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RESEARCH ARTICLE Open Access

The importance of transdiagnostic
symptom level assessment to
understanding prognosis for depressed
adults: analysis of data from six randomised
control trials
C. O’Driscoll1*, J. E. J. Buckman1,2*, E. I. Fried3, R. Saunders1, Z. D. Cohen4, G. Ambler5, R. J. DeRubeis6, S. Gilbody7,
S. D. Hollon8, T. Kendrick9, D. Kessler10, G. Lewis11, E. Watkins12, N. Wiles13 and S. Pilling1,14

Abstract

Background: Depression is commonly perceived as a single underlying disease with a number of potential
treatment options. However, patients with major depression differ dramatically in their symptom presentation and
comorbidities, e.g. with anxiety disorders. There are also large variations in treatment outcomes and associations of
some anxiety comorbidities with poorer prognoses, but limited understanding as to why, and little information to
inform the clinical management of depression. There is a need to improve our understanding of depression,
incorporating anxiety comorbidity, and consider the association of a wide range of symptoms with treatment
outcomes.

Method: Individual patient data from six RCTs of depressed patients (total n = 2858) were used to estimate the
differential impact symptoms have on outcomes at three post intervention time points using individual items and
sum scores. Symptom networks (graphical Gaussian model) were estimated to explore the functional relations
among symptoms of depression and anxiety and compare networks for treatment remitters and those with
persistent symptoms to identify potential prognostic indicators.

Results: Item-level prediction performed similarly to sum scores when predicting outcomes at 3 to 4 months and 6
to 8 months, but outperformed sum scores for 9 to 12 months. Pessimism emerged as the most important
predictive symptom (relative to all other symptoms), across these time points. In the network structure at study
entry, symptoms clustered into physical symptoms, cognitive symptoms, and anxiety symptoms. Sadness,
pessimism, and indecision acted as bridges between communities, with sadness and failure/worthlessness being
the most central (i.e. interconnected) symptoms. Connectivity of networks at study entry did not differ for future
remitters vs. those with persistent symptoms.
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Conclusion: The relative importance of specific symptoms in association with outcomes and the interactions within
the network highlight the value of transdiagnostic assessment and formulation of symptoms to both treatment and
prognosis. We discuss the potential for complementary statistical approaches to improve our understanding of
psychopathology.

Keywords: Item level analysis, Network modelling, Comorbidity, Depression, Anxiety

Background
Psychological therapies and medication are effective

treatments for depression (e.g. [1, 2]). However, effect

sizes have been modest and gains in treatment outcomes

have plateaued [3]. Interventions for depression target a

broad range of symptoms, and knowledge of ‘what’ is be-

ing intervened upon is not necessary to the delivery of

most treatments, and poses problems for causal infer-

ence [4]. To improve interventions, we may need to im-

prove our knowledge of the structure of depression [5].

Depression is heterogeneous in terms of aetiology and

symptom profile [6–8]. Mood disorders are highly co-

morbid with anxiety disorders and may share psycho-

logical and biological vulnerabilities [9, 10]. The risk of

one disorder can increase the risk of another [11], and

the same end state may be achieved via many different

paths (equifinality) [12, 13]. These disorders are not

discrete entities and, as such, neglecting the symptom-

atic heterogeneity discards potential insights [14].

There is strong evidence that different symptoms are

not equivalent or interchangeable [15] and studies of in-

dividual symptoms in the last decade have brought im-

portant understanding. For example, individual

symptoms may differ in response to treatment [16, 17]

and have been shown to have a differential impact on

functioning [18–20]. Depression is a recurrent disorder

with the probability of relapse strongly associated with

the presence of residual depressive symptoms at the end

of treatment [21, 22]. Comorbid anxiety disorders are re-

lated both to worse treatment outcomes [23] and to an

increased risk of relapse [21]. An assumed unidimen-

sional view of depression, characterised by sum score

(sum of symptom severity scores) measurement and pre-

diction models, conceals the variability within depression

[24]. Understanding the relative importance of comorbid

symptoms may offer more information than severity of

disorder alone and provide additional treatment and

prognostic information [25]. Large-scale, multisite clin-

ical trial data, coupled with innovative statistical

methods, can provide categorisation and treatment opti-

misation to provide immediate benefits by informing

clinical decisions [26–28].

There is also value in studying the relations among

these symptoms. Network theory posits that the rela-

tionships between common affective, cognitive, and

somatic symptoms of these disorders may reflect poten-

tial causal pathways and elucidate maintenance mecha-

nisms [29]. Depression and anxiety have been modelled

as symptom networks using cross-sectional and longitu-

dinal data, demonstrating the interrelation between the

symptoms of each disorder, where comorbidity results

from mutually reinforcing interrelation between symp-

toms of each disorder [30, 31]. Anhedonia, anxiety,

worry, fatigue, and sadness are predominantly influential

symptoms in these networks [5, 32, 33]. The relationship

between symptoms/mechanisms can help to predict out-

come and potentially inform treatment targets and the

development of treatments targeting specific mecha-

nisms [34].

There are inconsistencies in the network literature ex-

ploring depression and anxiety, due to design, sampling,

and variability arising from differing measurement [15,

35]. When attempting to discriminate between groups

for the purposes of identifying whom may benefit from

treatment (prognosis at group level), there are varying

results from network comparison studies, where it has

been suggested that densely connected networks may be

less likely to recover [36]. However, these differences are

not always observed [37] and require large sample sizes

to detect any effect. It is also unclear how these net-

works generalise to idiographic networks at the present

stage. Past research has been conducted on small sam-

ples with low quality assessment of patients (or non-

clinical samples) and lack of adequate consideration of

comorbidity (missing out on the wider spectrum of anx-

iety disorders).

In this study we aim to:

1) Identify important symptoms for outcome by

examining the (differential) impact of individual

symptoms on prognosis for adults with depression

that took part in randomised controlled trials after

seeking treatment in primary care and assess

whether individual symptoms offer predictive value

above sum scores.

2) Discern the functional relations among symptoms

and clarify the interplay between highly comorbid

symptoms of depression and anxiety disorders.

3) Consider whether there are differences in the

baseline symptom networks of patients that
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remitted vs. those whose depression persisted, after

treatment.

Method
Datasets

Data were drawn from a subset of the Dep-GP individual

patient data (IPD) database [36]. The formation of the

Dep-GP IPD dataset has been described elsewhere [36].

Bibliographic databases were searched up to 29 April

2020 for RCTs of unipolar depressed adults seeking

treatment for depression or with depressive symptoms

significant enough for them to seek treatment, recruited

from primary care; had at least one active treatment

arm; and used the CIS-R at baseline.

Studies were excluded if they were studies of patients

with depression secondary to a diagnosis of personality

disorder, psychotic conditions, or neurological condi-

tions; bi-polar or psychotic depressions; children or ado-

lescents; feasibility studies; or were studies of adults with

either depression or an anxiety disorder, rather than a

primary depression with or without comorbid anxiety.

Additional inclusion criteria for the present study were

the use of the Beck Depression Inventory (2nd Edition)

(BDI-II) [37] at study entry. The inclusion criteria en-

sured uniformity in the measurement of depressive and

anxiety symptoms, chronicity of problems, and deter-

mination of diagnoses including anxiety comorbidities.

Data on all individual patients from all six eligible

RCTs were included in the current study, these were

COBALT [38], GENPOD [39], PANDA [40], TREAD

[41], MIR [42], and IPCRESS [43].

Measures

Individual items from the BDI-II [37], and individual

symptom subscales of the CIS-R [44], including duration

of depression and anxiety, which have been shown to be

independently associated with prognosis for depressed

adults [45].

Outcomes

The primary outcome was endpoint depressive symp-

toms at three to four months post-study entry. Five of

the studies used the BDI-II at 3–4 months, and one used

the PHQ-9. A continuous ‘depression severity’ score was

developed by converting the responses on each measure

to a latent trait depressive symptom severity score (PRO-

MIS T-Score) [46], using the expected a posteriori par-

ameter from a multidimensional item-response theory

based score conversion tool [47]. Depressive symptoms

(PROMIS T-Score) at 6–8 months post-study entry, and

9–12 months were secondary outcomes.

As a sensitivity analysis, the BDI-II scores were used

as outcomes for the three time points (five studies at 3–

4months; four studies at 6–8months, and three studies

at 9–12 months).

Data analysis

All analyses were performed in R 3.6 [48] and Stata 16.0

[49]. Analysis code is available from https://osf.io/wck6

b/. The data that support the findings of this study are

available from the lead author of the Dep-GP (JB) sub-

ject to agreement from the chief investigators or data

controllers of the individual RCTs. Restrictions apply to

the availability of these data, which were used under li-

cence for this study.

Pre-processing

Datasets were combined and pre-processed together.

There was no missing data at study entry. All items were

investigated to ensure they met assumptions for inclu-

sion in the network models, including assessing for near

zero variance, roughly equal variance of items, asymmet-

rical distributions, and topological overlap [50]. Items

were removed if they violated assumptions across all

studies. We aimed to address topological overlap using

the ‘goldbricker’ function in R [51] with a threshold of

25% (correlations between items should have signifi-

cantly different correlations with 25% of the other

items), accepting minimal correlation of 0.5.The respect-

ive pair of items were combined into a single variable

using principal component analysis (PCA) if reasonable

to combine from a clinical perspective. Items were after-

wards rescaled to their original Likert scale values to

make variances comparable across items [52].

Association with outcomes

We aimed to examine the differential impact of individ-

ual symptoms on outcomes and assess whether individ-

ual symptoms offer predictive value above sum scores.

Sum score totals were entered into a linear regression

model, while the item severity scores were entered into

an elastic net generalised linear model (ENR) [53]. ENR,

a statistical method combining lasso and ridge regression

approaches, minimises overfitting and the use of ten sep-

arate, tenfold repeated cross validation aids in assessing

the effectiveness of the model. The item-level and sum-

score models were compared using root mean squared

error, mean absolute error, and R
2.

As the item-level predictors were assumed to be corre-

lated and that we wished to assess the explanatory power

of individual predictors, we estimated the contribution

of each item to the outcome prediction using Shapley

Additive exPlanations [54], following ENR model estima-

tion. Five hundred Monte Carlo repetitions were used to

estimate each Shapley value. This metric is more accur-

ate than other variable importance metrics when predic-

tors are dependent [55]. Items with large Shapley values
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are ‘important’, indicating the relative contribution of an

item to the model while accounting for correlated fea-

tures in the data.

Network modelling

A graphical Gaussian model (GGM) aims to capture

the direct effects (edges) between items while control-

ling for all other items in the network. A network

was estimated by combining data from the six RCTs.

The sample was then split into two networks (those

with persistent symptoms vs. remitters: BDI-II score

< 10 at 3–4 months); the networks were re-estimated

and compared using the network comparison test

with 1000 iterations [56].

We performed a number of analyses to test the robust-

ness of the networks we estimated.

While lasso [57], regularised GGMs [58] are most fre-

quently reported in the network literature, lasso specifi-

city has recently been shown to be lower than expected

in dense networks with many small edges, leading to an

increase in false positives [59]. We also estimated an

unregularized GGM using an iterative modelling proced-

ure: the Extended Bayesian Information Criterion

(EBIC). Selecting unregularized GGMs according to

EBIC has been shown to converge to the true model

[60]. The algorithm runs 100 glasso models, re-fits all

models without regularisation,, and subsequently adds

and removes edges until EBIC can no longer be im-

proved. The best performing model (EBIC parameter)

was selected to provide a conservative GGM estimation

(high specificity).

Chronicity of disorders has been shown to interact

with symptom severity [45, 61]. We corrected for the

potential confounding effects of duration of depression

and anxiety within the network models.

Combining data obtained from different studies holds

the potential for between-study differences to influence

estimation. A network estimation procedure (fused

graphical lasso: FGL) [62] has been designed to manage

this issue, however, this involves estimating networks in-

dividually and penalising between study differences.

Where study size affects the estimation of edges, this

can lead to penalization based on sample size rather

than on true differences between the network structures

[63]. As such, it was decided to estimate based on the

combined sample and to compare this to the FGL net-

work (joint estimation using a fused penalty, and 10-fold

cross validation), to assess the potential influence of

group level differences.

Finally, the network model was tested for the stability

of expected influence centrality and the accuracy of in-

terrelations using a nonparametric bootstrapping pro-

cedure (1000 iterations) [64]. For details of these, see the

Supplementary material.

We obtained two types of information from the result-

ing network structures. First, symptoms can form clus-

ters or communities with other symptoms to which they

are connected reflecting commonalities between them.

We estimated the community structure by using a boot-

strapped walktrap algorithm [65], investigated for item

stability before selecting communities. Second, the over-

all connectivity of a symptom, i.e. its connection to other

symptoms, can be quantified in a number of ways and is

referred to as centrality. Some scholars have argued that

activation of a central symptom has the potential to acti-

vate associated symptoms in the network [66], where

symptom centrality is then interpreted as symptom im-

portance, given that identifying such symptoms may

have the potential to elucidate the processes underlying

comorbidity and implications for treatment. Within the

context of communities specifically, symptoms which

connected to more than one community are referred to

as bridge symptoms. Within cross-sectional networks (as

explored here), we refer to centrality as a statistical par-

ameter, i.e. the strength of predictive associations be-

tween symptoms. Centrality does not automatically

translate into clinical relevance [67] and cautious inter-

pretation is warranted [63]. It requires consideration of

how the symptoms activate within the network (flow or

transfer), the conceptual similarity between symptoms,

and whether there is missing information on the shared

variance [68]. Symptom centrality was calculated using

expected influence (EI: strength of the relationships a

given node has with other node) and the geometric

mean of the participation ratio (PR) and participation

coefficient (PC), and normalised bridge expected influ-

ence centrality [69]. The PR quantifies the number and

strength of edges, while the PC takes the community

structure into account [70].

Results
Demographic details for the studies are presented in

Table 1. Overall samples were comparable. The severity

of depressive symptoms captured by BDI-II scores at

baseline in the PANDA sample was lower than the other

trials. Descriptive results are reported in the supplemen-

tary materials.

Association with outcomes

In order to assess the utility of item level models, we

compared them to sum score models. For all item level

models (Table 2), the optimal shrinkage parameters for

the elastic net regression model were selected via mini-

mum cross-validated error criterion ( = 0.1 and λ =

0.05). While models performed similarly at 3–4 months

and 6–8 months, the item level elastic net regression

model outperformed linear regression with BDI-II and

CIS-R (sum of anxiety items) totals at the 9–12-month
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time point. The sensitivity analysis performed similarly.

Due to the absence of two studies (IPCRESS and PAND

A) at the 9–12-month endpoint, we reran the analyses

for the earlier time points without these studies. This

sensitivity analysis did not reveal any difference in the

pattern of model performance.

Pessimism (Fig. 1) was consistently the most important

item; health anxiety was in the upper quartile at each time

point; and concentration, failure/worthlessness, also in the

upper quartile at 3–4months; guilt and sleep at 6–

8 months; and somatic symptoms at 9–12 months.

Network modelling

For the individual items in the network model, near zero

variance (e.g. due to floor and ceiling effects) was not

observed. However, we saw asymmetric distributions

(skew) on a number of items. As such, a Spearman co-

variance matrix was estimated and used to estimate the

network model. Multi-collinearity was identified for two

pairs of items (loss of pleasure with loss of interest, fail-

ure with worthlessness). New items were constructed

using PCA for each pair. The optimal model for the net-

work analysis was an unregularized graphical Gaussian

model using the EBIC.

A walktrap algorithm identified three, stable, symptom

communities (median = 3, SD = 0.15, 95% CI [2.71,

3.29]). The three communities split into anxiety items,

depressive cognitions and depressive physical symptoms.

Bridging EI elucidated three bridging symptoms between

the communities: sadness and indecisiveness (from the

Table 1 Descriptive table of studies included in the dataset. Summary of included variables provided in supplementary materials. *
International Baccalaureate equivalent ** High school diploma equivalent

COBALT GENPOD IPCRESS MIR PANDA TREAD Overall

(N = 469) (N = 601) (N = 295) (N = 480) (N = 652) (N = 361) (N = 2858)

Baseline BDI-II total

Mean (SD) 31.8 (10.7) 33.7 (9.67) 33.2 (8.80) 31.1 (9.91) 23.9 (10.3) 32.1 (9.24) 30.4 (10.5)

Median [min, max] 30.0 [14.0, 60.0] 33.0 [15.0, 60.0] 33.0 [15.0, 58.0] 30.0 [14.0, 58.0] 23.0 [2.00, 54.0] 31.0 [14.0, 57.0] 30.0 [2.00, 60.0]

Gender

Female 339 (72.3%) 408 (67.9%) 200 (67.8%) 332 (69.2%) 384 (58.9%) 239 (66.2%) 1902 (66.6%)

Male 130 (27.7%) 193 (32.1%) 95 (32.2%) 148 (30.8%) 268 (41.1%) 122 (33.8%) 956 (33.4%)

Age

Mean (SD) 49.6 (11.7) 38.8 (12.4) 34.9 (11.6) 50.7 (13.2) 39.7 (15.0) 39.8 (12.6) 42.5 (14.1)

Median [min, max] 50.0 [18.0, 74.0] 38.0 [18.0, 74.0] 34.0 [18.8, 74.6] 51.0 [19.0, 84.0] 38.5 [18.0, 73.0] 39.0 [18.0, 69.0] 42.0 [18.0, 84.0]

Employment status

Employed 206 (43.9%) 357 (59.4%) 178 (60.3%) 237 (49.4%) 433 (66.4%) 230 (63.7%) 1641 (57.4%)

Seeking employment 151 (32.2%) 123 (20.5%) 35 (11.9%) 102 (21.2%) 73 (11.2%) 48 (13.3%) 532 (18.6%)

Not seeking employment 112 (23.9%) 121 (20.1%) 82 (27.8%) 141 (29.4%) 146 (22.4%) 83 (23.0%) 685 (24.0%)

Education

Degree or higher 95 (20.3%) 0 (0%) 102 (34.6%) 95 (19.8%) 230 (35.3%) 87 (24.1%) 609 (21.3%)

A-level or diplomas* 123 (26.2%) 0 (0%) 88 (29.8%) 135 (28.1%) 220 (33.7%) 104 (28.8%) 670 (23.4%)

GCSE** 131 (27.9%) 0 (0%) 62 (21.0%) 150 (31.2%) 145 (22.2%) 102 (28.3%) 590 (20.6%)

None or other 120 (25.6%) 0 (0%) 43 (14.6%) 100 (20.8%) 57 (8.7%) 68 (18.8%) 388 (13.6%)

Missing 0 (0%) 601 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 601 (21.0%)

Ethnicity

White 459 (97.9%) 575 (95.7%) 281 (95.3%) 469 (97.7%) 579 (88.8%) 336 (93.1%) 2699 (94.4%)

Non-White 10 (2.1%) 26 (4.3%) 14 (4.7%) 11 (2.3%) 73 (11.2%) 25 (6.9%) 159 (5.6%)

Diagnoses

Number of comorbid diagnoses 2.40 (1.09) 2.39 (0.92) 2.32 (0.99) 2.10 (0.97) 1.43 (1.18) 2.20 (1.17) 2.09 (1.12)

Generalised anxiety disorder 312 (66.52%) 410 (68.22%) 186 (63.05%) 219 (45.63%) 299 (45.86%) 238 (65.93%) 1664 (58.2%)

OCD 79 (16.84%) 114 (18.97%) 62 (21.02%) 62 (12.92%) 52 (7.98%) 50 (13.85%) 419 (14.7%)

Panic disorder 67 (14.29%) 51 (8.49%) 16 (5.42%) 45 (9.38%) 42 (6.44%) 14 (3.88%) 235 (8.2%)

Agoraphobia 61 (13.01%) 75 (12.48%) 28 (9.49%) 81 (16.88%) 42 (6.44%) 35 (9.70%) 322 (11.3%)

Social phobia 64 (13.65%) 64 (10.65%) 44 (14.92%) 58 (12.08%) 68 (10.43%) 52 (14.40%) 350 (12.2%)

Specific phobias 91 (19.40%) 127 (21.13%) 46 (15.59%) 62 (12.92%) 98 (15.03%) 61 (16.90%) 485 (17%)

Chronic fatigue syndrome 343 (73.13%) 476 (79.20%) 220 (74.58%) 311 (64.79%) 288 (44.17%) 257 (71.19%) 1895 (66.3%)
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physical symptoms community) and pessimism (cogni-

tive symptoms community).

Centrality estimates (i.e. measures of the strength of

connection to other items) are reported in Fig. 2. The EI

correlation stability coefficient was high (0.75), suggest-

ing that the ordering of items based on centrality

remained the same after re-estimating the network with

fewer cases (the probability the correlation between ori-

ginal centrality indices and centrality of networks based

on subsets was 0.7 or higher) and can be reliably

interpreted.

The estimates from the different metrics (EI and PC/

PR) were correlated (r = 0.58). The most central symp-

toms were sadness (PC/PR) and failure/worthlessness

(EI). Failure/worthlessness had a significantly higher EI

centrality than twenty-one other symptoms (see supple-

mentary material). The next most central nodes (EI)

were sadness, self-criticism, and loss of energy (all z-

score > 1), followed by concentration, loss of pleasure/

interest, and fatigue (z-score > 0.96), while the next most

central nodes when using PC/PR were pessimism, fail-

ure/worthlessness, and punishment (all z-score > 1), then

guilt, indecisiveness, and suicidal thoughts (all z-score >

0.80). Notably, while suicidal thoughts were highly cen-

tral according the PC/PR metric (z-score = 0.80), it was

much less central using EI (z-score = − 0.67). Loss of en-

ergy displayed the opposite relationship, more central

for EI (z-score = 1.01) than PC/PR (z-score = − 2.03).

Table 2 Performance of the regression models. Sum scores:
BDI-II and CIS-R; RMSE root mean squared error; MAE mean
absolute error; R2 proportion of the variance explained

PROMIS T-score

RMSE R
2 MAE

3 to 4 months
N = 2646

Items 0.925 0.146 0.73

Sum scores 0.926 0.143 0.73

6 to 8 months
N = 1297

Items 0.926 0.147 0.734

Sum scores 0.924 0.146 0.735

9 to 12 months
N = 1110

Items 0.919 0.161 0.744

Sum scores 0.935 0.126 0.753

Fig. 1 Shapley values for variable importance are plotted: (showing the difference contribution of items to predictions)

O’Driscoll et al. BMC Medicine          (2021) 19:109 Page 6 of 14



Fig. 2 Network plot (top) with communities. Bridge symptoms are categorised separately; however, sadness and indecisiveness fall into
community 1, and pessimism into community 3. The thickness of the edges indicates to what degree items are related, and the colour of the
edges indicates the relationship sign (i.e. positive = blue, negative = red). Centrality estimates: PC/PR and EI (bottom)
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Loss of energy and obsessions were jointly the least cen-

tral nodes using PC/PR, and obsessions was also the

least central when using EI.

Robustness checks suggest the resulting graphical

Gaussian model was stable and accurate. Stability and

accuracy plots, individual networks (with the fused pen-

alty) and the fused network model are supplied in the

supplementary materials. Mean severity was not signifi-

cantly correlated (p < 0.05) with EI (r = 0.21) or PC/PR

(r = − 0.05), while the standard deviation was signifi-

cantly correlated for both EI (r = − 0.56) and PC/PR (r =

− 0.41). Symptom severity was not associated with nodes

being interconnected. Lower variability was associated

with variability, which is the reverse of a more typical

concern: differential variability driving the centrality of

nodes [52].

The interrelation of the network and the FGL network

were compared (r = 0.72), suggesting that between study

differences had a small effect on network estimation.

The network was corrected for the influence of duration

of depression and anxiety; however, the overall influence

on edge estimation was negligible (interrelation between

the corrected network and a network estimated without

duration variables: r = 0.997). Overall, the resulting net-

work model can be considered robust.

Network comparison test

Networks (unregularized) were compared (1000 itera-

tions) for those who were classified as in remission (n =

956) and those who were not (n = 1466). Mean severity

differences at baseline were significant for all items (p <

0.001). The correlation between networks was high (r =

0.67). While there were significant difference between

edges, the overall networks (see supplementary material)

did not differ in connectivity (global strength invariance:

p < 0.08) and post hoc tests were not warranted. There

was only evidence of one difference in centrality between

the networks: somatic symptoms were more connected

in the remitter network than the persister network (p <

0.001).

Discussion
Individuals with depression also present with comorbid-

ity, and this could present an issue for depression treat-

ment. Understanding how symptoms influence one

another across traditional diagnostic boundaries, and

how they influence important outcomes, may provide in-

sights relevant to the assessment and treatment of mood

disorders. In this study, we initially examined the differ-

ential impact of individual symptoms on prognosis and

assessed whether individual symptoms offer predictive

value above sum scores. The item level models of out-

comes post-treatment and the sum score models were

similarly associated with outcomes at 3–4 and 6–

8 months but explained considerably more variance at

9–12 months. Pessimism was consistently the most im-

portant predictor of future outcomes (independent of its

mean), indicating that experiencing pessimism rather

than severity of the symptom is responsible for this asso-

ciation. Secondly, we explored the functional relations

among comorbid symptoms of depression and anxiety

disorders using network analysis. The symptom network

comprised of three communities clearly clustering into

anxiety items, depressive cognitions, and depressive

physical symptoms. The primary bridge symptoms be-

tween communities were sadness; pessimism; and in-

decision. The most central symptoms across both

centrality metrics were sadness and failure/worthless. Fi-

nally, we analysed differences in the symptom networks

at study entry for patients that remitted vs. those whose

depression persisted, after treatment. Network compari-

son revealed no overall differences in connectivity. To-

gether, the present findings suggest the utility of item-

level analysis in informing the content of assessments

and consideration of individual items over and above

scale scores when predicting prognosis.

Findings in context

Exploring the associations with treatment outcomes re-

vealed that item-level prediction methods performed

similarly to sum scores and outperformed sum score

models at the 9–12-month endpoint. It is not clear why

there is a difference at this time point; while it was not

due to attrition between endpoints, it could be due to

random variation. It may also reflect the course of de-

pression following intervention, or the cyclical nature of

depression such that individual items are better at pre-

dicting the relapse or maintenance of symptoms after

benefits of treatment have faded, or where an amelior-

ation of symptoms occurred due to further treatment

post randomisation. There is an ongoing debate in the

field whether central items derived from network models

offer predictive utility beyond other items [71–73]. Pes-

simism was not only the best predictor across outcomes;

it was a central item (ranked 2nd on PC/PR and 6th on

EI centrality) that acted as a bridge between communi-

ties and showed strong associations with sadness and

failure/worthlessness. Sadness, comparatively, did not

predict well across time points. It is worth noting that

sadness falls within the physical symptom community

and pessimism within the cognitive community. The

amenability to act on an emotion (sadness) is under-

standably less than that of a cognition (pessimism), a

target of cognitive therapy, while pessimism in associ-

ation with a sense of failure/worthlessness may nega-

tively impact treatment engagement (i.e. the motivation

to sustain goal pursuit in the face of obstacles) [74].

Given the central role and prognostic value of

O’Driscoll et al. BMC Medicine          (2021) 19:109 Page 8 of 14



pessimism, we might speculate that it is associated with

treatment factors, where pessimism hinders some people

making progress and may not be directly addressed by

some psychological treatments.

Symptoms of anxiety and depression clustered into

separate communities with certain symptoms acting as

bridges between communities. The bridge symptoms are

statistically relevant and theoretically linked: indecision

is a symptom in the classifications of both depression

and generalised anxiety disorder, pessimism overlaps

with worry [75] and the strong cross-community edge of

sadness to worry was similar to findings in other studies

[32, 76]. The results therefore provide evidence that

these bridging symptoms may be important in the emer-

gence of comorbidity between anxiety disorders and

depression.

Planned comparisons of networks at study entry for

those whose depression would persist versus those who

would be in remission revealed no overall difference in

connectivity, in contrast to Van Borkulo et al. [77], but

similar to Schweren et al. [78].

Overall, we found no correlation between centrality

metrics and Shapley values. This extends prior work on

the association between centrality and the prognostic

utility of items [71]. Failure/worthlessness was predict-

ively important at 3–4 months, displayed high centrality

and is suggested to be a key symptom in depression and

anxiety [30]. The predictive utility of health anxiety and

somatic concerns may be considered alongside the ob-

servation from the network comparison where there was

a difference in centrality with somatic concerns more

connected in the remitter network. Health anxiety was

in the upper quintile of variable importance across time

points, but relatively unimportant in terms of centrality.

Not surprisingly, given the conceptual overlap, with

health anxiety, the strongest edge was with somatic con-

cerns. As such, the degree of concern for one’s health, or

attention to somatic symptoms, whilst not playing a sig-

nificant role within the maintenance of depression, may

act as a motivational spur to engage with treatment (in

this way enabling rather than disabling the individual).

The absence of this anxiety may reflect an apathy about

one’s health which is not captured by the motivational

item in the BDI. While the predictive modelling did con-

sider the influence of each item independent of the other

items, modelling the predictive value of individual items

may be improved by examining the association between

the changes at symptom level and the overall network

[79, 80].

The network derived in this study provides empirical

phenomena that can be explained by principles of net-

work theory. This requires interpreting the network as a

causal system, even though we cannot infer temporal re-

lationship between symptoms and there is an absence of

causal mechanisms within the external field (e.g. envir-

onmental factors) [29]. These limitations apply to most

of the findings in the network literature, although over-

interpretation is common [81]. Holding this in mind, we

can consider possible pathways and mediating role of

symptoms through the network. For example, taking sui-

cidal ideation as a clinically severe symptom, we can

identify the shortest path from worry [82] passing

through sadness (bridge), and from loss of pleasure/

interest [83] to suicidal thoughts, passed through pes-

simism (bridge). It is possible that any causal effect be-

tween these connections may be part of a longer

pathway within the network highlighting a need for

greater attention to be given to symptom interactions.

The statistical model investigates a symptom level,

transdiagnostic conceptualization of the symptom inter-

actions for individuals diagnosed with depression partici-

pating in RCTs. These interventions are based on

biological or psychological theories, most notably Beck’s

cognitive of theory of depression [84]. Clinically, prag-

matism trumps theoretical completeness; simple inter-

ventions which achieve rapid change do not require a

detailed appreciation of the potential underlying mecha-

nisms. However, oversimplified theories may restrict the

ability to identify causal patterns, and gaps emerge in

practice where the model is suggested to not fit the pa-

tient [85]. More process-driven interventions targeting

shared features of disorders have been developed [86,

87], yet there is no unifying theory. The findings pre-

sented may help bridge the gap between disorder-

specific theories and more transdiagnostic theories. Con-

sidering how symptoms may interact can help clinicians

and researchers to understand underlying processes and

in turn to conceptualise their patients’ difficulties in a

way that supplements existing knowledge. A functional

analysis which integrates the association between sad-

ness and worry does not need to conceptualise the indi-

vidual as having two disorders, but can consider how,

for the individual, this interaction is being fuelled and

may be contributing to their distress.

The journey to develop models that provide both

explanatory and predictive utility will lead to greater

understanding of psychopathology [88]. While the

analysis presented is primarily exploratory, it sets up

clear testable hypotheses. These can be derived by

examining the central structures within the network,

formulating hypotheses and testing on an independent

sample [89]. For instance, whether the bridge edges

belonging to pessimism, sadness, and indecisiveness

re-emerge in an independent sample or whether a

discrete intervention targeting pessimism would alter

the network structure and lead to improved outcome.

These statistical methods may help inform how iden-

tifying pathways and targets may lead to improved
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treatments all dependent on better assessment of

symptoms.

Strengths and limitations

This study has clear strengths, making use of a large

sample of individuals participating in RCTs for depres-

sion in primary care. The use of same assessment mea-

sures at study entry removed the need to harmonise

data across different measures for the network. While

this is less true of outcomes where issues of measure-

ment errors arise from the use of PROMIS T-Score, the

sensitivity analyses provided confidence in the results.

The demographic balance across samples may affect

generalisability; however, five of the six trials were prag-

matic trials more closely representative of patient popu-

lations. Most cases of depression are treated in primary

care, and the studies being set in primary care, improve

the potential generalisability to patients seen in this set-

ting [90].

This study was limited to the use of aggregate/group

level findings to inform within person processes. How-

ever, the presence of an RCT outcome variable affords

us the ability to detect changes from one state (e.g. de-

pressed) to another (e.g. remitted), which is typically not

the case with idiographic research studies that collect

cross-sectional data. Exploring the prognostics value of

networks on deterioration of symptoms would extend

the utility of network analysis. This would however re-

quire generating idiographic networks, where reliable es-

timation necessitates many time points (low sensitivity

at 100 time points [91].

The accuracy of the network is limited by the items in-

cluded and those omitted. The network does not cover

the breadth of comorbidity of symptoms across psycho-

pathology and is missing other environmental variables.

Social adversity is associated with worse treatment out-

comes for some patients with depression; it can be im-

portant to assess for and address these issues in clinic,

where possible, to mitigate the risks of poor prognoses

[92]. There is also the possibility that the centrality of

sadness particularly represents a strong association with

a latent variable rather than a specific role within the

network [93].

The network models adjusted for duration of depres-

sion and anxiety, and a sensitivity analysis assessed for

the influence of between study variability, adding robust-

ness to the findings. While RCTs are used in the ana-

lysis, treatment arms were not factored in and treated as

equivalent when estimating outcome. This may make

the findings generalizable where findings are applicable

regardless of treatment offered especially as the treat-

ments included reflect those commonly available in pri-

mary care. Controlling for treatment group within the

outcome modelling and controlling for relevant

covariates (e.g. age, gender and social economic status)

would also have improved the robustness of the findings.

Such adjustments would have been fitting where the em-

phasis was on developing the best predictive model, in-

stead of comparing the predictive ability of symptoms

vs. total scores. More comprehensive prediction model-

ling using the Dep-GP dataset has been conducted [94].

Additionally, our modelling did not include train/test

split, as the whole sample was used in estimation of the

network models. While a true out-of-sample ‘holdout’

dataset would have provided an unbiased evaluation of

model fit, and is the preferred method for evaluating

such models [95], the internal cross-fold validation

employed in the symptom level model offers a layer of

robustness supporting the final model estimates (where

overfitting presents an issue). This study focussed on

item-level analysis in comparison to sum-scores, future

comparisons with models which may measure latent

constructs in other ways, could be informative.

Single item symptom measurement will have unknown

reliability and construct validity. Equally, the restricted

range (e.g. a four-point scale) may not adequately cap-

ture the range of symptom variance occurring in the

sample. Symptom measurement on a broader scale may

improve the prediction of changes over time.

Conclusions
Our study used samples from high-quality randomised

controlled trials, and the findings can be generalised to

adults with depression being treated in primary care.

This study has reiterated the importance of assessing for

both depressive and anxious symptoms among adults

seeking treatment for depression, and that valuable in-

formation about prognosis can be gained by understand-

ing the interrelations between individual symptoms,

information which is not available when considering

sum scores or baseline symptom severity alone. This

may be particularly important to longer term outcomes

from treatment. Treatment selection and application is

often hampered by comorbid symptoms and considered

to introduce ‘complexity’ [96]. Considering the bidirec-

tional relationship between symptoms and associations

which may be mediated by another symptom (e.g. a

bridge symptom) may help to consider comorbidity as

normative.

While specific symptoms and associations have been

highlighted, the aim is not to offer simple heuristics to

inform clinical judgement and decision making. The

relative importance of the highlighted associations

should not be overweighed. The aim is not to identify

individual items, but to consider the network of interac-

tions. The critical role of individual symptoms and their

interactions give rise to the activation of the network

through pathways and anxiety and depressive cognitive
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and physical symptoms may activate one another via

these pathways. This network highlights how symptoms

of depression and anxiety disorders influence one an-

other. Clinically, there is a need for treatments to ad-

equately assess and address comorbidity.
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