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Abstract

The impact of human-mediated environmental change on the evolutionary trajectories of wild organisms is poorly

understood. In particular, capacity of species to adapt rapidly (in hundreds of generations or less), reproducibly and
predictably to extreme environmental change is unclear. Silene uniflora is predominantly a coastal species, but it has also

colonized isolated, disused mines with phytotoxic, zinc-contaminated soils. To test whether rapid, parallel adaptation to

anthropogenic pollution has taken place, we used reduced representation sequencing (ddRAD) to reconstruct the
evolutionary history of geographically proximate mine and coastal population pairs and found largely independent

colonization of mines from different coastal sites. Furthermore, our results show that parallel evolution of zinc tolerance

has occurred without gene flow spreading adaptive alleles between mine populations. In genomic regions where
signatures of selection were detected across multiple mine-coast pairs, we identified genes with functions linked to

physiological differences between the putative ecotypes, although genetic differentiation at specific loci is only partially

shared between mine populations. Our results are consistent with a complex, polygenic genetic architecture underpin-
ning rapid adaptation. This shows that even under a scenario of strong selection and rapid adaptation, evolutionary

responses to human activities (and other environmental challenges) may be idiosyncratic at the genetic level and,

therefore, difficult to predict from genomic data.

Key words: parallel evolution, rapid evolution, heavy metal tolerance.

Introduction

Modification of the natural environment by humans has sig-
nificant implications for biodiversity (Urban 2015; Ceballos et
al. 2017; Helmstetter et al. 2020). Rapid habitat loss or envi-
ronmental change can drive species to the brink of extinction,
but also presents opportunities for adaptation and speciation
(Johnson and Munshi-South 2017; Otto 2018; Ravinet et al.
2018; Szulkin et al. 2020). The ability of species to adapt to
human-modified landscapes or activities is a key determinant
of their viability in the Anthropocene (McNeilly and
Bradshaw 1968; Antonovics and Bradshaw 1970; Wu and
Bradshaw 1972; Macnair 1979; Hof et al. 2016; Reid et al.

2016; Bosse et al. 2017). Thus, a key question in evolutionary
ecology is how repeatable and predictable adaptation is to
human-altered habitats (Bay et al. 2018; Fitzpatrick et al. 2018;
Therkildsen et al. 2019; Santangelo et al. 2020; Van Etten et al.
2020). To demonstrate that local adaptation has driven the
evolution of distinct ecotypes, it is necessary to establish an
association between fitness differences of populations and
specific habitats. However, we can investigate genomic pro-
cesses that might contribute to adaptation by examining the
sequence-based signatures of selection associated with local
adaptation. This can be accomplished even when reduced
representation sequencing methods are used (Lowry et al.
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2017). In such cases, examples of parallel colonization of hab-
itats with novel selection pressures can support the hypoth-
esis that specific genetic loci underpin local adaptation
(Rundle et al. 2000; Jones et al. 2012; Ravinet et al. 2016;
Nosil et al. 2018). A genomic approach can also discriminate
between single or parallel origins of populations adapted to a
specific habitat or selection pressure. Local gene flow between
differentiated populations can obscure the true evolutionary
relationships between them and lead to false inferences
(Ravinet et al. 2016; James et al. 2021). Promising cases of
rapid parallel adaptation do exist (e.g., Lescak et al. 2015;
Marques et al. 2016; Alves et al. 2019), but few have ruled
out the possibility of local gene flow creating the false impres-
sion of independent origins (Roda et al. 2013; James et al.
2021).

Instances where the same toxic chemicals and contami-
nants have been repeatedly introduced into the environment
by humans in isolated locations can generate novel selection
regimes that have the potential to promote parallel adapta-
tion. Strong selection, caused by herbicides, pesticides, and
heavy metals that contaminate soils and water bodies, is ca-
pable of producing extremely rapid adaptive responses
(Antonovics and Bradshaw 1970; Wu and Bradshaw 1972;
Macnair 1979; Hartley et al. 2006; Van Etten et al. 2020)
and trade-offs (Xie and Klerks 2004), and may be particularly
prone to triggering parallel responses as a result (MacPherson
and Nuismer 2017). Indeed, there is evidence for rapid parallel
adaptation from “ancient” standing genetic variation during
adaptation to copper mine contamination in two popula-
tions of Mimulus guttatus (Wright et al. 2015; Lee and Coop
2017). In the Atlantic killifish, Fundulus heteroclitus, tolerance
to marine pollution has evolved in four populations (Reid et
al. 2016). The mutations underlying this resistance have
evolved on at least two occasions, but migration between
three of the four populations may have contributed to the
spread of tolerance (Lee and Coop 2017). Convergent herbi-
cide resistance across species is well documented, but there is
more limited support for parallel origins within single species
and the spread of resistance by gene flow has been harder to
rule out (Kreiner et al. 2019; Van Etten et al. 2020).

Here, we present evidence for multiple recent and inde-
pendent origins of heavy metal tolerance in the predomi-
nantly coastal plant Silene uniflora (sea campion). In Great
Britain and Ireland, metal mining activities had largely ceased
by the early 20th century, but the legacy of spoil heaps and
soils contaminated with heavy metals forms a patchwork of
highly localized and drastically altered environments across
the landscape (Baker et al. 2010). Heavy metals, such as zinc,
copper, cadmium, and lead, are highly toxic to plants, trigger-
ing oxidative stress, inhibition of growth and photosynthesis,
and death (Küpper and Andresen 2016). As a result, many of
these abandoned sites remain barren for hundreds of years
after the mining itself has ceased (Baker 1974; Baker et al.
2010). Despite its largely linear coastal distribution, S. uniflora
has managed to colonize a number of isolated inland mine
spoils in various regions of Great Britain and Ireland—al-
though only a small proportion of the >10,800 nonferrous
mines in Great Britain harbor the species (Baker 1974, 1978;

Baker and Dalby 1980; Gill 2018). A common feature of the

mines that it inhabits is an elevated level of zinc. Experiments

in the 1970s demonstrated that: 1) mine populations are

more zinc tolerant than coastal populations; 2) mine plants

exclude zinc from their shoots, and 3) zinc tolerance in each

population is tightly correlated with the concentration of zinc

found in local soils (Baker 1978). Furthermore, in a common

garden experiment using zinc-enriched slag from a popula-

tion in Morriston in Swansea, Baker (1974) demonstrated

that the local mine plants grew and produced flowers nor-

mally, whereas coastal plants remained in a dwarfed state,

developed chlorosis (yellowing due to lack of chlorophyll) and

did not produce any flowers—even in slag that had been

heavily diluted with sandy soil. The link between the zinc

tolerance phenotype, local levels of environmental zinc, and

reduced fitness of coastal plants in zinc-contaminated soils

suggests that mine populations are locally adapted to their

environment.
Given the generally coastal distribution and the isolated

nature of the colonizedmines, we hypothesized that themine

populations have independently adapted from the nearest

coastal populations. Across four local mine-coast population

pairs, we used growth experiments to determine whether

mine plants are more tolerant to zinc toxicity than their

nearest coastal counterparts. We combined a newly se-

quenced draft genome with reduced representation geno-

types for 216 individuals, conducting population genetic

analyses to establish the relationships between the popula-

tions and test the hypothesis that the mine populations had

evolved independently multiple times, following dispersal

from their physically closest coastal populations. Finally, we

used these data to explore the extent to which evolution of

the mine populations is controlled by a parallel/convergent

molecular basis.

Results and Discussion

Anthropogenic Adaptation to Heavy Metal
Contamination
Populations of S. uniflora were sampled from four derelict

mines and the nearest coastal population to each across

Great Britain and Ireland (fig. 1A). Previous research has

shown that the contaminated mine sites all have elevated

toxic levels of zinc in the soil (2,410–48,075 ppm, supplemen-

tary table S1, Supplementary Material online) relative to typ-

ical coastal and inland sites (UKmean¼ 81.3 ppm; Ross et al.

2007). Lead levels were also high at all mine sites (>10,000

ppm, supplementary table S1, Supplementary Material on-

line; UK mean ¼ 52.6; Ross et al. 2007), but only the South

Wales (SWA-M) and Irish (IRE-M) mines were heavily con-

taminated with copper (>10,000 ppm, supplementary table

S1, Supplementary Material online; UK mean ¼ 20.6; Ross et

al. 2007). We used root elongation experiments with wild-

collected seed to determine whether mine populations were

more tolerant of zinc and copper than the most geographi-

cally proximate coastal population. In all cases, mine popula-

tions were significantly more zinc tolerant than the local

coastal population (Welch’s t-test, two-sided, P< 0.005 for

Papadopulos et al. . doi:10.1093/molbev/msab141 MBE
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all four pairs; fig. 1B). Deep water culture experiments with
cuttings from individuals grown in standard conditions also
confirmed that plants frommine populations weremore zinc
tolerant than coastal populations: that is, root growth con-
tinued in mine plants at 600mM ZnSO4, but not in coastal
plants (see Materials and Methods). However, only the Irish
mine population was significantly more copper tolerant than
the respective local coastal population (Welch’s t-test, two-
sided, P< 0.001, fig. 1C). The lack of clear copper tolerance in

SWA-M may be due to the relatively high copper concentra-
tion used in the experiment, possibly beyond levels that can
be tolerated by this population. It is notable that both mine
and coastal populations from Wales were more copper tol-
erant than the English populations (fig. 1C), suggesting that
SWA-M may be able to cope with high copper levels due to
constitutive copper tolerance in Welsh S. uniflora. High intra-
specific variation in copper tolerance has been observed in
other species—even within a single mine (e.g., Scopelophila

FIG. 1. Differential heavymetal tolerance between localmine and coastal populations. (A)Map of population sampling locations. Fill colors denote

habitat type (mine—orange, coastal—blue). Outline colors denote local populations (West Wales—WWA; South Wales—SWA; South-West

England—ENG; South-West Ireland—IRE). The same color scheme is used throughout. (B) Zinc and (C) copper tolerance for eachmine-coast pair

(center line, median; box limits, upper and lower quartiles; whiskers, 1.5� interquartile range; points, outliers; zinc treatment left to right n¼ 15/

17/14/14/14/16/15/19; copper treatment left to right n¼ 17/17/16/17/15/18/16/18). Local mine and coastal populations have significantly

different zinc tolerance, but only the Irish pair have significantly different copper tolerance.

Rapid Parallel Adaptation to Anthropogenic Heavy Metal Pollution . doi:10.1093/molbev/msab141 MBE
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cataractae)—as has constitutive tolerance in non-mine spe-
cialists (e.g., Ceratodon purpureus; Boquete et al. 2021).
Overall, these results corroborate earlier findings of zinc and
copper tolerance in mine populations of S. uniflora (Baker
1978).

Although our experiments do not provide a direct mea-
sure of fitness in the wild, given the association between zinc
tolerance, levels of zinc contamination in soil, vegetative
growth, and flower production in S. uniflora (Baker 1974;
1978), our results indicate that all of the sampled mine pop-
ulations are adapted to zinc contamination. Due to the strong
selection that heavy metal toxicity exerts, tolerance can

evolve in plants within as little as a single generation if there
is sufficient genetic variation (Wu and Bradshaw 1972).
Although limited mining activity existed at some of these
sites as far back as the Bronze Age, themost intensive working
took place between the 18th and 19th centuries (see
Materials and Methods) and so it is likely that these anthro-
pogenic mine habitats only became available for colonization
once active excavation ceased at mining sites within the last
250 years (Baker 1974). Therefore, populations of zinc-
tolerant S. uniflora studied here are likely to have evolved
since the 18th century (i.e., <250 generations).

Independent, Parallel Origins of the Mine Populations
In total, 216 individuals (n per population; WWA-M¼ 25,
WWA-C¼ 28, SWA-M¼ 28, SWA-C¼ 27, ENG-M¼ 26,
ENG-C¼ 27, IRE-M¼ 28, IRE-C¼ 27) were genotyped at
74,064 SNPs. On average “local” mine and coastal populations
were 20.8 km apart (WWA¼ 16.1 km, SWA¼ 14.8 km, ENG
¼ 25.6 km, IRE ¼ 26.8 km). Genetic differentiation between
populations was high (mean FST¼ 0.36; supplementary table
S2, Supplementary Material online), reflecting the relatively
poor dispersal capabilities and fragmented distribution of the
species (Baker 1974; Runyeon and Prentice 1997).
Differentiation was substantially higher between mine pop-
ulations (mean FST¼ 0.45) than between coastal populations
(mean FST ¼ 0.25). Mine populations were also substantially
differentiated from their local coastal population (mean FST¼

0.36), suggestive of very limited gene flow between differen-
tially adapted populations at the local level. In support of this,
analysis of molecular variance (AMOVA; supplementary table
S3, Supplementary Material online) shows that most of the
variation is partitioned within and among individuals
(�65%), but a large proportion of variation was among pop-
ulations which were grouped by either habitat (34%) or re-
gion (33%). Partitioning of genetic variation was low between
habitats (1.5%) and fractionally larger between regions (2.0%),
reflecting the very high differentiation between mines and
greater degree of shared variation between local mine and
coastal populations. Genetic diversity (p) was also signifi-
cantly higher in the coastal populations versus the mine
populations (0.065 and 0.044, respectively; Welch’s t-test,

two-sided, P< 0.036, supplementary table S4,
Supplementary Material online). Tajima’s D was slightly pos-
itive across all populations (mean ¼ 0.24, supplementary ta-
ble S4, Supplementary Material online), but not significantly
different between the mine and coastal populations. As

Tajima’s D is close to zero, the drop in diversity is unlikely
to result from a population bottleneck, but this pattern
matches expectations for multiple soft selective sweeps tak-
ing place across the genome (Pennings and Hermisson
2006)—as might be expected when colonizing a new envi-
ronment in the face of a strong selection pressure with lim-
ited time for new adaptive mutations to evolve.

In the context of recent colonization, relatively high differ-
entiation and limited gene flow between populations, we
predicted that different colonization scenarios would pro-
duce differing patterns of isolation by distance among mine
versus coastal habitats (IBD;Wright 1943; James et al. 2021)—
specifically that a scenario of independent origins of the mine
populations would be distinguishable from a single origin. In a
multiple origin scenario, IBD amongmine populations should
be accentuated relative to the pattern across coastal popula-
tions, whereas, in a single origin scenario, IBD among mine
populations should be minimal. To test these predictions, we
conducted forward-in-time simulations in SLiM v3 (Haller
and Messer 2019) and estimated within-habitat IBD under
“multiple-origin” and “single-origin” colonization scenarios
(fig. 2A and B, see Materials and Methods). As expected,
the strength of IBD was significantly higher among the
mine populations than among the coastal populations for
the multiple origin scenario (paired t-test, two-sided,
P< 0.001; fig. 2A) and the reverse was true for the single origin
scenario (paired t-test, two-sided, P< 0.001; fig. 2B). The ob-
served IBD in the sampled populations (fig. 2C) closely
matches the expectations for a parallel origin of mine pop-
ulations, supporting the hypothesis that the mine habitat has
been colonized independently.

Phylogenetic reconstruction of evolutionary relationships
between the S. uniflora populations based on 7,037 linkage
disequilibrium pruned SNPs (fig. 3A) and principal compo-
nents analysis (PCA) of genetic structure from the full set of
74,064 genome aligned SNPs (fig. 3B), clearly indicate three
independent origins of zinc-tolerantmine populations; one in
Ireland, one in England, and one inWales. The PCA highlights
the much higher genetic similarity between coastal popula-
tions than between mine populations, which occupy ex-
tremely divergent areas of genotype space, suggesting that
they may be on different evolutionary trajectories at the ge-
netic level, despite adapting to similar selection pressures. The
two Welsh mines are genetically similar (fig. 3B and supple-
mentary fig. S1, SupplementaryMaterial online) and although
we cannot rule out independent origins from unsampled
nontolerant populations, it is likely that transport of workers,
machinery, or ore between Welsh mines dispersed zinc-
tolerant plants between sites. In fact, records of mine owner-
ship from 1758 C.E. indicate that human-mediated dispersal is
possible between West Wales and Swansea and it was com-
mon practice to transport ore mined elsewhere to be refined
in Swansea (Hughes 2000). There are at least 14 further
records of S. uniflora growing on contaminated mine spoil
in the UK and Ireland (pers. obs. and Baker 1974), so our
discovery of three independent origins is likely to be a lower
bound on the true number of independent origins for zinc-
tolerant populations.

Papadopulos et al. . doi:10.1093/molbev/msab141 MBE
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Three origins of zinc-tolerant populations were further
supported when modelling shared genetic drift among pop-
ulations (Treemix analysis; fig. 3C). This analysis also provided

evidence ofmigration between theWelsh coastal populations
(WWA-C and SWA-C) and very weak migration between the

Irish, English, and Welsh populations. To assess the signifi-
cance of admixture in the evolution of the mine populations,
we examined genetic relationships across all population quar-

tets using the less-parameterized f4 statistics (fig. 4). The f4
statistic quantifies shared drift between pairs of populations

in a four-taxon tree—significant deviation of the f4 statistic
from zero for the tested topology demonstrates that the
relationships are not perfectly described by a bifurcating

tree. This is indicative of some shared drift between popula-
tions that conflicts with the topology, for example, due to

admixture (Reich et al. 2009; Foote and Morin 2016; Peter
2016; Lipson 2020). The f4 statistic for the tree containing all
four mine populations (type 2; fig. 4) indicates that there has

been no admixture between mines (i.e., f4 does not deviate
from zero; f4¼ 1.31 � 10�5, s.d. ¼ 7.75 � 10�5, P¼ 1.00),

whereas f4 for the coastal population quartet (type 1; fig. 4)
demonstrates that admixture between coastal populations

has taken place (i.e., f4 is significantly different from zero; f4
¼ �3.95 � 10�4, s.d. ¼ 7.57 � 10�5, P¼ 3.68 � 10�5).
Comparisons of quartets with three mine populations and

one coastal population (type 4; fig. 4) provide an additional
test of the independent origins of the mine populations, in

each case demonstrating that there was no correlated drift
between the mine outgroups and the mine-coast pair of

more closely related populations. On the other hand, the

three coastal: one mine comparisons (type 3; fig. 4) provide

further confirmation of gene flow from coastal outgroups

into more closely related mine-coast pairs in three quartets

and support the significance of migration edges between

SWA-C and WWA-C, and IRE-C and ENG-C. Overall, our

results provide firm support for recent parallel evolution of

mine populations, with migration restricted to coastal sites.

Evidence for Molecular Convergence/Parallelism
To investigate the genetic basis of mine-coast differentiation

and degree of molecular convergence in adaptation, we con-

ducted pairwise FST-based genome scans for each mine-coast

pair and identified outlier loci potentially under divergent se-

lection. Due to the relatively sparse sampling of our ddRAD

data set and the highly fragmented draft genome (supplemen-

tary table S5, Supplementary Material online; N50¼ 4,660 bp,

length ¼ 0.77Gb), we designated genomic scaffolds contain-

ing at least one outlier SNP as an outlier scaffold for each

comparison (the number of outlier SNPs was not significantly

associatedwith scaffold length; Tukey’s test; supplementary fig.

S2, Supplementary Material online). Across the local mine-

coast pairs, the number of outlier scaffolds ranged from 779

to 1,216 and the number of outlier SNPs varied from 1,346 to

2,261—the degree of overlap between all sets of outlier scaf-

folds (fig. 5A) and SNPs (fig. 5B) was significantly higher than

expected by chance as assessed by Super Exact Test (an ex-

tension of Fisher’s Exact Test for multiple sets; Wang et al.

2015). In total, 34 scaffolds were identified as outliers across all

FIG. 2. Isolation by distance (IBD) patterns arising frommultiple or single origins ofmine populations. (A) Under a simulatedmultiple independent

origin model, the correlation between FST and migration between mine populations (orange) is steeper (i.e., IBD is stronger) and has a higher

intercept than isolation by distance between coastal populations (blue). (B) In contrast, under a single origin model, the relationship between

genetic differentiation and geography breaks down betweenmine populations—the slope is not significantly different from zero and the intercept

is lower than between coastal populations (center line, median; box limits, upper and lower quartiles; whiskers, 1.5� interquartile range; points,

outliers). (C) The observed IBD relationships in Silene uniflora conform to the patterns expected frommultiple origins of themine populations. IBD

between mine and coastal populations in green.

Rapid Parallel Adaptation to Anthropogenic Heavy Metal Pollution . doi:10.1093/molbev/msab141 MBE
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pairwise comparisons, whereas 187 and 756 outlier scaffolds

were found across the sets of three and two comparisons,

respectively (fig. 5A). There was substantially less overlap at

the level of SNPs (fig. 5B), with four shared across all four sets,

85 shared by three sets and 870 shared by two sets. This pat-

tern suggests a highly polygenic basis to mine-coast differen-

tiation, with a substantial proportion of shared targets of

selection found in three or fewer pairs. However, we are unable

to rule out the possibility that the shared scaffolds are phys-

ically close to each other in the genome, although linkage

disequilibrium between the scaffolds is low (mean r2¼ 0.021).
It is currently unclear whether the adaptive variation that

underpins tolerance and colonization of the mine habitat has

arisen through new independent mutations in each popula-

tion (as in Fundulus heteroclitus; Reid et al. 2016), has been

drawn from standing variation (as in Mimulus guttatus; Lee

and Coop 2017), or has been obtained through adaptive in-

trogression from close relatives (as in Fundulus grandis;

Oziolor et al. 2019). Despite this limitation, the lack of

parallelism at the SNP level provides some indication that

introgression is unlikely to be the source of adaptive alleles.

Dramatically greater overlap between the two Welsh com-

parisons (WWA and SWA) and a bias toward shared outlier

SNPs rather than scaffolds, further supports the single origin

of the Welsh mine populations and provides a clear contrast

with the degree of outlier overlap withmine populations that

evolved in other regions. It is possible that the difference in

distribution of overlap between scaffolds and SNPs is due to a

limited role of parallelism at the level of individual nucleoti-

des, but greater convergence at the genic level (Conte et al.

2012). However, the sparse sampling inherent to the ddRAD

approach may mean that the specific adaptive sites are not

captured in the analysis (Lowry et al. 2017) and there may be

more substantial sharing and parallelism of adaptive SNPs

across independently derived mine populations.
A polygenic basis to differentiation in S. uniflora is at odds

with previous investigations of heavy metal tolerance in

Silene. Using controlled crosses and hydroponic experiments,

FIG. 3. Evidence for three independent origins of zinc-tolerant populations in S. uniflora. (A) Phylogenetic reconstruction (mine populations in

orange and coastal populations in blue). Nodeswith greater than 90%bootstrap support are denoted by black circles. (B) PCApoints to three, well-

supported, independent origins of zinc-tolerant populations. Variance explained by PC1¼ 12.3% and PC2¼ 9.0%. Points are colored by region as

figure 1. All points from a specific population are surrounded by a single ellipse which is colored by habitat type (mine—orange, coast—blue). (C)

Treemix analysis with four migration edges. Points are colored as in figure. 1. The topology is almost identical to that produced by the SNPhylo

analysis—the relationship of ENG-C and SWA-C to ENG-M is reversed. Color scale indicates migration edge weight. Only migration between

coastal populations was supported by f4 statistics (see fig. 4).
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these studies indicated that both zinc and copper tolerance
have relatively simple genetic bases and are not controlled by
the samemolecular mechanisms (Schat et al. 1996; Schat and
Vooijs 1997). The simple architecture for copper tolerance in
S. vulgaris is also supported by the recent discovery of two
related ATPase copper transporters which additively contrib-
ute to copper tolerance (Li et al. 2017). The potential for
polygenic convergence in S. uniflora is further supported by
gene ontology enrichment analysis of the subset of genes
found on the 34 scaffolds which were outliers in all four
pairwise comparisons. This group was significantly enriched
for genes involved in metabolism of reactive oxygen species
and the regulation of salicylic acid (supplementary table S6,
Supplementary Material online), which are critical in
responses to cold, salt, drought, and heavy metal stresses
(Khan et al. 2015). Further systematic investigation of gene
functions revealed that 15 genes have well-supported roles in
processes that are relevant to differentiation between coastal
and mine plants: eight associated with salt stress, eight with
heavy metal stress and four with root development andmor-
phology (supplementary table S7, Supplementary Material
online). This points to a potential trade-off in the molecular
processes which govern mine-coast differentiation, with se-
lection against salt tolerance alleles in mines and against

metal tolerance alleles in coastal environments.
Alternatively, some alleles for genes that contribute to metal
tolerance may be conditionally neutral in coastal plants and
under positive selection in the mine environment. In this
latter scenario, we might expect a higher incidence of metal
tolerance among coastal population, but further work is
needed to establish which model underlies local adaptation.

The exact mechanism of zinc tolerance in Silene is not well
understood. However, hydroponic experiments with mine
and coastal S. uniflora demonstrated that mine plants grown
in zinc-contaminated media accumulate a higher proportion
of absorbed zinc in the roots relative to their shoots whereas
the reverse is true for coastal plants (Baker 1978). Additional
research in S. vulgaris indicates that zinc uptake into tono-
plast vesicles of zinc-tolerant S. vulgaris is higher than in non-
tolerant plants (Chardonnens et al. 1999). In our study, three
genes on outlier scaffolds (PSD2, WRKY23, and RWP1) have
direct links to these physiological differences between toler-
ant and nontolerant Silene: 1) PSD2 encodes a form of phos-
phatidylserine decarboxylase which is located in the tonoplast
(Nerlich et al. 2007), confers cadmium tolerance in
Saccharomyces cerevisiae (Gulshan et al. 2009) and produces
phosphatidylethanolamine, which is involved in zinc homeo-
stasis in Pseudomonas fluorescens (Appanna et al. 1995); 2)
WRKY23 is a transcription factor that regulates root develop-
ment by altering auxin distribution through the control of
flavanol biosynthesis in Arabidopsis thaliana—overexpression
of WRKY23 increases quercetin root concentrations
(Grunewald et al. 2012). Quercetin is a very efficient chelator
of heavy metals (i.e., a molecule that binds metal ions) and
supplementation of wild type A. thaliana with quercetin
stimulates root growth in the presence of zinc ions (Keilig
and Ludwig-Müller 2009); and 3) RWP1 is required for the
production of the cell wall polymer suberin. In A. thaliana,
RWP1 mutants lack suberin and have increased root perme-
ability for NaCl (Gou et al. 2009). Furthermore, Esb1mutants
have increased levels of root suberin, which both decreases
accumulation of cadmium,manganese, and zinc in the shoots
and increases accumulation of sodium in the shoots (Baxter
et al. 2009).

Parallel evolution is expected to be facilitated in spatially
structured environments when loci have large, spatially an-
tagonistic fitness effects (Chevin et al. 2010). Evidence of such
trade-offs in wild plants is lacking, with loci displaying condi-
tional neutrality more commonly detected (Lowry et al. 2009;
Hall et al. 2010; Anderson et al. 2011). The dual effect of high
suberin levels on restriction of zinc ions to the roots and
exposure of the shoots to sodium raises the possibility of a
direct trade-off in suberin production and opens the possi-
bility of antagonistic pleiotropy at RWP1 influencing the par-
allel evolution of zinc-tolerant populations. Of the three
genes, only the scaffold containing RWP1 had consistently
lower genetic diversity in the mine populations (paired t-
test, two-sided, P¼ 0.030), whereas for WRKY23 and PSD2

diversity was only lower in the mines from West Wales and
Ireland (supplementary table S4, Supplementary Material on-
line). These findings further support the polygenic nature of
parallel adaptation in S. uniflora and the potential importance

FIG. 4. Evidence for admixture between coastal populations but not

between mines. z-scores of f4 statistics for the six different permuta-

tions of four taxon trees (Types 1–6), with all of the different combi-

nations of mine (orange) and coastal (blue) populations based on

relationships in figure 3A. The red line denotes the z-score at which

the f4 statistic is significantly different from zero at the 5% level after

Dunn–Bonferroni correction for multiple tests (z¼ 3.67). There is

evidence of admixture in the four coast tree (Type 1; z¼ 5.23) and

three coast: one mine trees (Type 3; z> 3.67 for three of the quartets),

which is also reflected in the four Type 5 quartets with z-scores ex-

ceeding 3.67. On the other hand, the four mine (Type 2; z¼ 0.17) and

three mine: one coast trees (Type 4; z¼ 0.14–2.35) demonstrate that

there has not been introgression between mine sites.

Rapid Parallel Adaptation to Anthropogenic Heavy Metal Pollution . doi:10.1093/molbev/msab141 MBE
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of antagonistic pleiotropy in the rapid evolution of differen-

tially adapted populations.
In a rapidly changing world, the adaptability of species will

be critical for their long-term persistence. This study shows

that some species will be capable of responding quickly to

strong selection pressures across their range. We argue that

plant species with sufficient genetic variation may adapt

quickly to a single physiological stress repeatedly in different

places, while using subtly different genetic mechanisms. As in

S. uniflora, those species that evolved to survive in environ-
ments with natural sources of high abiotic stress, but which

do not compete well in low-abiotic stress/high-biotic com-

petition environments, may be particularly well suited to

cope with the ongoing human modification of the planet.

Alongside evidence of widespread local adaptation to differ-

ent environmental conditions in other species (Fournier-Level

et al. 2011; Papadopulos et al. 2014), our findings indicate that

while it may be possible to predict which species will adapt to

specific environments, the underlying genetic basis to that

adaptation may be considerably more variable than is cur-

rently understood from the limited number of well-studied

examples (Bay et al. 2018; Fitzpatrick et al. 2018; Oomen et al.

2020). In order to be accurate, predictions of evolutionary

responses to environmental change from genomic data will

need to account for the possibility that multiple genetic

architectures can produce similar phenotypic responses.

Materials and Methods

Sample Collection
Four focal mine sites where S. uniflora was known to occur

were selected for sampling; Grogwynion (West Wales; WWA;

worked 1588–1889C.E.; Hartley 2009), White Rock (Swansea,

South Wales; SWA; 1736–1928; Hughes 2000), Priddy Pools

(Somerset, South-West England; ENG; 1850–1908, evidence

of Roman mining; Gough 1967) and Ross Island (Co. Kerry,

South-West Ireland; IRE; 1707–1829, evidence of Bronze Age

mining; O’Brien 2020). For three of these sites (WWA, ENG,

FIG. 5. Molecular convergence and divergence across regional mine-coast pairs. Upset plots of the shared (A) outlier scaffolds and (B) individual

SNPs across the four regionalmine-coast pairs. Filled points belowbars denotewhich regional sets are intersected for each bar (e.g., the leftmost bar

in each plot represents the set including all four mine-coast comparisons). Inset scatterplots show observed overlap (y-axis) versus expected

overlap (x-axis) across combinations of regional sets, with line at 1:1. Black bars denote outliers found in a single geographic region. The remaining

bars are colored by super exact test P value (all< 0.001) with darker green denoting smaller P values and purple denoting extremely small values

(<10�150).
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and IRE), metal tolerance has previously been tested (Baker

1978; Schat et al. 1996). White Rock was also located near a
previously tested population in Morriston, Swansea (Baker
1978) that no longer exists. The BSBI Database was used to

identify the nearest accessible coastal populations to each
mine. See supplementary table S8, Supplementary Material

online for population coordinates. At each of the eight pop-
ulations, leaf tissue was sampled from 30 individuals and pre-

served for DNA extraction in fine mesh silica gel. Individuals
were sampled at least one m apart and samples were col-
lected at even intervals across the extent of each population.

At each site, we collected seeds from a minimum of 12 indi-
viduals, which were then dried and stored separately with

silica gel. For assembly of a draft genome, cuttings from a
single coastal individual were collected in Tresaith (West

Wales), propagated and self-fertilized to produce an inbred
F1 (SUTF1P) with reduced heterozygosity.

Phenotyping
Root elongation experiments were conducted to determine

the level of zinc and copper tolerance in each population
(Baker 1978). Seeds were germinated in groups of eight

(one seed per population) on 1=4� Murashige-Skoog media
in 1% agar with no supplemental heavy metals (control treat-

ment), 24mM copper sulfate (copper treatment) or 459mM
zinc sulfate (zinc treatment). Twenty graduated plates were
prepared per treatment and the positions of populations

within plates was determined using a random seed. Plates
were placed upright in a germination cabinet with a 12-

h light/dark cycle for 10 days and then photographed using
a digital camera. Radicle length of all seedlings with emerged

cotyledons was measured using ImageJ v1.8.0. Zinc and cop-
per tolerance were calculated as the radicle length in the
treatment divided by the mean length in the control for

each population. Six individuals per population germinated
on control media were grown into adults and zinc tolerance

was assessed using deep water culture. To do this, cuttings
from each individual were rooted in a mist propagator for 2

weeks before being transferred to a deep-water culture set up
with 1/10� Hoagland’s solution. After acclimatization for 1

week, the plant roots were stained using a suspension of
activated charcoal and rinsed with ddH2O, the solution was
refreshed and 600mMzinc sulfate was added. After a further 2

days root growth was inspected by eye—the presence of
unstained root tips (i.e., ongoing root growth) was taken as

confirmation of zinc tolerance (Schat et al. 1996; Bratteler et
al. 2006a).

Genome Assembly
DNA was extracted from silica dried leaf tissue using Qiagen
DNeasy Plant tissue kits. DNA quality was assessed using
agarose gel electrophoresis and DNA was quantified using a

Promega Quantus fluorometer with Quantifluor dsDNA kits.
For draft genome assembly, four NEBnext Ultra II libraries

were prepared for SUTF1P and each was sequenced using
illumina MiSeq v3 600 bp PE cartridges. Adapter and quality

trimming were performed using cutadapt v2.1 (Martin 2011)
and Trimmomatic v0.36 (Bolger et al. 2014) (minimum

quality¼ 15, minimum length¼ 64). Overlapping read pairs

were merged using Abyss-mergepairs (Jackman et al. 2017)
and nonoverlapping pairs merged using konnector v2.0
(Vandervalk et al. 2015) with a bloom filter containing

merged and unmerged reads for all libraries (kmer length-
¼ 96, bloom filter FPR ¼ 1.01%). illumina reads were assem-

bled into contigs using Abyss v2.0 (Jackman et al. 2017) with a
kmer length¼ 241—selected after estimation with kmerge-

nie v1.7048 and Abyss runs with kmers ¼ 96/127/151. To
scaffold the assembly, the same individual was sequenced
using an Oxford Nanopore MinION (Three R9 flow cells

and one R9.4 flow cell with SQK-NSK007 kits). Nanopore
reads were corrected with Proovread v2.12 (Hackl et al.

2014) using the processed illumina reads. Redundans v0.14a
(Pryszcz and Gabald�on 2016) was used to reduce contig re-

dundancy caused by heterozygosity (minimum identity 95%)
and scaffold contigs using the corrected nanopore data.
Abyss-sealer (Paulino et al. 2015) was used to fill gaps in

the scaffolded assembly (kmers ¼ 94/89/84) and complete-
ness was assessed with BUSCO v3 (Benchmarking Universal

Single-Copy Orthologs; complete and fragmented ¼ 78.5%,
supplementary table S5, Supplementary Material online).

Augustus (Stanke et al. 2006) was used to predict genes in
the genomic scaffolds using the annotation training files from

Solanum lycopersicum. The resulting predicted amino acid
sequences were BLASTp-searched (Camacho et al. 2009)
against the Arabidopsis thaliana proteome (Araport11) and

only the best scoring hit from each predicted amino acid
sequence was retained.

Genotyping
Double-digest RAD sequencing was performed following a
modified protocol of Peterson et al (2012) detailed in
Papadopulos et al (2019) and restriction was performed using

EcoRI-HF and MspI. For this study, size selection was con-
ducted with a pippin prep (468–546 bp) and one pool of

230 uniquely barcoded individuals was sequenced on five
lanes of an illumina HiSeq 2500 (100 bp, PE) at the Earlham

Institute. Raw reads were demultiplexed, trimmed to 90 bp
and low-quality reads were discarded, resulting in an average

of 4.76M reads per sample (s.d. 2.01M). Reads were mapped
to the draft genome using bowtie v2.3.4 (Langmead and
Salzberg 2012) in end-to-end mode and excluding reads

with low mapping quality (Q< 20). SNPS were called from
the resulting BAM files using gstacks v2.0b (Rochette et al.

2019), 14 samples were excluded from further analysis due to
low coverage. Genotypes for SNPS with less than 20% missing

data were extracted in VCF and RADpainter format using
Populations v2.0b (Rochette et al. 2019). In total, 216 individ-
uals were genotyped at 74,064 SNPs.

Evolutionary Genetics
Population genetic structure across S. uniflora was assessed
using PCA implemented in adegenet v2.1.3 (Jombart 2008) in

R and genetic coancestry was estimated using the haplotype-
based inferencemethod of fineRADstructure v0.3.2 (Malinsky

et al. 2018). AMOVA was conducted in Arlequin v3.5.2.2
(Excoffier and Lischer 2010) To assess patterns of isolation

Rapid Parallel Adaptation to Anthropogenic Heavy Metal Pollution . doi:10.1093/molbev/msab141 MBE
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by distance, pairwise genetic differentiation between the sam-
pled populations (Weir and Cockerham’s FST) was calculated
using Arlequin v3.5.2.2 (Excoffier and Lischer 2010), pairwise
geographic distances between populations were calculated
with the distm function in the geosphere R package and
isolation by distance estimated in R using linear regression.
Tajima’s D was calculated for 20 kb sliding windows in
VCFtools v0.1.16 (Danecek et al. 2011) and averaged over
the subset of windows for which D could be calculated in
all populations. To identify the isolation by distance signature
expected from parallel versus single origins of the mine pop-
ulations, we conducted simulations in SLiM v3.3.2 under two
scenarios: independent colonization of mines from the near-
est coastal population and non-independent colonization of
mines from the same individual coastal population. In the
latter case, the “founding” coastal population was randomly
chosen in each independent iteration of the simulation. All
simulations were initiated with a burn-in period of 100,000
generations and a population size of 10,000 individuals. Each
individual in the population was diploid and hermaphroditic,
and generations were nonoverlapping (i.e., Wright-Fisher sim-
ulations). To track genetic relationships among populations,
we simulated a single chromosome that was 50,000 bp long
with a uniform mutation rate of 7.5� 10�9—based on esti-
mates for S. latifolia (Krasovec et al. 2018)—and a recombi-
nation rate of 4.0� 10�9—based on the genetic map length
(446 cM; Bratteler et al. 2006b) and genome size (1.13Gb) of
S. vulgaris (Pellicer and Leitch 2020). In the 100,000th gener-
ation, two populations (p1 and p2) were colonized with 500
individuals each from the ancestral population. These two
populations represented those that initially colonized
Ireland and the west coast of England/Wales at the end of
the Last Glacial Maximum. Subsequent stepwise colonization
of populations (i.e., p2 -> p3 -> p4), representing coastal
populations, occurred every 20 generations until there were
four coastal populations in the 100,040th generation. Coastal
populations were always founded with 500 individuals and
population sizes increased to 1,000 individuals ten genera-
tions after a population was initially founded. After coloniza-
tion, p1 and p2 exchanged migrants at a rate of 0.00001 per
generation, p2 and p3 at a rate of 0.0001, and p3 and p4 at a
rate of 0.0001. P1 through p4 were therefore effectively ar-
ranged along a line andmigration rates between nonadjacent
populations were equivalent to the product of migration
rates connecting them. Ten thousand generations after the
coastal populations were founded, 100 individuals were used
to found each of four populations meant to reflect those
found in mine environments. After founding the mine pop-
ulations, these populations exchanged migrants with the
nearest coastal population at a rate of 0.0002. All populations
then evolved for an additional 100 generations. At the end of
the simulations (i.e., at generation 1,10,150), we calculated
and output FST between each of the four coastal populations
(all pairwise comparisons) and each of the four mine popu-
lations. We ran 100 independent replicates for each of the
three colonization scenarios described above.

To further establish the evolutionary relationships be-
tween the populations, the data set was pruned to 7,037

SNPs using a linkage disequilibrium threshold of 0.1 and mi-

nor allele frequency threshold of 0.05, and the phylogenetic

tree estimated with 1,000 bootstrap replicates using the

maximum-likelihood approach implemented in SNPhylo v2

(Lee et al. 2014). This reduced data set was then used to

explore the possibility ofmigration and introgression between

the populations using Treemix v0.1.15 (Pickrell and Pritchard

2012). For the maximum-likelihood estimation of the tree in

Treemix, one to ten migration edges were fitted and the

number of edges that explained 99.8% of the variance se-

lected as the best model. Using the fourpop function in

Treemix, f4 statistics (Reich et al. 2009) were calculated for

all population quartets to assess whether relationships be-

tween the populations deviated significantly (after Dunn–

Bonferroni correction) from tree likeness. The premise of

the f4 statistic and our test is that for any four populations

there are three possible trees [((A, B),(C, D)); ((A, C),(B, D));

and ((A, D),(B, C))]. If ((A, B),(C, D)) is the correct tree, the

allele frequency difference between A and B will not be cor-

related with the frequency difference between C and D, that

is, the correlation in frequency differences (f4) would not

deviate from zero (Reich et al. 2009). For each quartet of

populations in our sample, we determined the correct tree

based on figure 3A and tested whether f4 significantly devi-

ated from zero using the z-score.
To investigate the level of parallel evolution at the molec-

ular level, we calculated Weir and Cockerham’s FST at all var-

iable sites in pairwise comparisons between the

geographically proximate mine-coast pairs using VCFtools

v0.1.16. SNPs falling in the upper 95% percentile of values

in each pairwise comparison were designated as outlier loci

and scaffolds containing one of more outlier SNPS were des-

ignated as outlier scaffolds. Overlap of outlier SNPs and scaf-

folds was visualized using upsetR v1.4.0 (Conway et al. 2017)

and significance of overlap was assessed using SuperExactTest

v1.0.7 (Wang et al. 2015). To investigate the possible functions

of genes in outlier regions, all genes on the outlier scaffolds

that were in common across the four pairwise mine-coast

comparisons were subjected to gene ontology enrichment

analysis performed in topGo v3.11 (Alexa and Rahnenfuhrer

2020) using the “elim” algorithm and Fisher’s Exact tests to

assess significance. Further assessments of gene functions

were made from The Arabidopsis Information Resource

(TAIR) descriptions and associated references. Systematic

searches were performed using gene names with and without

the terms “stress” and “heavy metal” using Google Scholar.

Supplementary Material

Supplementary data are available at Molecular Biology and

Evolution online.
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