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SUMMARY

Across a range of motor and cognitive tasks, cortical activity can be accurately described by low-dimen-

sional dynamics unfolding from specific initial conditions on every trial. These ‘‘preparatory states’’

largely determine the subsequent evolution of both neural activity and behavior, and their importance rai-

ses questions regarding how they are, or ought to be, set. Here, we formulate motor preparation as

optimal anticipatory control of future movements and show that the solution requires a form of internal

feedback control of cortical circuit dynamics. In contrast to a simple feedforward strategy, feedback con-

trol enables fast movement preparation by selectively controlling the cortical state in the small subspace

that matters for the upcoming movement. Feedback but not feedforward control explains the orthogo-

nality between preparatory and movement activity observed in reaching monkeys. We propose a circuit

model in which optimal preparatory control is implemented as a thalamo-cortical loop gated by the basal

ganglia.

INTRODUCTION

Fast ballistic movements (e.g., throwing) require spatially and

temporally precise commands to the musculature. Many of

these signals are thought to arise from internal dynamics in

the primary motor cortex (M1; Figure 1A; Evarts, 1968; To-

dorov, 2000; Scott, 2012; Shenoy et al., 2013; Omrani et al.,

2017). In turn, consistent with state trajectories produced by

a dynamical system, M1 activity during movement depends

strongly on the ‘‘initial condition’’ reached just before move-

ment onset, and variability in initial condition predicts behav-

ioral variability (Churchland et al., 2006; Afshar et al., 2011;

Pandarinath et al., 2018). An immediate consequence of this

dynamical systems view is the so-called optimal subspace hy-

pothesis (Churchland et al., 2010; Shenoy et al., 2013): the

network dynamics that generate movement must be seeded

with an appropriate initial condition prior to each movement.

In other words, accurate movement production likely requires

fine adjustment of M1 activity during a phase of movement

preparation (Figure 1B, green).

The optimal subspace hypothesis helps make sense of neu-

ral activity during the preparation epoch, yet several unknowns

remain. What should the structure of the optimal preparatory

subspace be? How does this structure depend on the dy-

namics of the cortical network during the movement epoch,

and on downstream motor processes? Must preparatory activ-

ity converge to a single movement-specific state and be held

there until movement initiation, or is some slack allowed?

What are the dynamical processes and associated circuit

mechanisms responsible for motor preparation? These ques-

tions can be (and have been partially) addressed empirically,

for example, through analyses of neural population recordings

in reaching monkeys (Churchland et al., 2010; Ames et al.,

2014; Elsayed et al., 2016) or optogenetic dissection of circuits

involved in motor preparation (Li et al., 2016; Guo et al., 2017;

Gao et al., 2018; Sauerbrei et al., 2020). Yet for lack of an

appropriate theoretical scaffold, it has been difficult to interpret

these experimental results within the broader computational

context of motor control.

Here, we bridge this gap by considering motor preparation as

an integral part of motor control. We show that optimal control

theory, which has successfully explained behavior (Todorov

and Jordan, 2002; Scott et al., 2015) and neural activity (To-

dorov, 2000; Lillicrap and Scott, 2013) during the movement

epoch, can also be brought to bear on motor preparation. Spe-

cifically, we argue that there is a prospective component of mo-

tor control that can be performed in anticipation of themovement

(i.e., during preparation). This leads to a normative formulation of

the optimal subspace hypothesis. Our theory specifies the con-

trol inputs that must be given to the movement-generating

network during preparation to ensure that (1) any subsequent

motor errors are keptminimal and (2) movements can be initiated

rapidly. These optimal inputs can be realized by a feedback loop

onto the cortical network.

This normative model provides a core insight: the ‘‘optimal

subspace’’ is likely high dimensional, with many different initial
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conditions giving rise to the same correct movement. This has an

important consequence for preparatory control: at the popula-

tion level, only a few components of preparatory activity affect

future motor outputs, and it is these components only that

need active controlling. By taking this into account, the optimal

preparatory feedback loop dramatically improves upon a simpler

feedforward strategy. This holds for multiple classes of network

models trained to perform reaches and whosemovement-epoch

dynamics are quantitatively similar to those of monkey M1.

Moreover, optimal feedback inputs, but not feedforward inputs,

robustly orthogonalize preparatory- andmovement-epoch activ-

ity, thus accounting for one of the most prominent features of

perimovement activity in reaching monkeys (Kaufman et al.,

2014; Elsayed et al., 2016).

Finally, we propose a way in which neural circuits may imple-

ment optimal anticipatory control. In particular, we propose that

cortex is actively controlled by thalamic feedback during motor

preparation, with thalamic afferents providing the desired

optimal control inputs. This is consistent with the causal role of

thalamus in the preparation of directed licking in mice (Guo

et al., 2017). Moreover, we posit that the basal ganglia operate

an ON/OFF switch on the thalamo-cortical loop (Jin and Costa,

2010; Cui et al., 2013; Halassa and Acsády, 2016; Logiaco

et al., 2019; Logiaco and Escola, 2020), thereby flexibly control-

ling the timing of both movement planning and initiation.

Beyond motor control, a broader set of cortical computations

are also thought to rest on low-dimensional circuit dynamics,

with initial conditions largely determining behavior (Pandarinath

et al., 2018; Sohn et al., 2019). These computations, too, may

hinge on careful preparation of the state of cortex in appropriate

subspaces. Our framework, and control theory more generally,

may provide a useful language for reasoning about putative algo-

rithms and neural mechanisms (Kao and Hennequin, 2019).

RESULTS

A model of movement generation

We begin with an inhibition-stabilized network (ISN) model of

the motor cortex in which a detailed balance of excitation and

A B Figure 1. Preparation and execution of ballis-

tic movements

(A) Under a dynamical systems view of motor con-

trol (Shenoy et al., 2013), movement is generated by

M1 dynamics. Prior to movement, the M1 popula-

tion activity state xðtÞ must be controlled into an

optimal, movement-specific subspace in a phase of

preparation; this requires internally generated con-

trol inputs uðtÞ.

(B) Schematic state space trajectory during move-

ment preparation and execution.

inhibition enables the production of rich,

naturalistic activity transients (STAR

Methods; Hennequin et al., 2014; Fig-

ure 2A). This network serves as a pattern

generator for the production of movement

(we later investigate other movement-

generating networks). Specifically, the network directly con-

trols the two joint torques of a two-link arm, through a linear

readout of the momentary network firing rates:

mðtÞ = CrðtÞ: (1)

Here, mðtÞ is a vector containing the momentary torques, and

rðtÞ is the population firing rate vector (described below). The

network has N= 200 neurons, whose momentary internal activa-

tions xðtÞ= ðx1; x2;.; xNÞ
T
evolve according to (Dayan and Ab-

bott, 2001):

t

dx

dt
= � xðtÞ+W rðtÞ+h+hðtÞ (2)

rðtÞ = f½xðtÞ�: (3)

Here, t is the single-neuron time constant,W is the synaptic con-

nectivity matrix, and f½x� (applied to x element-wise) is a recti-

fied-linear activation function converting internal activations

into momentary firing rates. The network is driven by two

different inputs shared across all movements: a constant input

h responsible for maintaining a heterogeneous spontaneous ac-

tivity state xsp and a transient input hðtÞ arising at movement

onset and decaying through movement. The latter input models

the dominant, condition-independent, timing-related compo-

nent of monkey M1 activity during movement (Kaufman et al.,

2016). We note that although the network model is generally

nonlinear, it can be well approximated by a linear model

ðr = xÞ, as only a small fraction of neurons are silent at any given

time (Figure S5; Discussion). Our formal analyses here rely on

linear approximations, but all simulations are based on Equa-

tions 2 and 3 with nonlinear f.

We calibrated the model for the production of eight rapid

straight reaches with bell-shaped velocity profiles (Figure S1).

To perform this calibration, we noted that, in line with the dynam-

ical systems view of movement generation (Shenoy et al., 2013),

movements produced by our model depend strongly on the

‘‘initial condition,’’ that is, the cortical state x just before move-

ment onset (Churchland et al., 2010; Afshar et al., 2011). We
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thus ‘‘inverted’’ the model numerically by optimizing eight

different initial conditions and a common readout matrix C

such that the dynamics of the nonlinear model (Equations 2

and 3), seeded with each initial condition, would produce the

desired movement. Importantly, we constrained C so that its

nullspace contained the network’s spontaneous activity state,

as well as all eight initial conditions. This constraint ensures

that movement does not occur spontaneously or during late pre-

paratory stages when xðtÞ has converged to one of these initial

conditions. Nevertheless, these constraints are not sufficient to

completely silence the network’s torque readout mðtÞ during

preparation. Although such spurious output tended to be very

small in our simulations (Figure S7), the two stages of integration

of mðtÞ by the arm’s mechanics led to substantial drift of the

hand before the reach. To prevent drift without modeling spinal

reflexes for posture control, we artificially set mðtÞ= 0 during

movement preparation.

As we show below, our main results do not depend on the de-

tails of the model chosen to describe movement-generating M1

dynamics. Here, we chose the ISN model for its ability to pro-

duces activity similar to M1’s during reaching, both in single neu-

rons (Figure 2A, top left) and at the population level as shown by

jPCA and canonical correlations analysis (Figure S6; Churchland

et al., 2012; Sussillo et al., 2015).

Optimal control as a theory of motor preparation

Having calibrated our network model of movement generation,

we now turn to preparatory dynamics. Shenoy et al (2013)’s

dynamical systems perspective suggests that accurate move-

ment execution likely requires careful seeding of the generator’s

dynamicswith an appropriate, reach-specific initial condition (Af-

shar et al., 2011). In our model, this means that the activity state

xðtÞof the cortical networkmust be steered toward the initial con-

dition corresponding to the intended movement (Figure 1B,

green). We assume that this process is achieved through addi-

tional movement-specific control inputs uðtÞ (Figure 1, green):

t

dx

dt
= � xðtÞ+W rðtÞ+h+hðtÞ+uðtÞ: (4)

The control inputs uðtÞ are then rapidly switched off to initiate

movement.

A very simple way of achieving a desired initial condition x+,

which we call the ‘‘naive feedforward strategy,’’ is to use a static

external input uðtÞ=u+ of the form

u+
= x+ �Wf x+

� �
� h: (5)

This establishes x+ as a fixed point of the population dynamics,

as dx=dt = 0 in Equation 4 when x = x+. In stable linear networks

(and, empirically, in our nonlinear model too), these simple pre-

paratory dynamics are guaranteed to achieve the desired initial

state eventually (i.e., after sufficiently long preparation time).

However, the network takes time to settle in the desired state

(Figure 2B); in fact, in a linear network, the response to an input

step (here, the feedforward input driving preparation) contains

exactly the same timescales as the corresponding impulse

response (here, the autonomous movement-generating

response to the initial condition x+). Thus, under the naive feed-

forward strategy, the duration of the movement itself sets a

fundamental limit on how fast xðtÞ can approach x+. This is at

odds with experimental reports of relatively fast preparation,

on the order of z50 ms, compared with the >500 ms move-

ment-epoch window over which neural activity is significantly

modulated (Lara et al., 2018). Here, we argue that feedback con-

trol can be used to speed up preparation.

How can preparation be sped up? An important first step to-

ward formalizing preparatory control and unraveling putative cir-

cuit mechanisms is to understand how deviations from ‘‘the right

initial condition’’ influence the subsequent movement. Are some

deviations worse than others? Mathematical analysis reveals

that depending on the direction in state space along which the

deviation occurs, there may be strong motor consequences or

none at all (Figure 3; STAR Methods). Some preparatory devia-

tions are ‘‘prospectively potent’’: they propagate through the dy-

namics of the generator network during the movement epoch,

modifying its activity trajectories, and eventually leading to errors

in torques and hand motion (Figure 3A, left). Other preparatory

deviations are ‘‘prospectively readout-null’’: they cause subse-

quent perturbations in cortical state trajectories, too, but these

are correlated across neurons in such a way that they cancel in

the readout and leave the movement unaltered (Figure 3A, cen-

ter). Yet other preparatory perturbations are ‘‘prospectively

A B Figure 2. Movement generation in a network

model of M1

(A) Schematics of our M1 model of motor pattern

generation. The dynamics of an excitation-inhibition

network (Hennequin et al., 2014) unfold from

movement-specific initial conditions, resulting in

firing rate trajectories (left; five neurons shown),

which are linearly read out into joint torques (mid-

dle), thereby producing hand movements (right). The

model is calibrated for the production of eight

straight center-out reaches (20 cm length); firing

rates and torques are shown only for the movement

colored in black. To help visualize initial conditions,

firing rates are artificially clamped for the first

100 ms. See also Figure S1.

(B) Network activity and corresponding hand trajectories as in (A), for three different preparation lengths, under the naive feedforward strategy whereby a static

input step (green) moves the fixed point of the dynamics to the desired initial condition.
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dynamic-null’’: they are outright rejected by the recurrent dy-

namics of the network, thus causing little impact on subsequent

neuronal activity during movement, let alone on torques and

hand motion (Figure 3A, right; Figures 3B and 3C).

We emphasize that the ‘‘prospective potency’’ of a prepara-

tory deviation is distinct from its ‘‘immediate potency,’’ that is,

from the direct effect such neural activity might have on the

output torques (Kaufman et al., 2014; Vyas et al., 2020). For

example, the initial state for each movement is prospectively

potent by construction, as it seeds the production of move-

ment-generating network responses. However, it does not itself

elicit movement on the instant and so is immediately null. Having

clarified this distinction, we will refer to prospectively potent/null

directions simply as potent/null directions for succinctness.

The existence of readout-null and dynamic-null directions

implies that, in fact, there is no such thing as ‘‘the right initial con-

dition’’ for each movement. Rather, a multitude of initial condi-

tions that differ along null directions give rise to the correct

movement. To quantify the extent of this degeneracy, we mea-

sure the ‘‘prospective potency’’ of a direction by the integrated

squared error in output torques induced during movement by a

fixed-sized perturbation of the initial condition along that direc-

tion. We can then calculate a full basis of orthogonal directions

ranking from most to least potent (an analytical solution exists

for linear systems; STAR Methods; Kao and Hennequin, 2019).

For our model with only two readout torques, the effective

dimensionality of the potent subspace is approximately 8 (Fig-

ure 3D; STAR Methods). This degeneracy substantially lightens

the computational burden of preparatory ballistic control: there

are only a few potent directions in state space along which

cortical activity needs active controlling prior to movement initi-

ation. Thus, taking into account the energetic cost of neural

control, preparatory dynamics should aim at preferentially elim-

inating errors in preparatory states along those few directions

that matter for movement.

We now formalize these insights in a normative model of pre-

paratory motor control. At any time t during preparation, we can

assign a ‘‘prospective motor error’’ CðxÞ to the current cortical

state xðtÞ. This prospective error is the total error in movement

that would result if movement was initiated at this time, that is,

if control inputs were suddenly switched off and the generator

network was left to evolve dynamically from xðtÞ (STAR

Methods). Note that CðxÞ is directly related to the measure of

prospective potency described above. An ideal controller

would supply the cortical network with such control inputs

uðtÞ as necessary to lower the prospective motor error as fast

as possible. This would enable accurate movement production

in short order. We therefore propose the following cost

functional:

J ½uðtÞ� =

Z
N

0

CðxðtÞÞ+ lRðuðtÞÞ dt (6)

where RðuÞ is an energetic cost that penalizes large control sig-

nals in excess of a baseline required to hold xðtÞ in the optimal

subspace, and l sets the relative importance of this energetic

cost. Note that xðtÞ depends on uðtÞ via Equation 4.

Optimal preparatory control

When (1) the prospective motor error C is quadratic in the output

torques m, (2) the energy cost R is quadratic in u, and (3) the

network dynamics are linear, then minimizing Equation 6 corre-

sponds to the well-known linear quadratic regulator (LQR) prob-

lem in control theory (Skogestad and Postlethwaite, 2007). The

A B

C

D

Figure 3. Formalization of the optimal sub-

space hypothesis

(A) Effect of three qualitatively different types of small

perturbations of the initial condition (prospectively

potent, prospectively readout-null, prospectively

dynamic-null) on the threeprocessing stages leading

to movement (M1 activity, joint torques, and hand

position), as shown in Figure 2A. Unperturbed traces

are shown as solid lines, perturbed ones as dashed

red lines. Only one example neuron (top) is shown for

clarity. Despite all having the same size here

(Euclidean norm), these three types of perturbation

on the initial state have very different consequences.

Left: ‘‘prospectively potent’’ perturbations result

in errors at every stage. Middle: ‘‘prospectively

readout-null’’ perturbationscausesizable changes in

internal network activity but not in the torques. Right:

‘‘prospectively dynamic-null’’ perturbations are

inconsequential at all stages.

(B) Time course of the root-mean-square error in M1

activity across neurons and reach conditions, for the

three different types of perturbations.

(C) Same as (B) for the root-mean-square error in

torques.

(D) The motor potency of the top 20 most potent

modes.

In (A)–(C), signals are artificially held constant in the first 100 ms for visualization, and black scale bars denote 200 ms from movement onset. See also

Supplemental Math Note S1 and Figure S4.
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optimal solution is a combination of a constant input and instan-

taneous (linear) state feedback,

uoptðtÞ = u+
+K dxðtÞ; (7)

where dxðtÞ is the momentary deviation of x from a valid initial

condition for the desired movement (STAR Methods). In Equa-

tion 7, the constant input u+ is movement-specific, but the

optimal gain matrixK is generic; both can be derived in algebraic

form. Thus, even though the actual movement occurs in ‘‘open

loop’’ (without corrective sensory feedback), optimal movement

preparation occurs in closed loop, with the state of the pattern

generator being controlled via internal feedback in anticipation

of the movement. Later in this section, we build a realistic circuit

model in which optimal preparatory feedback (Equation 7) is im-

plemented as a realistic thalamo-cortical loop. Prior to that, we

focus on the core predictions of the optimal control law as an al-

gorithm, independent of its implementation.

Optimal control inputs (Equation 7) lead tomultiphasic prepara-

tory dynamics in the cortical network (Figure 4A, top). Single-

neuron responses separate across movement conditions in

much the sameway as they do in themonkeyM1data (Figure 4C),

with a transient increase in total across-movement variance (Fig-

ure 4D). The prospective motor error decreases very quickly to

negligible values (Figure 4A, bottom; note the small green area un-

der the curve) as xðtÞ is driven into the appropriate subspace. After

the preparatory feedback loop is switched off and movement be-

gins, the system accurately produces the desired torques and

hand trajectories (Figure 4A, middle). Indeed, movements are

ready to be performed after as little as 50 ms of preparation (Fig-

ure 4B). We note, though, that it is possible to achieve arbitrarily

fast preparation by decreasing the energy penalty factor l in

Equation 6 (Figure 4E). However, this is at the price of large ener-

getic costs RðuÞ (i.e., unrealistically large control inputs).

The neural trajectories under optimal preparatory control

display a striking property, also observed in monkey M1 and

dorsal premotor cortex (PMd) recordings (Ames et al., 2014;

Lara et al., 2018): by the time movement is ready to be trig-

gered (approximately 50 ms in the model), the firing rates of

most neurons have not yet converged to the values they would

attain after a longer preparation time, that is, dxðtÞ[0 (Figures

4A and 4C). Intuitively, this arises for the following reasons.

First, the network reacts to the sudden onset of the preparatory

input by following the flow of its internal dynamics, thus

A B E

F

C

D

Figure 4. Optimal preparatory control

(A) Dynamics of the model during optimal preparation and execution of a straight reach at a 144� angle. Optimal control inputs are fed to the cortical network

during preparation and subsequently withdrawn to elicit movement. Top: firing rates of a selection of ten model neurons. Middle: generated torques (line),

compared with targets (dots). Bottom: the prospective motor error CðxðtÞÞ quantifies the accuracy of the movement if it were initiated at time t during the pre-

paratory phase. Under the action of optimal control inputs, CðxðtÞÞ decreases very fast, until it becomes small enough that an accurate movement can be

triggered. The dashed line shows the evolution of the prospective cost for the naive feedforward strategy (see text). Gray lines denote the other seven reaches for

completeness.

(B) Hand trajectories for each of the eight reaches (solid), following optimal preparation over windows of 25 ms (left), 50 ms (center), and 200 ms (right). Dashed

lines show the target movements.

(C) Firing rate of a representative neuron in the model (left) and the two monkeys (center and right) for each movement condition (color-coded as in Figure 2B).

Green bars mark the 500 ms preparation window, black scale bars indicate 20 Hz.

(D) Evolution of the average across-movement variance in single-neuron preparatory activity in the model (left) and the monkeys (center and right). Black scale

bars indicate 16 Hz2.

(E) Prospective motor error during preparation, averaged over the eight reaches, for different values of the energy penalty parameter l.

(F) The state of the cortical network is artificially set to deviate randomly from the target movement-specific initial state at time t = 0, just prior to movement

preparation. The temporal evolution of the squared Euclidean deviation from target (averaged over trials and movements) is decomposed into contributions from

the ten most and ten least potent directions, color-coded by their motor potency as in Figure 3D.

In (A)–(D) and (F), we used l= 0:1.
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A B C D

E F G H

Figure 5. Optimal preparatory control benefits other models of movement generation

(A) ISNmodel. Top: eigenvalues of the connectivitymatrix. Middle: activity of 20 example neurons during optimal (LQR) and naive feedforward preparatory control

and subsequent execution of one movement, with hand trajectories shown as an inset for all movements. The green bar marks the preparatory period. Bottom:

prospective motor error under LQR (solid) and naive feedforward (dashed) preparation, for each movement.

(B)–(D) Same as (A), for a representative instance of each of the three other network classes (see text).

(legend continued on next page)
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generating transient activity fluctuations. Second, the optimal

controller is not required to suppress the null components of

these fluctuations, which have negligible motor consequences.

Instead, control inputs are used sparingly to steer the dy-

namics along potent directions only. Thus, the network be-

comes ready for movement initiation well before its activity

has settled. To confirm this intuition, we artificially set xðtÞ at

preparation onset to randomly and isotropically deviate from

the target initial condition. We then computed the expected

momentary squared deviation dxðtÞ along the spectrum of

potent directions (shown in Figure 3D) during preparation. Er-

rors are indeed selectively eliminated along directions with mo-

tor consequences, while they linger or even grow in other,

inconsequential directions (Figure 4F, top).

Importantly, feedback control vastly outperforms the naive

feedforward strategy of Figure 2B, which corresponds to the

limit of zero input energy as it is defined in our framework

(STAR Methods; it is also the optimal solution in the limit of

l/N in Equation 6). The decrease in prospective motor error

is much slower than under LQR (Figure 4A, bottom) and is

non-selective, with errors along potent and null directions being

eliminated at the same rate (compare Figure 4F, top and

bottom).

Preparatory control in other M1 models

So far we have shown that feedback control is essential for

rapid movement preparation in a specific model architecture.

The ISN model we have used (Figures 2A and 5A) has strong

internal dynamics, whose ‘‘nonnormal’’ nature (Figure 5E; Tre-

fethen and Embree, 2005) gives rise to pronounced transient

amplification of a large subspace of initial conditions (Henne-

quin et al., 2014). This raises the concern that this ISN network

might be unduly high dimensional and difficult to control. After

all, feedback control might not be essential in other models of

movement generation for which the naive feedforward strategy

might be good enough. To address this concern, we imple-

mented optimal control in two other classes of network models

which we trained to produce eight straight reaches in the same

way as we trained the ISN, by optimizing the readout weights

and the initial conditions (Figures 5B and 5C; STAR Methods).

Importantly, we also optimized aspects of the recurrent

connectivity: either all recurrent connections (‘‘full’’ networks;

Figure 5B) or a low-rank parameterization thereof (‘‘low-rank’’

networks; Figure 5C; Sussillo and Abbott, 2009; Mastrogiu-

seppe and Ostojic, 2018). We trained ten instances of each

network class and also produced ten new ISN networks for

comparison. Empirically, we found that training was substan-

tially impaired by the addition of the condition-independent

movement-epoch input hðtÞ in Equation 2 in the full and low-

rank networks. We therefore dispensed with this input in the

training of all these networks, as well as in the newly trained

ISNs for fair comparison (the results presented below also

hold for ISNs trained with hðtÞs0).

The full and low-rank networks successfully produce the cor-

rect hand trajectories after training (Figures 5B and 5C, middle),

relying on dynamics with oscillatory components qualitatively

similar to the ISN’s (eigenvalue spectra in Figures 5A–5C, top).

They capture essential aspects of movement-epoch population

dynamics inmonkeyM1, to a similar degree as the ISN does (Fig-

ure S6). Nevertheless, the trained networks differ quantitatively

from the ISN in ways that would seemingly make them easier

to control. First, they are less nonnormal (Figure 5E). Second,

they have weaker internal dynamics than the ISN, as quantified

by the average squared magnitude of their recurrent connec-

tions (Figure 5F). Third, these weaker dynamics translate into

smaller impulse responses overall, as quantified by the H2

norm (Figure 5G; STAR Methods; Hennequin et al., 2014; Kao

and Hennequin, 2019).

Although these quantitative differences suggest that optimal

feedback control might be superfluous in the full and low-rank

networks, we found that this is not the case. In order to

achieve a set prospective control performance, all networks

require the same total input energy (Figure 5H). In particular,

the feedforward strategy (limit of zero input energy) performs

equally badly in all networks: preparation is unrealistically

slow, with 300 ms of preparation still resulting in large reach

distortions (Figures 5A–5C, bottom; recall also Figure 2B). In

fact, we were able to show formally that the performance of

feedforward control depends only on the target torques spec-

ified by the task but not on the details of how these targets

are achieved through specific initial conditions, recurrent con-

nectivity W, and readout matrix C (Supplemental Math Note

S2). Stronger still, our derivations explain why the movement

errors resulting from insufficiently long feedforward prepara-

tion are identical in every detail across all networks (Figures

5A–5C, bottom).

Finally, we also considered networks in the chaotic regime

with fixed and strong random connection weights and the

same threshold-linear activation function (‘‘chaotic’’ networks;

Figure 5D; Kadmon and Sompolinsky, 2015; Mastrogiuseppe

and Ostojic, 2017). In these networks, as static inputs are unable

to quench chaos, the naive feedforward strategy cannot even

establish a fixed point, let alone a correct one (Figure 5D,

bottom). However, by adapting the optimal feedback control so-

lution to the nonlinear case (STAR Methods), we found that it

successfully quenches chaos during preparation and enables

fast movement initiation (Figure 5D, middle).

In summary, the need for feedback control during preparation

is not specific to our particular ISNmodel but emerges broadly in

networks of various types trained to produce reaches.

(E)–(G) Index of nonnormality (E), Frobenius norm of the connectivity matrix kW k F (F), and H2 norm (G) for the 10 network instances of each class (excluding

chaotic networks for which these quantities are either undefined or uninterpretable). Dots are randomly jittered horizontally for better visualization. Both kWF k

and the H2 norm are normalized by the ISN average.

(H) Quantification of controllability in the various networks. Optimal control cost (
R
N

0
CðxðtÞÞ dt in Equation 6) against associated control energy cost

ð
R
N

0
RðuðtÞÞ dtÞ, for different values of the energy penalty parameter l, and for each network (same colors as in E–G). Note that the naive feedforward strategy

corresponds to the limit of zero energy cost (horizontal asymptote).

See also Figure S6.
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Orthogonal preparatory and movement subspaces

Optimal anticipatory control also accounts for a prominent

feature of monkey motor cortex responses during motor prepa-

ration and execution: across time and reach conditions, activity

spans orthogonal subspaces during the two epochs. To show

this, we followed Elsayed et al. (2016) and performed principal

component analysis (PCA) on trial-averaged activity during the

two epochs separately, in both the ISN model of Figure 4 and

the two monkey datasets (Figure 6A). We then examined the

fraction of variance explained by both sets of principal compo-

nents (prep-PCs and move-PCs) during each epoch. Activity in

the preparatory and movement epochs is, respectively, approx-

imately 4- and 6-dimensional for the model, 5- and 7-dimen-

sional for monkey J, and 8- and 7-dimensional for monkey N (as-

sessed by the ‘‘participation ratio’’). Moreover, consistent with

the monkey data, prep-PCs in the model account for most of

the activity variance during preparation (by construction;

Figure 6B, left), but account for little variance during movement

(Figure 6B, right). Similarly, move-PCs capture little of the prepa-

ratory-epoch activity variance.

To systematically quantify this (lack of) overlap for all the

trained models of Figures 5A–5C and compare with monkey

data, we used Elsayed et al (2016)’s ‘‘alignment index.’’ This is

defined as the amount of preparatory-epoch activity variance

captured by the top K move-PCs, further normalized by the

maximum amount of variance that any K-dimensional subspace

can capture. Here, K was chosen such that the top K prep-PCs

capture 80% of activity variance during the preparatory-epoch.

Both monkeys have a low alignment index (Figure 6C, left),

much lower than a baseline expectation reflecting the neural ac-

tivity covariance across both task epochs (‘‘random’’ control in

Elsayed et al., 2016). All trainedmodels show the same effect un-

der optimal preparatory control (Figure 6C, ‘‘LQR’’). Importantly,

alignment indices arising from the naive feedforward solution are

much higher and close to the random control.

To understand the origin of such orthogonality, we first note

that the preparatory end states themselves tend to be orthog-

onal to movement-epoch activity in the models. Indeed, artifi-

cially clamping network activity to its end state during the whole

preparatory epoch yields low alignment indices in all trained

networks (Figure 6C, ‘‘instant’’). We hypothesize that this effect

arises from the fact that, as in monkeys, our trained networks all

transiently amplify the initial condition at movement onset (Fig-

ure 6D). As the autonomous (near-linear) dynamics that drive

these transients are stable, the initial growth of activity at move-

ment onset must be accompanied by a rotation away from the

initial condition. Otherwise the growth would continue, contra-

dicting stability. To substantiate this interpretation, for each

A B D

E

C

Figure 6. Reorganization between preparatory and movement activity in model and monkey

(A) Example single-neuron PSTHs in model (top) and monkey M1/PMd (middle and bottom), for each reach (cf. Figure 2B).

(B) Fraction of variance (time and conditions) explained during movement preparation (left) and execution (right) by principal components calculated from

preparatory (green) and movement-related (magenta) trial-averaged activity. Only the first ten components are shown for each epoch. Variance is across reach

conditions and time in 300 ms prep. and move. windows indicated by green and magenta bars in (A). The three rows correspond to those of (A).

(C) Alignment index calculated as in Elsayed et al. (2016), for the two monkeys (left) and the three classes of trained networks (colors as in Figures 5A–5C) under

three different preparation strategies (LQR, instant, naive; right). Here, preparation is long enough (500 ms) that even the naive feedforward strategy leads to the

correct movements in all networks. Hashed bars show the average alignment index between random-but-constrained subspaces drawn as in Elsayed

et al. (2016).

(D) Amplification factor, quantifying the growth of the centered population activity vector xðtÞ � xsp during the course of movement, relative to the pre-movement

state (STAR Methods). It is shown here for the two monkeys (black and gray), as well as for the three classes of trained networks (solid) and their surrogate

counterparts (dashed). Shaded region denotes ±1 SD around the mean across the ten instances of each network class. To isolate the autonomous part of the

movement-epoch dynamics, here we set hðtÞ=0 in Equation 2.

(E) Alignment index under the ‘‘instant’’ preparation strategy, for the original trained networks and their surrogates. In (C)–(E), error bars denote ±1 SD across the

ten networks of each class.
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network that we trained, we built a surrogate network that

achieved the same task without resorting to transient growth

(STAR Methods). We thus predicted higher alignment indices

in these surrogate networks. To construct them, we noted

that by applying a similarity transformation simultaneously to

W, C and the initial conditions, one can arbitrarily suppress

transient activity growth at movement onset yet maintain perfor-

mance in the task in the linear regime (a similarity transforma-

tion does not change the overall transfer function from initial

condition to output torques). In particular, the similarity transfor-

mation that diagonalizes W returns networks for which the

magnitude of movement-epoch population activity can only

decay during the course of movement, unlike that of the trained

networks (Figure 6D, dashed). Consistent with our hypothesis,

these surrogate networks have a higher ‘‘instant’’ alignment in-

dex (Figure 6F).

So far, we have shown that orthogonality between late prepara-

tory andmovement subspaces emerges generically in regularized

trained networks. However, this does not fully explain why the

alignment index is low under LQR in all models when early/mid-

preparatory activity is considered instead, as in Elsayed et al.

(2016). In fact, under the naive feedforward strategy, early prepa-

ratory activity can be shown to be exactly the negative image of

movement-epoch activity, up to a relatively small constant offset

(Supplemental Math Note S3). Thus, the temporal variations of

earlypreparatory- andmovement-epochactivityoccur ina shared

subspace, generically yielding a high alignment index (Figure 6C,

‘‘naive’’). In contrast, optimal control rapidly eliminates prepara-

tory errors along potent directions, which contribute significantly

to movement-epoch activity: if xðtÞ during movement had no

potent component, by definition themovementwould stop imme-

A B

C

Figure 7. Optimal movement preparation via

a gated thalamo-cortical loop

(A) Proposed circuit architecture for the optimal

movement preparation (cf. text).

(B) Cortical (top) and thalamic (upper middle) activity

(ten example neurons), generated torques (lower

middle), and prospectivemotor error (bottom) during

the course of movement preparation and execution

in the circuit architecture shown in (A). The pro-

spective motor error for the naive strategy is shown

as a dotted line as in Figure 4A. All black curves

correspond to the same example movement (324�

reach), and gray curves show the prospective motor

error for the other seven reaches.

(C) Hand trajectories (solid) compared with target

trajectories (dashed) for the eight reaches, triggered

after 100 ms (left), 200 ms (middle), and 600 ms

(right) of motor preparation.

See also Figure S3.

diately. Thus, one expectsoptimal control to

remove a substantial fraction of overlap be-

tween preparatory- and movement-epoch

activity.What ismore, byquenching tempo-

ral fluctuations along potent directions early

during preparation, optimal feedback also

suppresses the subsequent transient

growth of activity that these potent fluctuations would have nor-

mally produced under the naive strategy (and which are indeed

produced during movement). The combination of these primary

and secondary suppressive effects results in the lower alignment

index that we observe (Figure 6C, ‘‘LQR’’).

In summary, orthogonality between preparatory and move-

ment activity in monkey M1 is consistent with optimal feedback

control theory. In the ISN, as well as in other architectures trained

on the same task, orthogonality arises robustly from optimal pre-

paratory control, but not from feedforward control.

Circuit model for preparatory control: A gated thalamo-

cortical loop

So far we have not discussed the source of optimal preparatory

inputs uðtÞ, other than saying that they close a feedback loop

from the cortex onto itself (Equation 7). Such a loop could in prin-

ciple be absorbed in local modifications of recurrent cortical

connectivity (Sussillo and Abbott, 2009). However, we are not

aware of any mechanism that could implement near-instant

ON/OFF switching of a select subset of recurrent synapses, as

required by the model at onset of preparation (ON) and move-

ment (OFF). If, instead, the preparatory loop were to pass

through another brain area, fast modulation of excitability in

that relay area would provide a rapid and flexible switch (Fergu-

son and Cardin, 2020). We therefore propose the circuit model

shown in Figure 7A, in which the motor thalamus acts as a relay

station for cortical feedback (Guo et al., 2017; Nakajima and Ha-

lassa, 2017). The loop is gated ON/OFF at preparation onset/

offset by the (dis)-inhibitory action of basal ganglia outputs (Jin

and Costa, 2010; Cui et al., 2013; Dudman and Krakauer,

2016; Halassa and Acsády, 2016; Logiaco et al., 2019; Logiaco
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and Escola, 2020). Specifically, cortical excitatory neurons proj-

ect to 160 thalamic neurons, which make excitatory backprojec-

tions to a pool of 100 excitatory (E) and 100 inhibitory (I) neurons

in cortex layer 4. In turn, these layer 4 neurons provide both exci-

tation and inhibition to the main cortical network, thereby closing

the control loop. Here, inhibition is necessary to capture the

negative nature of optimal feedback. In addition to thalamic

feedback, the cortical network also receives a movement-spe-

cific constant feedforward drive during preparation (analogous

to u+ in Equation 7 for the standard LQR algorithm; this could

also come from the thalamus).

The detailed patterns of synaptic efficacies in the thalamo-

cortical loop are obtained by solving the same control problem

as above, based on the minimization of the cost functional in

Equation 6 (STAR Methods). Importantly, the solution must

now take into account some key biological constraints: (1) feed-

backmust be based on the activity of the cortical E neurons only,

(2) thalamic and layer 4 neurons have intrinsic dynamics that

introduce lag, and (3) the sign of each connection is constrained

by the nature of the presynaptic neuron (E or I).

The circuit model we have obtained meets the above con-

straints and enables flexible, near-optimal anticipatory control

of the reaching movements (Figure 7B). Before movement

preparation, thalamic neurons are silenced because of strong

inhibition from basal ganglia outputs (not explicitly modeled),

keeping the thalamo-cortical loop open (inactive) by default.

At the onset of movement preparation, rapid and sustained

disinhibition of thalamic neurons restores responsiveness to

cortical inputs, thereby closing the control loop (ON/OFF switch

in Figure 7B, top). This loop drives the cortical network into the

appropriate preparatory subspace, rapidly reducing prospec-

tive motor errors as under optimal LQR feedback (Figure 7B,

bottom). To trigger movement, the movement-specific tonic

input to cortex is shut off, and the basal ganglia resume sus-

tained inhibition of the thalamus. Thus, the loop re-opens,

which sets off the uncontrolled dynamics of the cortical

network from the right initial condition to produce the desired

movement (Figure 7C).

The neural constraints placed on the feedback loop are a

source of suboptimality with respect to the unconstrained LQR

solution of Figure 4. Nevertheless, movement preparation by

this thalamo-cortical circuit remains fast, on par with the shortest

preparation times of primates in a quasi-automatic movement

context (Lara et al., 2018) andmuch faster than the naive feedfor-

ward strategy (Figure 7B, bottom).

Model prediction: Selective elimination of preparatory

errors following optogenetic perturbations

An essential property of optimal preparatory control is the selec-

tive elimination of preparatory errors along prospectively potent

directions. As a direct corollary, the model predicts selective re-

covery of activity along those same directions following prepara-

tory perturbations of the dynamics, consistent with results by Li

et al. (2016) in the context of a delayed directional licking task in

mice. Here, we spell out this prediction in the context of reaching

movements in primates by simulating an experimental perturba-

tion protocol similar to that of Li et al. (2016) and by applying their

analysis of population responses. These concrete predictions

should soon become testable with the advent of optogenetics

techniques in primates (O’Shea et al., 2018).

As our E/I cortical circuit model operates in the inhibition-stabi-

lized regime (Hennequin et al., 2014; Tsodyks et al., 1997; Ozeki

et al., 2009; Sanzeni et al., 2020), we were able to use the same

photoinhibition strategy as in Li et al. (2016) to silence the cortical

network (Figure 8A) in the thalamo-cortical circuit of Figure 7. We

provided strong excitatory input to a random subset (60%) of

inhibitory neurons, for a duration of 400 ms starting 400 ms after

preparation onset.We found that ‘‘photoinhibition’’ hasmixed ef-

fects on the targeted neurons: some are caused to fire at higher

rates, but many are paradoxically suppressed (Figure 8B, top).

For E cells and untargeted I cells, though, the effect is uniformly

suppressive, as shown in Figure 8B (middle and bottom).

The perturbation transiently resets the prospective motor error

to pre-preparation level, thus nullifying the benefits of the first

400 ms of preparation (Figure 8C). Following the end of the

perturbation, the prospective motor error decreases again,

recovering to unperturbed levels (Figure 8C, solid versus

dashed) and thus enabling accurate movement production

(compare middle and bottom hand trajectories). This is due to

the selective elimination of preparatory errors discussed earlier

(Figure 4F): indeed, shuffling dx across neurons immediately

prior to movement, thus uniformizing the distribution of errors

in different state space directions, leads to impaired hand trajec-

tories (Figure 8C, top right).

We next performed an analysis qualitatively similar to Li et al

(2016)’s (STAR Methods). We identified a ‘‘coding subspace’’

(CS) that accounts for most of the across-condition variance in

firing rates toward the end of movement preparation in unper-

turbed trials. Similarly, we identified a ‘‘persistent’’ subspace

(PS) that captures most of the activity difference between per-

turbed and unperturbed trials toward the end of preparation,

regardless of the reach direction. Finally, we also constructed

a third subspace, constrained to be orthogonal to the PS and

the CS, and capturing most of the remaining variance across

the different reaches and perturbation conditions (‘‘remaining

subspace’’ [RS]).

We found the CS and the PS to be nearly orthogonal (minimum

subspace angle of 89�) even though they were not constrained to

be so.Moreover, the perturbation causes cortical activity to tran-

siently deviate from unperturbed trajectories nearly equally in

each of the three subspaces (Figure 8D). Remarkably, however,

activity recovers promptly along the CS but not in the other two

subspaces. In fact, the perturbation even grows transiently along

the PS during early recovery. Such selective recovery can be un-

derstood from optimal preparation eliminating errors along

directions with motor consequences, but (because of energy

constraints) not in other inconsequential modes. Indeed, the

CS is by definition a prospectively potent subspace: its contribu-

tion to the preparatory state is what determines the direction of

the upcoming reach. In contrast, the PS and the RS are approx-

imately prospectively null (respectively 729 times and 8 times

less potent than the CS, by our measure C of motor potency in

Figure 3D). This not only explains why the CS and PS are found

to be near orthogonal but also why the thalamo-cortical dy-

namics implementing optimal preparatory control only quench

perturbation-induced deviations in the CS.
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In summary, optogenetic perturbations of M1 could be used to

test a core prediction of optimal preparatory control, namely, the

selective recovery of activity in subspaces that carry movement

information, but not in others.

Finally, perturbation experiments can also help distinguish be-

tween optimal feedback control and feedforward control strate-

gies. The naive feedforward strategy discussed previously can

already be ruled out for being unrealistically slow. However, it

is easy to conceive of other feedforward control mechanisms

that would bemore difficult to distinguish from feedback control.

In particular, consider ‘‘optimal’’ feedforward control, which pre-

computes the optimal feedback inputs once and for all, and pro-

vides them each time the same movement is to be prepared. By

definition, this feedforward strategy is indistinguishable from

optimal feedback control in the absence of noise or perturbation

during preparation (compare black and purple lines in Figure 8C

before the onset of perturbation). However, unlike optimal feed-

back, the optimal feedforward strategy cannot react to state per-

turbations during preparation as its inputs are pre-computed and

thus unable to adapt to unexpected changes in the cortical state

(compare purple and turquoise lines in Figure 8C).

DISCUSSION

Neural population activity in cortex can be accurately

described as arising from low-dimensional dynamics (Church-

land et al., 2012; Mante et al., 2013; Carnevale et al., 2015;

Seely et al., 2016; Barak, 2017; Cunningham and Yu, 2014;

Michaels et al., 2016). These dynamics unfold from a specific

initial condition on each trial, and indeed these ‘‘preparatory

states’’ predict the subsequent evolution of both neural activ-

ity and behavior in single trials of the task (Churchland et al.,

2010; Pandarinath et al., 2018; Remington et al., 2018; Sohn

et al., 2019). In addition, motor learning may rely on these pre-

paratory states partitioning the space of subsequent move-

ments (Sheahan et al., 2016).

A C

B

D

Figure 8. Testable prediction: Selective re-

covery from preparatory perturbations

(A) Illustration of perturbation via ‘‘photoinhibition’’:

a subset (60%) of I neurons in the model are driven

by strong positive input.

(B) Left: firing rates (solid, perturbed; dashed,

unperturbed) for a pair of targeted I cells (top),

untargeted I cells (middle), and E cells (bottom).

Green bars (1.6 s) mark the movement prepara-

tion epoch, and embedded turquoise bars

(400 ms) denote the perturbation period. Right:

histogram of firing rates observed at the end of

the perturbation (turquoise) and at the same time

in unperturbed trials (gray). Error bars show 1 SD

across 300 experiments, each with a different

random set of targeted I cells.

(C) Prospective motor error, averaged across

movements and perturbation experiments, in

perturbed (turquoise) versus unperturbed (black)

conditions. Subsequent hand trajectories are

shown for one experiment of each condition

(middle and bottom insets; dashed lines show

target trajectories). These are compared with the

reaches obtained by randomly shuffling final pre-

paratory errors dx across neurons and re-simu-

lating the cortical dynamics thereafter (turquoise

square mark). The purple line shows the perfor-

mance of an optimal feedforward strategy, which

pre-computes the inputs that would be provided

to the cortex under optimal feedback control and

subsequently replays those inputs at preparation

onset without taking the state of the cortex into

account anymore.

(D) Magnitude of the deviation caused by the

perturbation in the activity of the network pro-

jected into the coding subspace (left),

the persistent subspace (center), and the re-

maining subspace (right). Lines denote the mean

across perturbation experiments, and shadings

indicate ±1 SD. Green and turquoise bars as

in (B).
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How are appropriate initial conditions reached in the first

place? Here, we have formalized movement preparation as an

optimal control problem, showing how to translate anticipated

motor costs phrased in terms of muscle kinematics into costs

on neural activity in M1. Optimal preparation minimizes these

costs, and the solution is feedback control: the cortical network

must provide corrective feedback to itself, on the basis of pro-

spective motor errors associated with its current state. In other

words, optimal preparationmay rely on an implicit forwardmodel

predicting the future motor consequences of preparatory activ-

ity—not motor commands, as in classical theories (Wolpert

et al., 1995; Desmurget and Grafton, 2000; Scott, 2012)—and

feeding back these predictions for online correction of the

cortical trajectory. Thus, where previous work has considered

the motor cortex as a controller of the musculature (Todorov,

2000; Lillicrap and Scott, 2013; Sussillo et al., 2015), our work

considers M1 and the body jointly as a compound system under

preparatory control by other brain areas.

One of the key assumptions of this work is that the cortical dy-

namics responsible for reaching are at least partially determined

by the initial state (we do not assume that they are autonomous).

If, on the contrary, M1 activity were purely input driven, there

would be no need for preparatory control, let alone an optimal

one. On the one hand, perturbation experiments in mice suggest

that thalamic inputs are necessary for continuedmovement gen-

eration and account for a sizable fraction (though not all) of

cortical activity during movement production (Sauerbrei et al.,

2020). On the other hand, experiments in non-human primates

provide ample evidence that preparation does occur, irrespec-

tive of context (Lara et al., 2018), and that initial pre-movement

states influence subsequent behavior (Churchland et al., 2010;

Afshar et al., 2011; Shenoy et al., 2013). Thus, preparatory con-

trol is likely essential for accurate movement production.

Sloppy preparation for accurate movements

A core insight of our analysis is that preparatory activity must be

constrained in a potent subspace affecting future motor output

but is otherwise free to fluctuate in a nullspace. This readily ex-

plains two distinctive features of preparatory activity in reaching

monkeys: (1) that pre-movement activity on zero-delay trials

needs not reach the state achieved for long movement delays

(Ames et al., 2014) and (2) that nevertheless, movement is sys-

tematically preceded by activity in the same preparatory

subspace irrespective of whether the reach is self-initiated, arti-

ficially delayed, or reactive and fast (Lara et al., 2018). In our

model, preparatory activity converges rapidly in the subspace

that matters, such that irrespective of the delay (above 50 ms),

preparatory activity is always found to have some component

in this common subspace as in Lara et al. (2018). Moreover,

exactly which of the many acceptable initial conditions is

reached by the end of the delay depends on the delay duration.

Thus, our model predicts that different preparatory end states

will be achieved for short and long delays, consistent with the re-

sults of Ames et al. (2014). Finally, these end states also depends

on the activity prior to preparation onset. This would explain why

Ames et al. (2014) observed different pre-movement activity

states when preparation started from scratch and when it was

initiated by a change in target that interrupted a previous prepa-

ratory process. In the same vein, Sauerbrei et al. (2020) silenced

thalamic input to mouse M1 early during movement and

observed that M1 activity did not recover to the pre-movement

activity seen in unperturbed trials, even when the movement

was successfully performed following the perturbation. This

result is expected in our model if the perturbation is followed

by a new preparatory phase in which the effect of the perturba-

tion rapidly vanishes along prospectively potent dimensions but

subsists in the nullspace.

Preparing without moving

How can preparatory M1 activity not cause premature move-

ment, if M1 directly drives muscles? Kaufman et al. (2014)

argued that cortical activity may evolve in a coordinated way at

the population level so as to remain in the nullspace of the mus-

cle readout. Here, we have not explicitly penalized premature

movements as part of our control objective (Equation 6). As a

result, although preparatory activity enters the nullspace eventu-

ally (because we constrained the movement-seeding initial con-

ditions to belong to it), optimal preparatory control yields small

activity excursions outside the nullspace early during prepara-

tion (Figure S7), causing the hand to drift absent any further

gating mechanism. Nevertheless, one can readily penalize

such premature movements in our framework and obtain

network models that prepare rapidly ‘‘in the nullspace’’ via

closed-loop feedback (Figure S7; STAR Methods). Importantly,

a naive feedforward control strategy is unable to contain the

growth of movement-inducing activity during preparation.

Thalamic control of cortical dynamics

The mathematical structure of the optimal control solution sug-

gested a circuit model based on cortico-cortical feedback. We

have proposed that optimal feedback can be implemented as

a cortico-thalamo-cortical loop, switched ON during movement

preparation and OFF again at movement onset. The ON-switch

occurs through fast disinhibition of those thalamic neurons that

are part of the loop. Our model thus predicts a large degree of

specificity in the synaptic interactions between cortex and thal-

amus (Halassa and Sherman, 2019; Huo et al., 2020), as well

as a causal involvement of the thalamus in movement prepara-

tion (Guo et al., 2017; Sauerbrei et al., 2020). Furthermore, the

dynamical entrainment of thalamus with cortex predicts tuning

of thalamic neurons to task variables, consistent with a growing

body of work showing specificity in thalamic responses (Naka-

jima and Halassa, 2017; Guo et al., 2017; Rikhye et al., 2018).

For example, we predict that neurons in the motor thalamus

should be tuned to movement properties, for much the same

reasons that cortical neurons are (Todorov, 2000; Lillicrap and

Scott, 2013; Omrani et al., 2017). Finally, we speculate that an

ON/OFF switch on the thalamo-cortical loop is provided by

one of the output nuclei of the basal ganglia (SNr [substantia ni-

gra pars reticulata] or GPi [internal segment of the globus pal-

lidus]), or a subset of neurons therein. Thus, exciting these

midbrain neurons during preparation should prevent the thal-

amus from providing the necessary feedback to the motor

cortex, thereby slowing down the preparatory process and pre-

sumably increasing reaction times. In contrast, silencing these

neurons during movement should close the preparatory
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thalamo-cortical loop at a time when thalamus would normally

disengage. This should modify effective connectivity in the

movement-generating cortical network and impair the ongoing

movement. These are predictions that could be tested in future

experiments.

Thalamic control of cortical dynamics offers an attractive way

of performing nonlinear computations (Sussillo and Abbott,

2009; Logiaco et al., 2019). Although both preparatory and

movement-related dynamics are approximately linear in our

model, the transition from one to the other (orchestrated by the

basal ganglia) is highly nonlinear. Indeed, our model can be

thought of as a switching linear dynamical system (Linderman

et al., 2017). Moreover, gated thalamo-cortical loops are a spe-

cial example of achieving nonlinear effects through gain modula-

tion. Here, it is the thalamic population only that is subjected to

abrupt and binary gain modulation, but changes in gain could

also affect cortical neurons. This was proposed recently as a

way of expanding the dynamical repertoire of a cortical network

(Stroud et al., 2018).

Switch-like nonlinearities may have relevance beyond move-

ment preparation (e.g., for movement execution). In our model,

different movement patterns are produced by different initial

conditions seeding the same generator dynamics. However,

we could equally well have generated each reach using a

different movement-epoch thalamo-cortical loop. Logiaco

et al. (2019) recently explored this possibility, showing that gated

thalamo-cortical loops provide an ideal substrate for flexible

sequencing of multiple movements. In their model, each move-

ment is achieved by its own loop (involving a shared cortical

network), and the basal ganglia orchestrate a chain of thalamic

disinhibitory events, each spatially targeted to activate those

neurons that are responsible for the next loop in the sequence.

Interestingly, their cortical network must still be properly initial-

ized prior to each movement chunk, as it must in our model.

For this, they proposed a generic preparatory loop similar to

the one we have studied here (Logiaco et al., 2019; Logiaco

and Escola, 2020). However, theirs does not take into account

the degeneracies in preparatory states induced by prospective

motor costs, which ours exploits. In sum, our model and theirs

address complementary facets of motor control (preparation

and sequencing) and could be combined into a single model.

To conclude, we have proposed a theory of movement prep-

aration and studied its implications for various models of move-

ment-generating dynamics in M1. Although these models

capture several salient features of movement-epoch activity,

they could be replaced by more accurate, data-driven models

(Pandarinath et al., 2018) in future work. This would enable our

theory to make detailed quantitative predictions of preparatory

activity, which could be tested further in combination with tar-

geted perturbation experiments. Our control-theoretic frame-

work could help elucidate the role of the numerous brain areas

that collectively control movement (Svoboda and Li, 2018) and

make sense of their hierarchical organization in nested loops.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Guillaume

Hennequin (g.hennequin@eng.cam.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The full datasets have not been deposited in a public repository because they are made available to the authors byMark Churchland,

Matthew Kaufman and Krishna Shenoy. Requests for these recordings should be directed to them. The code generated during this

study is available at https://github.com/hennequin-lab/optimal-preparation.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this study, we analyzed two primate datasets that were made available to us by Mark Churchland, Matthew Kaufman and Krishna

Shenoy. Details of animal care, surgery, electrophysiological recordings, and behavioral task have been reported previously in

Churchland et al. (2012); Kaufman et al. (2014) (see in particular the details associated with the J and N ‘‘array’’ datasets). Briefly,

the subjects of this study, J and N, were two adult male macaque monkeys (Macaca mulatta). The animal protocols were approved

by the Stanford University Institutional Animal Care and Use Committee. Both monkeys were trained to perform a delayed reaching

task on a fronto-parallel screen. At the beginning of each trial, they fixated on the center of the screen for some time, after which a

target appeared on the screen. A variable delay period (0–1000 ms) ensued, followed by a go cue instructing the monkeys to reach

toward the target. Recordings were made in the dorsal premotor and primary motor areas using a pair of implanted 96-electrode

arrays.

METHOD DETAILS

The values of all the parameters mentioned in this section are listed in the tables below.

REAGENT OR RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaque (Macaca mulatta) N/A Details of the two macaque monkeys used

in this study were previously reported in

Kaufman et al., 2014; requests for these

datasets should be directed to Mark

Churchland, Matthew Kaufman and Krishna

Shenoy.

Software and algorithms

OCaml 4.10 Open source https://www.ocaml.org

Owl Open source https://ocaml.xyz

Python 3 Open source https://python.org

Gnuplot 5.2 Open source http://gnuplot.info

Custom code Open source https://github.com/hennequin-lab/optimal-

preparation
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A model for movement generation by cortical dynamics

Network dynamics

Wemodel M1 as a network with two separate populations of NE = 160 excitatory (E) neurons and NI = 40 inhibitory (I) neurons, oper-

ating in the inhibition-stabilized regime (Tsodyks et al., 1997; Ozeki et al., 2009; Hennequin et al., 2014). We constructed its synaptic

architecture using the algorithm we have previously described in Hennequin et al. (2014). Briefly, we iteratively updated the inhibitory

synapses of a random network, with an initial spectral abscissa of 1.2, to minimize a measure of robust network stability. We imple-

mented early stopping, terminating the stabilization procedure as soon as the spectral abscissa of the connectivity matrix dropped

below � 0:8.

We describe the dynamics of these N=NE +NI neurons by a standard nonlinear rate equation. Specifically, the vector xðtÞ=

ðxEðtÞ
T ; xIðtÞ

TÞT of internal neuronal ‘‘activations’’ obeys:

Parameters of the M1 circuit model

symbol value unit description

NE 160 - number of E units

NI 40 - number of I units

t 150 ms time constant of M1 dynamics

trise 50 ms rise time constant of hðtÞ

tdecay 500 ms decay time constant of hðtÞ

A implicit - set so that hðtÞ has a maximum of 5

Parameters of the arm mechanics and hand trajectories

symbol value unit description

L1 30 cm length of upper arm link

L2 33 cm length of lower arm link

M1 1.4 kg mass of upper arm link

M2 1.0 kg mass of lower arm link

D2 16 cm center of mass of lower link, away

from elbow

I1 0.025 kg m-2 moment of inertia of upper link

I2 0.045 kg m-2 moment of inertia of lower link

qinit1 10. deg. value of q1 at rest

qinit2 143.54 deg. value of q2 at rest

q
ðiÞ
reach 363ði � 2Þ deg. reach angles ði =1;.;8Þ

dreach 20 cm reach distance

treach 120 ms time constant of reach velocity profile

Parameters of the LQR algorithm

symbol value unit description

l 0.1 - input energy penalty in Equation 30

Parameters of the thalamo-cortical circuit model

symbol value unit description

l 0.01 - input energy penalty in Equation 30

p 0.2 - density of random connections from M1 to

thalamus

ME 100 - number of E units in M1 L4

MI 100 - number of I units in M1 L4

ty 10 ms neuronal time constant in thalamus

tz 10 ms neuronal time constant in M1 L4

Parameters of the photoinhibition model

symbol value unit description

Nph 100 - number of M1 I units perturbed (60%)

hph 3 - input to perturbed I units during

photoinhibition

Tph 400 ms duration of photoinhibition
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t

dx

dt
= � xðtÞ+Wf½xðtÞ�+h+hðtÞ+uðtÞ (8)

where t is the single-neuron time constant, W is the synaptic connectivity matrix, and fðxÞ=maxðx;0Þ is a static, rectified-linear

nonlinearity – applied elementwise to x – that converts internal activations into momentary firing rates. The input consists of three

terms: an inputh= xsp �Wf xsp
� �

held constant throughout all phases of the task to instate a heterogeneous set of spontaneous firing

rates xsp (elements drawn i.i.d. from Nð20;9Þ); a transient, movement-condition-independent and spatially uniform a-shaped

input bump

hðtÞ = ð1;.;1ÞT 3

8

><

>:

if t > tmove : A

�

exp

�

�
t � tmove

tdecay

�

� exp

�

�
t � tmove

trise

�	

otherwise : 0

(9)

kicking in at movement onset (Kaufman et al., 2016); and a preparatory control input uðtÞ (further specified below) whose role is to

drive the circuit into a preparatory state appropriate for each movement.

We assume that the uncontrolled dynamics ðu = 0Þ of this network directly drives movement. To actuate the two-link arm model

described in the next section, the activity of the network is read out into two joint torques:

mðtÞ = Cf½xðtÞ� (10)

where C˛R23N is such that its last NI columns are zero, i.e., only the excitatory neurons contribute directly to the motor output.

Although our simulations show that the muscle readoutsmðtÞ are very small during preparation, they do cause drift in the hand prior

to movement onset (and therefore wrong movements afterward) as they are effectively integrated twice by the dynamics of the arm

(see below and Figure S7). For this reason, we artificially set m to zero during movement preparation.

Arm model

To simulate reaching movements, we used the planar two-link arm model previously described in Li and Todorov (2004). The upper

arm and the lower arm are connected at the elbow (Figure S1). The two links have lengths L1 and L2, masses M1 and M2, and mo-

ments of inertia I1 and I2 respectively. The lower arm’s center of mass is located at a distance D2 from the elbow. By considering the

geometry of the upper and lower limb, we can write down the position of the hand as a vector yðtÞ given by

y=
L1 cos q1 + L2 cos q1 + q2ð Þ
L1 sin q1 + L2 sin q1 + q2ð Þ

� �

(11)

where the angles q1 and q2 are defined in Figure S1A. The joint angles q= ðq1; q2Þ
T
evolve dynamically according to the differential

equation

MðqÞ€q + Xðq; _qÞ+B _q=mðtÞ; (12)

wheremðtÞ is the momentary torque vector (the output of the neural network, c.f. Equation 10),M is the matrix of inertia, X accounts

for the centripetal and Coriolis forces, and B is a damping matrix representing joint friction. These parameters are given by

MðqÞ =

 

a1 + 2a2 cos q2 a3 + a2 cos q2
a3 + a2 cos q2 a3

!

(13)

X q; _q
� �

= a2 sin q2
� _q2 2 _q1 + _q2

� �

_q1
2

 !

B =
0:05 0:025
0:025 0:05

� �

(14)

with a1 = I1 + I2 +M2L
2
1, a2 =M2L1D2, and a3 = I2.

Target hand trajectories and initial setup

We generated a set of eight target hand trajectories, namely straight reaches of length d = 20 cm going from the origin (ð0;dÞ from the

shoulder) into eight different directions, with a common bell-shaped scalar speed profile

vðtÞ = v0

�
t

treach

�2

exp

�

�
1

2

�
t

treach

�2	

; (15)

where v0 is adjusted such that the hand reaches the target. Given these target hand trajectories, we solved for the required time

course of the torque vector mðtÞ through optimization, by backpropagating through the equations of motion of the arm (discretized

using Euler’s method) to minimize the squared difference between actual and desired hand trajectories. We forced the initial torques

at t = 0 to be zero, and also included a roughness penalty in the form of average squared torque gradient.

To calibrate the network for the production of the desired movement-specific torques fm+

k ðtÞg, k = 1;.;8, we optimized a set of

eight initial conditions fx+k g, as well as the readout matrix C, by minimizing the loss function:
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L
�
C;


x+

k

��
=

1

8

X8

k = 1

�Z tmove +T

tmove

kmkðtÞ �m+

k ðtÞ k
2
dt

�

+

1

2NE

kC k 2
; (16)

where T = 1 second andmkðtÞ depends onC and x+k implicitly through the dynamics of the network. The first term of Lminimizes the

squared difference between the actual and desired torque trajectories, while the second term penalizesC’s squared Frobenius norm.

We performed the optimization using the L-BFGS algorithm (Liu and Nocedal, 1989) and backpropagating through Equations 8 and

10. In addition, we parameterized the readout matrix C in such a way that its nullspace automatically contains both the spontaneous

activity vector xsp and the movement-specific initial conditions fx+k g, k = 1;.;8. This is to ensure that (i) there is no muscle output

during spontaneous activity and (ii) the network does not unduly generatemuscle output at the end of preparation, before movement.

More specifically, prior to movement preparation and long enough after movement execution, the cortical state is in spontaneous

activity xsp. By ensuring thatCfðxspÞ=Cxsp = 0, we ensure that our model network does not elicit movement ‘‘spontaneously.’’ Simi-

larly, control inputs drive the cortical state x toward x+k , which it will eventually reach late in the preparation epoch; therefore, if we did

not constrain x+k to be in C’s null-space, premature movements would be elicited toward the end of preparation.

Training of other network classes

In Figures 5 and 6, we considered three other network types: ‘full’, ‘low-rank’, and ‘chaotic’ networks, which differed from the ISN in

the way we constructed their synaptic connectivity matrices. We implemented 10 independent instances of each class.

For the chaotic networks, synaptic weights were drawn from a normal distribution with mean�25=N and variance 1:82=N; this pla-

ces the networks in the chaotic regime with a threshold-linear nonlinearity (Kadmon and Sompolinsky, 2015). We calibrated the

chaotic networks for generating the desired hand trajectories by optimizing C and fx+k g as described above.

Unlike the ISNs and the chaotic networks, we optimized the connectivity matrixW of the full and low-rank networks in addition to

fx+k g and C, when we calibrated these networks for movement production. While we optimized every element of W for the full net-

works, we parameterized the low-rank networks as

W = Wbase +uv
T ; (17)

where uvT is a rank-5 perturbation to a random connectivity matrix Wbase. Here, both u and v˛RN35 are free parameters, whereas

Wbase is a fixed matrix with elements drawn anew for each network instance from Nð0;0:92 =NÞ. Following Sussillo et al. (2015), we

regularized the ‘full’ and ‘low-rank’ networks by augmenting the loss function (Equation 16) with an additional term: W2=N2 for the

‘full’ networks and ðku k 2
+ kv k 2Þ=5N for the ‘low-rank’ networks.

We found that the addition of the reach-independent input hðtÞ during the movement epoch (Equation 2) made the ‘full’, ‘chaotic’,

and ‘low-rank’ networks difficult to train: they either became unstable, entered a chaotic regime, or were unable to produce the

desired movements altogether. Thus, we excluded hðtÞ for all these networks, as well as for the 10 other ISNs that we constructed

as part of this multi-network comparison.

Similarity transformation of network solutions

A trained (linear) network’s solution is completely determined by the triplet S = ðA;C;fx+k gÞ, where AbI �W is the state transition

matrix, C is the linear readout, and fx+k g for k = 1;/;8 is the set of movement-specific initial conditions. Using an invertible transfor-

mation T , we can construct a new solution given by the triplet ~S = ð~A; ~C;f~x+k gÞ, where

~A = T �1AT ; ~C=CT ; and ~x
+

k = xsp + T
�1
�
x+

k � xsp

�
; (18)

and h changed to�~Axsp to ensure the spontaneous state remains the same. To see that ~S is also a solution to the task, we note that

the output torques m+

k ðtÞ at any time t are equal to

m+

k ðtÞ = Ceðt=tÞAx+

k =
~Ceðt=tÞ~A~x

+

k =
~m

+

k ðtÞ: (19)

In Figure 6, we build the surrogate networks by applying the similarity transformation T that (block-)diagonalizes A, resulting in ~A of

the form:

~A =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1
cj

1
ak bk

�bk ak
1

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(20)
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where fckg and fak ± ibkg are the sets of real and complex-conjugate eigenvalues of A. The resulting ~A is a ‘‘normal’’ matrix

(~A~A
T
=
~A
T ~A; Trefethen and Embree, 2005), which—contrary to the original matrix A—is unable to transiently amplify

the set of movement-specific initial states f~x+k g during movement (Figure 6D). In order to be able to meaningfully compare

kC k F and k~C k F in Figure 6F, we scale T so as to preserve the average magnitude of the initial states (relative to the spontaneous

state):

X

k

k~x
+

k
� xsp k

2
=

X

k

kx+

k � xsp k
2
: (21)

We can always achieve this because ~A= T �1AT = ðaT Þ�1
AðaT Þ for any as0.

Formalization of anticipatory motor control

We formalise the notion of anticipatory control by asking: given an intended movement (indexed by k), and the current (preparatory)

state xðtÞ of the network, how accurate would the movement be if it were to begin now? We measure this prospective motor error as

the total squared difference CkðxÞ between the time courses of the target torques m+ and those that the network would generate

(Equations 8 and 10) if left uncontrolled from time t onward, starting from initial condition xðtÞ:

CkðxÞb

Z
N

t

dt0

t

kmðt0Þ �m+

k ðt
0 � tÞ k

2
with uðt0 R tÞ= 0 (22)

(we will often drop the explicit reference to the movement index k to remove clutter, as we did in themain text). Thus, any preparatory

state x is associated with a prospective motor error CðxÞ.

The prospective error CðxÞ changes dynamically during movement preparation, as xðtÞ evolves under the action of control inputs.

The aim of the control inputs is to rapidly decrease this prospective error, until it drops below an acceptably small threshold, or until

movement initiation is forced. We formalize this as the minimization of the following control cost:

J ½uðtÞ�bC

Z
N

0

dt

t

ðCðxðtÞÞ+ lRðuðtÞÞÞDpðxðt = 0ÞÞ (23)

where RðuÞ is a regularizer (see below) and the average C $D is over some distribution of states we expect the network to be found

in at the time the controlled preparatory phase begins (we leave this unspecified for now as it turns out not to influence the

optimal control strategy – see below). Thus, we want control inputs to rapidly steer the cortical network into states of low CðxÞ

from which the movement can be readily executed, but these inputs should not be too large. The infinite-horizon summation ex-

presses uncertainty about how long movement preparation will last, and indeed encourages the network to be ‘‘ready’’ as soon

as possible.

Mathematically, J ½ $� is a functional of the spatiotemporal pattern of control input uðtÞ — indeed, xðtÞ depends on uðtÞ through

Equation 8. The regularizer RðuÞ, or ‘‘control effort,’’ encourages small control inputs and will be specified later. Without regulariza-

tion, the problem is ill-posed, as arbitrarily large control inputs could be used to instantaneously force the network into the right pre-

paratory state in theory, leading to physically infeasible control solutions in practice. Also note that Equation 23 is an ‘‘infinite-horizon’’

cost, i.e., the integral runs from the beginning of movement preparation when control inputs kick in, until infinity. This does notmean,

however, that the preparation phase must be infinitely long. In fact, good control inputs should (and will!) bring the integrand close to

zero very fast, such that the movement is ready to begin after only a short preparatory phase (see e.g., Figure 4A in the main text).

In order to derive the optimal control law, we further assume that the dynamics of the network remain approximately linear during

both movement preparation and execution. This is a good approximation provided only few neurons become silent in either phase

(the saturation at zero firing rate is the only source of nonlinearity in our model, c.f. fð $Þ in Equation 8; Figure S5). In this case, the

prospective motor error CðxÞ of Equation 22 affords a simpler, interpretable form, which we derive now. In the linear regime, Equa-

tion 8 becomes

t

dx

dt
= AxðtÞ+h+hðtÞ+uðtÞ (24)

with an effective state transition matrix AbW � I. The network output at time t0, starting from state x at time t0 = 0 and with no control

input thereafter, has an analytical form given by

mðt0Þ = C
�
eðt0=tÞAðx� xspÞ + qðt0Þ

�
(25)

and similarly form+ðt0Þ with x replaced by x+. The final term qðt0Þ is a contribution from the external input: it does not depend on the

initial condition, and is therefore the same in both cases. Thus, the prospective motor error (Equation 22) attached to a given prepa-

ratory state x is
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CðxÞ =

Z
N

0

dt0

t

kCeðt0=tÞAðx � x+Þ k
2
= ðx � x+ÞT

� Z
N

0

dt0

t

�

eðt0=tÞAT

C
T
Ceðt0=tÞA


	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Q

ðx� x+Þ: (26)

The matrix integral on the r.h.s. of Equation 26 is known as the ‘‘observability Gramian’’ Q of the pair ðA;CÞ (Skogestad and Post-

lethwaite, 2007; Kao and Hennequin, 2019). It is found algebraically as the solution to the Lyapunov equation1

A
T
Q + QA+C

T
C= 0: (27)

Thus, under linearity assumptions, the prospective motor error is a quadratic function of the difference between the momentary pre-

paratory state x and an optimal initial state x+ known to elicit the right muscle outputs in open loop. The Gramian Q, a symmetric,

positive-definite matrix, determines how preparatory deviations away from x+ give rise to subsequent motor errors. Deviations along

the few eigenmodes of Q associated with large eigenvalues will lead to large errors in muscle outputs. The optimal control input uðtÞ

will need to work hard tominimize this type of ‘prospectively potent’ deviations – luckily, there are few (see Figure 3D in themain text,

where the top 20 eigenvalues of Q are shown; see also Supplemental Math Note S1 for further dissection). In contrast, errors occur-

ring along eigenmodes of Q with small eigenvalues – the vast majority – have almost no motor consequences (‘prospectively null’).

This large bottom subspace ofQ provides a safe buffer in which preparatory activity is allowed to fluctuate without sacrificing control

quality. It comprises both the ‘‘readout-null’’ and ‘‘dynamic-null’’ directions described in the main text (Figure 3). Geometrically, we

can therefore think of the optimal preparatory subspace as a high-dimensional ellipsoid centered on x+, andwhose small and (poten-

tially inifinitely) large axes are given by the top and bottom eigenvectors ofQ, respectively (small axes, steep directions, large eigen-

values; long axes, flat directions, small eigenvalues).

Finally, we note that the optimal control input uðtÞmust keep the infinite-horizon integral in Equation 23 finite. This is achieved if xðtÞ

reaches a fixed point equal to x+, which is in turn achieved if the control input eventually settles in a steady state equal to

u+
= � Ax+ � h (28)

Thus, defining duðtÞbuðtÞ � u+ and dxðtÞbxðtÞ� x+, a relevant regularizer for our control problem is

RðuðtÞÞbkduðtÞ k 2
(29)

and our control cost functional becomes

J ½uðtÞ� = C

Z
N

0

dt

t

�
dxðtÞTQdxðtÞ+ lkduðtÞ k 2

�
Dpðxðt = 0ÞÞ: (30)

In our simulations, we perform a simple scalar normalization of Q so that TrðQÞ=N. This makes the first term of the cost more easily

comparable to the energy penalty lkdu k 2
, which also scales with N. In the next section, we show that the quadratic formulation of J

in Equation 30 leads to analytically tractable optimization. In the rest of the STARMethods, as in themain text, we continue to assume

linear network dynamics in order to derive optimal control laws but implement these solutions in the fully nonlinear circuit.

Classical LQR solution

When no specific constraints on uðtÞ are imposed, the minimization of Equation 30 is given by the celebrated linear quadratic regu-

lator (LQR). Specifically, the optimal control input uoptðtÞ=u+
+ duoptðtÞ takes the form of instantaneous linear state feedback

(Figure S3A):

duoptðtÞ = K dxðtÞ with K = � l�1P (31)

where P is a symmetric, positive-definite matrix, obtained as the solution to the following Riccati equation:

ATP + PA� l�1PP +Q= 0: (32)

Wewill recover this optimal feedback law later (‘Feedback based on excitatory neurons only’) as part of amore general mathematical

derivation; for now, we refer to standard texts, e.g., Skogestad and Postlethwaite, (2007).

Thus, to achieve optimal anticipatory control of fast movements, the best strategy for the preparatory phase is to feed back into the

circuit a linearly weighted version of the momentary error signal dxðtÞ. The optimal feedback matrix K turns out to not depend on the

choice of distribution pðxðt = 0ÞÞ. For a linear model, this also implies that K does not depend on the specific movement to be per-

formed, i.e., on the specific state x+ to be approached during preparation. Only the steady-state control input u+ in Equation 28 is

movement-specific.

1This result is central to the theory of linear quadratic control, where cost functions are often of the form of integrated squared functions of the

state, output, or input, under linear dynamics. It allows one to manipulate these integrals algebraically, and compute them numerically by

solving a linear matrix equation (e.g. Bartels and Stewart, 1972). Indeed we will use this result again several times below in different contexts.
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The total control cost is given by J = dxT0Pldx0, where dx0 is the deviation of the network state from x+ at the onset of movement

preparation (i.e., the state of the network at preparation onset is x+ + dx0). The corresponding total energy cost
R
Rdt is given by

dxT0Ydx0 where Y is the solution to

AT
clY + YAcl + l

�2PP = 0; (33)

and

AclbA+K =A� l�1P (34)

is the effective state matrix governing the dynamics of the closed control loop. The associated integrated prospective motor cost is

then given by
R
CðxðtÞÞdt = dxT0 ðP � lYÞ dx0. This is how we evaluate the total energy cost and integrated prospective motor cost in

Figure 5H.

We emphasize that the LQR problem (and its solution in Equation 31) assumes linear dynamics throughout the preparatory and

movement epochs to compute (and optimize) the prospective motor cost CðxðtÞÞ. We verified that the quadratic form of Equation 26

provides a good approximation to the actual CðxðtÞÞ resulting from nonlinear dynamics during the movement epoch (Figure S5C).

Moreover, all our simulations use the nonlinear activation function fð $Þ in Equation 8 unless indicated otherwise.

Naive feedforward solution

A straightforward solution exists for ensuring that, after enough preparation time, xðtÞ converges exponentially to x+ – thus eventually

leading to the correct movement. This ‘‘naive’’ solution consists in setting uðtÞ to the constant vector u+ in Equation 28 (thus duðtÞ= 0

throughout preparation). Note that for the full nonlinear model, u+
= x+ � Wf½x+� � h. This constant input is provided during move-

ment preparation and removed at the desired time of movement onset. This naive strategy does not rely on feedback, and so can be

seen as a type of feedforward preparatory control. It also corresponds to the LQR solution in the limit of infinite energy penalty l in

Equation 30, and indeed the solution in this limit yields K = 0, resulting in RðuðtÞÞ= 0.

Adapting optimal control to chaotic networks

In Figure 5D, we adapt optimal preparatory control to a chaotic network and find that LQR stabilizes its otherwise unstable dynamics

duringmovement preparation. Thus far, we have assumed thatA is Hurwitz-stable in deriving the optimal control law, which allows us

to evaluate the integral in Equation 26 analytically by solving Equation 27. This integral diverges for unstable A, and thus cannot be

evaluated for a chaotic network. In this work, we simply set Q= I for the chaotic network, which likely overestimates the number of

state-space directions that matter for preparatory control. More sophisticated methods could potentially be used for estimating the

sensitivity of these nonlinear dynamics to errors in the initial condition. This would presumably lead to faster preparation for a set

energy budget RðuðtÞÞ, but we leave this for future work.

Preparing in the nullspace

In Figure S7, we extend the optimal control model to explicitly penalize non-zero output torques during movement preparation. Spe-

cifically, we augment the cost functional in Equation 30 with a penalty on the integrated squared magnitude of mðtÞ, which can be

written as a quadratic form in dx much like the prospective motor cost in Equation 26:
Z

N

0

dt

t

kmðtÞk 2
=

Z
N

0

dt

t

dxTC
T
Cdx (35)

where mðtÞ=Cdx because we have constrained the initial conditions fx+k g to be in the nullspace of C. We thus write the combined

cost functional as

J ½uðtÞ� = C

Z
N

0

dt

t

h

dxðtÞT ~QdxðtÞ+ lkduðtÞ k 2
i

Dpðxðt = 0ÞÞ with ~Q= hQ+ ð1� hÞN
C

T
C

Tr
�

C
T
C

; (36)

where h˛½0;1� is a scalar that weighs the relative importance of preparing fast and preparing while not moving (h= 0:2 in Figure S7).

Optimality under neural constraints

The linear quadratic regulator presented in ‘Classical LQR solution’ above brings the fundamental insight that control can (and in fact,

should) be achieved via a feedback loop (Figure S3A). Such a loop could technically be embedded directly as a modification of the

recurrent connectivity within M1, as all that matters for the control cost is the effective closed-loop state matrix A+K. However, this

would make it very difficult to switch the loop ON when movement preparation must begin, and OFF again when the movement is

triggered. A more flexibly strategy would be to have the loop pass through another brain area, and gain-modulate this area (e.g.,

via inhibitory drive) to close or open the loop when appropriate.

A natural candidate structure for mediating such cortico-cortical feedback is the motor thalamus, which has been shown to be

causally involved in movement preparation (Guo et al., 2017). Importantly, basic anatomy and physiology pose constraints on the

type of connectivity and dynamics around the control loop, such that wewill have to adapt the classical LQR theory to derive plausible
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circuit mechanisms. In particular, the thalamus is not innervated by the local inhibitory interneurons ofM1, so feedback will have to be

computed based on the activity of (some of) the excitatory cells only, precluding full-state feedback. Moreover, the optimal LQR gain

matrix K (given by Equations 31 and 32) contains both positive and negative elements with no structure; this violates Dale’s law, i.e.,

that neurons can be either excitatory or inhibitory but are never of a mixed type. Finally, the classical LQR solution prescribes instan-

taneous state feedback, whereas thalamic neurons will have to integrate their inputs on finite timescales, thereby introducing some

‘‘inertia,’’ or lag, in the feedback loop. In the rest of this section, we flesh out these biological constraints in more detail, and show that

all of these limitations can be addressed mathematically, to eventually yield optimal control via a realistic thalamocortical feedback

loop (see Figures S3B–S3D for a graphical overview).

Feedback based on excitatory neurons only

Here, we incorporate the key biological constraints that feedback from the cortex onto itself via the thalamus will have to originate

from the excitatory cells only. Thus, instead of duðtÞ=KdxðtÞ, we look for a feedback matrix of the form (Figure S3B)

K = ZG (37)

whereGb½INE
0NE3NI

� singles out the activity of the E neurons when computing the control input Kdx, and Z is anN3NE matrix of free

parameters. To gain generality (which wewill need later), we also assume that the control input enters the network through amatrixB,

i.e., the closed-loop state matrix (Equation 34) becomes Acl =A+BZG, and the energy penalty becomes lkBduðtÞ k 2
. We now derive

algebraic conditions of optimality for Z, along with a gradient-based method to find the optimal Z that fulfills them.

First, we use the general result of Equation 27 (see also Footnote 26) to rewrite the cost function J in Equation 30 as:

J ðZÞ = TrðPÞ (38)

where P satisfies

0 = GðP;ZÞbAT
clP +PAcl +Q+ lGTZTBTBZG: (39)

Note thatJ in Equation 38 is now a function of the feedbackmatrixK, and therefore of the parameter matrix Z. Tominimize J w.r.t. Z

subject to the constraint in Equation 39, we introduce the Lagrangian:

LðP;Z;SÞb TrðPÞ+TrðGðP;ZÞ SÞ; (40)

where S is a symmetric matrix of Lagrange multipliers (the matrix equality in Equation 39 is symmetric, thus effectively providing

NðN + 1Þ=2 constraints). After some matrix calculus, we obtain the following coupled optimality conditions:

0 = vL=vP = AclS+SA
T
cl + I (41)

0 = vL=vS = GðP;ZÞ (42)

0 = vL=vZ = 2BTðP + lBZGÞSGT : (43)

When the two Lyapunov equations Equations 41 and 42 are satisfied, the second term ðTrðGSÞÞ in L vanishes, such that vL=vZ of

Equation 43 is in fact the gradient of TrðPÞ w.r.t. Z subject to the algebraic constraint of Equation 39. We use this gradient equation,

together with the L-BFGS optimizer (Byrd et al., 1995) to find the optimal parameter matrix Z. We then recover the optimal feedback

gain matrixK according to Equation 37. We start each optimization by setting Z =KG
T ðGGTÞ�1

, whereK is the classical LQR solution

to the same problem, such that Z is the least-square solution to K =ZG.

Dale’s law

The previous subsection showed how to obtain a gain matrixK of sizeN3NE that implements optimal, instantaneous cortico-cortical

feedback originating from the excitatory cells. However, this optimal matrix typically has a mix of positive and negative elements that

are not specifically structured. To implement the more realistic feedback architecture shown in Figure S3C, implicating the motor

thalamus and M1 layer 4 (M1-L4), we seek a decomposition of the form

KzKxz

|{z}

ð+ j�Þ

Kzy

|{z}

ð+ Þ

Kyx

|{z}

ð+ Þ

(44)

whereKyx (M1 to thalamus) is anNE3Nmatrix of non-negative elements,Kzy (thalamus toM1-L4) is anM3NE matrix of non-negative

elements, and Kxz (M1-L4 to the recurrent M1 network) is an N3Mmatrix composed ofME non-negative columns and MI non-pos-

itive columns (thusM=ME +MI). Such a sign-structured decomposition will allow optimal control to be performed through the more

realistic feedback architecture shown in Figure S3C, with corresponding dynamics of the form:
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M1 t

dx

dt
= � xðtÞ+Wf½xðtÞ�+h +hðtÞ+ ~u

+
+Kxzf½zðtÞ�

M1� layer 4 zðtÞ=Kzyf½yðtÞ�
Thal: yðtÞ=Kyxf½xðtÞ� (45)

where

~u
+
= x+ � ðW + KÞfðx+Þ � h (46)

is a condition-dependent steady input given to the network during movement preparation so as to achieve the desired fixed point x+.

To achieve this decomposition, we note that without loss of generality we can choose Kyx = ½R 0NE3NI
� – where R is a random,

element-wise positive NE3NE matrix – and apply the algorithm developed above (‘Feedback based on excitatory neurons only’)

now with G=Kyx. This will return an optimal N3NE matrix Z describing feedback from thalamus back to M1, which – as long as R

is invertible – will achieve the same minimum cost as if R had been set to INE
. Here, we simply draw each element of R from

BernoulliðpÞ, i.e., random sparse projections (the magnitude of R does not matter at this stage, as only the product ZG does; R

will be renormalized later below). We now need to decompose this optimal feedback matrix as Z =KxzKzy, with the same sign con-

straints as in Equation 44.We approach this via optimization, byminimizing the squared error implied by the decomposition, plus a 2-

norm regularizer:

kZ � KxzKzy k
2

F

kZ k 2

F

+g
�
kKxz k

2

F + kKzy k
2

F

�
(47)

We parameterize each element of Kxz and Kzy as ± z2, where z is a free parameter to be optimized, and the ± sign enforces the sign

structure written in Equation 44. Minimization is achieved using L-BFGS and typically converges in a few tens of iterations. We note

that the product KxzKzyKyx is invariant to any set of rescalings of the individual matrices as long as they cancel out to 1. Thus, after

optimization, we re-balance the three matrices such that they have identical Frobenius norms. This is mathematically optional, but

ensures that firing rates in M1, thalamus and M1-L4 have approximately the same dynamic range.

Importantly, we find that as long as the number of M1-L4 neurons (M) is chosen sufficiently large, the decomposition of Z that we

obtain is almost exact, which implies that the dynamics of Equation 45 still achieves optimal anticipatory control of movement under

the architectural constraint of Equation 37.

Taking into account integration dynamics in thalamus and M1-layer 4

The optimal control solution that we arrived at in Equation 45 still relies on instantaneous feedback from cortex back onto itself. How-

ever, neurons in the thalamus and in M1’s input layer have their own integration dynamics – this will introduce lag around the loop,

which must be taken into account when designing the optimal feedback. We therefore include these dynamics:

M1 t

dx

dt
= � xðtÞ+Wf½xðtÞ�+h + hðtÞ+ ~u

+
+Kxzf½zðtÞ�

M1� layer 4 tz

dz

dt
= � z+Kzyf½yðtÞ�

Thal: ty

dy

dt
= � y +Kyxf½xðtÞ� (48)

where the steady input ~u
+
is again given by Equation 46, and fty; tzg are the single-neuron time constants in the thalamus and the

cortical input layer. We then seek the optimal connectivity matrices fKxz;Kzy ;Kyxg to fulfill the same optimal-control principles as

before, namely the minimization of the cost functional in Equation 30. In order to do that, we note that the dynamics of x (M1 activity)

in the linear regime do not change if the system of differential equations in Equation 48 is simplified as

M1 t

dx

dt
= ðW � IÞxðtÞ+h + hðtÞ+ ~u

+
+KzðtÞ

M1� layer 4 tz

dz

dt
= � z+ yðtÞ

Thal: ty

dy

dt
= � y + xðtÞ (49)

whereK =KxzKzyKyx summarizes the three connectivity matrices around the loop into one effective feedback gainmatrix. This formu-

lation allows us to combine the steps developed in the previous two subsections to find the optimal connectivity matrices.

Specifically, we apply the algorithm developed in ‘Feedback based on excitatory neurons only’ to an augmented systemwith state

matrix
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6
6
4

A 0N3NE
0N3NE�

t

�
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�
½R 0� �

�
t

�
ty

�
INE

0NE

0 ðt=tzÞINE
�ðt=tzÞINE

3

7
7
5
; (50)

input matrix

B0b

2

6
6
4

IN
0NE 3N

0NE 3N

3

7
7
5
; (51)

quadratic cost weighting matrix

Q
0b

2

6
6
4

Q 0N3NE
0N3NE

0NE 3N 0NE 3NE
0NE 3NE

0NE 3N 0NE 3NE
0NE 3NE

3

7
7
5

(52)

and feedback input parameterized as

u = Kx with K =ZG=Z
�
0NE 3N 0NE 3NE

INE

�
(53)

In Equation 50, the matrix R is again a random matrix of sparse positive connections from M1 to thalamus.

The optimal Z (c.f. Equation 43) corresponds to the product KxzKzy, which we can further decompose under sign constraints to

recover the individual connectivity matrices Kxz and Kzy.

Disinhibitory action of the basal ganglia

We model the disinhibitory action of the basal ganglia (BG) on thalamic neurons as an ON-OFF switch: to trigger movement, BG

become active (BG neurons not explicitly modeled here) and the thalamic neurons are silenced instantly (i.e., y is set to 0). When

this happens, thalamic inputs to M1-L4 vanish and M1-L4 neural activity decays to zero on a time-scale tz (see Equation 50). As

the activity of L4 neurons decays, these neurons continue to exert an influence on M1 activity through the connectivity

matrix Kzx. This lead to changes in movement-related M1 dynamics, resulting in small movement errors, which we correct

post hoc by re-optimizing the desired initial state x+ for each movement. From these new desired states, network dynamics

evolves—with the additional inputs from M1-L4 neurons after movement onset—to produce accurate hand trajectories.

Crucially, unlike what we described in ‘Target hand trajectories and initial setup’, we do not re-optimize the readout matrix

C here. This is because the observability Gramian Q and thus the closed-loop controller K depend on C: changing the readout

matrix C at this stage would cause the K we found to no longer be optimal with respect to J . However, because the closed-

loop solution does not depend on the desired fixed points x+, we can re-optimize x+ and still be guaranteed that the K that we

found remains optimal.

Modeling the effect of photoinhibition

To model photoinhibition in our full circuit (whose dynamics are described by Equation 45), we simply add a constant positive

input hph to a subset of cortical inhibitory neurons chosen randomly, for a duration Tph = 400 ms. This results in an overall

decrease in population activity across both excitatory and inhibitory neurons, consistent with the well-known paradoxical ef-

fects of adding positive inputs to I cells in inhibition-stabilized networks (Tsodyks et al., 1997; Ozeki et al., 2009; Sanzeni

et al., 2020).

In Figure 8D, we consider how, after photoinhibition, the activity of the full circuit recovers in three subspaces: the coding subspace

(CS), the persistent subspace (PS), and the remaining subspace (RS). To define the CS, we focus on unperturbed neural activity in the

last 400ms ofmovement preparation. For eachmovement condition, we compute the time-averaged population activity vector in this

time window and combine them into a data matrix Xunpert˛R
N38. We perform principal component analysis (PCA) on Xunpert and

extract an orthonormal basis UCS, which captures 90% of the variance in Xunpert. The CS is defined as the subspace spanned by

the columns of UCS.

The PS and the RS are defined specifically for each perturbation experiment. In each experiment, we simulate the perturbed dy-

namics of the network for each movement condition, each with a different random subset of inhibitory neurons being ‘photostimu-

lated’. To compute the PS, we consider the same time window that we do for the CS and calculate the perturbed, time-averaged

population activity vector for each movement. We again collate them into a matrix Xpert˛R
N38 and perform PCA on the deviation

induced by the perturbations in the given experiment, D=Xpert � Xunpert. We extract an orthonormal basis UPS, which captures

90% of the variance in D. The PS is defined as the subspace spanned by the columns of UPS. Similarly, to compute the RS, we

construct the data matrix Y = ½Xunpert Xpert � in each perturbation experiment and orthogonalize it with respect to both UCS and

UPS. We perform PCA on the resulting data matrix and again extract an orthonormal basis URS that captures 90% of the variance,
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which defines the RS. We find that the three subspaces combine to capture 98% of the total variance in Y , averaged over 300 inde-

pendent perturbation experiments.

To examine how activity trajectories recover in the three subspaces, we project the perturbed and unperturbed activity onto UCS,

UPS, andURS and calculate the magnitude of the deviation in each subspace. This is averaged over all movements and 300 indepen-

dent perturbation experiments, which is what is shown in Figure 8D.

QUANTIFICATION AND STATISTICAL ANALYSIS

Network measures

Participation ratio

To estimate the dimensionality of subspaces, we use the ‘‘participation ratio’’ (Gao et al., 2017), calculated based on the eigenvalue

spectrum s1;s2;/;sN of the relevant symmetric, positive-definite matrix as

�P

isi

�2

P

is
2
i

: (54)

Nonnormality

In Figure 5E, we define the nonnormality of a network with synaptic connectivity matrix W as

kWk 2

F � kLk 2

F

kWk 2

F

(55)

as proposed by Murphy and Miller (2009), where L is a diagonal matrix containing the eigenvalues of W.

H2 norm

In Figure 5F, we define theH2 norm of a network as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðWoÞ
p

, where the full-state observability GramianWo satisfies the Lyapunov

equation ATWo +WoA+ I = 0 and A= � I +W.

Prospective motor potency

The prospective motor potency of a state space direction d (with kdk = 1) is dTQd, whereQ satisfies Equation 27. This quantifies the

prospective motor error induced by a deviation x+ +d of the final preparatory state away from x+. In Figure 3D, we plot the top 20

eigenvalues of Q, i.e., the motor potency of the 20 most potent directions (the corresponding eigenvectors of Q). The prospective

motor potency of a K-dimensional subspace S, spanned by the unit vectors d1;/;dK , is given by

1

K

XK

i = 1

dT
i Qdi: (56)

Amplification factor

In Figure 6D, for each movement k we define the amplification factor in the model as kðxðtÞ � xspÞ k = k x+k � xsp k , where xðtÞ is the

movement-epoch activity evolving according to Equation 8 with hðtÞ= 0, uðtÞ= 0, and xð0Þ= x+k . Description of how we define the

amplification factor for the monkeys can be found below.

Neural data analysis

In this paper, we analyzed recordings from two monkeys (see ‘Experimental model and subject details’ above). We focused on the

nine movement conditions corresponding to the straight reaches that were most similar to the ones we modeled (Figure 2B). More-

over, we restricted our analysis to the trials with delay periods longer than 400 ms. We preprocessed the spike trains of 123 neurons

for monkey J and 221 neurons for monkey N, following the same procedure outlined in Churchland et al. (2012). Briefly, we computed

the average firing rates for each movement condition, further smoothed using a 20 ms Gaussian filter. Firing rates were computed

separately for the delay and movement periods, time-locked to target and movement onset respectively; this is necessary because

of variable delay periods and reaction times.

There is some subtletly in our definition of the time of movement onset in the model, when we compare its activity to monkey data.

In the model, movement begins at the same time neural activity begins to undergo rapid changes, i.e., as soon as control inputs are

removed. However, in the two monkeys, such rapid changes in neural activity occur roughly 100 ms before movement begins. We

attribute such delays in movement to delays in downstream motor processes not considered in our model. Therefore, to align the

temporal profile of neural activity in the model and the data, we define the time of ‘‘movement onset’’ in the model to be 100 ms after

the control inputs are removed. We perform such temporal alignment in all the data and model comparisons shown in Figures 2, 4,

and 6.

Overlap between preparatory end-states

We calculated the Pearson correlation across neurons between the preparatory end-states in both model and monkey data for all

reaches. Preparatory end-states are defined as the activity states reached at the end of movement preparation (monkey activity
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aligned to the go cue). In bothmodel andmonkey data, preparatory end-states are similar (Figure 2B, bottom) for reaches with similar

hand trajectories (hand trajectories Figure 2B, top), but negatively correlated for more distant movements.

Amplification factor

To compute the amplification factor for the twomonkeys in Figure 6D, we considered firing rates in a 400 ms window starting 250ms

prior to movement onset. We removed the mean across conditions and computed for each reach condition, the manitude of the

population activity vector, normalized by its magnitude at the start of this epoch. We then averaged this across all reach conditions.

The amplification factor quantifies the expansion of the population activity across neurons during the movement epoch.

jPCA

We used the method described in Churchland et al. (2012) to identify state-space directions in which activity trajectories rotate most

strongly. Briefly, we used numerical optimization to fit a skew-symmetric linear dynamical system of the form _x =Sx that best cap-

tures the population activity in a 400 ms window starting 220 ms before movement onset. We projected population activity in this

window onto a plane spanned by the top two eigenvectors of S (Figure 2B).

Alignment index

To calculate the alignment index, we closely followed the methods described in Elsayed et al. (2016). The alignment index is defined

as the (normalized) percentage of across-condition variance during movement captured by the top K principal components (PCs) of

the preparatory activity:

Tr

 

D
T
moveCprepDmove
PK

i = 1s
2
i;prep

!

(57)

where the K columns of Dmove are the top K principal components of move. activity (‘‘move-PCs’’), Cprep is the covariance matrix of

prep. activity, and s2i;prep is the prep. activity variance captured by the ith prep-PC. We choose K such that K prep-PCs captures 80%

of the variance in prep. activity. Here, we define prep. activity as the delay-period activity during a 300 ms window starting 150 ms

after target onset; the activity is calculated time-locked to target onset. Similarly, move. activity is defined as activity during a 300 ms

window starting 50 ms prior to movement onset; the activity is calculated using firing rates time-locked to movement onset.

Methods for calculating the control of the alignment index are described in detail in the Supplementary Material of Elsayed et al.

(2016) and are not reproduced here. For the model, the alignment index is calculated in the same way as for the neural data.

Canonical-correlation analysis

To compare model and monkey activity, we performed canonical-correlation analysis (CCA) on activity in a time window starting

400 ms before and ending 400 ms after movement onset (see discussion above for nuance in defining the time of movement onset

in the model). To avoid overfitting to noise in CCA (Sussillo et al., 2015; Raghu et al., 2017), we first reduced the dimensionality of the

two datasets, by projecting activity onto the top 21 (monkey J), 21 (monkey N), and 14 (model) principal components; the number of

principal components were chosen to capture 95% of the across-condition activity variance in the two datasets. We then calculated

the canonical correlations between the two reduced datasets, using the numerically stable algorithm described in Press (2011). We

found that monkey andmodel activity are similar across time and reaches, with a high average canonical correlation (Figures 2C–2E).

We obtained similar results when we varied the number of principal components kept in the two datasets, which in turn varied the

number of canonical variables.
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