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Abstract18

In marine management, fish stocks are often managed on a stock-19

by-stock basis using single-species models. Many of these models are20

based upon statistical techniques and are good at assessing the cur-21

rent state and making short-term predictions; however, as they do22

not model interactions between stocks, they lack predictive power23

on longer timescales. Additionally, there are size-based multi-species24

models that represent key biological processes and consider interac-25

tions between stocks such as predation and competition for resources.26

Due to the complexity of these models, they are difficult to fit to data,27

and so many size-based multi-species models depend upon single-28

species models where they exist, or ad hoc assumptions when they29

don’t, for parameters such as annual fishing mortality.30

In this paper we demonstrate that by taking a state-space ap-31

proach, many of the uncertain parameters can be treated dynami-32

cally, allowing us to fit, with quantifiable uncertainty, size-based multi-33

species models directly to data. We demonstrate this by fitting un-34

certain parameters, including annual fishing mortality, of a size-based35

multi-species model of the Celtic Sea, for species with and without36

single-species stock-assessments. Consequently, errors in the single-37

species models no longer propagate through the multi-species model38

and underlying assumptions are more transparent.39

Building size-based multi-species models that are internally consis-40

tent, with quantifiable uncertainty, will improve their credibility and41

utility for management. This may lead to their uptake by being ei-42

ther used to corroborate single-species models; directly in the advice43

process to make predictions into the future; or used to provide a new44
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way of managing data-limited stocks.45

Keywords: Bayesian Statistics; MCMC; Mechanistic models; Multi-46

species modelling; Uncertainty quantification; State-space approach;47

Size-based modelling;48

1 Introduction49

2 Methods50

2.1 State-space model . . . . . . . . . . . . . . . . . . . .51

2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

2.3 Fitting the model . . . . . . . . . . . . . . . . . . . . .53

3 Results54

3.1 Posterior distributions . . . . . . . . . . . . . . . . . .55

3.2 Spawning stock biomass . . . . . . . . . . . . . . . . .56

4 Discussion57

4.1 Integrating size-based multi-species models within man-58

agement . . . . . . . . . . . . . . . . . . . . . . . . . .59

4.2 Further challenges . . . . . . . . . . . . . . . . . . . .60

4.3 Quantifying uncertainty . . . . . . . . . . . . . . . . .61

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . .62

1 Introduction63

Food security has been highlighted as one of the major global chal-64

lenges, with fisheries and aquaculture identified as key contributors to65

addressing this challenge (FAO, 2009; Frid & Paramor, 2012). Cur-66

rently the majority of fish stocks are managed using single-species67
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models (SSMs), such as the state-space assessment model (SAM)68

(Nielsen & Berg, 2014) and projections are made to assess the utility69

of management decisions. Interacting stocks, which may compete with70

or predate on one another, can make conventional single-species man-71

agement difficult (Tyrrell et al., 2011; Quárou & Tomini, 2013; Farcas72

& Rossberg, 2016). Alternatively a multi-species or whole ecosystem73

approach could be adopted to account for these interactions (Pikitch74

et al., 2004; Link et al., 2011; Plagányi et al., 2014). There are sev-75

eral multi-species models (MSMs) ranging from statistical models (e.g.76

Stochastic MSM (SMS) Lewy & Vinther, 2004), to more mechanistic-77

based models (e.g. mizer; Scott et al., 2014) or whole ecosystem models78

(e.g. StrathE2E; Heath, 2012).79

SSMs and statistical MSMs are often used to describe the current80

and recent status of the system, and to make short-term forecasts.81

They aim to learn about the system by fitting many ‘tuning param-82

eters’, parameters that are adjusted to make the model look like the83

observed system (Plagányi et al., 2014; Brynjarsdóttir & O’Hagan,84

2014). On the other hand, mechanistic models, sometimes called85

process-based models, are based on the theoretical understanding of86

the relevant ecological processes (Cuddington et al., 2013). They gen-87

erally model the behaviour of the system through differential equa-88

tions and/or a series of rules or algorithms. They prioritise realism89

over reality, often explaining why things happen rather than describing90

what happened (White & Marshall, 2019). Many of the parameters91

are treated as ‘input variables’, with values taken from other sources92

(Brynjarsdóttir & O’Hagan, 2014), leaving fewer ‘tuning parameters’93

that represent processes that are either too complex or not known,94
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e.g. recruitment. For example, in size-based MSMs, the predator-prey95

mass ratio is an ‘input variable’, coming from other studies (e.g. Hat-96

ton et al., 2015), whereas in statistical MSMs it is treated as a ‘tuning97

parameter’ and learned from data (e.g. ICES, 2017a) (see Supplemen-98

tary material S5 for an illustrative example of ‘tuning parameters’ and99

‘input variables’).100

An increasingly popular class of mechanistic models are size-based101

MSMs (e.g. Blanchard et al., 2014; Szuwalski et al., 2017). Often these102

models are fitted to, or rely on inputs from, SSMs (e.g. Speirs et al.,103

2016). A common example is instantaneous fishing mortality values104

that are taken from SSMs, to drive fishing dynamics in MSMs (e.g.105

Spence et al., 2016). In some ecoregions, fishing mortality values from106

SSMs either do not exist for all species or only qualitative patterns are107

reported. In studies with MSMs, fishing dynamics for species without108

fishing mortality values from SSMs are added using ad hoc methods109

(Jacobsen et al., 2017). Further, as models are simplifications of reality110

and often the fishing mortality is treated as a ‘tuning parameter’,111

the fishing mortality values lose their interpretation outside of the112

fitted model (Rougier & Beven, 2013). Thus they are not the same as113

the true instantaneous fishing mortality values but instead are model114

specific. For example statistical MSMs, that are often used to generate115

natural mortality values for SSMs, have different fishing mortality116

than the SSMs (e.g. North Sea Cod in SMS and SAM; ICES, 2017a,117

2018b), despite being fitted to the same data and having a similar118

representation of the population structure. Fitting MSMs to SSMs119

or taking inputs from them can lead to circularity in results as errors120

propagate through the models (Brooks & Deroba, 2015).121
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In MSMs, fitting fishing can be a challenging task. Recent soft-122

ware advances (e.g. ADMB (Fournier et al., 2012)) have meant that123

statistical MSMs, designed with tractability in mind, are relatively124

easy to fit. For size-based MSMs, evaluating the output of a model125

for a particular set of inputs can often only be done by running the126

model, which can take anything from a few seconds to a few hours.127

This means that fitting a large number of uncertain parameters, such128

as fishing mortality for each year, can be a difficult task. Further-129

more, for these models to be any use to support management, outputs130

need to be reported with robust estimates of uncertainty (Harwood &131

Stokes, 2003).132

Parameter uncertainty has previously been done in size-based MSMs133

to explore a handful of parameters (Thorpe et al., 2015). Spence et al.134

(2016) fitted a model of the North Sea using a Bayesian framework,135

which we adopt here (Bayes, 1763), using Markov chain Monte Carlo136

(MCMC) to sample from the posterior distribution (Metropolis et al.,137

1953; Hastings, 1970). Adding dynamical parameters, such as annual138

fishing mortality, makes the uncertain parameter space very large,139

which makes it difficult to explore. However, we may be able to con-140

sider the model as a state-space model, a common approach in SSMs141

(see Aeberhard et al., 2018, for a recent review). In state-space models,142

the ‘state’ of the system is updated using a Markov process, known as143

the process model, and there are some noisy, possibly incomplete, ob-144

servations of the ‘state’, defined by an observation model. For example145

in many SSMs, such as SAM, the ‘state’ is the numbers of individuals146

at all ages, at each time-step. In size-based MSMs, we consider the147

‘state’ to be the density or numbers of fish and background resource at148
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all sizes at each time-step. State-space models have a specific depen-149

dence structure (see Figure 1), with the observations of the past and150

present being conditionally independent given the unobserved state, a151

structure that can be advantageous when fitting the model (Zucchini152

et al., 2016).153

There are many methods of fitting non-linear state-space models154

including Extended Kalman Filers (Evensen, 2003; Wan & Van Der155

Merwe, 2000), MCMC methods (Jonsen et al., 2005) and using the156

Laplace approximation (Tierney & Kadane, 1986) to integrate out157

the unobserved states (Skaug & Fournier, 2006). Spence et al. (2018)158

used particle filters (Gordon et al., 1993; Liu & Chen, 1998) to update159

a few years of fishing rates in two MSMs, but for longer periods of160

time this method is not practical. This is due to the likelihood being161

largely dominated by the process model and not the observation model162

which leads to poor mixing of the MCMC (Fasiolo et al., 2016). In163

this paper we develop an MCMC algorithm that sequentially updates164

each dynamical parameter and improves the mixing of the MCMC.165

In many cases the only way of evaluating the likelihood of param-166

eter values is to run the model. Running size-based MSMs can be167

slow so ideally one would want to parallelise the model when fitting to168

data; however this is difficult for MCMC, as iterations need to be done169

sequentially (Jacob et al., 2011). Some MCMC algorithms have been170

developed that take advantage of parallel computing (Cui et al., 2011;171

Calderhead, 2014), whereas others reduce the number of times that172

the model needs to be run. The delayed-acceptance MCMC algorithm173

(Sherlock et al., 2017) uses a fast approximation of the likelihood, ei-174

ther a simplified mechanistic model or a purely statistical one, before175
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deciding whether or not to run the size-based MSM. Due to the high176

dimensionality of this problem, fitting accurate fast approximations of177

the likelihood can be difficult, but for many of these problems there178

are some parameters that affect only part of the likelihood. Here we179

introduce a second new MCMC algorithm that runs several proposals180

in parallel using the size-based MSM and then combines them to give181

a single proposal that has an increased chance of being accepted.182

In this paper we fit fishing mortality and other uncertain parame-183

ters of a size-based MSM for the Celtic Sea, without the use of SSMs.184

We compare stock-assessments made using the model with those de-185

veloped using SSMs. Although demonstrated on a multi-species ma-186

rine model, this problem is not unique to MSMs and methods demon-187

strated here can be used for fitting models of intermediate complexity,188

e.g. individual-based models (Railsback & Grimm, 2011), especially189

when there are dynamic parameters. In Section 2 we define state-190

space models, describe the size-based MSM, the data and the fitting191

procedure as well as the two new MCMC algorithms. In Section 3192

we describe the results of the fitted model and we conclude with a193

discussion in Section 4. We also demonstrate the fitting procedure194

with a simulation study using another size-based MSM (Spence et al.,195

2020b) in the Simulation study.196

2 Methods197

In this section we describe how we can treat the MSM as a state-198

space model. We introduce the MSM used in this study, the uncertain199

parameters, which include fishing mortality for each species for each200
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year, and the data to which the model was fitted. We then describe201

the steps used to sample from the posterior distribution using Markov202

Chain Monte Carlo (MCMC).203

2.1 State-space model204

LetMt, the density of all species, Ni(m), and the background resource,205

NR(m) at all weights, m (see Supplementary material S1 for details),206

be the state of the MSM at time t. Then207

Mt|Mt−1 ∼ h(Mt−1,φt,θ),

where φt are dynamical parameters at time t and θ are static parame-208

ters. h(·) is known as the process model. We do not observe the state209

directly but at time t we observe yt, where210

yt|Mt ∼ g(Mt,σ
2),

and σ2 are static parameters. g(·) is known as the observation model.211

Figure 1 represents this model as a directed acyclic graph (DAG).212

Process model213

The process model h(·) used here is the deterministic multi-species214

size-based model, mizer (Hartvig et al., 2011; Scott et al., 2014). Mizer215

was developed to represent the size and abundance of all organisms216

from zooplankton to large fish predators in a size-based food web.217

Some species are represented by species-specific traits and body size218

while others are represented solely by body size. The core of the model219

involves ontogenetic feeding and growth, mortality, and reproduction220

driven by size-dependent predation and maturation processes. The221
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smallest individuals in the model do not eat fish belonging to the fish222

populations, but consume smaller planktonic or benthic organisms223

which we describe as a background resource spectrum. Fish grow and224

die according to size-dependent predation and, if mature, recruit new225

young which are put back into the system at the minimum weight. As226

well as the predation and background mortality, the fish in the model227

also experience fishing mortality.228

In this study we fit mizer for 17 species, shown in Table 1, in229

the Celtic Sea, ICES (International Council for Exploration of the230

Seas) areas 7e-j. A description of the model can be found in the231

Supplementary material (S1) along with the parameter values.232

In mizer there are a number of uncertain parameters to estimate.233

The carrying capacity of the background resource spectrum, κ, is un-234

certain, with a relatively uninformative prior distribution given by235

ln(κ) ∈ [0, 40] uniformly (see Table 2). Recruitment follows a density-236

dependent process with the maximum number of recruits of the ith237

species being Rmax,i, which is also uncertain. We specified a relatively238

uninformative prior distribution as ln(Rmax,i) ∈ [0, 50] uniformly (see239

Table 2), for all i. The fishing mortality of the ith species of weight240

m at time t was241

φt,iqi(m),

where qi(m) is the catchability of species i at size m, normalised so242

that maxm(qi(m)) = 1, and φt,i is the fishing rate (values for qi(m)243

are shown in the Supplementary material (Figure S1)). The model244

was run from 1991-2014 (t = 1, . . . , 24) and the fishing rate for each245

species for each year was also uncertain with φt,i ∈ [0, 1.5] uniformly246

for t = 1, . . . , 24 and for all i.247
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The model can be sensitive to its initial state, when t = 0, and so248

the model was projected for 300 years to a stationary state, a process249

known as spin-up, with a fixed fishing rate φ0,i for each species prior250

to running for t = 1, . . . , 24. As in Spence et al. (2016) we treated the251

spin-up fishing rates as additional parameters with φ0,i ∈ [0, 1.5] uni-252

formly for all i (see Table 2). We consider θ = (lnκ, lnRmax,1:17, φ0,1:17)
′

253

to be ‘static’ parameters and the fishing rates, φ1:24,1:17 to be ‘dynam-254

ical’ parameters (with 1:17 meaning i = 1 . . . 17).255

In addition to the commercial fishing mortality, we included survey256

fishing mortality. The catchability of the survey vessel was taken257

from Walker et al. (2017) and the fishing effort for the survey effort258

taken from DATRAS (ICES, 2017b). By including the survey fishing259

mortality we are able to fit the model to data from survey.260

Observation model261

At time t, we observe catches in tonnes, y, made up of those by262

commercial vessels, wt for t = 1, . . . , 24 (1991-2014), and those by263

the International Bottom Trawl Survey (IBTS), zt for t = 7, . . . , 24264

(1997-2014), with |wt| = |zt| = 17. We take265

lnwt ∼ N(ln c(Mt),Σc)

where c(Mt) is the commercial catch from the process model and Σc266

is a diagonal matrix with elements σ2
c . Similarly we take267

ln zt ∼ N(ln s(Mt),Σs)

where s(Mt) is the survey catch from the process model and Σs is268

a diagonal matrix with elements σ2
s . The ith elements of c(Mt) and269

s(Mt) are denoted c(Mt)i and s(Mt)i and defined in equations S3 and270
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S4 in the Supplementary material respectively. The likelihood of the271

model is272

l(y|θ, φ1:24,1:17,σ
2
c ,σ

2
s) =

17∏

i=1

24∏

t=1

N(ln(wt,i)| ln(c(Mt)i), σ
2
c,i)

×

24∏

t=7

N(ln(zt,i)| ln(s(Mt)i), σ
2
s,i),(1)

where wt,i, zt,i, σ
2
c,i and σ2

s,i are the ith element of wt, zt, σ
2
c and273

σ2
s respectively, and N(a|d, e) is a normal density with expectation274

d and variance e evaluated at a. Table 2 summarises the uncertain275

parameters.276

2.2 Data277

Landings data were extracted from ICES (ICES, 2017c) and discards278

were estimated as a percentage of the retained biomass (Heymans279

et al., 2016; Anon, 2015). All discards were assumed to have been280

removed from the living stock in the process model, such that all281

discards are assumed to have died. As only discards and no landings282

were recorded for poor cod and Norway pout, we fixed the variance of283

the commercial catches, σ2
c,7:8 = (4, 4)′ (Farnsworth et al., 2014). We284

extracted the IBTS survey data from DATRAS (ICES, 2017b) from285

1997 until 2014 (t=7,. . . ,24).286

2.3 Fitting the model287

The model was fitted in a Bayesian framework so that we could quan-288

tify the uncertainty in the model parameters using probability. As289

the likelihood was intractable we were required to sample from the290

posterior distribution. Although a suitable Markov Chain with sta-291
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tionary distribution equal to the posterior would eventually converge292

to the posterior distribution, this would take a long time. To speed293

the process up we aimed to start the Markov chain close to the high-294

probability region of the posterior distribution. To find these starting295

values we used history matching to reduce the parameter space (Ver-296

non et al., 2014).297

Markov Chain Monte Carlo298

The posterior distribution was explored using MCMC. Due to the high299

dimensionality of the parameter space, mixing efficiently was difficult300

and so we developed two extensions of the delayed-acceptance MCMC301

algorithm of Sherlock et al. (2017) that take advantage of parallel302

computing and explore the posterior distribution in an efficient way.303

The first extension, which we refer to as the marginal-delayed-304

acceptance MCMC (MDA-MCMC), is shown in Algorithm 1. It is305

understood that when moving in smaller dimensions it is possible to306

make larger moves (Neal & Roberts, 2006); here we propose several307

moves in smaller dimensions and check their suitability before trying308

to make the full dimensional move. For each iteration the parameter309

set is divided into N + 1 disjoint sets with N of the sets each hav-310

ing some likelihood function, li(·), associated with it. This algorithm311

attempts to update the parameters in the first N sets whilst holding312

the parameters in the N +1 set, which may be empty, fixed. N of the313

parameter sets are each updated by one iteration of the Metropolis-314

Hastings MCMC algorithm, keeping the other parameters fixed, with315

its own likelihood function. If the current model run is saved, this316

would cost N new model evaluations (N+1 if not) that could be done317
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Algorithm 1 An iteration of the marginal-delayed-acceptance MCMC al-

gorithm (MDA-MCMC). The current parameters θ, are divided into N + 1

disjoint sets with the ith set being denoted θi, having the likelihood evalua-

tion li(y|θ) and proposal distribution fi(·|θi). p(θ) is the prior and l(y|θ) is

the full likelihood. We define ∧ to be the minimum, i.e. a ∧ b = min(a, b).

θ′′ ← θ

for i in 1 : N do

θ′
i
∼ fi(·|θi)

θ′′
i
← θ′

i
with probability

αi(θ,θ
′
i) = 1 ∧

p(θ′
i)li(y|θ

′
i,θ−i)

p(θi)li(y|θ)

end for

θ ← θ′′ with probability

1 ∧
p(θ′′)l(y|θ′′)

p(θ)l(y|θ)

×
∏

{i:θ′′

i
6=θi}

fi(θi|θ
′
i)

fi(θ′
i|θi)

×
αi(θ

′′,θi)

αi(θ,θ′
i)

×
∏

{i:θ′′

i
=θi}

1− αi(θ
′′,θ′

i)

1− αi(θ,θ′
i)
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in parallel and so could, in terms of clock time, take one model eval-318

uation. The output from each of the N MCMC algorithms is used as319

a proposal for the main MCMC algorithm. This then takes a further320

two new model evaluations which could be performed in parallel. Us-321

ing the acceptance rates described in Algorithm 1 leads to a Markov322

Chain with the correct stationary distribution, a proof of which is in323

the Supplementary material (S3).324

The second extension, which we call particle-delayed-acceptance325

MCMC (PDA-MCMC), is shown in Algorithm 2. In PDA-MCMC326

the fishing rates for each year are sequentially updated using the327

Metropolis-Hastings algorithm. Once the algorithm has updated for328

each year of the model, the new fishing rates are used as a proposal329

for the MCMC update. This requires five model runs, which could330

be as quick as two model runs in terms of clock time (as the four of331

the model runs could be parallelised) and leads to a Markov Chain332

with the correct stationary distribution, a proof of which is in the333

Supplementary material (S3).334

To sample from the whole posterior distribution we used a ran-335

dom walk Metropolis-within-Gibbs algorithm with proposal variances336

tuned from a pilot run. At each iteration we performed four types of337

updates:338

1. Update lnRmax,1:17 and φ0,1:17 together using the MDA-MCMC339

algorithm with N = 17. The ith set was {lnRmax,i, φ0,i} with340

li(y|θ) =
24∏

t=1

N(ln(wt,i)| ln(c(Mt)i), σ
2
c,i)×

24∏

t=7

N(ln(zt,i)| ln(s(Mt)i), σ
2
s,i)

and the full likelihood, l(y|θ) being l(y|θ, φ1:24,1:17,σ
2
c ,σ

2
s) from341

equation 1. The 18th set, which does not get updated at this342
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Algorithm 2 An iteration of the particle-delayed-acceptance MCMC algo-

rithm (PDA-MCMC). Let Mt = h(Mt−1, φ1:17,t,θ) be the model run up until

time t, with M0 being its initial state and kt(Mt) be a likelihood evaluation

of this model. The static parameters are θ, the current fishing rates are

φ1:17,1:24 and f(·|φ1:17,t) is the proposal distribution. The full likelihood is

l(y|φ1:17,1:24) and p(φ1:17,1:24) is the prior. We define ∧ to be the minimum,

i.e. a ∧ b = min(a, b).

Q0 ←M0, φ
′′
1:17,1:24 ← φ1:17,1:24

for t in 1 : 24 do

φ′
1:17,t ∼ f(·|φ1:17,t)

M ′
t ← h(Mt−1, φ

′
1:17,t,θ) and Mt ← h(Mt−1, φ1:17,t,θ)

Q′
t ← h(Qt−1, φ

′
1:17,t,θ) and Qt ← h(Qt−1, φ1:17,t,θ)

φ′′
1:17,t ← φ′

1:17,t and Mt ←M ′
t with probability

αt(φ1:17,t, φ
′
1:17,t) = 1 ∧

p(φ′
1:17,t)kt(M

′
t)

p(φ1:17,t)kt(Mt)

end for

φ1:17,1:24 ← φ′′
1:17,1:24 with probability

1 ∧
p(φ′′

1:17,1:24)l(y|φ
′′
1:17,1:24)

p(φ1:17,1:24)l(y|φ1:17,1:24)

×
∏

{t:φ1:17,t 6=φ′′

1:17,t}

f(φ1:17,t|φ
′
1:17,t)

f(φ′
1:17,t|φ1:17,t)

×
1 ∧ p(φ1:17,t)kt(Qt)

p(φ′

1:17,t)kt(Q
′

t)

α(φ1:17,t, φ
′
1:17,t)

×
∏

{t:φ1:17,t=φ′′

1:17,t}

1− 1 ∧
p(φ′

1:17,t)kt(Q
′

t)

p(φ1:17,t)kt(Qt)

1− α(φ1:17,t, φ
′
1:17,t)
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step, was {ln (κ), φ1:17,1:24,σ
2
c ,σ

2
s}.343

2. Update φ1:24,1:17 using the PDA-MCMC algorithm. We used344

eight proposals in parallel using parallel MCMC as in Cui et al.345

(2011). We set346

kt(Mt) =
17∏

i=1

N(ln(wt,i)|c(Mt)i, σ
2
c,i)

for t = 1, . . . , 6 and347

kt(Mt) =
17∏

i=1

N(ln(wt,i)|c(Mt)i, σ
2
c,i)N(ln(zt,i)|s(Mt)i, σ

2
s,i)

for t = 7, . . . , 24.348

3. We updated lnκ and lnRmax,1:17 by proposing several alter-349

natives and moving between them using Calderhead’s parallel350

MCMC algorithm (Calderhead, 2014).351

4. We updated σ2
c and σ2

s using Gibbs samplers.352

For a description of Cui et al.’s and Calderhead’s parallel MCMC see353

the Supplementary material (S2).354

3 Results355

The MCMC algorithm was run for 20,000 iterations, dropping the ini-356

tial 10,000 as burn-in. The convergence of the MCMC was checked357

visually by examining the traceplots of the parameters (see Supple-358

mentary material (S4) for traceplots and results of the history match-359

ing).360
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3.1 Posterior distributions361

Figure 2 shows the variance parameters for the catches and the sur-362

vey. The variance parameters describe the estimated distribution of363

the error around the observed catches as well as the model’s inability364

to predict them. The variance parameters for the catches were much365

lower than for the survey, particularly for pelagic species, suggesting366

that the model does a much better job of fitting to commercial catches367

than the survey data. The model does a good job of capturing the368

catches of most fish with the exceptions of horse mackerel and blue369

whiting. This can also be seen in Figure 3 where we show the me-370

dian, 10th percentile and 90th percentile of the modelled commercial371

catches compared to the observed landings (see Supplementary mate-372

rial (Figure S16) for a the same plot for the survey catches).373

Figure 4 shows the posterior φ1:17,1:24 values for each of the species374

except Norway pout and poor cod. It also shows the fishing mortal-375

ity values from the ICES stock-assessments, which use SSM, for cod,376

haddock, whiting, hake, megrim and herring. The cod, haddock and377

whiting assessments are for the Celtic Sea (ICES, 2018a,c,g), whereas378

the hake, megrim and herring assessments are for a larger region than379

our study (ICES, 2018d,e,f). With the exception of haddock, the380

φ1:17,1:24 values from this study seem to follow, at least qualitatively,381

that of the assessment fishing mortality.382

Figure 5 shows the marginal posterior distribution of the fishing383

rate during the spin-up period, φi,0. Many of the posterior distri-384

butions are similar to their prior distributions, e.g. herring, sprat,385

however some of the posteriors are quite different from their priors.386

The fishing rates for cod and horse mackerel are low, which means387
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that when the simulation starts in 1991, cod and horse mackerel will388

be in a nearly unfished state whereas hake and monkfish, which have389

quite high fishing rates in the spin-up period, start the simulation in390

an exploited state.391

3.2 Spawning stock biomass392

Figure 6 shows the median, 10th percentile and 90th percentile esti-393

mates for cod, haddock, whiting, hake, herring and megrim spawning394

stock biomass (SSB). It also shows the SSB estimates from ICES stock-395

assessments using SSMs. The cod assessment and the mizer model396

agree towards the end of the time period. The whiting single-species397

and multi-species estimates are similar. Both hake assessments show398

an increase in SSB at about 2005 which coincides with a reduction399

in the fishing rate at around the same time, as shown in Figure 4;400

this is also visible in the stock-assessment. In addition the qualitative401

patterns in herring and megrim seem similar in both the MSM and402

the SSM. The MSM predicts different SSB for haddock than the SSM.403

4 Discussion404

In this study we fitted the size-based MSM of Blanchard et al. (2014)405

with 17 species in the Celtic Sea using novel techniques to address406

the high dimensionality of the problem. We also demonstrated these407

methods in a simulation study with three species using the model of408

Spence et al. (2020b), also a size-based MSM (see Simulation study in409

the supplementary material).410

We found that the model was able to recreate demersal survey411
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catches and commercial catches. The model was not able to recreate412

the survey data for pelagic fish. This is understandable as the IBTS413

survey is not so good at sampling pelagic and flatfish and therefore414

the noise is much greater (Walker et al., 2017). Our approach gives an415

idea about the magnitude of the observation uncertainty in the IBTS416

survey. We could further reduce uncertainty in the model by fitting417

to additional surveys, for example acoustic surveys.418

For most of the stocks with full assessments, we get similar SSB and419

fishing rates, however for haddock both are qualitatively and quan-420

titatively different. In the SSMs, the recruitment rates of haddock421

are unpredictable (ICES, 2018c), something that is not captured by422

the MSM here, which suggests that the SSB in SSMs is recruitment423

driven. Stochastic recruitment has been included in some size-based424

MSMs (e.g. Blanchard et al., 2014; Thorpe et al., 2017), but more425

work is required to explore this.426

4.1 Integrating size-based multi-species mod-427

els within management428

Before this study, fitting size-based MSMs to species that did not429

have full assessments with absolute values of the fishing mortality430

was not possible without making strong assumptions about their fish-431

ing mortality values (Jacobsen et al., 2017). This would be particu-432

larly the case for species with limited data (Quárou & Tomini, 2013).433

The methods of fitting dynamical parameters introduced and demon-434

strated here could lead to an increase in the number of size-based435

MSMs for regions where there is not a great amount of information,436

hence increasing their utility and enhancing the strategic management437
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of these areas. This could either be by sharing fishing rates between438

other size-based MSMs, for example a LeMans model for the Celtic439

Sea could use fishing rates from this study, or directly fitting the dy-440

namical parameters.441

Although there is such a thing as a true fishing mortality, using it442

as a ‘tuning parameter’, as done in this study and in many SSMs, de-443

stroys its true meaning (Rougier & Beven, 2013). For example, in the444

model we fitted in this study, only the fishing rates were used to drive445

the dynamics. Therefore, the fishing rates implicitly have information446

about all things that drive the dynamics of the species, e.g. environ-447

ment, recruitment or migration. Although many SSMs account for448

dynamic recruitment (e.g. Stock Synthesis, Methot & Wetzel, 2013),449

their fishing mortality also imply dynamics caused by interactions be-450

tween different species, which is explicit in MSMs. Therefore taking451

fishing mortality values from other models and using them as ‘input452

variables’ (e.g. Thorpe et al., 2015; Spence et al., 2016; Speirs et al.,453

2016), can lead to systematic biases in the model (Brooks & Deroba,454

2015) and so should be done with caution, however there are circum-455

stances when it might actually be desirable. For instance we may wish456

to save on computational effort, or we may want the fishing rates to457

represent the fishing mortality generated by stock assessments rather458

than the actual fishing mortality on the stock, as it is possible to459

calculate this and manage to it (e.g. Spence et al., 2020a).460

A common requirement of fisheries models is to assess the current461

state of a stock. SSMs and statistical MSMs, with many ‘tuning pa-462

rameters’, are good at doing this when there is a lot of data. However,463

by fitting size-based MSMs directly to data, we free the model from464
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biases caused by SSMs and could therefore contribute to the assess-465

ment processes. The natural mortality rates from size-based MSMs466

could be used as ‘input variables’ to SSMs in regions where there is467

a lack of data (e.g. stomach contents data), making statistical MSMs468

impractical. For example, results from this Celtic Sea model could be469

used to generate natural mortality rates that could be used as inputs470

to SSMs, as currently natural mortality inputs for many of the Celtic471

Sea assessments come from a theoretical study (Lorenzen, 1996). For472

regions where statistical MSMs already exist, size-based MSMs could473

be used to corroborate or validate them, increasing our confidence in474

their results, to suggest an alternative or as part of an ensemble model475

(Collie et al., 2016).476

More generally, mechanistic models have been increasingly used as477

strategic tools when considering how populations, communities and478

ecosystems respond to management or environmental changes (Pik-479

itch et al., 2004; Collie et al., 2016). They are developed with eco-480

logical and biological theory, through ‘input variables’ and processes481

within the model. Therefore, as this theory develops, the mechanistic482

models become more like reality. As mechanisms and physical laws483

are time invariant and more robust than statistical correlations, mech-484

anistic MSMs should enable us to make better long-term predictions485

as interactions between different species and different processes will486

be more explicit (Connor et al., 2017; Cuddington et al., 2013). This487

should lead to improved strategic management, for example in setting488

long-term targets and reference points, such as multi-species maximum489

sustainable yield. Improvements in our understanding of responses to490

new conditions, such as warming oceans, can readily be included in491
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these models (e.g. Serpetti et al., 2017) and the types of actions that492

can be tested and implemented can be increased, e.g. spatial planning493

using spatially explicit mechanistic models (e.g. Ecospace, Walters494

et al., 1999).495

In addition, mechanistic models could be used to manage data-496

limited stocks, possibly using life history parameters from other stud-497

ies (e.g. Thorson et al., 2017), or in areas of the world where there498

are many species and building MSMs is computationally expensive499

or managing at the level of individual species is impracticable. This500

is particularly true for size-based models due to the connection be-501

tween size-based theory and traits (Andersen, 2020). The methods502

developed here to find dynamical parameters could be useful when503

fitting trait-based models, where groups of species with similar traits504

are grouped together (Barnett et al., 2019).505

4.2 Further challenges506

Whilst size-based MSMs are potentially powerful tools, their use to507

date in the advisory process has been limited. Here we suggest some508

improvements that should make them more useful to fisheries man-509

agement.510

In this work the state of the system at the beginning of the simu-511

lation, M0, was determined by running the model for 300 years with512

a fixed fishing mortality φ0,1:17, known as the spin-up period (Spence513

et al., 2016). This led to the model starting in a stationary state,514

something which may not be true and can have an effect on the re-515

sults of the model, particularly at the beginning of the simulation.516

For example, cod was probably not in a stationary state in 1991, as517
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prior to the model large landings were reported in 1988-1990 (ICES,518

2018a). It is not possible to create the effect of these high landings519

using the spin-up period, and our fitted model is therefore unable to520

pick up the dynamics at the beginning of the time series. The fitted521

model found that the spin-up fishing mortality for cod, φ0,3, was low522

(Figure 5), which lead to over-estimating the SSB (Figure 6) and the523

fishing mortality (Figure 4) in the early part of the simulation.524

More work is required calibrating the initial state of size-based525

MSMs. One may run some dynamics, say ten years, before calibra-526

tion, however it would not have been possible here as we do not know527

the fishing mortality rates for 1981-1991; alternatively one could run528

the fishing mortality time series backwards before starting to fit the529

data, as done in climate modelling (Stouffer et al., 2004). A com-530

mon approach in other fisheries models is to treat the initial states531

as uncertain, i.e. treating the density for each species and the back-532

ground for all sizes in mizer as uncertain parameters. We believe this533

would be the ideal solution, however it would lead to an impractically534

large number of parameters. A more practical solution may be to535

use ecological theory from other studies, such as fishing effects on the536

size-spectrum (e.g. Zhang et al., 2018), to parameterise, with only a537

handful of parameters, the initial state of the model. These parame-538

ters would then be calibrated to the data as well.539

In this work we used the default fishing selectivity in mizer (Scott540

et al., 2014). Other fishing selectivity functions, such as logistic or541

dome shaped, may lead to different results, however we do not believe542

that the results would greatly change here. In the future we would543

like to include fisheries information, such as effort and catch by fleet544
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or metier, and possibly by size, when fitting these models. In addition545

information from external studies about the selectivity of different546

fishing gears could be included, with the selectivity of each gear on547

each species being the ‘tuning parameters’ (e.g. Walker et al., 2017).548

One may anticipate that the selectivity by size may follow an unknown549

smooth function, as for two individuals of the same species we would550

expect a similar selectivity for the same gear if their sizes were similar,551

as opposed to if they were further apart, thus incorporating more552

information in the model.553

With size-based MSMs it is not straightforward to perform con-554

ventional model validation. In the study here it was not possible to555

compare the model forecasts with independent out-of-sample data,556

e.g. the survey and commercial catches in 2015-2019, as the fishing557

rates, the inputs that are used to drive the dynamics that led to these558

data, are uncertain. Furthermore, due to the time taken to fit these559

models it is not practical to perform one-step-ahead analysis (Berg560

& Nielsen, 2016) or cross-validation tests. Instead we demonstrated561

through residual analysis that the conditionally independent assump-562

tions are not violated (see Supplementary material (S4)). There are563

many other methods that could be used for model validation (e.g. pos-564

terior predictive checks, see Gelman et al., 2013, for more details); for565

a recent review of these methods see Conn et al. (2018).566

4.3 Quantifying uncertainty567

For models to be useful for management it is important that uncer-568

tainty is quantified (Harwood & Stokes, 2003). By fitting the model569

in a Bayesian framework we were able to quantify the uncertainty in570
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the model. This is a difficult problem using conventional MCMC due571

to the complexity of the model, and the increased dimension of the572

uncertain parameters caused by fitting fishing mortality. We believe573

that this is a major reason why this has not previously been done.574

SSMs and statistical MSMs take advantage of recent software devel-575

opments and are fitted using algorithms that exploit gradients, such as576

Hamiltonian Monte Carlo (Neal, 2010) or Reimann Manifold MCMC577

(Girolami & Calderhead, 2011). However, for size-based MSMs, this578

may be impractical or even impossible. In this paper we have demon-579

strated a method of exploiting the structure of the model to use an580

MCMC algorithm to fit the size-based MSM.581

For size-based MSMs, where the model needs to be run to evaluate582

the likelihood, it is advantageous to use parallel computing, running583

several likelihood evaluations at once, to speed up the fitting process.584

The problem here is that MCMC is a sequential algorithm and there-585

fore difficult to run in parallel (Jacob et al., 2011). In this paper586

we introduce two novel variations of the delayed-acceptance MCMC587

algorithm (Sherlock et al., 2017). The MDA-MCMC algorithm is de-588

signed to use parallel computing and is motivated by attempting to589

move many parameters at once, accepting the good moves whilst re-590

jecting the bad ones. We believe that the MDA-MCMC would be most591

useful when sets of parameters, or transformations of the parameters,592

affect different parts of the likelihood. This could be explored us-593

ing variance-based sensitivity analysis (Saltelli et al., 2008) prior to594

running the algorithm. As the MDA-MCMC algorithm makes moves595

in smaller dimensions, the proposals can be larger in the parameter596

space. We recommend the proposals are large so that the resulting597
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acceptance probabilities, in the first part of the algorithm, are either598

0 or 1. This would mean that the accepted points result in large599

improvements in the full likelihood.600

Similarly the PDA-MCMC is motivated by proposing moves in a601

large number of dynamical parameters but efficiently accepting only602

the good moves. If one was going to fit the dynamical parameters by603

hand, one might wish to change the fishing rates one year at a time604

and to run that model for one year. The PDA-MCMC algorithm does605

just that but in such a way that the stationary distribution of the606

Markov chain is the posterior distribution. An alternative would be607

to change one year at each iteration of the MCMC chain, therefore608

requiring 24 model runs all of which are required to be done sequen-609

tially, whereas using the PDA-MCMC algorithm it only requires five610

model runs, most of which can be run in parallel. This therefore leads611

to more efficient use of computational effort when updating dynamical612

parameters such as annual fishing rates. The PDA-MCMC algorithm613

can also be flexible when deciding which of the dynamical parameters614

are changed. In the study in the manuscript we attempted to change615

all of the dynamical parameters at once, however in the Simulation616

study we only changed a handful of dynamical parameters at a time,617

something that we found led to better mixing. The PDA-MCMC al-618

gorithm is also useful when the state of the model is dependent on619

the entire past and/or is stochastic. To do this one would require620

Mt to include the whole of the past. If the model was stochastic, we621

recommend treating the stochastic elements as additional parameters,622

as in Spence & Blackwell (2016), allowing better exploration of the623

dynamical parameter space. These two algorithms are not specific to624
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size-based MSMs, or mechanistic models, but are applicable to a wide625

range of MCMC problems.626

4.4 Conclusion627

We have demonstrated a method of fitting size-based MSMs directly to628

data without using SSMs. By using novel techniques we were able to fit629

a model of intermediate complexity in a high-dimensional parameter630

space with quantifiable uncertainty. Furthermore, by fitting size-based631

MSMs directly to data, we free the model from the biases caused by632

SSMs, which may lead to a greater reliability and trust in size-based633

MSMs, increasing their utility in the management process.634

Although demonstrated on two size-based multi-species marine635

models, this methodology is readily generalisable for fitting models of636

intermediate complexity (with a typical run time of 1 second to a few637

minutes), when there are a significant number of uncertain dynamic638

parameters. It is therefore likely to find wide applications throughout639

science.640
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Table 1: The species in the Celtic Sea mizer model

i Common name Latin name

1 Atlantic herring Clupea harengus

2 European sprat Sprattus sprattus

3 Atlantic cod Gadus morhua

4 Haddock Melanogrammus aeglefinus

5 Whiting Merlangius merlangus

6 Blue whiting Micromesistius poutassou

7 Norway pout Trisopterus esmarkii

8 Poor cod Trisopterus minutus

9 European hake Merluccius merluccius

10 Monkfish Lophius piscatorius

11 Atlantic horse mackerel Trachurus trachurus

12 Atlantic mackerel Scomber scombrus

13 Common dab Limanda limanda

14 European Plaice Pleuronectes platessa

15 Megrim Lepidorhombus whiffiagonis

16 Common sole Solea solea

17 Boarfish Capros aper
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Table 2: The uncertain parameters.

Parameters Dimensions Units Prior Notes

lnRmax,1:17 17 ln(vol−1grams−1year−1) U(0, 50) Natural log of the maximum recruitment

for each species

lnκ 1 ln(grams−λ−1vol−1) U(0, 40) Natural log of the carrying capacity

of the resource spectrum

φ0,1:17 17 year−1 U(0, 1.5) The fishing rates during the spin-up

period for each species

φ1:24,1:17 17× 24 = 408 year−1 U(0, 1.5) The fishing rate for each species

for each year

σ2
s,1:17 17 Unitless Inv −Gamma(2, 2) The variance of the error on

the natural log survey catches

σ2
c,1:17 17 Unitless Inv −Gamma(0.1, 0.1) The variance of the error on

the natural log commercial catches
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Figure 1: A directed acyclic graph of the state-space model. φt is the dy-

namical inputs; the fishing mortality values for each species at time t; Mt

is the process model state, the density, in numbers, of all species and the

background resource at all weights at time t in the size-based multi-species

model; wt are observations of commercial catches and zt are observations

from the International Bottom Trawl Survey at time t.
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Figure 2: Violin plots showing the marginal posterior distribution for the

variance parameters. The top plot shows the variance associated with the

catch and the bottom shows the variance associated with the survey. Blue

whiting’s variance term for the catch was large and therefore was omitted

from the plot. In the top plot, we fixed σc = 2 for Norway Pout and poor

cod so they have been omitted from the results.
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Figure 3: The median modelled commercial catches (solid black line), the

10th and 90th percentiles (dotted black lines) and the observed catches (grey

line) for 15 of the 17 species. Norway pout and poor cod have been omitted as

the model was not fitted to their landings. The downward spike in landings

in 1999 for cod, haddock, whiting and monkfish was caused by the French not

reporting landing of these stocks in that year in the dataset (ICES, 2017c).
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Figure 4: The median value of the fishing rates (solid black line), and the

10 and 90 percentiles, (dotted black lines) for 15 of the 17 species. Norway

pout and poor cod have been omitted as the model was not fitted to their

landings.
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Figure 5: The marginal posterior distributions of the fishing rate during the

spin-up period, φ0.
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Figure 6: The median modelled SSB (solid black line), the 10 and 90 per-

centiles (dotted black lines) and SSB estimates from single-species ICES as-

sessments for cod, haddock, whiting hake, megrim and herring (grey line).

The hake, megrim and herring assessments cover more area than the model

does and therefore is plotted on a different scale.
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