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ABSTRACT

We study two Bayesian (Reference Intrinsic and Jeffreys prior), two
frequentist (MLE and PWM) approaches and the nonparametric Hill
estimator for the Pareto and related distributions. Three of these
approaches are compared in a simulation study and all four to inves-
tigate how much equity risk capital banks subject to Basel II banking
regulations must hold. The Reference Intrinsic approach, which is
invariant under one-to-one transformations of the data and param-
eter, performs better when fitting a generalized Pareto distribution
to data simulated from a Pareto distribution and is competitive in
the case study on equity capital requirements.
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1. The Pareto and related distributions

The generalized Pareto distribution (GPD) is widely used in engineering, environmental

science and finance to model low probability events. Typically, the GPD is used to esti-

mate extreme percentiles such as the 99th percentile for a specific event. This might be

used for setting the height of flood wall defenses or estimating how much capital banks

might hold for specific market risks.

We say that the positive quantity x follows a GPD if it has probability density func-

tion (PDF)

gPaðxjj, rÞ ¼
1

r

ð1� j=r xÞ1=j�1
j 6¼ 0

exp ð�x=rÞ j ¼ 0
,

(

(1)

with r > 0: The support of the distribution X ¼ ð0,1Þ if j � 0, while X ¼ ð0, r=j� if

j > 0; thus, j is a shape and r is scale parameter. The mean,

E xjj, r½ � ¼
r

1þ j
and variance V xjj, r½ � ¼

r2

ðjþ 1Þ2ð2jþ 1Þ
,

exist iff j > �1 and j > �1=2, respectively.
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The GPD is related to several distributions. It clearly has an exponential distribution

with mean r as a special case when j¼ 0. Further, y ¼ r� jx follows a Pareto distribu-

tion, Paðyj � 1=j, 1=rÞ, if j < 0, where

Paðyja, bÞ ¼
a

b

y

b

� ��ðaþ1Þ

; y � b, a, b > 0, (2)

and an inverted-Pareto, iPaðyj1=j, rÞ, if j > 0, where

iPaðyja, bÞ ¼
a

b

y

b

� �a�1

; y � b, a, b > 0: (3)

In the latter case, z ¼ ya, distributes uniformly on ð0, baÞ; z ¼ y=b follows a Beta distri-

bution, Beðzja, 1Þ; and z ¼ � log y follows a location (or shifted) Exponential distribution,

lExðzja, hÞ ¼ a exp �aðz � hÞ½ �; z � h, a > 0, h 2 R,

where h ¼ log b: If the shape is fixed, z ¼ log ðb=yÞ follows an Exponential distribution

with rate a, ExðzjaÞ: Similarly, if y follows a Paðyjj, rÞ, then x ¼ jðr� yÞ follows a

gPaðxj � 1=j, rÞ (Diebolt et al. 2005). If a sample, y ¼ fy1, :::, yng, from the Pareto dis-

tribution is available, fyð1Þ, sg is sufficient, with yð1Þ ¼ minfyg and s ¼
Qn

i¼1 yi: No such

sufficient statistics exist for the GPD.

One key feature of this family of distributions is their so-called lack of memory, a

property at the core of their prominence in extreme value theory, related to peaks-over-

threshold theory described in Section 1.1. Specifically, let x � gPaðxjj, rÞ and consider

P½x � t þ ujx � t�, it is immediate to prove that u � gPaðujj, r0Þ, with r0 ¼ r� jt,

hence E½x� ujx > t� ¼ r0=ð1þ jÞ, which is commonly used to graphically check model

fit (Davidson and Smith 1990). It is straightforward to check that if x follows a

Paðxja, bÞ, then E½x � ujx > t� ¼ t=ða� 1Þ, provided a > 1, and thus, a similar graph-

ical model fit check can be carried out (Akhundjanov and Chamberlain 2019).

In this article, we consider the Bayesian Reference Intrinsic (BRI) approach (Bernardo

and Ju�arez 2003; Bernardo and Rueda 2002; Bernardo 2007) for calibrating this family of

distributions, and compare it with four alternative approaches, maximum likelihood

(ML), probability weighted moments (PWM), the Hill estimator and a Bayesian approach

using a Jeffreys prior, implemented using Markov chain Monte Carlo (MCMC). A simu-

lation study is carried out comparing the average mean square error of three of the four

approaches when calibrated to synthetic data from a Pareto distribution. These methods

are then applied to some equity return data in a case study and the results compared.

1.1. The GPD and extremes

The GPD was first introduced by Pickands (1975) in the extreme value framework as a

distribution of sample excesses over a sufficiently high threshold (de Zea Bermudez and

Kotz 2010a, 2010b). Two key theories of the extreme value framework the GPD arose

from are summarized below – we use the second theory in the case study in Section 5.

1.1.1. Extreme value theory 1

Let Xn be a sequence of iid random variables. If these are divided into blocks of size k,

xj ¼ fxðj�1Þkþ1, :::, xjkg and Mj ¼ maxfxjg, j ¼ 1, :::, n=k (i.e., the largest value in each
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block), then the Mj follow a generalized extreme value (GEV) distribution, with cumula-

tive distribution function (CDF)

Fðmjj, rÞ ¼ exp �ð1� km
r
Þ1=k

h i

j 6¼ 0

exp exp ð�mÞ½ � j ¼ 0
,

(

with r > 0 the scale parameter and j the shape parameter (McNeil, Frey, and

Embrechts 2005, 265). Thus, the distribution of the maxima of blocks of data from

almost any probability distribution follows a GEV with some shape parameter j.

1.1.2. Extreme value theory 2 (Picklands-Balkema-de Haan)

Let X> 0 be a random quantity with CDF F. The excess over threshold u has CDF

FuðxÞ ¼ P X � u � xjx > u½ � ¼
Fðx þ uÞ � FðuÞ

1� FðuÞ
,

for 0 � x � xF � u, where xF > 0 is the upper bound of the support of F.

There is a positive measurable function B(u) such that

lim
u!xF

sup
x�xF�u

jFuðxÞ � gPaðxjj,BðuÞÞj ¼ 0,

where j is the shape parameter of the GPD and B(u) is the scale parameter, which is a

function of the threshold (McNeil, Frey, and Embrechts 2005, 277). This means that

while the scale parameter changes as the threshold changes, the shape parameter stays

the same. The distributions for which the block maxima converge to a GEV distribution

constitute a set of distributions for which the excess distribution converges to the GPD

as the threshold is raised. The shape parameter of the GPD of the excesses is the same

as the shape parameter of the GEV of block maxima. This means that the excess above

a threshold can effectively be modeled by a GPD (almost) regardless of the distribution

of the full data set as long as the threshold is high enough. This feature is used in a

case study in Section 5.2, where the GPD is calibrated to just the tail of the data.

Characterizing the GPD and deriving probabilistic and statistical results are exten-

sively addressed in the literature (e.g., see Galambos 1987; Leadbetter, Lindgren, and

Rootzen 1983; Beirlant et al. 2005; Beirlant, Teugels, and Vynckier 1996; Embrechts,

Kl€uppelberg, and Mikosch 1997; Coles 2001; Kotz and Nadarajah 2000; Castillo and

Hadi 1997; de Haan and Ferreira 2006, and references therein). Several approaches have

been proposed to calibrate the GPD mainly focusing on the MLE, PWM, or Method of

Moments (MoM) (see e.g., de Zea Bermudez and Kotz 2010a, 2010b, and references

therein). More recently, Bayesian approaches have been investigated (see e.g., Lima

et al. 2016; Ragulina and Reitan 2017; Ju�arez 2005; Tancredi, Anderson, and O’Hagan

2006; de Zea Bermudez and Turkman 2003). Gilleland, Ribatet, and Stephenson (2013)

review available software for estimation. We refer the reader to de Zea Bermudez and

Kotz (2010a, 2010b), which include summary tables of papers describing how the GPD

is calibrated to a wide range of data sets, reproduced in Table A1 in Appendix A to

show some of the extensive literature covering calibration of the GPD.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 3



1.2. The Pareto principle: The Lorenz curve and Gini index

The “80-20 rule” or Pareto principle has reached popular culture through books such as Koch

(2007). It is a way of more easily explaining the calibration of a Pareto or GPD. An example

of this is the 80–20 rule identified by V. Pareto in 1897 that 20% of the population had 80%

of the wealth (Persky 1992). It is possible to use the calibration of the GPD to identify the

Pareto principle parameters through the Lorenz curve and Gini index. The Lorenz curve,

LðuÞ ¼
1

l

ðu

0

F�1ðzÞdz, u 2 ð0, 1Þ,

where F(x) is the CDF of the random quantity x and l its expected value, describes pre-

cisely this relationship. In case the distribution of the size is homogenous, i.e., “u% of

the population accumulates u% of the income,” then L(u) ¼ u. This motivates some

measures of inequality, such as the Gini index,

G ¼ 1� 2

ð1

0

LðuÞdu,

which is the relative area under L(u), with respect to the straight line: the closer G to

0(1), the more(less) egalitarian the distribution. For the GPD,

LðuÞ ¼
1

j
ðð1� uÞjþ1 þ ðjþ 1Þu� 1Þ and G ¼ ðjþ 2Þ�1,

depend only on the shape parameter; thus, inference on L and/or G is tantamount to

inference on this parameter, which is explored in Section 5.

2. Intrinsic estimation

The Bayesian reference-intrinsic (BRI) approach (Bernardo and Ju�arez 2003; Bernardo

and Rueda 2002) provides a non subjective Bayesian alternative to point estimation,

based on the reference prior (Berger, Bernardo, and Sun 2009, 2015) and an intrinsic

loss function (Robert 1996). Formally, the probability model ff ðxjhÞ, x 2 X , h 2 Hg is

assumed to describe the probabilistic behavior of the observables x, and suppose that a

point estimator, he ¼ hðxÞ, of the parameter h is required. From a Bayesian decision

standpoint, the optimal estimate, h�, minimizes the expected loss,

h� ¼ arg min
he2H

ð

H

Lðhe, hÞpðhjxÞdh,

where Lðhe, hÞ is a loss function measuring the consequences of estimating h by he and pðhjxÞ
is the decision-maker posterior distribution. The BRI approach argues that in fact one is inter-

ested in using f ðxjheÞ as a proxy of f ðxjhÞ and thus, the loss function should reflect this. It

advocates the use of the Kullback–Leibler (KL) divergence as an appropriate measure of dis-

crepancy between two distributions. The KL (or directed logarithmic) divergence,

Kðh2jh1Þ ¼

ð

X
f ðxjh1Þ

f ðxjh1Þ

f ðxjh2Þ
dx,

is non negative and nought if and only if h1 ¼ h2, and it is invariant under one-to-one

transformations of either x or h. However, the KL divergence is not symmetric and it
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diverges if the support of f ðxjh2Þ is a strict subset of the support of f ðxjh1Þ: To simul-

taneously address these two unwelcome features Bernardo and Ju�arez (2003) propose to

use the intrinsic discrepancy,

dðh, heÞ ¼ minfKðhjheÞ, KðhejhÞg, (4)

a symmetrized version of the KL divergence. This is taken as the quantity of interest,

for which a reference posterior is derived. The intrinsic estimator can then be obtained.

Definition 1 (B RI estimator). Let ff ðxjhÞ, x 2 X , h 2 Hg be a family of probability

models for some observable data x, where the sample space, X may possibly depend on

the parameter value. The BRI estimator,

h�ðxÞ ¼ arg min
he2H

dðhe, xÞ

where

dðhe, xÞ ¼

ð

H

dðh, heÞpdðhjxÞdh,

is the intrinsic expected loss and pdðhjxÞ is the reference posterior for the intrinsic dis-

crepancy, dðh, heÞ, as defined in (4).

Within the same methodology one can also obtain interval estimates, i.e., cred-

ible regions.

Definition 2 (B RI interval). Let ff ðxjhÞ, x 2 X , h 2 Hg and dðhe, xÞ be as in

Definition 1. A BRI interval, Rp ¼ RpðxÞ � H, of probability p 2 ð0, 1Þ, is a subset of

the parameter space H such that

ð

Rp

pdðhjxÞdh ¼ p and dðhr, xÞ � dðhs, xÞ,

for all hr 2 Rp and hs 62 Rp:

BRI credible regions are typically unique and, since they are based in the invariant

intrinsic discrepancy loss, they are also invariant under one-to-one transformations

(Bernardo 2007).

2.1. BRI estimation for the Pareto family of distributions

In Section 1.1, we highlighted the relationship between the GPD and the Pareto and

Inverse Pareto distributions. The main characteristic we will exploit here is that the

GPD shape parameter remains invariant to any of those transformations, while the

GPD scale parameter is linearly transformed. Given that the support of the inverted

Pareto is bounded, it is easier to calibrate directly than the Pareto or the GPD. For this

reason, we choose to work with this parameterization and apply the results to the GPD

parameters by the above simple transformations.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5



Let x ¼ fx1, :::, xng be a random sample from an iPaðxijj, rÞ, using (3), the likelihood is

Lðj, r; xÞ / jnr�njtnj1 , r � t2; where ft1, t2g ¼
Y

n

1

x
1=n
i , xðnÞ

( )

are jointly sufficient, with xðnÞ ¼ maxfx1, :::, xng: Moreover, given fj, rg the MLE,

r̂ ¼ t2 and ĵ ¼ log
t2

t1

� ��1

, (5)

are conditionally independent, with sampling distributions iPaðr̂jnj, rÞ and

IGaðĵjn, njÞ, where the latter is an inverted Gamma distribution (Malik 1970;

Rytgaard 1990).

The conjugate prior is a Pareto-Gamma distribution,

PGðj, rjk, b, c, dÞ ¼ Paðrjkj, bÞ;Gaðjjc, dÞ, j > 0, r � b; k, b, c, d > 0

¼ kjbkjr�ðkjþ1Þ dc

C c½ �
jc�1 exp �dj½ �: (6)

which yields a Gamma marginal posterior Gaðjjc�, d�Þ, with c� ¼ cþ n, d� ¼

d þ k log b�

b
þ n log b�

t1
and b� ¼ maxfr̂, bg: For any choice of prior parameters, the pos-

terior is asymptotically Gaussian and will converge to a mass point at log b�

t1

� ��1
a.s.

as n ! 1:
From (4), the intrinsic discrepancy for the inverted Pareto distribution, iPaðxjj, rÞ,

when the parameter of interest is the shape, can be written as

dðj, jeÞ ¼ n
� log hþ h� 1 h < 1
log hþ h�1 � 1 h � 1

,

�

(7)

with h ¼ j=je, which does not depend on r. Following Ju�arez (2005), given that (7) is

a (piecewise) one-to-one function of j, we can use the reference prior pðj, rÞ /

ðjrÞ�1, a liming case of (6), which yields the marginal posterior Gaðjjn� 1, n=ĵÞ, for

n> 1. The intrinsic expected loss,

dðj0jĵÞ ¼

ð1

0

dðj, j0Þ;Gaðjjn� 1, n=ĵÞdj,

is defined for all n> 2 and can be calculated numerically. Due to the asymptotic

Gaussianity of the posterior, the approximations dðjejĵÞ 	 dðĵ, jeÞ þ 1=2 and j� 	
ĵð1� 3=2nÞ, work well even for moderate sample sizes.

The intrinsic discrepancy when the scale is the parameter of interest is

dðr, j; reÞ ¼ n
log ð1� /Þ / < 0
/ / � 0

,

�

where / ¼ j log ðr=reÞ: The reference prior is pð/, jÞ / j�1, or in terms of the ori-

ginal parameterization, pðr, jÞ / r�1, which is not a limiting case of the Pareto-

Gamma family.

6 J. SHARPE AND M. A. JUÁREZ



In this case, the loss function depends on both parameters and thus

�r ¼ arg min
re�r̂

dðrejxÞ (8)

with

dðrejxÞ ¼

ð

r̂1

ð1

0

dðr, j; reÞpðr, jjxÞdj dr (9)

and

pðr, jjxÞ ¼
nnþ1

ĵn
C n½ �

jnr�ðnjþ1Þtnj1 ; j > 0, r � r̂:

The corresponding Bayes rule can be calculated numerically. An analytical approxima-

tion, which works well even for moderate sample sizes, can be obtained by substituting

the shape parameter with a consistent estimator in (9), carrying out the one-dimen-

sional integration and then solving (8). Using the MLE, ĵ, yields �r 	 2
1
nĵ r̂:

The Uniform and location-Exponential models are particular cases of the inverted

Pareto (see Section 1). For the former, we have Unðxj0, rÞ ¼ iPaðxj1, rÞ and in this

case, the intrinsic discrepancy is

dðr, reÞ ¼ n log
r

re

�

�

�

�

�

�

and the corresponding reference prior is pðrÞ / r�1, which yields a Paðrjn, r̂Þ poster-

ior, with r̂ ¼ xðnÞ the MLE. The expected intrinsic discrepancy has a simple analytical

form,

dðrejr̂Þ ¼ n

ð

r̂
re

log
re

r

� �

nr̂nr�ðnþ1Þdrþ

ð1

re
log

r

re

� �

nr̂nr�ðnþ1Þdr

" #

¼ 2z � log z � 1,

where z ¼ ðr̂=reÞn: It is immediate to prove that the BRI estimator, ~r ¼ 2
1
nr̂, is the

median of the posterior, highlighting its invariance under one-to-one transformations.

Indeed, the BRI estimator of the parameter in the location-Exponential model,

lExyj1,/Þ, where / ¼ log r, i.e., the distribution obtained by letting y ¼ log x,

is ~/ ¼ /̂ � n�1 log 2 ¼ log ~r:

3. Alternative approaches

We briefly describe three alternative frequentist approaches: maximum-likelihood esti-

mate (MLE), the Hill estimator, and probability weighted moments (PWM). We also

describe a Bayesian approach that uses a Jeffreys prior, which yields a proper posterior

for any sample size. The posterior has no analytical form, so we implement an MCMC

strategy to sample from it.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 7



3.1. Jeffreys prior

From a Bayesian perspective, Diebolt et al. (2005) propose a quasi-conjugate prior for

the GPD, avoiding prior elicitation by setting its parameters using empirical Bayes. The

posterior is then explored through Gibbs sampling. Vilar-Zan�on and Lozano-Colomer

(2007) propose a generalized inverse Gaussian conjugate prior and discuss whether to

use a non informative parameter setting or use prior knowledge on the first two

moments of the shape parameter for elicitation.

Here, we use the independent Jeffreys prior,

pðj, rÞ / r�1ð1� jÞ�1ð1� 2jÞ�1=2, j <
1

2
, r > 0,

which, despite being improper, yields a proper posterior for any sample size

(Castellanos and Cabras 2007). The posterior, pðj, rjxÞ, is not analytical, so we device

an MCMC scheme to carry out inference. Our strategy is a Metropolis-within-Gibbs

algorithm with full conditionals

pðjjr, xÞ / ð1� jÞ�1ð1� 2jÞ�1=2
Y

n

i¼1

1�
j

r
xi

� �1
j
�1

pðrjj, xÞ / r�nþ1
Y

n

i¼1

1�
j

r
xi

� �1
j
�1

:

To set the proposal distributions, one must bear in mind the parameter space

depends on the sample space; specifically, 0 < xi < r=j if j > 0: Hence, for the shape

parameter, j, we propose from a truncated Gaussian with mode at the MLE, and upper

bound at minf1=2, rc=xðnÞg, where rc is the current state of the shape; we use the free

parameter to control the acceptance rate. For the scale, r, if the current state of the

shape, jc < 0, we use a Gamma proposal with mode at rc and use the free parameter

to control the acceptance rate; otherwise, we propose from a truncated Gaussian with

lower bound at jcxðnÞ, mode at rc, and use the free parameter to control the acceptance

rate. We implement the sampler in R (R Core Team 2021), the code is available under

request from the corresponding author.

3.2. Maximum likelihood

Due to its invariance under bijective transformations, the MLE for the Pareto param-

eterization can be obtained from (5). For a sample x ¼ fx1, :::, xng from a gPaðxjj, rÞ,
the log-likelihood can be expressed as

lðj, r; xÞ ¼
�n log rþ

1

j
� 1

� �

X

n

i¼1

log 1�
j

r
xi

� �

j 6¼ 0

�n log rþ
n

r
�x j ¼ 0

:

8

>

>

<

>

>

:

The MLE exist only for j � 1 and is typically found using numerical methods. If j <
1=2, its sampling distribution is asymptotically Gaussian with covariance matrix (de

Zea Bermudez and Kotz 2010a),

8 J. SHARPE AND M. A. JUÁREZ



1

n
ð1� jÞ2 rð1� jÞ
rð1� jÞ 2r2ð1� jÞ

� �

:

3.3. Probability weighted moments

Probability weighted moments (PWM), or L-moments,

Mp, r, s ¼ E XpFrðxÞð1� FðxÞÞs
� 	

, p, r, s 2 R,

characterize the distribution function F of a random quantity X and are exploited as a

robust alternative to the method of moments for point estimation (Greenwood et al.

1979). Particularly for the GPD, Diebolt, Guillou, and Worms (2003), suggest using

ls ¼ M1, 0, s ¼ E Xð1� FðxÞÞ2
� 	

¼
r

ðsþ 1Þðsþ 1þ jÞ
, j > �1; s ¼ 0, 1, :::

from which

j ¼
l0

l0 � 2l1
� 2 and r ¼

2l0l1
l0 � 2l1

:

The corresponding PWM estimators are obtained by substituting l0 and l1 by the

estimators lj ¼ n�1
Pn

i¼1 xðiÞð1� pðiÞÞ
s, with xðjÞ the j-th order statistic. Various expres-

sions are available for pðjÞ, in the sequel we use pðjÞ ¼ ðjþ cÞ=ðnþ cÞ, with c ¼ �0:35

and c¼ 0 as in de Zea Bermudez and Kotz (2010a). For large sample sizes and if �1 <
j < 1=2, the PWM estimators are asymptotically Gaussian (Diebolt, Guillou, and

Worms 2003) with covariance matrix

n�1

ð1þ 2jÞð3þ 2jÞ
ð1þ jÞð2þ jÞ2ð1þ jþ 2j2Þ rð2þ jÞð2þ 6jþ 7j2 þ 2j3Þ
rð2þ jÞð2þ 6jþ 7j2 þ 2j3Þ r2ð7þ 18jþ 11j2 þ 2j3Þ

� �

:

3.4. Hill estimator

The Hill estimator (Hill 1975) of the shape parameter j,

~jH ¼
1

k

X

k

j¼1

log
xðn�jþ1Þ

xðn�kÞ

� �

,

where xðlÞ is the l-th order statistic and is a nonparametric alternative based on the

shape of the complementary CDF of the Pareto family of distributions. It is consistent

and asymptotically Gaussian (Beirlant et al. 2005) with variance j2=k, for j > 0: Due
to its simplicity, it is still often used in practice. However, it is not invariant to linear

transformations of the data and can yield very different estimates, depending on the

choice of k (Charras-Garrido and Lezaud 2013).

4. Synthetic data and comparison

We carry out a simulation study to compare the calibration efficiency of the BRI, the

ML and PWM estimators and present results on the shape parameter only for brevity.
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As the MHA is itself a time-consuming simulation process, it has been left out of this

comparison. We generate 10,000 samples of size n¼ 15, 50, 100, from a Pareto distribu-

tion, Paðxjj, rÞ – which is linked to the GPD as described in Section 1 – with r¼ 4

and j ¼ 1=3, 3, 7: The parameters are calibrated using the BRI, ML, and PWM

approaches, their sampling distribution are estimated, and their bias and mean-squared

error (MSE) used as efficiency measures, illustrated in Table 1.

Given that PWM works well only if (at least) the first two moments of the distribu-

tion exist it is not striking to confirm its poor performance for values of j 62 ð�0:2, 0:2Þ
(Hosking, Wallis, and Wood 1985), regardless of the sample size. In contrast, both MLE

and BRI estimators yield relatively low bias and MSE, even for moderate sample sizes,

with their sampling distributions becoming increasingly similar as the sample size grows

(Figure 1). Both estimators are invariant under one-to-one transformations, while PWM

is not; further, BRI credible intervals are invariant, a feature we will exploit in

the sequel.

5. Bank equity capital requirements

We apply the calibration approaches described above to equity risk capital that banks

are required to hold in the banking Basel II regulations. In the Basel II regulations in

pghs.700 and 718 (LXXVI)1 a value-at-risk (VaR) approach is required for a 99th per-

centile one-sided confidence interval on 10-day equity returns. This means a bank will

estimate what it thinks the 99th percentile 10-day equity returns can fall by (e.g., it

might estimate this as a 10% fall in its equities market value) and it is then required to

hold at least this amount as a monetary capital amount on its balance sheet to demon-

strate the bank can withstand a 99th percentile fall in the value of its equities.

The regulations mention a number of approaches are possible to calculate this VAR

and in this case study, a GPD is fitted to an historic time series of an equity index of

10-day returns. The equity index used here is the FTSE 100 index taken from yahoo

finance 2/4/1984—26/7/20132.

Table 1. Comparing estimators of the shape parameter. First four columns show the relative MSE to
the MLE and the rest the bias of the ML, PWM, BRI, Jeffreys, and Hill estimators of the shape param-
eter, j, from 5,000 samples of sizes n¼ 15, 50, 150 and j ¼ 1=3, 3, 7, with scale r¼ 4 in all cases.

relative MSE Bias

n j PWM BRI Jeff Hill MLE PWM BRI Jeff Hill

15 1/3 18.851 1.333 45.301 1.062 –0.024 –0.177 0.014 –0.086 –0.002
50 15.165 1.153 20.489 1.019 –0.007 –0.058 0.004 –0.003 –0.0002
150 16.169 1.028 16.369 1.006 –0.002 –0.023 0.001 0.436 –0.0002

15 3 7.673 1.366 1.914 1.065 –0.209 –2.148 0.124 2.556 –0.010
50 22.767 1.060 1.809 1.017 –0.066 –2.043 0.031 –0.041 0.006
150 65.431 1.011 1.793 1.011 –0.014 –2.014 0.012 –0.007 0.006

15 7 10.966 1.320 1.338 1.070 –0.478 –6.077 0.262 –0.143 –0.012
50 36.560 1.086 1.319 1.026 –0.121 –6.020 0.078 –0.020 0.020
150 111.657 1.096 1.325 1.005 –0.052 –6.006 0.031 –0.017 –0.005

1http://www.bis.org/publ/bcbs128b.pdf
2Available from http://uk.finance.yahoo.com/q/hp?s=5EFTSE
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The raw data have been pre-processed to convert the daily index values into 10-day

returns, yt (i.e., the percentage change in value of the index over non overlapping 10-

day periods). A common question is either to use simple returns, yt ¼ xtþ10=xt � 1

where xt is the index value at time t, or log-returns, yt ¼ log ðxtþ10=xtÞ: While the dif-

ference between these two definitions is not crucial for a 10-day period, the log returns

have been used in this case study. This is because the left tail is of interest and is

unbounded for the log return, but bounded at �100% for the simple return. An

unbounded domain is potentially more appropriate for the GPD calibration. When the

99th percentile has been calibrated in log returns, this needs to be converted back to a

simple return for the VAR value. For example, if an �11% fall in equity values is the

log-return 99th percentile, this is a exp ð�0:11Þ � 1 ¼ �0:104 simple return fall in

equity market value.

5.1. Exploratory data analysis

We explore some basic features of the data, presented for both simple and log returns

on the left panel of Figure 2.

We would like to highlight that the distribution of the returns is fat tailed – it has a

higher frequency of extreme events compared with a Gaussian distribution – as meas-

ured by its kurtosis (that of a Gaussian distribution is 3). It is also negatively skewed –

a higher proportion on events are on the left-hand side of the mean, which emphasizes

the underlying financial risks. Plotting the Mean Excess (ME) function, MðuÞ ¼

Figure 1. Sampling distributions of the BRI, ML, PWM, and Jeffreys posterior median estimators of
the shape parameter, from 5,000 simulations of sample sizes n¼ 15 (top), and n¼ 150 (bottom).
Right panels display the case j¼ 3 and left when j ¼ 1=3 (marked by the vertical line). The right
panels do not display PWM due to its poor performance. Note the MLE, BRI, and Hill estimators have
relatively similar sampling distributions and are almost indistinguishable for large n.
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E½X � ujx > u�, is often used to explore whether the data have power tails (Ghosh and

Resnick 2010). A characteristic of a fat-tailed GPD type distribution with negative shape

parameter is an increasing straight line, while a decreasing line indicates thin tails; a

horizontal line suggests exponential tails. The right panel in Figure 2 shows the mean

excess plot of the absolute value of the negative log returns, which displays a positive

slope (up to losses of about 10%), suggesting a power distribution is appropriate for this

data. Combining this features with Figure 3 suggest a GPD with a negative shape par-

ameter may be appropriate to model the negative returns of this dataset.

5.2. Peaks over threshold

We now apply the calibration approaches described in Sections 2.1 and 3 to the left tail

of the 10-day FTSE100 log returns, using the peaks over threshold approach (McNeil,

Frey, and Embrechts 2005, with theory as in Section 1.1.2), which allows the focus to be

on the percentiles of interest.

We do not discuss how to set the threshold, but refer the reader to de Zea Bermudez

and Kotz (2010b). McNeil, Frey, and Embrechts (2005, 280) suggest using the ME plot

as a guide to threshold setting. We subjectively pick �5% as the approximate point on

the mean excess plot beyond which the slope appears to increase faster and end up with

n¼ 33. It is noted there are still enough points beyond this level for reasonable

Figure 2. On the left panel, smoothed histograms of simple and log 10-day returns of the FTSE100
index from 2/4/84–26/7/13. Both distributions are almost identical, left skew with heavy tails, and pre-
sent a small secondary mode on the left hand tail. On the right panel, mean excess function of the
negative 10-day returns of the FTS100 (solid) with 95% confidence intervals (segmented). The positive
slope suggests a heavy tail, amenable to a power distribution.
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calibration and the threshold is expected to be sufficiently high for the Picklands-

Balkema-de Haan theorem to apply.

Relying on the fact that if x � gPaðxj � 1=a, b=aÞ, then y ¼ 1=x � iPaðyja, 1=bÞ, we

use the methods in Section 2.1 to obtain point and interval estimates of the shape par-

ameter. The MLE is straightforward to obtain, ĵ ¼ log ðb̂=tÞ ¼ 2:44, where t ¼
Qn

i¼1 y
1=n
i , is the geometric mean and b̂ ¼ maxfy1, :::, yng ¼ 19:71 is the MLE of the

shape. The marginal posterior distribution of the shape parameter is Gaðjjn� 1, n=ĵÞ,
and the BRI point estimate j� ¼ 2:33 and interval ð1:642, 3:298Þ are illustrated in

Figure 4. In particular, notice the intrinsic interval is different from the HPD,

ð1:573, 3:195Þ, highlights the fact that HPDs are not invariant under transformations,

while the intrinsic is. Given that the scale parameter typically is a nuisance parameter,

we use the analytical approximation to the BRI estimator, r� 	 2
1
nĵ ¼ 19:88:

We use quasi-Newton (Fletcher and Reeves 1964) to maximize the likelihood for the

GPD, yielding MLEs ĵ ¼ �0:380 and r̂ ¼ 0:0222: The confidence intervals are found

from the observed covariance matrix, which gives a standard errors for ĵ of 0.228; thus,

an approximate 95% confidence interval for the shape is ð�0:828, 0:0679Þ: Using PWM,

one gets ~j ¼ �0:369 and ~r ¼ 0:0224, with ð�0:844, 0:106Þ a CI of approximate 95%

for j. Exploiting the invariance of the BRI estimator, j� ¼ �0:429 and ð�0:609, �
0:303Þ the BRI interval of probability 0.95. To fit the Bayesian model with Jeffreys prior,

we generated chains of length 106, dropped the first 104 as burn-in and thinned every

fifth draw, ending up with samples of size 198,000 for inference, the marginal posterior

distributions are illustrated in Figure 4. The posterior mean and median of the shape

are �0.254 and �0.252, respectively, and the equally tailed interval of posterior prob-

ability 0.95 is ð�0:472, � 0:048Þ: Note both frequentist CIs include 0, suggesting an

exponential tail behavior, while the Bayesian alternatives strongly support heavy tails;

Figure 3. Histogram of the left tail of the 10-day log-returns from the FTSE100 data (in absolute
value). The shape shows a power decay and heavy tails, with some extreme events, suggesting a
GPD may be a suitable model.
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also notice the intrinsic posterior has a smaller variance; hence, the BRI interval is

shorter than the equally tailed from Jeffreys prior.

The Pareto principle and Gini index discussed in Section 1.2 depend only on the

shape parameter, so we can use the invariance of the BRI and MLE approaches to cal-

culate point and interval estimates shown in Table 2. As the calibration of the GPD is

based on the tail of the data, we exploit its lack of memory to calculate

VaRe ¼ uþ
r

j
1�

1� e

~FðuÞ

� �k
 !

where u¼ 0.05 is the threshold and ~FðuÞ is empirically estimated as the proportion of

data points above the threshold relative to total number of data points (McNeil, Frey,

and Embrechts 2005, 283); in our case ~FðuÞ ¼ 33=316:

Table 2. Point and interval estimates for the FTSE100 returns data, from the four approaches. The
middle point in the intervals is the corresponding point estimate. Confidence intervals are of
approximate 95%, and Bayesian credible intervals of probability 0.95. The point estimate from
Jeffreys prior is the posterior median.

j Gini index VaR0:99%

BRI ð�0:609, � 0:429, � 0:303Þ ð0:589, 0:637, 0:719Þ 10.42
Jeffreys ð�0:472, � 0:253, � 0:051Þ ð0:513, 0:573, 0:654Þ 9.27
ML ð�0:828, � 0:380, 0:068Þ ð0:484, 0:617, 0:853Þ 9.99
PWM ð�0:844, � 0:403, 0:106Þ ð0:475, 0:613, 0:865Þ 9.04

Figure 4. Marginal posterior distribution of the shape parameter from the FTSE100 data, thresholded
at –5%. Marked are the BRI estimate, j� ¼ �0:429, and interval, ð�0:609, � 0:303Þ: The (proper)
marginal Jeffreys prior is represented by the dotted line, and the corresponding equally tailed interval
of probability 0.95 is ð�0:472, � 0:051Þ:
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It is worth noticing both frequentist approaches do not rule out j¼ 0, while the

Bayesian alternatives strongly suggest j < 0; all point estimates are negative, nonethe-

less. The posterior distribution from the intrinsic approach is shifted to the right, com-

pared with the Jeffreys alternative and has a smaller variance. Frequentist confidence

intervals are wider than the Bayesian credible counterparts.

This case study shows a practical example of how all four approaches can be used to

calibrate the GPD. While there are some differences between the results from the four

approaches, all point estimates of VaR0.99 are roughly similar, suggesting a level

between 9% and 10% for regulatory equity capital might appropriately meet the Basel II

regulations.

The BRI yields the highest VAR0.99 of the four methods, which would in practice

mean holding more capital, but has the tightest intervals. Hence, although the point

estimate may be seem marginally more costly, the level of uncertainty around it is

much smaller, indeed reducing the risk associated with loss protection.

Point estimates of the shape and scale parameters (not shown) are roughly similar for

each calibration approach, barring Jeffreys, which shrinks the estimate toward the ori-

gin; however, the length of the interval Bayesian estimates is shorter than their frequent-

ist counterparts. Moreover, frequentist interval estimates for VaR0.99 are difficult to get

and rely on asymptotic approximations, while those from BRI are immediate to obtain

due to its invariance and those from Jeffreys prior are straightforward from the

MCMC output.

6. Final remarks

We have illustrated how the BRI approach can be used to calibrate the GPD by using a

transformation from the inverted-Pareto distribution. Four different approaches to cali-

brating the GPD have been presented. Three of the approaches were compared in a

simulation study of simulated data from a Pareto distribution. All four approaches were

then compared for similarities and differences in a case study.

From the simulation study, it is apparent that the repeated sampling behavior of the

PWM estimator is poor in general and some modification is needed if it is to work in

practice (see e.g., Chen et al. 2017). The results also indicate the BRI estimator has a

similar MSE to the MLE even for moderated sample size, and its sampling distribution

is asymptotically Gaussian (Figure 1 and Table 1).

Combined with its invariance under one-to-one transformations, it is a compelling

alternative for calibration. One limitation of this simulation study was that it only simu-

lated data from a Pareto distribution. An extension might be to compare the calibration

approaches for data simulated from other distributions.

The BRI approach has produced lower mean-squared errors in the simulation studies,

suggesting it to be more accurate for parameter estimation when the data are indeed

from a Pareto distribution. The MLE is relatively simple to understand and implement;

however, there are questions over the convergence of the numerical optimization meth-

ods, especially with fewer data points (de Zea Bermudez and Kotz 2010a). The PWM is

likewise simple to understand and implement, but is efficient only for a subset of the

parameter space and it could produce estimates with a likelihood of zero.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 15



The MHA was left out of the simulation study as it is computationally intense. The

results in Section 5.2 were obtained by running one million simulations. It would not

be possible to run to this level of accuracy and carry out an outer layer 1000 simulation

analysis in a reasonable time period or without much greater computer power. Also,

implementing the sampler has a number of practical issues that are different for each

dataset, which may take time to resolve and ensure the MHA converges in a reasonable

time period. However, our implementation is robust and may be used as an off-the-

shelf option.

One area of interest that could be the subject of further work is how sensitive the

results are to the threshold used for each calibration method. A study might repeat the

analysis looking at various different thresholds and how that impacts the shape, scale,

and VaR0:99 for each threshold.

Another area of potential interest is how the time period of each data point impacts

the shape parameter and GPD calibrations. For example, if the case study looked at

equity returns over 1 day, 5 days, 1 year, etc. What would the impact be on the GPD

calibration? Clearly, a large time step for each data point would be expected to give

higher values for the 99th percentile, but would the Gini index remain invariant to

other size time steps as for the 10-day period investigated in this case study?
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Appendix A: A literature on GPD estimation and its applications

Table A1. Some literature on GPD calibration approaches to datasets. Abbreviations are Maximum
Literature (MLE), Method of Moments (MoM), Method of Medians (MM), Probability Weighted
Moments (PWM), Elemental Percentile Method (EPM), Optimal Bias Robust Estimator (OBRE), Least
Squares (LS), Maximum Entropy (ME), Minimum density power divergence estimator (MDPD).

Reference Area of application Calibration types used

Moharram, Gosain, and Kapoor (1993) Hydrology MOM, PWM, MLE, LS
Castillo and Hadi (1997) Hydrology MOM, PWM, EPM
McNeil (1997) Insurance MLE
Rootz�en and Tajvidi (1997) Insurance PWM, MLE
Dupuis and Tsao (1998) Hydrology OBRE
Holmes and Moriarty (1999) Weather LS to the empirical mean excess function

(continued)
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Table A1. Continued.

Reference Area of application Calibration types used

Shi et al. (1999) Engineering MLE
Peng and Welsh (2001) Hydrology MM, MLE, OBRE
Pandey, Van Gelder, and Vrijling (2001) Weather L-moments, MoM
Frigessi, Haug, and Rue (2002) Insurance MLE
Diebolt, Guillou, and Worms (2003) Hydrology Bayesian and MLE
de Zea Bermudez and Turkman (2003) Insurance, Hydrology Bayesian, PWM and EPM
Pisarenko and Sornette (2003) Seismology MLE
Coles, Pericchi, and Sisson (2003) Weather Bayesian and MLE
Castillo et al. (2004) Engineering MOM, PWM, EPM
La Cour (2004) Engineering MLE
Engeland, Hisdal, and Frigessi (2004) Hydrology PWM, MLE
Behrens, Lopes, and Gamerman (2004) Economics Bayesian, ML
Pandey, Van Gelder, and Vrijling (2004) Hydrology L-Moments, MoM
Ju�arez and Schucany (2004) Weather MM, OBRE, MLE, MDPD
Goldstein, Morris, and Yen (2004) Network theory MLE, LS
Keylock (2005) Environment MLE
Diebolt et al. (2005) Insurance Bayesian, MLE
€Oztekin (2005) Hydrology MOM, PWM. MLE, LS, ME
Tancredi, Anderson, and O’Hagan (2006) Hydrology Bayesian
Lana et al. (2006) Weather L-moments
Jagger and Elsner (2006) Weather Bayesian and MLE
Fawcett and Walshaw (2006) Weather Bayesian and MLE
Zagorski and Wnek (2007) Engineering MLE, LS to empirical mean excess function
Castellanos and Cabras (2007) Hydrology Bayesian and MLE
Moisello (2007) Hydrology, Weather PWM
Vilar-Zan�on and Lozano-Colomer (2007) Insurance Bayesian
White, Enquist, and Green (2008) Ecology MLE, binning
Krehbiel and Adkins (2008) Economics MLE
de Zea Bermudez et al. (2009) Wildfires PWM, MLE
Mendes et al. (2010) Wildfires Bayesian
Akhundjanov and Chamberlain (2019) Agricultural land size MLE, Hill and KS
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