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Parallel application of a novel
domain decomposition
preconditioner for the
adaptive finite element
solution of three-dimensional
convection-dominated PDEs

P. K. Jimack*and S. A. Nadeem?

Computational PDEs Unit, School of Computing, University of Leeds, Leeds, LS2 9JT, U.K.

SUMMARY

We describe and analyze the parallel implementation of a novel domain decomposition
preconditioner for the fast iterative solution of linear systems of algebraic equations
arising from the discretization of elliptic partial differential equations (PDEs) in three
dimensions. In previous theoretical work this preconditioner has been proved to be
optimal for symmetric positive-definite (SPD) linear systems. In this paper we provide
details of our 3-d parallel implementation and demonstrate that the technique may
be generalized to the solution of non-symmetric algebraic systems, such as those
arising when convection-diffusion problems are discretized using either Galerkin or
stabilized finite element methods (FEMs). Furthermore we illustrate the potential of
the preconditioner for use within an adaptive finite element framework by successfully
solving convection-dominated problems on locally, rather than globally, refined meshes.

KEY WORDS: Domain decomposition; additive Schwarz; weakly overlapping; convection-diffusion.

1. INTRODUCTION

Domain decomposition (DD) techniques for the solution of sparse linear algebraic systems
arising from the discretization of PDEs have become extremely popular in recent years due to
their obvious potential for parallel implementation. Typically, two main approaches have been
followed: generating and solving systems of equations on the subdomain interfaces (e.g. [7, 10],
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2 P. K. JIMACK AND S. A. NADEEM @

Figure 1. An example (in 2-d for clarity) of two weakly overlapping finite element meshes generated
from a coarse grid of 64 elements with three levels of hierarchical refinement.

which each require exact subdomain solves at each iteration) or solving the complete system
as a partitioned matrix (e.g. [6, 9]). In this work we focus on a recently proposed method
of the second type ([3, 4]) which we refer to as a weakly overlapping additive Schwarz (AS)
preconditioner.

Typical AS preconditioners (see, for example, [16]) require a fixed amount of overlap between
subdomains in order to guarantee that the preconditioned linear systems which arise following
discretization have a condition number which is independent of the mesh size h!. For practical
applications therefore this optimality property is usually discarded in favour of keeping a fixed
number of mesh layers in the overlap region (which, in three dimensions, therefore results in
an overlap of O(h?) elements, as opposed to O(h%), as h — 0). In [3] a hierarchical finite
element technique is introduced which defines the solution space on each subdomain to consist
of a global coarse grid plus a single layer of overlap at each level of refinement in the mesh
hierarchy (see Fig. 1 for a two-dimensional illustration). It is then proved in [4] that for certain
symmetric self-adjoint operators the resulting additive Schwarz preconditioner is still optimal,
despite only having O(h?) elements in the overlap (O(h) in 2-d).

To illustrate the technique algebraically consider solving a self-adjoint problem with just
two subdomains (one on each of two processors say), as illustrated in 2-d in Fig. 1 (where the

1t is also necessary to add the solution of a restricted coarse grid problem at each iteration for such an optimal
preconditioner (again see [16], or [6]).
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@ PARALLEL DOMAIN DECOMPOSITION 3

subdomains lie above and below diagonal from the bottom left to the top right of the domain).
Following the usual parallel finite element approach (e.g. [10]), a distributed global stiffness
matrix may be assembled in parallel on the two processors by permitting processor i to assemble
contributions from those fine mesh elements inside subdomain 4 only. The corresponding linear
system of finite element equations may then be represented in the following block matrix form:

A 0 B uy 5
0 Ay B Uy | = i2 . (1)
BT BT A, Uy f

Here u; is the vector of unknown nodal values for nodes strictly inside subdomain i (i = 1,2)
and wu, is the vector of unknown nodal values for nodes on the interface between subdomains.
Moreover, each block A4;, B; and L may be computed (and stored) independently on processor
i (¢ = 1,2). Finally, we may express

As =A,0) + Ay and  f = is(l) + is(2> ’ @

where A,; and is(i) are the components of A, and is respectively that may be calculated

(and stored) independently on processor 4. It is now quite straightforward to implement an
iterative solver such as the conjugate gradient (CG) method ([1]) in parallel since distributed
matrix-vector products may be computed with very little parallel overhead and distributed
inner products may be computed with just a single global reduction operation (see, for example,
9).

Parallel application of the weakly overlapping AS preconditioner, A say, may now be
described by considering the action of z = A~!r in the block matrix notation of (1) as follows.
On processor 1 solve the system

A 0 B 21,1 Ty
0 4 B Zyy | = | Mory 3)
B,ir B,ér As gs,l Es

and on processor 2 solve the system

I‘Il 0 Bl 21,2 M1£1
0 Ay By 2o | = Ty ’ (4)
BT BY A, || 2 ry
then set
21 211t M1T§1,2
Z2 | = M2T§2,1 + 239 - (5)
Zs és,l + §5,2

In the above notation, the blocks /12 and ﬁz (resp. fll and Bl) are the assembled components
of the stiffness matrix for the part of the mesh on processor 1 (resp. 2) that covers subdomain
2 (resp. 1). These may be computed and stored without communication. Moreover, because
of the single layer of overlap in the refined regions of the meshes, A; may be computed and
stored on each processor without communication. Finally, the rectangular matrix M; (resp.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
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4 P. K. JIMACK AND S. A. NADEEM @

M>) represents the restriction operator from the fine mesh covering subdomain 1 (resp. 2) on
processor 1 (resp. 2) to the coarser mesh covering subdomain 1 (resp. 2) on processor 2 (resp.
1). This is the usual hierarchical restriction operator that is used in most multigrid algorithms
(see, for example, [13]) and requires the communication of data between the processors.

It is easy to verify that the above preconditioner is symmetric and may be generalized from
2 to p subdomains (see [3] or [4] for details). It should also be noted that each of the local
problems ((3) and (4) in the two-subdomain example above) combines its own subspace solve
with the coarse grid solve and so we are effectively repeating this coarse grid correction on
each processor at each iteration. This is not a significant overhead however since the coarse
grid is generally very much smaller than the refined grid so most two level parallel codes (e.g.
[10]) solve this problem sequentially on a single processor anyway. Furthermore, as h — 0,
each of these local problems tends to exactly % times the size of the full problem, even with
the coarse grid included.

2. SOLUTION OF CONVECTION-DIFFUSION PROBLEMS

Whilst the theoretical results of [4] demonstrate that the preconditioner given by (3) to (5)
(when p = 2) is optimal for a class of linear self-adjoint PDEs (leading to SPD linear systems),
it is clear that many important practical problems cannot be realistically modelled by such
equations. One of the most important class of problem that comes into this category involves
convection-diffusion equations of the form

—eV’u+b-Yu=f(z). (6)

Provided € > 0 this is an elliptic problem but, when b # 0, it is not self-adjoint. When ¢ is
small (relative to ||b||) the equation is said to be convection-dominated. Such problems arise
frequently in fluid mechanics, heat and mass transfer, environmental modelling, etc. and, when
discretized by the standard Galerkin FEM (see, for example, [11]), lead to a non-symmetric
linear system.

When considering how to generalize the preconditioner introduced in the previous section
to non-symmetric systems an important clue may be obtained from observations made in [3]
and [5]. Both of these papers make the empirical observation that setting the M terms in (5)
to zero (and scaling the interface terms accordingly) not only has the effect of reducing the
communication cost of each iteration but, provided an appropriate solver is used, also leads to
a reduction in the number of iterations required to converget. In the case where p = 2 equation
(5) therefore becomes

2 211
2y | = . 222 > (7)
ER 3(251 +252)

fIn [5] the observation is of course described for conventional AS preconditioning rather than the weakly
overlapping modification being considered here.
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@ PARALLEL DOMAIN DECOMPOSITION 5

which means that the preconditioner is no longer SPD. Hence, even for a self-adjoint differential
operator, the CG algorithm can no longer be used and must be replaced by a more general
alternative such as QMR or GMRES for example (see [1], [8] or [15] for details). In this work we
use the GMRES algorithm, as implemented in [14]. Although the cost per iteration is greater
for GMRES than CG, the reduced inter-processor communication at each iteration and the
decrease in the number of iterations required always appear to more than make up for this (see
[3] for specific comparisons in 2-d and [5] for corresponding remarks concerning conventional
AS preconditioning).

With a parallel preconditioner for GMRES given by (3), (4) and (7) (still using the special
case p = 2 for simplicity) it is clear that our algorithm may easily generalize to non-symmetric
problems such as that obtained from a finite element discretization of (6).

2.1. Parallel implementation

Generalizing the above discussion to the solution of a non-symmetric linear system on p

processors we may write the action (z = fl’lf) of the preconditioner in terms of the
computations required on each processor ¢ (from 1 to p) as follows.
(i) Solve

A 0 B; Z; Tr;

Ci Cz Az,s ﬁj,s fz’,s

(ii) Average each entry of of 2; ; over all corresponding entries on neighbouring processors.

In (8) A;, B; and C; are assembled components of the stiffness matrix for the elements
of the mesh in subdomain i, A;, B; and C; are components for the elements of this mesh
outside subdomain ¢ and A; ; stores the components of the stiffness matrix where both the
row and column correspond to nodes on the interface of subdomain 7. A similar partition of the
vector r is provided into components r; inside subdomain i, r; outside subdomain ¢ and r; ,
on its interface. M; represents the hierarchical restriction operator from the fine mesh on each
processor other than 4 to the coarser mesh outside of subdomain ¢ on processor ¢ (therefore
requiring an all-to-one communication to compute its action for each ).

The main implementation issue that needs to be addressed is that of computing the action
of each of the restriction operations Mifi efficiently at each iteration. Note that because the
preconditioner is not symmetric we do not need to evaluate the corresponding prolongation at
the end of each preconditioning step. The evaluation of M;F; is completed in two phases: a set-
up phase which occurs before the first iteration, and a communication phase which occurs at
each iteration. All of our implementations have been in ANSI C using the MPI communication
library, [12].

In the set-up phase each processor, ¢ say, sends to each other processor, j say, a list of the
nodes of mesh ¢ which lie in, or on the boundary of, subdomain j. Processor ¢ then receives
from each other processor, j say, a list of all nodes of mesh j which lie in, or on the boundary
of, subdomain i. For each of these lists processor ¢ then matches each of the nodes in this list
with the corresponding node on mesh 4. This is achieved very efficiently by using the mesh

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
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6 P. K. JIMACK AND S. A. NADEEM @

hierarchy that is present on processor ¢ (see [18] for a description of the hierarchical refinement
of tetrahedral grids that is used on each processor).

At each iteration processor i then contributes to the restriction operation M;# ;j foreach j # 1.
The part of the vector r which is stored on processor ¢ (r;) corresponds to all nodes of mesh 7 in
subdomain 4 or on its boundary. For each j this sub-vector, r;, may be restricted to the nodes of
mesh j which lie in subdomain 4 or on its boundary (which are known from the set-up phase).
This restriction uses the mesh hierarchy in the standard multilevel manner (as described in [13]
for example). These restricted vectors may then each be sent to the corresponding processor,
j. Following this, processor ¢ should receive a list of its own restricted vectors from each of the
other processors. These are then put together on processor i to produce the required vector
M;7,; before the solution to (8) is found locally. Note that in MPI ([12]) all of the above message
passing may be implemented as a single all-to-all communication. Given the high cost of such a
communication we again see the value of only requiring one of these per iteration (as opposed
to two for the original symmetric preconditioner).

The final stage in computing the action of z = A~!r requires only neighbour-to-neighbour
communication between processors sharing a subdomain boundary. This allows the z; , vectors
to be updated on each processor 4, as required for step (ii) above.

2.2. Numerical results

In order to assess the performance of the proposed parallel preconditioner on typical
convection-diffusion equations we consider here two specific test problems of the form (6).
In both cases the equation is solved on the domain Q = (0, 2) x (0,1) x (0, 1) with b = (1,0,0)7.

Problem 1
f(&) =0,
subject to the Dirichlet boundary condition u|sq = u*|sq, where

e~%/e —1
e—t/e — p(2—x)/e

u* =

is the exact solution of (6) with this choice of f.

Problem 2

_ oz/e
f@=2 (- 05 =)+ 20 - 2) 4y - e -2),

subject to the Dirichlet boundary condition u|gq = u*|sq, where

_ /e
v (x - %) y(1—y)z(1 - 2)

is the exact solution of (6) with this choice of f.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
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@ PARALLEL DOMAIN DECOMPOSITION 7

Table I. The performance of the proposed algorithm on Problem 1 for two choices of ¢: figures quoted
represent the number of iterations required to reduce the initial residual by a factor of 10°.

e=10""7 e=10"73
Elements/Procs. 2 4 8 16 2 4 8 16
6144 4 4 b} 6 11 14 15 31
49152 2 3 3 4 6 7 4 4
393216 1 2 3 3 3 4 4 )
3145728 2 2 3 3 1 3 6 6

Table II. The performance of the proposed algorithm on Problem 2 for two choices of e: figures quoted
represent the number of iterations required to reduce the initial residual by a factor of 10°.

e=10" e=10°
Elements/Procs. 2 4 8 16 2 4 8 16
6144 4 4 ) 8 11 15 16 32
49152 4 4 5 6 7 8 8 12
393216 3 4 5 7 6 6 6 9
3145728 3 5 6 8 5 5 5 8

In both cases the exact solutions, u*, exhibit steep layers of width O(e) near to the boundary
z=2when 0 <e<<|b]| =1.

Tables I and IT show the number of iterations required to solve the Galerkin finite element
discretizations of the above problems to a moderately high level of accuracy using GMRES
with our parallel implementation of the weakly overlapping DD preconditioner. Results are
presented for a sequence of meshes which represent between one and four levels of refinement of
a coarse tetrahedral mesh containing 768 elements. At each level of refinement each tetrahedron
is subdivided into eight children, as described in [18]. It may be observed that, as the mesh is
refined or the number of processors (subdomains) is increased, the total number of GMRES
iterations appears to be bounded. Such a result is proved in [4] but only for the symmetric
version of the preconditioner applied to certain SPD problems.

It is interesting to note that for both Tables I and II more iterations are required on the
coarse grids, especially when ¢ = 1072. This is a highly convection-dominated problem for
which the Galerkin method is known to be unstable when the grid is not sufficiently fine. For
this reason we consider the application of our preconditioner with a stabilized finite element
discretization in the following section. When the finite element grid is refined we note that the
preconditioner is still effective with the Galerkin discretization however. The results in Table
I appear to be slightly better than those for the second test problem in Table II. This may be
due to the fact that the first test problem is essentially just a one-dimensional problem and
so is somewhat easier to solve in practice. It should also be noted that the precise iteration

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
Prepared using cpeauth.cls



8 P. K. JIMACK AND S. A. NADEEM @
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Figure 2. An illustration of the partitioning strategy, based upon RCB, used to obtain 2, 4, 8 and 16
subdomains, where Q = (0,2) x (0,1) x (0,1).

counts that are obtained depend upon the specific decomposition that is made of the problem
domain. For the results presented here the partitions illustrated in Figure 2 are used. These
are derived from the use of a simple recursive coordinate bisection (RCB) algorithm, [17], that
has the effect of yielding subdomains with a low surface-area to volume ratio.

3. STABILIZED FINITE ELEMENTS FOR CONVECTION-DOMINATED
PROBLEMS

The examples of the previous section suggest that the proposed weakly overlapping parallel DD
preconditioner works well with a Galerkin finite element discretization of a three-dimensional
convection-diffusion problem provided the mesh is sufficiently fine. When the problems become
convection-dominated however (ie. 0 < ¢ << [|b]|) it is well-known that the elements of
the mesh must be very small (i.e. O(”ET”)) in order to prevent the Galerkin solution from
becoming oscillatory. In this section we therefore extend our consideration to the solution
of convection-dominated problems using a more stable finite element technique based upon
streamline-diffusion (see [11], for example, for a full discussion of oscillations and stabilization
using streamline-diffusion).

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
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@ PARALLEL DOMAIN DECOMPOSITION 9

3.1. The streamline-diffusion method

The standard FEM discretization of (6) on a domain 2 seeks an approximation up to u from
a finite element space Sy, such that

e/QZUh-Zv dz+/9(b-2uh)v d£=/9f(£)v dz 9)

for all v € S (disregarding boundary conditions for simplicity). This in turn yields a non-
symmetric linear algebraic system, Au = f, for which a typical entry in A is

. /Q Vi - Ve, da + /Q 6:(b- V) de , (10)

where {¢;} is the set of finite element basis functions for Sp,.
The streamline-diffusion approach replaces v in (9) by v + ab- Vv to yield

e/yuh-z(v+ag-zu) d£+/(b'2uh)(v+ab'2v) dz =
Q Q

/ (@) + ab- Vo) de (11)
Q

for all v € Sp,.

When a = 0 the resulting linear system has a matrix with entries still given by (10) however
a is usually chosen to be greater than zero and proportional to the mesh size h. This means
that the linear system now being solved is even further from the SPD system analyzed in
[4]. Nevertheless, it is possible to apply the same weakly overlapping domain decomposition
preconditioning strategy to this stabilized problem. This requires only minor modifications to
the code used to produce the results of the previous section (corresponding to the differences
between (9) and (11)). The following results demonstrate that this extension also works well
in practice.

3.2. Numerical Results

In Tables ITI and IV we illustrate the improved accuracy of the streamline-diffusion method
when Problem 1 and Problem 2 are solved with ¢ = 10~2. For these convection-dominated
calculations we present the infinity norm of the exact error when using the Galerkin and the
streamline-diffusion discretizations respectively. As expected, we see that the stabilized FEM
provides a less oscillatory solution with a smaller error in each case. If we were to continue
to refine the mesh, or solve the same problems with a larger value of &, the improvement of
streamline-diffusion over the Galerkin FEM would be eroded. Conversely, when corresponding
results are calculated for e = 1073 the relative error in the Galerkin solution is even greater on
these meshes, which are far coarser than O(”ET”) In all of the streamline-diffusion calculations

o in (11) is taken as %: it is likely that better choices could be obtained with some fine tuning
however.

Next, in Tables V and VI, we provide results corresponding to those given for the Galerkin
equations in Tables I and II. From these tables it is clear that, not only does the stabilized

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
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Table III. The infinity norm of the exact error in the two finite element approximations to the solution
of Problem 1 when ¢ = 10~2.

Elements || Error 1 (Galerkin FEM) | Error 2 (stabilized FEM) %
6144 1.07 x 10° 6.66 x 1071 0.622
49152 9.10 x 1071 5.65 x 1071 0.620

393216 441x10°* 2.57x 10! 0.583

3145728 1.55 x 107! 6.70 x 1072 0.433

Table IV. The infinity norm of the exact error in the two finite element approximations to the solution
of Problem 2 when ¢ = 1072,

Elements || Error 1 (Galerkin FEM) | Error 2 (stabilized FEM) %
6144 1.02 x 1071 6.80 x 10~2 0.667
49152 1.01 x 107! 6.24 x 1072 0.618

393216 5.22 x 1072 2.95 x 1072 0.565

3145728 1.88 x 102 8.10x10°° 0.431

Table V. The performance of the proposed algorithm on the stabilized discretization of Problem 1
for two choices of ¢: figures quoted represent the number of iterations required to reduce the initial
residual by a factor of 10°.

e=10"2 e=10"3
Elements/Procs. 2 4 8 16 2 4 8 16
6144 3 3 3 4 3 4 4 5
49152 2 2 3 3 2 2 3 3
393216 2 2 3 3 2 2 3 3
3145728 1 3 3 3 1 2 2 2

discretization lead to more accurate results but that our weakly overlapping DD preconditioner
yields faster convergence than before, especially on the coarser grids. As with Tables I and II
we again see that Problem 1 is more straightforward to solve than Problem 2. Once more we
have used a partition into subdomains based upon the RCB approach illustrated in Figure 2
and we note that the precise iteration count will change if a different partition is used.

3.3. Local refinement

Having demonstrated the effectiveness of the proposed preconditioner for convection-
dominated problems solved using a stabilized FE method on a sequence of uniformly refined

Copyright © 2001 John Wiley & Sons, Ltd.
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@ PARALLEL DOMAIN DECOMPOSITION 11

Table VI. The performance of the proposed algorithm on the stabilized discretization of Problem 2
for two choices of ¢: figures quoted represent the number of iterations required to reduce the initial
residual by a factor of 10°.

e=10"2 e=10"3
Elements/Procs. 2 4 8 16 2 4 8 16
6144 3 4 4 6 5 5 5 7
49152 3 4 4 6 4 ) 5 7
393216 3 4 5 7 4 5 5 6
3145728 3 4 6 8 3 4 5 7

Table VII. The performance of the proposed algorithm on the stabilized discretization of Problem
1 using locally refined grids for two choices of ¢: figures quoted represent the number of iterations
required to reduce the initial residual by a factor of 10°.

e=10"7 e=10"3
Elements/Procs. 2 4 8 16 2 4 8 16
2560 4 5 5 6 5 6 6 6
9728 4 5 5 6 4 5 5 6
38400 4 5 5 6 4 5 5 6
153088 5 6 7 7 4 6 6 7

grids, we now consider the use of local mesh refinement. In practice, problems such as
those under consideration in this paper have solutions which do not require a high mesh
density everywhere but only in certain regions, such as where boundary layers or shocks
occur for example. We now apply a simple a priori mesh refinement strategy with the
streamline-diffusion discretization. The purpose of this is to illustrate the potential for the
DD preconditioner given by (7) on each processor to be used successfully within an adaptive
finite element framework. For the particular test problems being considered here we are able to
make use of the fact that the only boundary layers in the solutions are known to be next to the
boundary z = 2, and that the solutions are smooth elsewhere. Hence, beginning with a coarse
mesh of 768 elements, we are able to get results of almost identical accuracy to those obtained
using uniform mesh refinement by applying local mesh refinement to the same number of levels:
only refining elements in the neighbourhood of x = 2 at each level. Iteration counts for the
DD preconditioner with this mesh refinement strategy are shown in Tables VII and VIII for
Problem 1 and Problem 2 respectively.

Comparison of these results with those provided in Tables V and VI show that the use
of local refinement leads to a slight increase in the number of iterations required however
this still appears to be bounded independently of h and p. Furthermore, for reasons of load-
balancing that are discussed in the next section, on parallel performance, different partitions
of the domain have been used here from those used with the uniformly refined grids. These

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
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12 P. K. JIMACK AND S. A. NADEEM @

Table VIII. The performance of the proposed algorithm on the stabilized discretization of Problem
2 using locally refined grids for two choices of e: figures quoted represent the number of iterations
required to reduce the initial residual by a factor of 10°.

e=10"2 e=10"3
Elements/Procs. 2 4 8 16 2 4 8 16
2560 4 5 5 6 5 6 6 6
9728 5 5 6 6 5 6 6 6
38400 5 6 6 7 5 6 7 7
153088 6 8 8 8 6 7 7 7

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

B —— 1)
oo | /

Figure 3. An illustration of the partitioning strategy used to obtain 2, 4, 8 and 16 subdomains when
local mesh refinement is undertaken with Q = (0,2) x (0,1) x (0,1).

new partitions are illustrated in Figure 3 and are such that each subdomain contains an

approximately equal proportion of the boundary layer, where most of the elements are found
after refinement.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
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@ PARALLEL DOMAIN DECOMPOSITION 13

Table IX. Timings for the solution of Problem 1 on the final level globally refined mesh

e=1.0x10"2 p=1 p=2 p=4 p=8 | p=16
Parallel Time 542.06 | 323.15 | 202.34 | 123.24 | 70.16

Speedup - 1.7 2.7 4.4 7.7
Sequential Time - 640.76 | 785.34 | 939.99 | 989.18
Parallel Speedup - 2.0 3.9 7.6 14.1

e=10x10"3 p=1 p=2 p=4 p=8 | p=16
Parallel Time 559.70 | 323.35 | 196.62 | 114.20 | 65.74

Speedup 1.7 2.8 4.9 8.5
Sequential Time - 634.08 | 760.56 | 868.29 | 941.58
Parallel Speedup - 2.0 3.9 7.6 14.3

4. PARALLEL PERFORMANCE

The calculations described in all of the above tables of iteration counts were performed on a
SG Origin 2000 computer which has a non-uniform memory access (NUMA) architecture. The
non-uniform nature of the memory access means that timings of a given calculation may vary
significantly between runs depending upon how memory has been allocated. For this reason all
of the timings quoted in this section represent the best time that was achieved over numerous
repetitions of the same computation. Furthermore, there are numerous parameters within the
algorithm that affect the overall performance, such as the accuracy to which the systems (8)
are solved on each processor at each iteration (for best performance these should only be solved
approximately), or the drop tolerance that is used in the sequential ILU preconditioner ([14])
that is used for these systems. Our choices for these parameters, determined empirically to
yield the best timings, are still unlikely to be completely optimal.

In Tables IX and X we present parallel timings in seconds for the solution of Problem 1
and Problem 2 respectively, with ¢ = 10~2 and 102 on the grid of 3145728 elements obtained
using uniform mesh refinement. Corresponding results are also provided in Tables XI and XII
for the mesh of 153088 elements obtained using local refinement. In all of these tables we
include not only the parallel solution times but also the sequential solution times for different
choices of p. We also present two rows of speed-up figures in each table: a regular speed-up
which contrasts the parallel solution time with the best sequential solution time, and a parallel
speed-up which contrasts the parallel solution time with the sequential solution time of the p
subdomain DD solver.

There are at least three factors which affect the parallel performance of our weakly
overlapping algorithm. These are the quality of the p subdomain preconditioner contrasted
with the best available sequential solver (for which we use [14]), the amount of load imbalance
that exists between the processors, and the parallel overheads associated with interprocessor
communications.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2001; 00:1-17
Prepared using cpeauth.cls



14 P. K. JIMACK AND S. A. NADEEM @

Table X. Timings for the solution of Problem 2 on the final level globally refined mesh

e=1.0x10"2 p=1 p=2 p=4 p=8 p=16
Parallel Time 770.65 | 497.39 | 341.78 227.98 113.81

Speedup - 1.5 2.3 3.4 6.8
Sequential Time - 984.72 | 1326.91 | 1725.23 | 1597.15
Parallel Speedup - 2.0 3.9 7.6 14.0

e=1.0x10"3 p=1 p=2 p=4 p=8 p=16
Parallel Time 668.12 | 431.68 | 271.66 175.48 98.93

Speedup 1.5 2.5 3.8 6.8
Sequential Time - 854.68 | 1062.95 | 1342.11 | 1398.79
Parallel Speedup - 2.0 3.9 7.6 14.1

Table XI. Timings for the solution of Problem 1 on the final level locally refined mesh

e=10x10"2 p=1 | p=2 | p=4 | p=8 | p=16
Parallel Time 29.19 | 14.61 | 8.73 6.30 4.80

Speedup - 2.0 3.3 4.6 6.1
Sequential Time - 28.90 | 33.63 | 43.72 | 59.84
Parallel Speedup - 2.0 3.9 6.9 12.5

e=10x10"3 p=1 | p=2 | p=4 | p=8 | p=16
Parallel Time 20.07 | 14.02 | 8.62 6.02 4.87

Speedup - 1.4 2.3 3.3 4.1
Sequential Time - 27.64 | 33.12 | 42.05 | 58.88
Parallel Speedup - 2.0 3.8 7.0 121

If we focus initially on the results on the uniformly refined mesh (Tables IX and X) it is
quite clear that it is the quality of the preconditioner itself which is the biggest constraint on
its efficiency. This is seen not only from the sequential times taken for different choices of p
compared to the best sequential time (used for p = 1), but also from the fact that the parallel
speed-ups are very good compared to the raw speed-ups. Recall that the parallel speed-up is
the ratio of the sequential and parallel times for the p subdomain algorithm. It may be possible
to improve the basic quality of the p subdomain algorithm by using a better sequential solver
(e.g- based upon multigrid) for each subdomain problem, or by optimizing the level of accuracy
to which these problems are solved at each iteration. This is an area that undoubtedly requires
further investigation.
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Table XII. Timings for the solution of Problem 2 on the final level locally refined mesh

e=1.0x10"2 p=1 | p=2 | p=4 | p=8 | p=16
Parallel Time 26.20 | 17.54 | 10.54 | 7.17 5.35

Speedup - 1.5 2.9 3.7 4.9
Sequential Time - 34.64 | 40.54 | 50.35 | 66.96
Parallel Speedup - 2.0 3.8 7.0 12.5

e=10x10"3 p=1 | p=2 | p=4 | p=8 | p=16
Parallel Time 25.63 | 17.18 | 10.03 | 6.83 5.15

Speedup 1.5 2.6 3.8 4.0
Sequential Time - 33.94 | 38.75 | 47.91 | 63.73
Parallel Speedup - 2.0 3.9 7.0 12.4

Again considering Tables IX and X it is also clear that load balance plays a more important
role in determining efficiency than the communication costs. Note that because there is a single
layer of overlap between the subdomains at each level of the mesh hierarchy, the total size of
each subdomain problem depends upon the size of the interface of that subdomain with its
neighbours. From Figure 2 it is clear that when p = 2, 4 or 8 the subdomain problems will be
of the same size as each other (but dependent upon p of course). When p = 16 however this
will not be the case since the 8 subdomains in the middle section of the domain have a larger
interface with their neighbours than the other 8 subdomains. Hence these will contain more
overlapping elements. This leads to the local problems corresponding to these subdomains
each containing approximately 307000 elements, as opposed to just 276000 elements in each of
the remainder. The effect of this on the parallel speed-up is quite noticeable since this ranges
between 14.0 and 14.3 out of 16 over the four tables. By contrast, on 8 processors the parallel
speed-up is about 7.6 in each case: a significantly better efficiency. The small loss of efficiency
that is observed in these latter cases (and for p = 2 and 4) may be attributed mainly to the
communication overheads that are present in forming the right-hand side of (8).

If we now consider Tables XI and XII a similar pattern emerges. The first thing to note
however is that the solution times are, as expected, significantly reduced as a result of local,
rather than global, refinement. On 16 processors, for example, results of the same accuracy
as before are now obtained in between 4.80 and 5.35 seconds. It is also clear that the major
factor affecting efficiency is again the sequential time of the p subdomain algorithm compared
to the best sequential time that we could achieve for each problem.

The parallel speed-ups for these locally refined problems are still quite good, however load
balancing is a much more significant issue here than when the mesh is refined globally. Because
we have selected a mesh refinement strategy a priori we are able to simplify this load-balancing
problem considerably by partitioning the domain as shown in Figure 3. Since the refinement
takes place near to the right end boundary we expect a similar number of elements in each
subdomain for each particular value of p. However, there is still the further complication of
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the single layer of overlapping elements at each level of the mesh refinement hierarchy, which
causes the load imbalance to grow when p = 8 or 16, as may be expected from inspection of
Figure 3. This explains why the parallel speed-up falls to 7.0 or below on 8 processors and
12.1 to 12.5 on 16. In the former case the typical number of elements per processor ranges
from 27000 to 33000, and in the latter from 15000 to 22000. Given the significant nature of
this load imbalance it is clear that the communication overheads are still relatively small when
local refinement has been used.

5. DISCUSSION

In this paper we have described the parallel implementation of a weakly overlapping domain
decomposition preconditioner and its successfully application to the finite element solution of
convection-dominated PDEs in three dimensions. It is demonstrated that excellent convergence
rates may be achieved using Galerkin and streamline-diffusion FE discretizations and that the
iteration counts appear to be bounded independently of h and p. Furthermore, the algorithm is
shown to be similarly effective when local, rather than global, mesh refinement is undertaken.
In each of these cases it is demonstrated that very good parallel speed-ups may be obtained
however further work is clearly required to improve the underlying speed of the p subdomain
algorithm.

As with all parallel algorithms a significant issue is shown to be that of load balance. Even for
a uniformly refined grid, subdomains of an equal volume may have local problems of different
sizes if they have different numbers of elements overlapping with neighbours. This difficulty
becomes more severe when local refinement is undertaken, especially if this were to be within
the framework of an adaptive FE strategy for which the refinement pattern would not be
known a priori. Further research is also required therefore to determine the best strategy for
overcoming these difficulties. In [2] it is suggested that it may be possible to use an error
estimate on the coarse initial mesh to partition this mesh appropriately at the start of the
parallel calculation. Where this type of approach is unsuccessful however it is likely that use
will need to be made of dynamic load-balancing techniques, as described in [19, 20] for example.

The specific test problems considered in this paper have a fixed convection direction b. The
particular choice of b appears to be of little importance (apart from the implications on load
balancing when local refinement is used of course), however we have yet to consider non-
constant convection directions, or even nonlinear problems for which b is a function of u. The
work should also be extended to convection-dominated systems of equations, which also arise
frequently in scientific modeling.
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