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TECHNICAL ADVANCE Open Access

A method for assessing robustness of the
results of a star-shaped network meta-
analysis under the unidentifiable
consistency assumption
Jeong-Hwa Yoon1,2, Sofia Dias3 and Seokyung Hahn2,4*

Abstract

Background: In a star-shaped network, pairwise comparisons link treatments with a reference treatment (often

placebo or standard care), but not with each other. Thus, comparisons between non-reference treatments rely on

indirect evidence, and are based on the unidentifiable consistency assumption, limiting the reliability of the results.

We suggest a method of performing a sensitivity analysis through data imputation to assess the robustness of

results with an unknown degree of inconsistency.

Methods: The method involves imputation of data for randomized controlled trials comparing non-reference

treatments, to produce a complete network. The imputed data simulate a situation that would allow mixed

treatment comparison, with a statistically acceptable extent of inconsistency. By comparing the agreement between

the results obtained from the original star-shaped network meta-analysis and the results after incorporating the

imputed data, the robustness of the results of the original star-shaped network meta-analysis can be quantified and

assessed. To illustrate this method, we applied it to two real datasets and some simulated datasets.

Results: Applying the method to the star-shaped network formed by discarding all comparisons between non-

reference treatments from a real complete network, 33% of the results from the analysis incorporating imputed

data under acceptable inconsistency indicated that the treatment ranking would be different from the ranking

obtained from the star-shaped network. Through a simulation study, we demonstrated the sensitivity of the results

after data imputation for a star-shaped network with different levels of within- and between-study variability. An

extended usability of the method was also demonstrated by another example where some head-to-head

comparisons were incorporated.

Conclusions: Our method will serve as a practical technique to assess the reliability of results from a star-shaped

network meta-analysis under the unverifiable consistency assumption.

Keywords: Star-shaped network, Indirect comparisons, Network meta-analysis, Inconsistency, Sensitivity analysis,

Data imputation
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Background
Network meta-analyses based on systematic reviews are

often used to produce evidence for medical decision-

making, such as deciding which of various treatment

options is the best for a pre-defined population of pa-

tients. Specifically, network meta-analysis is a statistical

method for integrating the data available from a network

of multiple randomized controlled trials (RCTs) that

involve multiple interventions, to estimate their relative

effects by comparing them directly, indirectly, or both

[1, 2]. The objective of a network meta-analysis is to

compare the relative efficacy and/or safety of multiple

medical interventions and to rank each treatment for a

corresponding outcome [3].

Since a network meta-analysis combining all informa-

tion from RCTs on multiple interventions provides an

internally coherent set of estimates of the relative treat-

ment effects between competing interventions [4–6], the

included trials should be comparable; that is, there

should be no imbalance in the distribution of potential

effect modifiers across the trials [7–9]. In principle this

should ensure consistency of evidence, however the

assumption of consistency across direct and indirect evi-

dence should also be statistically checked [10–12]. When

the assumption of consistency is satisfied, a network

meta-analysis may have acceptable validity, whereas this

will be questionable when inconsistency, characterized

by a discrepancy between direct and indirect evidence, is

found [13]. However checking the consistency of the dir-

ect and indirect evidence in a network is only feasible

when there are one or more closed loops within an evi-

dence network. A closed loop refers to a part of a net-

work where each comparison has both direct and

indirect evidence [14]. Methods of testing for inconsist-

ency in a network have been previously presented, and

are distinguished by how to treat inconsistency [10–12,

15–17]. If the consistency assumption is violated in a

network, a further qualitative evaluation is necessary to

identify its sources [7–9].

However, researchers might encounter an evidence

network where all treatments have been compared only

with a common treatment, but not with each other. For

example, new drugs are often compared with placebo or

standard care, rather than to active treatments, in trials

conducted for the purpose of obtaining approval for

drug licensing [18]. Once a drug receives regulatory ap-

proval, there may no longer be any commercial incentive

to compare the drug against other alternatives, and

therefore there are occasions where no head-to-head tri-

als between active treatments exist [19]. Such networks

do not have any closed loops, and are referred to as

‘star-shaped networks’ [20]. A study reported that 47

(31%) of 152 network analyses published in PubMed be-

tween inception and March 2011 included star-shaped

networks [21]. Although a decade has passed since then,

many network meta-analyses still consist of interven-

tions that do not have both indirect and direct compari-

sons or are conducted in contexts where one or few

closed loops are available. For example, with advances of

biologics for the treatment of rheumatoid arthritis over

the past two decades, its evidence network, which in-

cluded only indirect evidence in the first decade, has

now incorporated some (albeit few) head-to-head

comparisons [22]. In a star-shaped network, statistically

detecting or checking inconsistency is impossible, thus

researchers need to rely solely on a qualitative evaluation

that studies are comparable, before integrating the data

into a network meta-analysis under the consistency

assumption [23–25]. However, there may be a certain

degree of inconsistency between the evidence from the

included indirect comparisons and the unknown direct

comparisons; it may be impossible to detect statistically,

but should nonetheless be considered. Therefore, it is

necessary to explore the degree to which results from

a star-shaped network are robust to potential

inconsistencies.

In this article, we suggest a sensitivity analysis for

evaluating the robustness of the results of a star-shaped

network meta-analysis, and illustrate some examples of

applying the method to two real datasets and four simu-

lated datasets. We then provide an interpretation of the

results for each example. We finally discuss the pro-

posed method and its usability.

Method development
Notation, models, and method of testing for

inconsistency

Let θ̂ijk be the observed relative effect size of treatment k

(k= T2, ⋯, Tp) compared to treatment j (j= T0, ⋯, Tp − 1)

from the ith study comparing treatment j versus k where a

network contains p + 1 treatments T0, ⋯, Tp, with θ̂ijk fol-

lowing a normal distribution, Nðθijk ; σ2ijk ). The parameter

θijk is the study-specific treatment effect of treatment k

relative to j in study i. It is conventional that the estimated

variance of θ̂ijk , dvarðθ̂ijkÞ, is treated as if it were the true

variance σ
2
ijk [26, 27]. The distribution is thus assumed to

satisfy θ̂ijk � Nðθijk ; dvarðθ̂ijkÞÞ . A model of θijk is as

follows:

θijk � Normal djk ; τ
2

� �
:

Here, djk is the mean study-specific effect size of treat-

ment k compared to treatment j. We used a usual

random-effects model [28, 29], which allows for

between-study variation (τ2) that is common for all com-

parisons in a network. For simplicity, the between-study

variation is assumed to be identical across all contrasts;
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however, between-study variation can also be modeled

separately for each contrast [11, 30].

In the standard approach of performing a network

meta-analysis, the basic parameters dT 0k and dT0 j (j and

k ≠ T0) are first defined using a chosen reference inter-

vention (T0), which is usually placebo or a conventional

treatment [31]. The functional parameter djk (j and k ≠

T0) is then defined by a consistency relationship, djk

¼ dT 0k−dT0 j . A model based on this approach is called a

‘consistency model’. For a simple network with three in-

terventions A, B, and C, the consistency model would

estimate the basic parameters, dAB and dAC, from all

available evidence. The functional parameter, dBC, is cal-

culated using the consistency equation, as dAC − dAB. A

full description of the model is given in Appendix 1

(Additional file 1) for this simple case. In addition, the

network meta-analysis can rank all the treatments from

best to worst [32].

For a star-shaped network where only a common com-

parator (T0) is compared with all other alternative treat-

ments (T1, ⋯, Tp) without any head-to-head comparison

among T1, ⋯, Tp as shown in Fig. 1, T0 is naturally

assigned as the reference treatment in the above model

for performing a network meta-analysis to estimate the

basic parameters, dT 0T1
, ⋯, dT0Tp

. The relative effect

sizes among the non-reference treatments are calculated

by indirect comparisons.

An inconsistency model, in which consistency is not

assumed, can be used to check whether the assumption

of consistency holds [13]. This model represents each

contrast between treatments in the network as an unre-

lated basic parameter estimated only from direct evi-

dence; therefore, this is equivalent to conducting a

separate pairwise meta-analysis with a shared heterogen-

eity parameter. For a fully connected simple network,

when direct evidence on all contrasts is available, the in-

consistency model would define the basic parameters,

dAB, dAC, and dBC, without assuming any relationship be-

tween the parameters (see Additional file 1: Appendix

1). In contrast, if direct evidence is not available for one

contrast, say BC, the model would estimate the basic

parameters, dAB and dAC, but the relative effect size be-

tween B versus C cannot be estimated. In a star-shaped

network, there is no difference in fit or estimated treat-

ment effects between consistency and inconsistency

models because the basic parameters are defined identi-

cally in both models.

Consistency and inconsistency models can be fitted in

a Bayesian framework using non-informative prior distri-

butions for each defined parameter. Comparison of re-

sidual deviance and heterogeneity estimates between the

Fig. 1 A graphical representation of a star-shaped network consisting of one common comparator treatment (T0) and p other alternative

treatments (T1, ⋯, Tp). Each node represents an intervention, and a link between two nodes reflects one or more randomized controlled trials
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two models can suggest inconsistency [13, 33]. When

the inconsistency model produces the smallest residual

deviance value, there is potential overall inconsistency in

the corresponding evidence network. Similarly when the

estimated heterogeneity is smaller in the inconsistency

model than in the consistency model, this can suggest

inconsistency. No particular cut-off value was considered

for determining a meaningful difference.

Statistical methods

We considered non-directly connected pairs in a star-

shaped network as missing to conduct a sensitivity

analysis. For a star-shaped network consisting of one

common comparator as a reference treatment, and p

non-reference treatments (Fig. 1), we filled in the hypo-

thetical RCT data for all the p(p − 1)/2 missing pairwise

comparisons, producing fully connected network (here-

after called a ‘complete network’). The imputed data

consisted of study-level treatment effect sizes ( θ̂
�
ijk ) and

their variances (dvarðθ̂�ijkÞ). They were generated to simu-

late a situation that would allow a mixed treatment com-

parison with some extent of inconsistency that is still

acceptable statistically, where the acceptance was deter-

mined by examining whether a consistency model has a

lower residual deviance value than an inconsistency

model, so that the complete network resulting from im-

putation can be aggregated under the consistency as-

sumption. By comparing the agreement between the

analysis results from the original star-shaped network

and the complete network, the robustness of the results

of the original star-shaped network meta-analysis was

assessed.

Imputation strategy

For the p(p − 1)/2 contrasts among non-reference treat-

ments in the star-shaped network, the imputed data

were generated to meet the following conditions:

� I: For each contrast between specific treatments, if

the effect size estimated from the original star-

shaped network is positive (or negative), the pooled

effect size from a pairwise meta-analysis of the im-

puted data is assumed to be less (or greater) than

that indirectly produced from the original star-

shaped network meta-analysis. This condition is put

in place to run the sensitivity analysis from a conser-

vative point of view, assuming that the artificial dir-

ect estimate is smaller (or larger) than the observed

indirect estimate.

� II: For each contrast, the precision of the pooled

effect size from the pairwise meta-analysis of the im-

puted data is the same as the precision of the effect

size indirectly estimated in the original star-shaped

network meta-analysis. This means that the variance

of individually imputed effect sizes will produce

the maximal variance in their pooled effect size,

since it is generally considered that indirectly esti-

mated effect sizes have greater variance than dir-

ect estimates [30].

� III: For each contrast, the extent of heterogeneity in

the imputed data for the effect size of the contrast is

the same as that of the overall heterogeneity across

contrasts in the star-shaped network. This assump-

tion serves to maintain the level of overall hetero-

geneity in the network after imputation, enabling us

to investigate only the impact of the potential extent

of inconsistency on the results of the sensitivity

analysis.

Assessing the robustness of conclusions from a star-shaped

network meta-analysis through imputation

We illustrated the sensitivity analysis method using the

simplest star-shaped network, which involved RCTs of A

versus B and A versus C. The RCT data, θ̂iAB with dvarð
θ̂iABÞ for i = 1, …, N and θ̂iAC with dvarðθ̂iACÞ for i = 1, …,

M, are given, when N and M are the numbers of RCTs for

A versus B and A versus C, respectively. From the star-

shaped network meta-analysis, we obtained estimates of

the basic parameters, d̂AB and d̂AC , and an estimate of

between-study variation, τ̂2 . The indirectly estimated ef-

fect size between B and C and its variance are d̂AC−d̂AB

and dvarðd̂AC−d̂ABÞ, respectively.
We generated θ̂

�
iBC and dvarðθ̂�iBCÞ, with i = 1, …, l for l

hypothetical RCTs comparing B and C using the imput-

ation strategy described in the above section. The value

of l was determined while calculating dvarðθ̂�iBCÞ. The ef-

fect sizes θ̂
�
1BC ;⋯; θ̂

�
lBC were generated from the follow-

ing distributions:

θ̂
�
iBC � N θ

�
iBC ; dvar θ̂

�
iBC

� �� �
; for i ¼ 1;…; l:

The imputation parameters, θ�1BC , ⋯; θ�lBC , were gener-

ated from a normal distribution, Nðd̂AC−d̂AB þ ωBC ; τ̂
2Þ.

The constant ωBC was defined artificially to represent

the extent of potential inconsistency between the direct (

θ̂
�
BC ) and indirect ( d̂AC−d̂AB ) evidence. Under condition

I, if d̂AC−d̂AB < 0, ωBC should be positive, and if d̂AC−

d̂AB > 0, ωBC should be negative.

The variances dvarðθ̂�1BCÞ ¼ dvarðθ̂�2BCÞ ¼ ⋯ ¼ dvarð
θ̂
�
lBCÞ ¼ l∙dvarðd̂AC−d̂ABÞ−τ̂2 were calculated to satisfy

the given conditions (II, III), and they were set up to be

identical for simplicity (the derivation of this formula

can be found in Additional file 1: Appendix 2). However,
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l was an arbitrarily chosen number, with the restriction

that l∙dvarðd̂AC−d̂ABÞ was larger than τ̂
2:

To account for potential uncertainty in the prediction

of unknown data for the missing comparisons in a star-

shaped network, we used a multiple imputation ap-

proach. From the defined distribution, the complete net-

work data with imputations were generated m times and

each of the m complete networks was analyzed using the

consistency model. The resulting estimate of each par-

ameter with its variance and the estimated probability of

each treatment being the best were obtained by Rubin’s

rules [34, 35], and each treatment was then ranked using

the obtained probabilities. When pooling by Rubin’s

rules [34, 35], the estimate of each parameter is summa-

rized by taking the average over estimates from all im-

puted m complete networks, and its variance is

produced by incorporating both within-imputation and

between-imputation variability.

The above processes were repeated, changing the value

of j ωBC j to increase from zero until the complete net-

work started to have a larger residual deviance value

when the consistency model was applied than when the

inconsistency model was applied, which produced a

range of values for jωBC j that can be considered statisti-

cally acceptable for a synthesis by network meta-analysis

under the consistency assumption. The value of m was

determined as the point where the two residual deviance

curves crossed only once and never again, that is where

the threshold value was stabilized. The proportion of j
ωBC j values that resulted in a consistent ranking of

treatments to that from the original star-shaped network

meta-analysis was presented as a percentage, as an indi-

cator of the sensitivity of the results to the degree of po-

tential inconsistency. A “consistent ranking” meant that

the order of the originally observed ranking was

unchanged.

The sensitivity analysis may be generalized to a star-

shaped network with more than three interventions by

employing ωjk for j = T1, ⋯, Tp − 1 and k = T2, ⋯, Tp (j ≠

k). We demonstrated this case with p = 3, where ωjk for j

¼ T 1;T 2 and k = T2, T3 (j ≠ k) were simultaneously

changed by an identical magnitude from zero in their re-

spective directions.

The developed method was implemented in R software

(version 3.3.3) [36].

Application to datasets

Illustration of the method: smoking cessation dataset

To illustrate how the method can be applied, a dataset

was drawn from a published and well-studied network

meta-analysis [11, 16, 37] comparing four smoking ces-

sation treatments: no intervention (NI), self-help (SH),

individual counseling (IC) and group counseling (GC).

The relative effect was measured by the logarithm of the

odds ratio for successful smoking cessation at 6–12

months. There were 24 RCTs including two three-arm

trials. In the original analyses, both the global model fit

statistics and the inconsistency p-value suggested no

presence of inconsistency (Additional file 2: Table S1).

The reported overall measure of inconsistency, taken as

the variance of inconsistency factor, was 0.61; this value

was smaller than the value of between-study heterogen-

eity (0.78), suggesting an acceptable extent of inconsist-

ency. The posterior distributions of the direct estimates

overlapped with those of the estimates obtained using

indirect evidence for all contrasts [16].

In this exercise, we utilized only the 22 two-arm trials

(Fig. 2a). A network meta-analysis was conducted using

the consistency model to produce estimates of the basic

parameters, dNI, SH, dNI, IC, and dNI, GC, where NI was

the reference treatment. A ranking of the treatments

was determined using the estimated probability for each

treatment to be the best from this model.

We formed a star-shaped network by discarding data

from the four RCTs that compared non-reference

treatments head-to-head (Fig. 2b). For the intended star-

shaped network, we initially performed a network meta-

analysis using the consistency model. We subsequently

applied the proposed method for sensitivity analysis.

From the sensitivity analysis, according to the absolute

extent of inconsistency, jωjk j (j= SH, IC, and k = IC, GC,

j ≠ k), we plotted traces of residual deviances from the

consistency and inconsistency models against the corre-

sponding jωjk j and indicated the point where those two

curves crossed. Estimates of the basic parameters with

their 95% credible intervals (CrIs), the probability that

each treatment was the best for smoking cessation, and

the treatment ranking were also plotted for each value of

jωjk j up to this point. The proportion of jωjk j that re-

sulted in a consistent ranking of treatments to that ob-

tained from the star-shaped network meta-analysis was

presented. To determine the number of imputations, we

started with an imputation number of 100 and increased

it by 100 until a stabilization of threshold was obtained

at 500 imputations (Additional file 3: Figure S1).

Simulation for diverse scenarios

Datasets from a simple star-shaped network of RCTs of

A versus B and A versus C were simulated according to

levels of within- and between-study variability of treat-

ment effect size (i.e., the standard errors of estimates

from the individual trials and the extent of overall

heterogeneity across contrasts) (see Additional file 2:

Table S2). For each dataset, the number of trials for each

contrast was set to be five. The effect sizes for each con-

trast were arbitrarily chosen to be a specified value when
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they were pooled, and to have a specific level of het-

erogeneity that was determined in terms of the I2

statistic. This statistic was used under the assumption

that the effect sizes were normally distributed sample

means. To consider differences in the treatment effect

among the three interventions, the pooled treatment

effect sizes for the comparisons (A versus B and A

versus C) were set at 0.5 and 1 for the effect size of

one alternative treatment relative to the reference

treatment to be half of that of another alternative

treatment relative to the reference treatment. We

then generated individual trial-level effect sizes with

their standard errors to comply with the condition

that the probability for each treatment group being

the best would be 0.66 for C, 0.33 for B, and 0 for A, re-

spectively, while no heterogeneity existed. Starting from

this basic scenario, we modified the level of standard error

by halving it or by multiplying it by
ffiffiffi
2

p
, which corre-

sponds to the impact of doubling the variance while

attempting to increase the scale of heterogeneity to the se-

vere level. The considered values of the I2 statistic were

0% (no heterogeneity), 40% (moderate heterogeneity), and

70% (severe heterogeneity) [38].

This method was applied to each dataset. According

to the absolute extent of inconsistency, represented by j
ωBC j , we plotted traces of residual deviances from the

consistency and inconsistency models, and then indi-

cated the point where those curves crossed. The prob-

ability of each treatment group being the most effective

was plotted for each value of jωBC j up to this point. The

proportion of jωBC j values that resulted in a ranking of

treatments consistent with the original ranking in the

star-shaped network was presented. For each simulated

dataset, we ran the process by applying a sufficiently

large number of imputations (500).

Extension of application: Crohn’s disease dataset

We demonstrated the extended usability of our method

by considering network meta-analyses that are conducted

in contexts where few closed loops are available. From an

original network in a recently published review conducted

to compare the effects of interventions for the mainten-

ance of surgically induced remission in Crohn’s disease

[39], a sub-network consisting of placebo, purine ana-

logues, 5-aminosalicylic acid (5-ASA), adalimumab, and

infliximab was abstracted (see Additional file 3: Figure S2

(a)). The relative effect was measured by the logarithm of

the risk ratio for clinical relapse.

We plotted traces of residual deviances from the

consistency and inconsistency models according to jωjk j
(j = placebo, k = adalimumab, infliximab, and j = 5 −

ASA, k = infliximab), with an indication of the point

where those two curves crossed. Since purine analogues

were most frequently connected with other alternative

treatments in the network, we chose them as the refer-

ence treatment. The estimates of the basic parameters

and the probability to be the best treatment for redu-

cing relapse were also plotted for each value of jωjk j
up to this point. The proportion of jωjk j values that

resulted in a consistent ranking of treatments com-

pared to that obtained from the star-shaped network

meta-analysis was presented. Since the example data-

set contained two three arm trials, we used the

shared parameter model [31] to incorporate both the

arm-level and the trial-level data into the analysis.

We set the number of imputations to 500.

Results of application
Smoking cessation dataset

When the consistency model was applied to the

complete network, the resulting values for d̂
c

NI;SH , d̂
c

NI ;IC

Fig. 2 a A graphical representation of the evidence network for four smoking cessation counseling programs. b A graphical representation of the

derived star-shaped network by eliminating four trials corresponding to direct comparisons among self-help, individual counseling, and group

counseling. Each node represents an intervention, and a line between two nodes reflects one or more randomized controlled trials (RCTs). The

numbers on each solid line connecting two interventions correspond to the number of RCTs comparing those interventions
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and d̂
c

NI ;GC were 0.43 (95% CrI, − 0.38 to 1.25), 0.73 (0.26

to 1.20), and 1.38 (0.25 to 2.5), respectively, and the best

treatment for smoking cessation was GC, followed by IC,

SH, and NI (Additional file 2: Table S3). The star-shaped

network formed by discarding the head-to-head contrast

data produced d̂
s

NI ;SH , d̂
s

NI;IC , and d̂
s

NI;GC values of 0.33

(− 0.73 to 1.39), 0.72 (0.19 to 1.25), and 3.52 (0.12 to

6.93), respectively, with the same order of ranking. How-

ever, the estimate, d̂
s

NI ;GC , which was obtained only from

direct evidence, was more exaggerated than d̂
c

NI;GC , and

the probability of GC being the best intervention for

smoking cessation became even higher.

The range of jωjk j for statistically acceptable inconsist-

ency was approximately from zero to 1.05 (Fig. 3), the

upper threshold of which is a value in the middle of the

half widths, 1.06, 0.53, 3.41, of the above intervals of

d̂
s

NI;SH , d̂
s

NI;IC , and d̂
s

NI;GC . As jωjk j increased, the esti-

mate of dNI, SH increased and the estimate of dNI, GC de-

creased (Fig. 4). The estimates of basic parameters

became closer to each other, and the exaggerated prob-

ability of GC being the best intervention decreased to a

level similar to the findings obtained from the original

complete network (Fig. 5a), and the order of the ranking

then changed (Fig. 5b). The proportion of jωjk j values

that produced a treatment ranking consistent with that

from the star-shaped network meta-analysis was ap-

proximately 67%.

Simulated datasets

For a given effect size, a star-shaped network with a

greater level of between-study (or within-study) variabil-

ity, when the level of within-study (or between-study)

variability was fixed, produced a larger threshold of jωAB

j at which the residual deviance curves from the two

models intersected (Additional file 3: Figure S3). The

threshold showed that a greater extent of uncertainty

present in an evidence network allowed a higher level of

actual inconsistency to be acceptable. Within the range

extending up to the threshold, the proportion of jωABj
values that produced a consistent ranking of the treat-

ments with the original ranking was smaller (Fig. 6). A

small proportion indicates that the conclusions from the

complete networks, simulated under assumption that

there was no inconsistency, could have a great possibility

of differing from the conclusions of the original star-

shaped network.

In the network with the basic scenario, the proportion

of jωBC j values that produced a treatment ranking con-

sistent with that from the star-shaped network meta-

analysis was approximately 69% (Fig. 6d). In the absence

of heterogeneity, when only the standard error was

modified by halving it or to double the variance, the

proportion increased to 100% and decreased to 48%, re-

spectively (Fig. 6a and g). While keeping the level of

standard error, as I2 increased to 40% and then to 70%,

the proportion decreased to 65 and 42%, respectively

(Fig. 6e and f).

Crohn’s disease dataset

The range of jωjk j for statistically acceptable inconsist-

ency was zero to approximately 1.7 (see Additional file 3:

Figure S2 (b)), where the obtained maximum value was

located roughly in the middle of the half widths of the

originally estimated 95% CrIs of the four basic parame-

ters. As jωjk j increased, the estimates of basic parame-

ters became closer to each other, but none were

reversed in ranking (Additional file 3: Figure S2 (c)). The

proportion of jωjk j values that produced a treatment

ranking consistent with that from the original network

meta-analysis was then 100% (Additional file 3: Figure

S2 (d)). This can therefore strengthen confidence in the

results from the original network meta-analysis.

Discussion
In practice, we occasionally come across a situation

where health technologies of interest have never been

compared against each other, but it is still necessary to

assess their comparative effectiveness based only on a

star-shaped network meta-analysis under the unverifi-

able consistency assumption. We have developed a

method for sensitivity analysis that accounts for an un-

known degree of inconsistency by imputing data for all

missing pairwise comparisons in a star-shaped network.

We established the imputation strategy based on the

following rationale. If the effect size for each contrast es-

timated from the original star-shaped network is positive

(or negative), the pooled effect size from a pairwise

meta-analysis of the imputed data is less (or greater)

than that. We set up this condition to run the sensitivity

analysis from a conservative perspective, as the observed

treatment difference (from indirect information only)

should be considered biased if the true difference is

closer to the null or if the direction of the effect may be

different. In reality, the true difference might be one that

even strengthens the existing conclusion, but we did not

deal with such cases, since they would then not be a

cause for concern and therefore beyond our scope. We

also assumed that the precision of the pooled effect size

obtained from the pairwise meta-analysis of the imputed

data would be equal to the precision of the effect size

obtained indirectly from the original star-shaped net-

work meta-analysis. This equality implies that the vari-

ance of individually imputed effect sizes will produce the

maximal variance of their pooled effect size. This could

be considered as the most conservative case. If some
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information is available on the precision of the unknown

direct estimate, regarding how relatively small it could

be, it is possible to take that information into account in

the equation of dvarðθ̂�iBCÞ to the variance of indirectly

obtained estimate as a proportion.

We established the extent of heterogeneity in the im-

puted effect sizes necessary for each missing contrast to

have the same level as the overall heterogeneity in the

original star-shaped network. Unless the numbers of

studies within contrasts are sufficiently large, it may be

hard to estimate the overall heterogeneity, and any exist-

ing heterogeneity could be dramatically exaggerated. To

take such cases into account, our simulation study con-

sidered a condition with severe heterogeneity. Further-

more, in practice, the number of included studies in a

network meta-analysis is often insufficient to precisely

estimate the heterogeneity variance. In that case, we may

consider informative priors for heterogeneity variance to

incorporate some external evidence into the network

meta-analysis model [40, 41] in our method as an at-

tempt to overcome this problem.

In this method, for a star-shaped network consisting

of one common comparator and p alternative treat-

ments, we imputed data for p(p − 1)/2 missing contrasts.

If p is 2, 3, 4, or 5, the number of contrasts for data im-

putation would be 1, 3, 6, or 10, respectively. When p ≥

4, the number of missing contrasts becomes larger than

the number of connected contrasts, meaning that the

proportion of unknown information is high. Therefore,

for a star-shaped network where p ≥ 4, it may not be

Fig. 3 Residual deviances by model type (y-axis) against the absolute extent of inconsistency (x-axis). The solid line and dashed line indicate the

consistency model and inconsistency model, respectively. A vertical line marks the point at which the two lines cross, and the value of that point

on the x-axis is shown
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recommended to apply this method because data imput-

ation may inordinately neutralize the evidence contained

in the star-shaped network. When the proportion of

missing contrasts is relatively small in a network involv-

ing more than 4 alternative treatments, but including

few head-to-head comparisons, our suggested method

can be used, and we presented the extended usability of

this method through the example using a Crohn’s dis-

ease dataset.

Since the unit of imputed data in a network meta-

analysis is a trial, the proportion of missing information

is usually higher than that in ordinary applications.

Therefore, a large number of imputations are required

to stabilize the results of the sensitivity analysis through

a multiple imputation strategy [34, 35]. In another ex-

ample of meta-regression, the number of imputations

was increased to 100 [42]. In our approach, stabilization

was defined as occurring once the residual deviance

curves of two models crossed and never overlapped

again. The number of imputed complete networks, m,

should be determined during the analysis depending on

the data. For the smoking cessation example, the ex-

ploratory results by different numbers of imputations

(m = 100, 200, 300, 400 and 500) in Additional file 3:

Figure S1 suggest that 500 was sufficient. We also ex-

plored the number with several simulated datasets to

confirm that repeating imputations 500 times is suffi-

cient to achieve stabilization. Some exploratory residual

deviance plots demonstrate that a much smaller number,

such as 100, may be enough (Additional file 3: Figure

S4). However, we recommend just applying a large num-

ber, such as 500, rather than running the exploration

process for choosing the number of imputations per

dataset, which would save much greater computational

intensity.

The imputed data consisted of study-level treatment

effect sizes ( θ̂
�
ijk ) and their variances ( dvarðθ̂�ijkÞ ). We

established the assumption that the variances of the ef-

fect sizes for each contrast would be identical. According

to the conditions described in the “Imputation strategy”

section, the variances were calculated so that, for each

contrast, the variance of the pooled effect size of the im-

puted data would be the same as that of the indirectly

estimated effect size from the original star-shaped net-

work meta-analysis. Since it is the precision of pooled

estimate of the imputed effect sizes that contributes to

estimation of basic parameters in the resulting network

meta-analysis after imputation, any combination of

Fig. 4 Interval plot of estimates of basic parameters against the extent of inconsistency (x-axis) within the obtained range. The black square, gray

circle, and dim gray triangle symbols indicate the estimated treatment effect sizes for self-help, individual counseling, and group counseling

compared to no intervention, with the vertical lines extending from the symbols representing 95% credible intervals
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values for the individual variances is acceptable as long

as the overall precision is satisfying the condition. In the

same context, for each contrast, we allowed the number

of trials (l) to be arbitrarily chosen under the restriction

that l∙dvarðd̂Ak−d̂AjÞ (j ≠ k ≠A) is larger than τ̂
2: A trade-

off exists between l and 1=dvarðθ̂ijkÞ.
Methods of testing the consistency assumption are dis-

tinguished by how to treat inconsistency. The Bucher

method [15], the back-calculation method, and the

node-splitting method [16] are local test methods that

evaluate the inconsistency of each contrast that consti-

tutes a network. Global test methods assess the compre-

hensive inconsistency of the network based on

modeling. The types of models used for testing include a

random-inconsistency Bayesian model [11], a design-by-

treatment interaction model [17], and an inconsistency

model with unrelated mean relative effects [13]. For our

Fig. 5 a Probability that each treatment is the best for smoking cessation against the extent of inconsistency within the obtained range. b

Ranking of each treatment for successful smoking cessation against the extent of inconsistency within the obtained range. The gray dotted, gray

solid, black solid, and black dotted lines indicate the probabilities and rankings corresponding to no intervention, self-help, individual counseling,

and group counseling, respectively. A vertical line marks the point at which some lines cross, and the percentages in the dark gray and dim gray

boxes represent the proportions of jωjk j that resulted in a consistent ranking and an inconsistent ranking of treatments relative to the original

ranking, respectively
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method, we tried to assess the overall inconsistency in

the network according to the magnitude of potential

inconsistency, for which a global testing approach was

appropriate. Our sensitivity analysis was based on the

idea of data imputation for missing contrasts in a star-

shaped network, which requires limiting the number of

loops to be closed. We therefore adopted an inconsist-

ency model with unrelated mean relative effects, rather

than a model estimating inconsistency factors, which is

not recommended unless the number of closed loops is

sufficiently large [13].

In the smoking cessation example, we showed that the

sensitivity analysis may successfully simulate some

expected results from an unknown complete network. In

the full network, including all 24 RCTs, the estimated

absolute extent of inconsistency for the contrasts ranged

from 0.17 to 1.7 [16]. In our sensitivity analysis, the

maximum obtained value assumed to be common for all

contrasts was 1.05, a value in the middle of the above

range. Regarding the robustness of the results of the

star-shaped network, we could conclude that in 33% of

the sensitivity analyses undertaken with statistically ac-

ceptable inconsistency, the resulting treatment ranking

would be inconsistent with the ranking from the star-

shaped network. These results suggest that a star-shaped

network meta-analysis should be interpreted with

100%

(a) (b) (c)

(d) (e) (f)

(j) (h) (i)

100% 88% 12%

69% 31% 65% 35% 42% 58%

48% 52%
43% 57% 37% 63%

Fig. 6 Probability of each group being the best (y-axis) against the extent of inconsistency, jωBC j (x-axis), within the obtained range for each data

set. a when I2 is 0% and the standard error is 1, b when I2 is 40% and the standard error is 1, c when I2 is 70% and the standard error is 1, d

when I2 is 0% and the standard error is 2, and e when I2 is 40% and the standard error is 2, f when I2 is 70% and the standard error is 2, g when

I2 is 0% and the standard error is 2
ffiffiffi
2

p
, h when I2 is 40% and the standard error is 2

ffiffiffi
2

p
, and i when I2 is 70% and the standard error is 2

ffiffiffi
2

p
. The

black dotted, gray solid, and black solid lines indicate the probability corresponding to groups a, b, and c, respectively. A vertical line marks the

point at which some lines cross, and the percentages in the dark gray and dim gray boxes represent the proportions of jωBC j that resulted in a

consistent ranking and an inconsistent ranking of treatments relative to the original ranking, respectively
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caution unless the obtained treatment ranking is shown

to be robust to uncertainty of the unverifiable

consistency assumption.

In the application to simulated datasets, we demon-

strated the sensitivity of the results after data imputation

against the synthesis results from a given star-shaped

network with different levels of within- and between-

study variability. In a network meta-analysis, both incon-

sistency and heterogeneity can be caused by some com-

mon sources, such as differences in some effect

modifiers, which are closely related to each other [13].

For this reason, performing a star-shaped network meta-

analysis using a consistency model may be considered

more valid when a lower level of heterogeneity within

the network is present.

When we considered a star-shaped network with more

than three interventions, we assumed that ωjk for j = T2,

⋯, Tp − 1 and k = T3, ⋯, Tp (j ≠ k) would be simultan-

eously changed by an identical magnitude from 0 in

their respective directions. However, it is also possible to

assign different levels of inconsistency if there is an ap-

propriate rationale for doing so. For example, in the full

known complete network of the smoking cessation

meta-analysis, there was a contrast for which the incon-

sistency estimate was observed to be somewhat larger

than others, although no statistically significant incon-

sistency was found overall. If prior information was

available on the diversity of the extent of inconsistency

for the contrasts, taking such considerations into ac-

count may point to ways to further refine how to under-

take a sensitivity analysis.

Some limitations of this study motivate further research.

First, the estimated variance of each individual trial was

treated as if it were the true variance in the network meta-

analysis models in our approach. However, the variances

themselves are given in the form of estimates, and it there-

fore might be necessary to consider uncertainty in the

variances [43, 44]. A further investigation to introduce a

probability distribution for the estimated variances would

be worthwhile. Second, we used a point estimate of

heterogeneity from a star-shaped network meta-analysis

for the data imputation process. However, further research

may consider generating the estimate of heterogeneity

from its posterior distribution. Third, we built up a

method that can be applied to a general form of compara-

tive measure that follows at least asymptotic normality.

This assumes using a log transformation for a ratio type of

measure, such as log odds ratios or log relative risks, when

a binary outcome was considered. However, since there is

a correlation between log odds ratios (or log risk ratios)

and their estimated variances, there could be an issue on

pooling the estimates by the inverse variance weight

method. An arm-specific data imputation strategy with

arm-based modeling that accounts for specific types of

outcome measures could also be considered for an elabor-

ation of our method.

We defined consistency in the ranking as an un-

changed order of the originally observed ranking. How-

ever, a change of ranking may not necessarily be

interpreted as indicating an inconsistency in the results,

depending on the probability difference based on which

the order was obtained. Although the observed ranks

were switched between treatments, their associated

probabilities of being the best treatment might not be

considered significantly different, as we observed from

the overlapping distributions of probabilities in Add-

itional file 3: Figure S5 for the smoking cessation ex-

ample. However, it is a convention that authors report

treatment rankings based only on the order of probabil-

ities, and we tried to demonstrate how likely it was for

the originally obtained conclusion from a star-shaped

network to remain robust in terms of the order of rank-

ings that authors would report.

An approach known as ‘threshold analysis’, based on a

similar conceptual framework of sensitivity analysis to

assess confidence in recommendations obtained from

network meta-analyses, has been proposed in the litera-

ture [45–47]. Threshold analysis derives a set of thresh-

olds that describe how much each data point from a

study or contrast could change before the recommenda-

tion changes. This method could also be applied to a

star-shaped network, such as the example created from

the smoking cessation meta-analysis. Figure S6 in Add-

itional file 3 presents results from the threshold analysis

for the star-shaped network at the contrast level. If the

invariant interval is within the 95% credible interval of

the effect size for each contrast from a base-case star-

shaped network meta-analysis in this context, it is inter-

preted that the optimal treatment recommendation

could change. The result suggests some possibility of IC

being optimal, instead of GC. Since only one study was

available in the analysis in which GC was compared to

NI, a wide credible interval for their relative effects was

produced. As a result, the sensitivity analysis suggests

that some potential change in the effect size estimate

from its currently observed value—even within the range

of the credible interval—could have changed the current

recommendation to the second best option, IC.

In contrast with the results from the threshold analysis

method, our approach suggested that the ranking of GC

as distinctly more effective than other treatments would

remain stable, whereas the rankings of IC and NI may

be switched. Although both approaches utilize sensitivity

analysis, they were designed to incorporate different

concerns: the impact of potential bias in the given direct

data or the impact of potential inconsistency between

observed indirect evidence and non-existing direct data.
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The discrepancy in the results may stem from the fact

that these approaches focus on different features.

Where individual patient data (IPD) are available for

at least one of the trials included in a star-shaped net-

work meta-analysis, methods for population-adjusted in-

direct comparisons, such as the matching-adjusted

indirect comparison and the simulated indirect compari-

son, could be applied with improving balance in patient

characteristics between the trials [48–50]. These

population adjustment methods apply both to anchored

comparisons and unanchored comparisons without a

common comparator [51]. If there is a lack of overlap

between IPD and aggregate data populations, it is neces-

sary to assess the robustness of the comparisons because

these methods may produce biased estimates, and our

proposed method of sensitivity analysis will be a useful

tool. Furthermore, when no IPD are accessible and if it

is determined that the studies are highly exchangeable,

researchers may just attempt to integrate data through a

network meta-analysis using a consistency model. Our

proposed method could serve as an alternative approach

to assess the reliability of results from a star-shaped

network before making a conclusion relying on those

results.

Conclusions
Our method will serve as a practical technique to inves-

tigate the reliability of results from star-shaped network

meta-analyses under the unverifiable consistency as-

sumption, and therefore will help to assess evidence for

use in unbiased clinical decision-making.
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