm, while the saturated level depends on Pm; we find reasonable collapse of the data
using Emag/Ekin ∼ Pm2/3. This result suggests that Pm is controlling the efficiency of
dynamo action.
Despite the similar scaling behaviour in Nu for both RBC and RBC-driven dynamos,

for a fixed value of Pm, the simulations show that ohmic dissipation becomes equally
important to viscous dissipation as the Rayleigh number increases, as characterized by
an ohmic dissipation fraction fohm → 0.5. The scaling of the viscous dissipation in
the dynamos is observed as ǫu ∼ Re2.8, which is nearly identical to equivalent RBC
simulations (Grossmann & Lohse 2000). Moreover, the ohmic dissipation is observed to
approach the scaling ǫB ∼ Re2.8 as Ra is increased. The findings suggest that ohmic
dissipation is controlled by viscous dissipation.
The Taylor microscale is computed for both the velocity field and magnetic field,

thus providing a measure of the viscous and ohmic dissipation scales, respectively. The
ohmic dissipation scale is observed to be smaller than the viscous dissipation scale for
all simulations, even for the Pm = 0.8 cases. Furthermore, the ohmic dissipation length
scale decreases more rapidly with increasingly Rayleigh number (Reynolds number) in
comparison to the viscous dissipation length scale. Curve fits yield scalings of λB ∼
Re−0.56Pm−0.35 and λu ∼ Re−0.39 for velocity field and magnetic field Taylor microscale,
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respectively. Unless a change in scaling occurs at higher Rayleigh numbers beyond those
accessible in the present study, this result suggests that the ohmic dissipation scale is
always less than the viscous dissipation scale, regardless of the value of the magnetic
Prandtl number for the values of Pm considered in this paper.

A numerical analysis of the forces in both physical and spectral space shows that
the viscous and Lorentz forces are in balance at small spatial scales. The viscous force
in dynamos is enhanced at these same scales relative to RBC. At large spatial scales
the Lorentz force dominates the viscous force, but it remains subdominant relative
to buoyancy and inertia. A two-dimensional (in the horizontal plane) spectral energy
analysis suggests that the Lorentz force is primarily dissipative at large spatial scales,
but acts as a source of kinetic energy at small spatial scales; this result might explain
why the viscous force at small spatial scales is enhanced in dynamos relative to RBC.

To leading order, the induction equation is characterized by a conservation of magnetic
flux. Stretching and diffusion act at higher order and are dominant at large and small
spatial scales, respectively. According to this balance, the magnetic diffusion length scale
is found to be related to the magnetic Reynolds number and velocity integral scale via:
λB ∼ (ℓu/Rm)1/2.

In light of the limited range in Rayleigh numbers accessible to DNS studies of dynamos,
several questions remain. Since the buoyancy force has a relatively smaller growth rate
with increasing Ra when compared to that of the Lorentz force, it remains unclear
whether the growth of the Lorentz force will slow down and approach the scaling of the
buoyancy force when Ra becomes large enough, or if the Lorentz force will eventually
dominate over the buoyancy force and change the dynamics fundamentally. Simulations
with higher Ra are also needed to verify the asymptotic convergence behaviour of flow
speeds, magnetic energy and dissipation. For planetary interiors and stars the thermal
Prandtl number is less than unity, the dependence of the magnetic to kinetic energy
ratio and the ohmic dissipation fraction on Pr remains unclear and might also need to
be explored in more detail.

We reiterate that all of the simulations presented here use Pm = O(1). In the small Pm
regime in which Pm ≪ 1, one might expect the stretching of the eddies to be balanced
by magnetic diffusion on the ohmic dissipation length scale (Tobias 2019; Rincon 2019).
Although the low Pm regime is currently beyond the reach of direct numerical simulation,
our results (especially the Pm = 0.8 and Pm = 1 cases) suggest that instead of a sudden
change at Pm = 1, the transition to the low Pm regime might be gradual, or occur
sharply at much lower Pm. This observation is consistent with calculations (Tobias et al.
2012) that suggest numerical resolutions of (104)3 modes are required to reach this large-
Re regime. Further investigation with smaller Pm will therefore be needed to explore
the mechanisms that drive the changes between the scalings.
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silicon-oxygen-iron mixtures at Earth’s core conditions. Phys. Rev. B 87, 014110.
Qiu, X. L. & Tong, P. 2001 Large-scale velocity structures in turbulent thermal convection.

Phys. Rev. E 64 (3), 036304.
Rincon, F. 2019 Dynamo theories. J Plasma Phys 85 (4).
Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. 2017 Turbulent geodynamo

simulations: a leap towards earth’s core. Geophys. J. Int. 211 (1), 1–29.
Scheel, J. D. & Schumacher, J. 2017 Predicting transition ranges to fully turbulent viscous

boundary layers in low prandtl number convection flows. Phys. Rev. Fluids 2, 123501.
Schekochihin, A. A., Boldyrev, S. A. & Kulsrud, R. M. 2002a Spectra and growth rates

of fluctuating magnetic fields in the kinematic dynamo theory with large magnetic Prandtl
numbers. Astrophys. J. 567 (2), 828.

Schekochihin, A. A, Cowley, S. C, Hammett, G. W, Maron, J. L & McWilliams, J. C
2002b A model of nonlinear evolution and saturation of the turbulent MHD dynamo. New
J. Phys 4 (1), 84.

Schekochihin, A. A., Iskakov, A. B., Cowley, S. C., McWilliams, J. C., Proctor,
M. R. E. & Yousef, T. A. 2007 Fluctuation dynamo and turbulent induction at low
magnetic Prandtl numbers. New J. Phys. 9 (8), 300.

Schekochihin, A. A., Maron, J. L., Cowley, S. C. & McWilliams, J. C. 2002c The
small-scale structure of magnetohydrodynamic turbulence with large magnetic Prandtl
numbers. Astrophys. J. 576 (2), 806.

Sheyko, A., Finlay, C. C. & Jackson, A. 2016 Magnetic reversals from planetary dynamo
waves. Nature 551, 551–554.

Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection.
Phys. Rev. A 42 (6), 3650.

Simitev, R. & Busse, F. H. 2005 Prandtl-number dependence of convection-driven dynamos
in rotating spherical fluid shells. J. Fluid Mech. 532, 365–388.

Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier-Stokes
equations with one infinite and two periodic directions. J. Comp. Phys. 96, 297–324.

Spiegel, E. A. 1965 Convective instability in a compressible atmosphere. I. Astrophys. J. 141,
1068–1090.
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Appendix

The details of our numerical simulations are listed in this section.
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Ra Pr Pm Nx ×Ny ×Nz ∆t n Nu Re Rm Emag

1× 106 1 0.8 432× 432× 192 4× 10−6 2 13.38± 0.32 329.9± 6.8 263.9± 5.4 100± 20
2× 106 1 0.8 576× 576× 216 1× 10−6 2 15.91± 0.35 447.7± 11.1 358.1± 8.9 798± 47
4× 106 1 0.8 576× 576× 288 4× 10−7 2 19.49± 0.49 599.9± 13.0 479.9± 10.4 (5.25± 0.62)× 103

1× 107 1 0.8 768× 769× 288 2× 10−7 2 25.54± 0.65 927.5± 22.5 742.0± 18.0 (1.51± 0.11)× 104

1× 104 1 1 144× 144× 64 1× 10−4 5 3.66± 0.08 37.6± 0.6 37.6± 0.6
2× 104 1 1 216× 216× 64 1× 10−4 5 4.41± 0.08 53.9± 0.9 53.9± 0.9
4× 104 1 1 384× 384× 72 1× 10−4 5 5.34± 0.09 76.4± 1.1 76.4± 1.1
1× 105 1 1 384× 384× 96 6× 10−5 5 6.88± 0.12 115.9± 1.5 115.9± 1.5
2× 105 1 1 384× 384× 96 4× 10−5 5 8.44± 0.13 161.2± 1.6 161.2± 1.6
3× 105 1 1 576× 576× 108 1× 10−5 4 9.48± 0.19 192.3± 2.2 192.3± 2.2 30± 5
4× 105 1 1 648× 648× 108 5× 10−6 4 10.05± 0.14 212.2± 2.5 212.2± 2.5 233± 44
6× 105 1 1 648× 648× 144 2× 10−6 4 11.40± 0.16 257.9± 2.6 257.9± 2.6 507± 65
1× 106 1 1 648× 648× 192 1× 10−6 3 13.20± 0.22 314.6± 4.9 314.6± 4.9 (1.52± 0.19)× 103

2× 106 1 1 576× 576× 216 6× 10−7 2 15.68± 0.45 421.4± 13.6 421.4± 13.6 (3.96± 0.66)× 103

4× 106 1 1 576× 576× 288 2× 10−7 2 18.85± 0.51 568.4± 16.9 568.4± 16.9 (9.33± 0.73)× 103

1× 107 1 1 864× 864× 432 1× 10−7 2 24.46± 0.54 865.4± 23.9 865.4± 23.9 (2.02± 0.16)× 104

1× 104 1 3 192× 192× 72 2× 10−5 5 3.65± 0.06 37.3± 0.4 111.8± 1.3
1.5× 104 1 3 192× 192× 72 2× 10−5 3 4.14± 0.14 46.7± 1.5 140.0± 4.4 0.2± 0.1
2× 104 1 3 384× 384× 72 1× 10−5 3 4.44± 0.12 53.4± 0.8 160.1± 2.4 22± 8
3× 104 1 3 384× 384× 96 1× 10−5 3 4.97± 0.16 64.8± 1.8 194.4± 5.3 57± 20
4× 104 1 3 384× 384× 96 1× 10−5 3 5.32± 0.17 72.7± 2.0 218.0± 6.1 97± 33
6× 104 1 3 384× 384× 96 4× 10−6 3 5.92± 0.12 85.8± 1.4 257.4± 4.2 231± 39
1× 105 1 3 432× 432× 108 2× 10−6 3 6.77± 0.20 108± 2.5 325± 7.4 513± 79
2× 105 1 3 576× 576× 144 1× 10−6 3 8.15± 0.20 145.1± 3.3 435± 10 967± 68
4× 105 1 3 648× 648× 192 6× 10−7 3 9.85± 0.23 194.1± 3.3 582± 10 (2.05± 0.14)× 103

1× 106 1 3 768× 768× 288 2× 10−7 3 12.33± 0.25 290.2± 6.5 871± 20 (5.47± 0.38)× 103

Table 1: Details of the numerical simulations for Pr = 1, Pm = (0.8, 1, 3) cases. The non-dimensional parameters are
the Rayleigh number Ra, the Prandtl number Pr, the magnetic Prandtl number Pm, the aspect ratio of the domain Γ = 2πn

kc
,

the Nusselt number Nu, the Reynolds number Re, the magnetic Reynolds number Rm and the magnetic energy Emag. The
spatial resolution is quoted in terms of the de-aliased physical space grid points Nx×Ny ×Nz, where (Nx, Ny) is the horizontal
resolution and Nz is the vertical resolution. The numerical timestep size is denoted by ∆t. The estimated critical Rayleigh
numbers for dynamo action (Rad) are (4.9× 105, 2.2× 105, 1.6× 104) for Pm = (0.8, 1, 3), respectively.
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Ra Pr Pm Nx ×Ny ×Nz ∆t n Nu Re Rm Emag

2× 103 1 5 96× 96× 48 5× 10−4 5 2.13± 0.05 13.4± 0.3 67.1± 1.3
4× 103 1 5 144× 144× 48 2× 10−4 5 2.76± 0.06 22.1± 0.4 110.5± 1.8
5× 103 1 5 384× 384× 96 2× 10−4 5 2.96± 0.06 25.4± 0.4 126.8± 1.9
6× 103 1 5 384× 384× 96 1× 10−5 5 3.11± 0.05 27.8± 0.4 139.1± 1.9 5± 2
7× 103 1 5 432× 432× 96 1× 10−5 5 3.26± 0.06 30.5± 0.5 152.5± 2.7 9± 4
8× 103 1 5 432× 432× 96 1× 10−5 5 3.39± 0.06 32.8± 0.6 163± 2.8 15± 6
1× 104 1 5 432× 432× 108 8× 10−6 5 3.62± 0.07 36.6± 0.6 183.0± 3.0 23± 6
2× 104 1 5 432× 432× 108 2× 10−6 5 4.31± 0.06 51.1± 0.6 255.5± 3.0 97± 8
4× 104 1 5 576× 576× 144 1× 10−6 5 5.16± 0.07 70.1± 0.9 350.4± 4.5 262± 13
1× 105 1 5 576× 576× 216 5× 10−7 3 6.61± 0.21 103.3± 2.2 516.8± 11.0 744± 49
2× 105 1 5 768× 768× 216 3× 10−7 3 8.13± 0.18 137.8± 3.4 689.3± 16.9 (1.72± 0.08)× 103

4× 105 1 5 648× 648× 288 1× 10−7 2 9.77± 0.40 181.1± 3.5 905.7± 17.6 (3.04± 0.28)× 103

6× 105 1 5 648× 648× 288 1× 10−7 2 10.75± 0.42 224.2± 4.8 1122± 24 (4.86± 0.24)× 103

1× 106 1 5 864× 864× 384 6× 10−8 2 12.03± 0.42 267± 6.1 1338± 30 (6.51± 0.25)× 103

2× 106 1 5 1152× 1152× 486 2× 10−8 2 14.45± 0.47 373± 10.3 1869± 51 (1.34± 0.09)× 104

1× 107 1 5 1536× 1536× 648 6× 10−9 2 22.68± 0.67 790± 18.9 3948± 95 (5.35± 0.34)× 104

2× 103 1 7 144× 144× 72 2× 10−4 5 2.13± 0.05 13.4± 0.2 94.0± 1.7
3× 103 1 7 144× 144× 72 2× 10−4 5 2.50± 0.06 18.3± 0.3 128.2± 2.4
4× 103 1 7 384× 384× 72 2× 10−5 5 2.74± 0.05 21.9± 0.4 153.4± 3.54 3± 1
6× 103 1 7 648× 648× 96 1× 10−5 5 3.09± 0.05 27.4± 0.4 191.6± 3.1 15± 3
1× 104 1 7 192× 192× 72 1× 10−5 5 3.57± 0.06 36.1± 0.7 252.5± 4.6 53± 6
4× 104 1 7 576× 576× 144 2× 10−6 3 5.09± 0.17 66.4± 1.8 464.7± 12.5 350± 43
1× 105 1 7 648× 648× 216 6× 10−7 3 6.52± 0.22 98.6± 3.1 690.3± 21.6 968± 86
2× 105 1 7 648× 648× 288 1× 10−7 3 7.66± 0.20 132.9± 3.6 930.4± 25.5 (1.87± 0.09)× 103

4× 105 1 7 768× 768× 384 6× 10−8 3 9.27± 0.23 180.2± 5.1 1261.1± 36.0 (3.75± 0.16)× 103

Table 2: Details of the numerical simulations for Pr = 1, Pm = (5, 7) cases. The estimated critical Rayleigh numbers for
dynamo action (Rad) are (5.2× 103, 3.1× 103) for Pm = (5, 7), respectively.
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Ra Pr Pm Nx ×Ny ×Nz ∆t n Nu Re Rm Emag

1× 103 0.05 1 96× 96× 48 6× 10−4 3 1.02± 0.01 23.4± 1.5 23.4± 1.5
2× 103 0.05 1 96× 96× 48 2× 10−4 3 1.16± 0.03 72.0± 5.0 72.0± 5.0
4× 103 0.05 1 192× 192× 72 6× 10−5 3 1.40± 0.04 133.8± 5.5 133.8± 5.5
6× 103 0.05 1 192× 192× 96 1× 10−5 3 1.59± 0.05 176.0± 7.2 176.0± 7.2 171± 50
1× 104 0.05 1 288× 288× 144 4× 10−6 3 1.84± 0.06 236.6.0± 7.7 236.6.0± 7.7 735± 134
2× 104 0.05 1 288× 288× 192 1× 10−6 2 2.28± 0.13 339.96± 22.3 339.96± 22.3 (2.91± 0.86)× 103

4× 104 0.05 1 384× 384× 192 6× 10−7 2 2.83± 0.10 500.5± 15.5 500.5± 15.5 (6.46± 0.40)× 103

1× 105 0.05 1 768× 768× 288 4× 10−7 2 3.74± 0.13 750.2± 17.2 750.2± 17.2 (2.32± 0.24)× 104

Table 3: Details of the numerical simulations for Pr = 0.05, Pm = 1 cases. The estimated critical Rayleigh numbers for
dynamo action (Rad) are 2.9× 103, 4.1× 103 for Pm = 1, Pr = (0.01, 0.05), respectively.
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Ra Pr Nx ×Ny ×Nz ∆t n Nu Re

2× 103 1 96× 96× 48 4× 10−3 5 2.13± 0.05 13.4± 0.2
7× 103 1 192× 192× 72 1× 10−3 5 3.30± 0.05 31.0± 0.4
1× 104 1 192× 192× 72 5× 10−4 5 3.62± 0.06 37.5± 0.7
4× 104 1 384× 384× 96 5× 10−5 5 5.33± 0.07 75.6± 1.0
1× 105 1 384× 384× 96 5× 10−5 3 7.01± 0.17 119.2± 2.3
6× 105 1 384× 384× 144 1× 10−5 2 11.7± 0.36 261.0± 6.2
1× 106 1 432× 432× 144 6× 10−6 2 13.4± 0.34 324.4± 9.4
7× 102 0.05 96× 96× 48 5× 10−3 5 1.001± 0.000 5.0± 0.5
1× 103 0.05 96× 96× 48 1× 10−3 3 1.02± 0.00 23.4± 1.7
2× 103 0.05 96× 96× 48 2× 10−4 3 1.15± 0.03 70.6± 5.0
4× 103 0.05 144× 144× 72 5× 10−5 3 1.38± 0.04 131.3± 6.8
1× 104 0.05 288× 288× 72 2× 10−5 3 1.89± 0.07 247.5± 8.8
2× 104 0.05 432× 432× 108 1× 10−5 3 2.31± 0.09 360.3± 13.6
4× 104 0.05 432× 432× 108 3× 10−6 3 2.90± 0.12 509.4± 13.5

Table 4: Details of the RBC cases.
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Ra Pr Pm Nx ×Ny ×Nz ∆t n Rm γ

4× 105 1 0.8 384× 384× 96 3× 10−5 4 176 −4.4
6× 105 1 0.8 384× 384× 96 2× 10−5 4 210 5.5
2× 105 1 1 384× 384× 96 4× 10−5 4 161 −1.1
2.5× 105 1 1 384× 384× 96 2× 10−5 4 177 1.7
1× 104 1 3 192× 192× 72 2× 10−5 3 112 −4.3
1.5× 104 1 3 192× 192× 72 2× 10−5 3 141 0.6
2× 104 1 3 384× 384× 72 1× 10−5 3 160 2.4
4× 103 1 5 144× 144× 48 2× 10−4 5 110 −2.2
6× 103 1 5 384× 384× 96 1× 10−5 5 141 1.4
2× 103 1 7 144× 144× 72 2× 10−4 5 94 −3.4
2.5× 103 1 7 144× 144× 72 2× 10−4 5 112 −2.6
3.5× 103 1 7 384× 384× 72 2× 10−5 5 142 1.2
4× 103 1 7 384× 384× 72 2× 10−5 5 152 3.5
3.5× 103 0.05 1 192× 192× 72 4× 10−5 3 122 −1.9
4.5× 103 0.05 1 192× 192× 72 4× 10−5 3 147 1.0
2× 103 0.01 1 192× 192× 72 2× 10−5 3 85 −5.8
2.7× 103 0.01 1 192× 192× 72 2× 10−5 3 125 −1.9
3× 103 0.01 1 192× 192× 72 2× 10−5 3 137 0.9
4× 103 0.01 1 192× 192× 72 2× 10−5 3 188 6.4

Table 5: Details of the numerical simulations used for the kinematic

dynamo regime. The growth (or decay) rate of magnetic energy is denoted
by γ.


