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Abstract

The availability of newly emerging forms of data in recent years has provided new
opportunities to study spatial intrapersonal variability, namely the variability in an
individual’s destination and route choices from day to day. As well as providing
insights into traveller needs, preferences and adaptive capacity, spatial intrapersonal
variability can also inform the development of user classes for models of network
disruption and for measuring behaviour change to evaluate the impact of network
changes. This paper proposes a methodology for measuring spatial intrapersonal
variability using point-to-point sensor data such as Bluetooth or number plate data.
The method is innovative in accounting for sensor specific probabilities of detecting a
passing device or vehicle and in providing a single measure for each traveller which
considers destination and route choice variability and both the quantity of different
trajectories utilised as well as the intensity with which they are used. A data science
method is also presented for examining relationships between different trajectories
observed in the network based on whether they are typically made by the same
travellers. A case study using 12 months of real-world data is presented. The example
provided demonstrates that a substantial amount of data processing is required, but the
outputs of the methods are easily interpretable. Perhaps surprisingly, the analysis
showed that the trips people made on weekdays were more evenly spread across a
range of different trajectories than the trips they made during the weekend which were
more concentrated into a few spatially similar clusters.
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1 Introduction

The availability of newly emerging forms of data in recent years has provided new
opportunities to study spatial intrapersonal variability, namely the variability in an
individual’s behaviour from day to day in terms of destination and route choices. These
types of insight into an individual’s behaviour are important for three reasons. Firstly,
by understanding spatial variability we gain insights into the needs, knowledge and
behaviour of users. As well as providing background knowledge for decision makers, it
can also be used in the development of transport model user classes based on attitude to
risk (Shao et al. 2006) or information availability (Han et al. 2018), for example.
Another application could be the design of transport policies involving spatial bound-
aries such as fare zones or congestion charging zones. Secondly, spatial intrapersonal
variability provides insights into individuals’ knowledge of the network which plays a
role in determining traveller behaviour during transport disruptions (Papangelis et al.
2016, p.63). Measures of spatial regularity and/or variability could therefore be used to
assess the adaptive capacity of network users (Wang 2015) and to inform models of
traveller response to network disruptions. Thirdly, measures of spatial intrapersonal
variability provide insights into the predictability of traveller behaviour and thus could
inform the parameter values for day-to-day dynamical models which include learning
mechanisms, for example the “switching choice probability” (Cantarella and Cascetta
1995) which relates to travellers reconsidering, but not necessarily changing, their
previous route choice.

Previous research on spatial intrapersonal variability has mostly focused on the
extent of travel or variability in the locations visited or routes taken. The extent of an
individual’s travel over a period of time can be represented by an activity space.
Activity spaces can take different forms based on the method used to generate them
which could include Daily Path Areas (Hirsch et al. 2016), confidence ellipses, a kernel
density approach or shortest path networks (Schonfelder and Axhausen 2003). The size
of individuals’ activity spaces can then be compared or the characteristics of the activity
spaces can be measured using built environment variables such as density of destina-
tions, green space, land use or transportation facilities (van Heeswijck et al. 2015). The
data used in this type of research often comes from travel diaries (Dijst 1999; Susilo
and Kitamura 2005; Schonfelder and Axhausen 2003), although emerging forms of
data such as mobile phone data (Jarv et al. 2014) and GPS surveys (Hirsch et al. 2016)
have also been used.

Activity spaces do not generally consider the intensity of travel within the space,
although a few researchers such as Jarv et al. (2014) have created separate activity
spaces for daily and less frequent activities. Accounting for the intensity of travel within
an activity space is essential for understanding intrapersonal variability, as it provides
insights into how well the traveller knows that part of the network and the predictability
of their travel from day to day.

A separate branch of the literature on spatial intrapersonal variability focuses on the
origins and destinations of trips only and uses a more statistical than geographical
approach. Often this type of analysis has been applied to travel diary data
(Muthyalagari et al. 2001; Schlich et al. 2004) or smartcard data (Kieu et al. 2015;
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Goulet-Langlois et al. 2016). The focus on locations visited has also been used with
other types of data to simplify the spatial data, such as number plate data (Chen et al.
2017) and mobile phone data (Masso et al. 2019). Measures of variability include
distance travelled (Muthyalagari et al. 2001), number of locations visited (Masso et al.
2019), number of different OD pairs (Chen et al. 2017), share of destinations within a
given distance from home and number of ‘new’ destinations visited per day (Schlich
et al. 2004). Buliung et al. (2008) define a spatial repetition index which divides the
number of activities undertaken at repeated locations by the total number of activities
undertaken by an individual traveller.

Intrapersonal variability in route choice has typically been undertaken on smartcard
data (Kurauchi et al. 2014; Kim et al. 2017), although some small GPS surveys have
also been undertaken to examine the degree of habit in route choices of road users
(Vacca et al. 2019). Route choice variability is usually calculated separately for each
OD pair, which is useful for understanding service choices through a public transport
network at an aggregate level but it does not generate a single measure for each traveller
which could provide insights for a road network manager, for example.

To understand the entirety of a traveller’s spatial intrapersonal variability, it is
necessary to consider both the locations visited and the routes taken. Only a few
papers have considered both aspects. Shen et al. (2013) considered both location and
route choice intrapersonal variability in commuting trips using a seven day GPS survey.
They used a binary representation of these two types of variability and also for temporal
and modal variability to produce seven commuter types. Crawford et al. (2018)
proposed a methodology for identifying road user types based on trip frequency, spatial
and temporal variability. The spatial aspect was measured by identifying clusters of
‘spatially similar’ trips based on detections at fixed Bluetooth sensors. Two measures of
spatial intrapersonal variability were used: the number of clusters used by a traveller in
the given period of time and the percentage of a traveller’s trips in their most commonly
used cluster.

For all of these approaches, newly emerging sources of data are providing new
opportunities to gain better insights into intrapersonal variability. The current research
is timely due to two separate impacts of developments in Information and Communi-
cation Technologies (ICT). The first impact is the emergence of new passively collect-
ed data sources relating to mobility, including the mobile phone and Bluetooth data
mentioned above. Studies such as Jarv et al. (2014) which used a whole year of data for
a large sample of people from a city would not have been feasible previously. The
second impact of ICT has been on travel itself. More people can now work, at least
occasionally, remotely (Felstead 2012) and freely accessible real-time information
plays a role in route choice. ICT is also enabling new mobility services, many of which
operate on an on-demand basis. For such services to be economically viable, it is
crucial that everything from the charging structures to the organisation of vehicles and
staff are designed based on traveller needs, which includes their multiday behaviour.

The current research focuses specifically on road users as very little of the previous
research has focused on this group, despite the large number of travellers and trips
involved. To provide useful insights into traveller behaviour and network knowledge
for network operators it is necessary to examine variability in both ODs and routes.
Previous research typically includes a number of measures of spatial variability but for
ease of interpretation it would be preferable to have a single measure which takes into
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account the range of trips made as well as the intensity with which different trips are
made. The existing literature can be separated into area based and user based analyses
and therefore there is also a gap in terms of a ‘trajectory’ focus (to use the terminology
of Toch et al. (2019)). This research, therefore, will also propose a method to examine
multi-day trip behaviour by measuring the relationships between different possible trip
trajectories based on the overlap in people making those types of trip.

Point-to-point sensor data will be used for this research as it provides detailed spatial
information and many road network managers have access to such data. Types of point-
to-point data which are already widely collected along the road network include
Automatic Number Plate Recognition (ANPR), Bluetooth, and Electronic Toll Collec-
tion (ETC) data. This choice of data will be discussed further in Section 2. A suitable
method for processing point-to-point data and assigning every trip (a sequence of
observations) to a cluster of spatially similar trips has been presented in Crawford
et al. (2018). The current paper utilises the processing steps proposed, but extends the
clustering process to account for detectors which have different probabilities of detect-
ing a passing device or vehicle. Whilst Crawford et al. (2018) used two separate
measures to represent spatial intrapersonal variability, the current paper takes inspira-
tion from the field of ecology to propose a single measure which combines the number
of different trajectories made through the network and the distribution of trips between
those trajectories. Unlike the previous research, the current research also moves beyond
the user perspective by using a technique from data science to provide insights into
repeated trip making in a way which is directly connected to the road network.

The contribution of this paper is to propose a methodology which can be used by
road network managers to gain insights into spatial intrapersonal variability from a
traveller perspective and a network perspective. A single measure is proposed to
represent OD and route choice variability. Association rule mining will also be used
to examine intrapersonal variability in transport for the first time, to the authors’
knowledge.

The structure of the paper will be as follows. Section 2 discusses point-to-point
sensor data in more detail and also raises some issues in relation to Bluetooth data,
which will be used in the case study section. Section 3 outlines existing methods which
form the basis of the proposed methodology. Section 4 presents the methodology
proposed by the authors as a means of gaining new insights into spatial intrapersonal
variability. Section 5 applies the methodology to a real-world case study in northern
England. Section 6 discusses possible applications. Finally, Section 7 describes future
research directions and concludes the paper.

2 Data for Examining Spatial Intrapersonal Variability

Different data sources are more suitable for providing information about particular
kinds of intrapersonal variability. Travel diaries can be useful for examining variations
in ODs as the purpose of travel can also be collected (Huff and Hanson 1986; Schlich
et al. 2004; Bayarma et al. 2007). Newly emerging forms of data typically do not rely
on participant recall and can be collected for longer periods of time and with lower
costs and participant burden than self-completion travel diaries. In the literature, many
travel diaries collect data for 15 days or less (Jones and Clarke 1988; Stopher and
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Zhang 2011; Safi et al. 2015) whilst other diaries cover longer periods of time (between
35 days and 1 year), but have relatively few participants (149 people and 139 and 153
households respectively for Huff and Hanson (1986), Bayarma et al. (2007) and Elango
et al. (2007)). In contrast, passively collected data can be analysed for periods of a year
or more as shown in Jarv et al. (2014) and Crawford et al. (2018).

Telecom companies passively collect data from mobile phones which can be used
for travel behaviour research. Different kinds of data are available including event-
driven data, such as Call Detail Records, and network-driven data, which often has
higher spatial resolution (Wang et al. 2018, p.143) but is far less accessible to
researchers. Mobile phone data is therefore useful for measuring dynamic population
densities (Calabrese et al. 2011) and aggregate level OD matrices for fairly large cell
tower areas. At an individual level, it can be used to analyse individuals’ activity spaces
over twelve month periods or longer (Jarv et al. 2014). A major challenge with data of
this type is accessibility due to data protection regulations and also the costs in
obtaining data from some providers.

Another valuable form of spatial data comes from Global Positioning System (GPS)
devices. GPS data can provide reliable information with good geographical precision,
particularly when effective data processing is undertaken (Schuessler and Axhausen
2009). Whilst GPS data has been used in travel behaviour research, it typically takes
one of two forms. Firstly, many studies have been undertaken which provide a group of
participants with GPS devices to either keep on their person or in their vehicle for the
study period. Many of these studies involved some sort of diary alongside the GPS data
capture and they mostly cover a period of one week or less (for example Ramaekers
et al. (2013), Houston et al. (2014) and Millward et al. (2019)). Secondly, other studies
have utilised passively collected GPS data relating to vehicles used for passenger
transport, particularly buses and taxis (Liu et al. 2015; Shen et al. 2018; Tu et al.
2018). Such data is useful, particularly in terms of travel times, but they only provide
information about a non-representative set of trips and typically only vehicles can be
matched across days, not passengers. Data protection regulations mean that GPS data is
very difficult to obtain for non-commercial vehicles or personal devices, unless devices
are provided to participants for that purpose.

Stock (2018) provides a summary of the use of social media data for examining
locations. Their detachment from transport networks and lack of spatial precision mean
that mobile phone data and social media data can provide better information about
activity spaces, zone attractiveness (Moya-Gomez et al. 2018) and land use (Zhan et al.
2014) than detailed information about spatial intrapersonal variability.

Data is also collected routinely in the operation of transport systems, particularly
when users pay for access. A large proportion of the literature examining spatial
intrapersonal variability using empirical data is focused on public transport smartcards
(Kurauchi et al. 2014; Kieu et al. 2015; Kim et al. 2017). The spatial data availability
from such systems varies, with some systems providing boarding and alighting data
and others providing only one of the two (Kurauchi et al. 2014, p.24). Systems such as
the London Underground require travellers to tap in and to tap out of the network, but
they cannot provide data about the exact service or route used, unlike bus services
(Kurauchi et al. 2014, p.26).

This research focuses on point-to-point data, where fixed sensors store unique
identifiers of passing people or vehicles so that observations from different sites can
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be connected. Types of point-to-point data include Automatic Number Plate Recogni-
tion (ANPR), Bluetooth and Electronic Toll Collection (ETC) data. Future examples
could include data from vehicle to infrastructure communications. Point-to-point sensor
data has the advantage that large quantities of data can and are being collected in this
form around the world and perhaps more importantly, they are being collected by
transportation practitioners directly. This means that we generally have greater levels of
control over the data collection and the processing undertaken than for other sources of
data. Point-to-point sensor data also has good geographic precision with a close
network connection and the fixed nature of the sensors means that comparable data
can be collected for different users and/or different days or even months. As with many
of the emerging sources of data, this is a passively collected source of data which has
minimal burden on the public and does not rely on participant recall.

2.1 Point-to-Point Sensor Data

Point-to-point data has been used by researchers for many years in the form of
manually collected number plate surveys (Watling et al. 2012), but technological
advances mean that data can now be collected in bulk and new forms of point-to-
point sensor data have emerged. Automated Number Plate Recognition (ANPR)
systems are now available which can ‘read’ number plates from roadside cameras
and therefore data can be collected over longer periods of time and at more locations.
ANPR data has been used to measure trip frequency, time of day intrapersonal
variability and OD variability (Chen et al. 2017; McLeod et al. 2017). Bluetooth and
WiFi capabilities are now in a multitude of personal device and in-vehicle systems. By
setting up detectors to constantly scan for nearby devices, Bluetooth-enabled and/or
WiFi-enabled devices can be identified and data on movements through space can be
recorded (Versichele et al. 2012; Traunmueller et al. 2018). Electronic Toll Collection
systems can also provide insights into when and where users travel (Kim et al. 2014;
Tam and Lam 2008).

There are also similarities with smartcard data, although in that case the detection
points are at the entry and exit points to an underground network, for example, or the
boarding points for bus services. The detection locations, therefore, are not determined
by data collection requirements alone. Also, the number of detections made during a
trip are much lower and could include just one observation (for example boarding a
bus), two observations (entering and exiting a subway system) or more if the traveller
interchanges many times. The type of methods described above relating to OD data are
generally better suited to this sort of data than the methodology presented below, unless
lots of interchange data is available.

As discussed in Crawford et al. (2018), despite the advantages there are also
challenges in using point-to-point sensor data for examining spatial intrapersonal
variability. Point-to-point sensors typically only record the unique identifier associated
with a passing traveller, vehicle or device together with the timestamp of the detection.
This type of data, therefore, does not include trip purpose information. This information
is not necessary for the uses outlined for this research, including the analysis of familiar
routes and the measurement of the impact of interventions. It does mean, however, that
personal travel cannot be separated from business travel, which may mean that the
results are not directly comparable with analyses using travel diary data, which in
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England typically only records personal travel. By undertaking research containing all
motorised vehicles on the road, including buses and taxis, the current analysis could
provide valuable insights for road network managers.

Also, the data does not include origin or destination information, either in terms of
the location or the time. We cannot, therefore, measure or even estimate an individual’s
departure time. What the data can tell us, however, is the regularity at which a device
passes a particular location. The reason for any variability could be differences in
departure time and/or differences in traffic conditions encountered prior to passing the
detector. Despite initially appearing problematic, this may be beneficial from the
viewpoint of local road network managers. Their priorities lie with road users at the
point that they enter their jurisdiction and on critical links within the network. The road
managers can, therefore, design the Bluetooth detector placement to focus on the
relevant parts of trips only. The use of fixed detectors also means that analysts can
examine the variability in the times of day at which a road user passes a fixed point, for
example a pinch point such as a bridge or tunnel or a location related to an intervention
such as a charging cordon.

2.2 Bluetooth Data

This paper will use Bluetooth data in the Case Study presented in Section 5. The data is
from 2015 and therefore more recent problems with re-identifiability of devices due to
technological developments for privacy reasons are not relevant. The proposed meth-
odology is relevant for all types of point-to-point sensor data.

Fixed Bluetooth sensors, also known as detectors, can be placed alongside roads and
then set to continuously scan for any discoverable Bluetooth devices within their
detection zone (see Bhaskar and Chung (2013) for more details). They record the
unique identifier (known as a MAC address) and corresponding timestamp for discov-
erable Bluetooth devices passing close by. The Bluetooth devices could be associated
with the vehicle, for example in-car sound systems or hands-free kits, or with a person
in the vehicle, for example a mobile phone, tablet or laptop. Sensors are installed at
fixed locations and therefore the geographic coverage is defined a priori by the sensor
locations, rather than being determined by the traveller as is the case with GPS or
mobile app data. As the data is passively collected, there are disadvantages, however, as
additional data cannot be requested from participants, such as trip purpose or mode of
travel.

Data from fixed Bluetooth detectors is becoming increasingly popular for measuring
travel times on the road network (Haseman et al. 2010; Hainen et al. 2011; Moghaddam
and Hellinga 2013), particularly in urban areas, and has also been used in OD
estimation (Barceld et al. 2010; Carpenter et al. 2012). Spatial data can also be collected
for individuals over multiple days using Bluetooth sensors (Delafontaine et al. 2012;
Crawford et al. 2018; Traunmueller et al. 2018) as the sensors record device specific
identifiers. Issues relating to Bluetooth data are relatively well known in terms of their
impact on estimating travel times, but their impact on estimates of repeated trip
behaviour has not been examined.

Observations from Bluetooth detectors relate to devices and not to people or
vehicles. For travel time estimation this is taken into account by appropriate data
cleaning to retain only motor vehicle movements and by examining the effects of
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having multiple devices within a single vehicle (for example in Bhaskar et al. (2015)).
For examinations of intrapersonal variability, the fact that it is devices being recorded
needs to be considered when interpreting results.

While in some cases devices are likely to remain close to one person, for example
mobile phones, other types of device may be shared by households or businesses, for
example in-car systems. For repeated trip analyses, having individual level data could
be considered preferable as it would be comparable with personal travel diary data. In
some cases vehicle level data may be more informative, however, for example by
recording what Zhang et al. (2002) call ‘allocated’ household activities, whoever
undertakes them. In other cases vehicle data may be misleading, for example the
widely reported use of Bluetooth within rental cars (for example USA Today
(2015)). Millard et al. (2016) found that only 16% of car rentals are for more than a
week and therefore Bluetooth devices in these cars are likely to demonstrate more
variability over longer periods of time as multiple customers would be associated with
the same unique MAC address. Rental cars are, however, likely to make up a very
small percentage of the Bluetooth sample in most cases.

When estimating travel times, if the Bluetooth penetration rate is sufficiently large,
any bias in the travellers with Bluetooth devices is assumed to have a minimal impact
on the estimates. When examining intrapersonal variability, however, a biased sample
of travellers may have a significant impact on results as aggregation does not occur
prior to analysis. People with personal Bluetooth devices or vehicles with Bluetooth-
enabled features may have higher incomes and lower ages than those who don’t, which
has implications for the representativeness of the data from this source. The number of
car trips per year (as a driver) increases between the ages of 17 and 49 and then falls
with age, according to Department for Transport (2016a), so Bluetooth data may not
provide a representative sample of trip frequency. Minnen et al. (2015) found differ-
ences in day-to-day variability in travel behaviour by age, where people aged 25-45
had lower levels of variability possibly due to a higher number of constraints on their
time, which means that Bluetooth data may also be biased in terms of intrapersonal
variability. Socio-economic classification also has an impact on the number of trips
made by car and the distance travelled (Department for Transport, 2016b). Elango et al.
(2007) found that higher income households have greater variability in travel behav-
iour. In contrast, however, Minnen et al. (2015) found more variability in travel patterns
for unemployed people, compared to employed people, perhaps driven by the differ-
ences in trip types made, although only five days of data were analysed in that research.
In summary, if Bluetooth-enabled devices are more prevalent amongst younger people
and people with higher incomes, then the observed travel patterns may be biased in
terms of frequency and variability and this should be taken into account when design-
ing policies based on the analysis.

Fixed Bluetooth sensors will not detect every discoverable Bluetooth device which
passes through its detection zone. The probability that a discoverable Bluetooth device
will be detected depends on many factors, some of which vary between locations and
some of which vary over time. Detection probabilities can depend upon the speed at
which the Bluetooth device is travelling, the device manufacturer, the number of other
devices in the detection zone, physical barriers, the weather, the location and position of
the sensor (such as the height (Brennan et al., 2010)), and the set-up of the sensor
(Araghi et al., 2014, Michau et al., 2014, Michau et al., 2017, Tsubota and Yoshii,
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2017). Sensor specific detection probabilities have not been taken into account in
previous research looking at intrapersonal variability using Bluetooth data, for example
Crawford et al. (2018).

3 Method Selection

The aim of this paper is to propose a methodology which can be used by road network
managers to gain insights into spatial intrapersonal variability from a traveller perspec-
tive and a network perspective using point-to-point sensor data. There are a number of
different effects which point-to-point sensor data could be used to examine in terms of
spatial variability. One could consider changes over time, within person variability or
relationships between different parts of the network, for example. The current research
considers the latter two points. In the data analysed, we assume that there is no
systematic change in travel behaviour over time and therefore the order in which trips
are observed is not taken into account. Methods which treat the data as panel data could
provide useful insights, but that is not the focus of the current paper.

This section will consider the qualities required in the methods selected and the
different options available. As it should be practical to apply the methodology to large
amounts of Bluetooth data, three types of methods are required:

1. Dimensionality reduction,
2. Calculation of spatial intrapersonal variability from a traveller perspective and
3. Measurement of spatial relationships in the network.

These three processes will now be considered in turn.
3.1 Dimension Reduction

Once point-to-point sensor data has been cleaned, individual observations can be
connected into trip trajectories if the same device is detected at multiple sensors and
the time between observations is consistent with driving between the two locations. A
balance needs to be struck when examining the data between the amount of spatial
information which is retained relative to the complexity and usefulness of outputs. This
is particularly true when analysing very large sets of data for a town or for several
months or years, as each trip in the data will have been observed at at least two sensor
locations. The aim of this process is to reduce the dimensionality of the spatial aspect of
the data.

This research focuses on the concept of “trips” within the Bluetooth data, where a trip
is a sequence of observations of the same Bluetooth-enabled device as it moves within
the network. This provides greater spatial insights than looking at each site where a
particular Bluetooth device was detected independently. Sensors or cameras collecting
point-to-point data are also typically installed for reasons other than examining spatial
variability, for example Bluetooth detectors are used to measure travel times and ANPR
cameras are used for speed limit enforcement and cordon charging. Therefore, whilst
the data is collected on key routes, it is often not collected at ‘interesting’ locations in
terms of predicting the destination activity.
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Dimension reduction could be undertaken by using the first and last sensor where
the device was detected for each trip. This would, however, result in the loss of
information about route choice. With Bluetooth data there is also the issue that a
non-trivial percentage of Bluetooth-enabled devices passing a sensor will not be
detected. This makes the first-last sensor approach less appealing since these are not
necessarily the first and last Bluetooth sensors that were passed on that trip.

A natural solution would be to cluster together similar trips. By using unsupervised
learning, groupings may arise which would not have been identified by applying rules
simply based on Traffic Analysis Zones, for example. The challenge is to determine
what measure of similarity/distance to use to compare two trip trajectories.

One method which has been used successfully for this purpose is Sequence Align-
ment. This method comes from Bioinformatics but it has also been used in the social
sciences (Abbott 1995; Shoval and Isaacson 2007). In transportation research, the
method has been used for the comparison of daily or weekly activity patterns or time
use data (Wilson 1998; Joh et al. 2001, 2002; Dharmowijoyo et al. 2017), though that
application is quite different to the trip trajectory comparison considered in the current
research. For trip trajectories, where reordering is of less importance, the more relevant
literature compares movements using point-to-point sensor data (Delafontaine et al.
2012; Versichele et al. 2012; Crawford et al. 2018) or vehicle traces (Kim and
Mahmassani 2015).

Sequence Alignment takes two sequences of letters or ‘strings’ as an input
and after identifying the optimal alignment between the two strings (which may
involve inserting gaps known as indels into one or both strings), the ‘distance’
or cost associated with the optimal alignment is outputted. In the current
application, the sequences are made up of letters, each of which represents a
Bluetooth detection at the site assigned with that letter.

There are two types of Sequence Alignment techniques - global techniques, which
attempt to match entire sequences, and local techniques, which look for parts of the two
sequences which match. As in Crawford et al. (2018), global alignment will be used in
the current paper as we seek to identify trajectories which are similar in their entirety,
rather than looking for partially overlapping trajectories as in Kim and Mahmassani
(2015). As shown in Fig. 1, this requires the alignment of each letter in both sequences
with either a letter in the other sequence, or an indel. The optimal alignment minimises
the total cost, which is the sum of each of the pairwise costs. The cost associated with
aligning two letters is defined as the on-road distance between the two sensor locations.

The methodology allows trip sequences consisting of differing numbers of obser-
vations to be compared. This is made possible by assigning a special distance or cost to
the alignment between a letter in one sequence and a gap (called an ‘indel’) in the other
sequence. This can occur within a sequence (as in Fig. 1) or at the start or end of a
sequence.

Crawford et al. (2018) used a fixed indel cost, irrespective of the Bluetooth sensor it
is aligned with. They used a cost equal to half of the distance between the two furthest

Sequence 1: A B C - E F
Sequence 2: A B C D E F

Fig. 1 Example trip sequences
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apart sensors in the network. This was considered to be the optimal value as a smaller
indel cost would result in the distance between distant sensors not been fully accounted
for as each of the sensors would instead be matched with an indel as shown in the lower
diagram in Fig. 2. A larger indel cost is not used as it would result in sequences being
disproportionately clustered based on their length rather than their contents.

Once sequence alignment has been used to determine the distance matrix for all trip
sequences in the data, hierarchical clustering can be undertaken to identify the groups
of spatially similar trips.

3.2 Spatial Intrapersonal Variability (Traveller Perspective)

As discussed in Section 1, spatial intrapersonal variability has been examined in a
number of different ways. The requirements for the current research are that a single
measure can be produced for each traveller, the measure should take into account the
number of different categories of trips undertaken (in terms of their spatial qualities
only), and also the distribution of the traveller’s trips between the different categories of
trips.

The requirements are similar to those for analysing multimodal behaviour, although
in this case the categories are the groups of spatially similar trips rather than modes of
transport. Diana and Pirra (2016) discuss a number of suitable methods from different
fields, including measures of entropy, inequality and species diversity. Whilst a number
of these methods may prove suitable for our purposes, this research uses the
Herfindahl-Hirschman Index (HHI). The HHI is often used for examining the market
share of different businesses. It is also known as Simpson’s Diversity Index in ecology,
where it is used to produce measures of species diversity. This measure was selected for
the current paper as it focuses on ‘dominance’, as the market shares (or the proportions
of trips in each spatial cluster in our case) are squared. The HHI has also been used for
other purposes within transportation research, including for mode choice (Heinen and
Chatterjee 2015; Susilo and Axhausen 2014) and public transport route choice (Kim
et al. 2017).

The normalised Herfindahl-Hirschman Index can be calculated as follows:

=S (1)

where M is the total number of businesses, and s; is the market share of business i.

Sequence 1:

Sequence 2: B
Sequence 1: A -
Sequence 2: - B

Fig. 2 Two possible alignments of observations at sites A and B
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3.3 Spatial Relationships (Trajectory Perspective)

The Herfindahl-Hirschman Index provides a measure of the spatial intrapersonal
variability for travellers but alongside this it would be valuable to explore the relation-
ships between the different spatial clusters based on whether they are used by the same
people. This could identify segregation within the network, with different parts of the
network being exclusively used by different groups of people and it could also be used
to examine the extent to which two road network interventions in a city benefit the
same group of people.

By defining activity spaces for each traveller, as in Jarv et al. (2014), it would be
possible to visualise and quantify overlaps in travellers’ activity spaces. As with the
discussion of activity spaces in Section 3.1, however, this would be limited in that it
ignores the direction of travel and it may miss more subtle differences in routes or areas
visited. Instead, this subsection proposes a method known as association rule mining
(Agrawal et al. 1993; Tan et al. 2014, Chapters 6 and 7). This approach is also known
as Market Basket Analysis as it has traditionally been used to provide insights into the
products which are commonly purchased together in shops, for example bread and
butter. It has been used in transportation research to examine relationships between
road traffic crash characteristics (Pande and Abdel-Aty 2009) and to explore which
shops are typically visited by the same customer whilst in the city centre (Yoshimura
et al. 2018). To the authors’ knowledge, it has not previously been used to examine
repeated trip behaviour.

Association rule mining examines which items frequently appear in the same
transaction, 1.e. people ‘purchase’ these items together. Each transaction is a set of
items purchased, with each item represented at most once. The aim is to identify
association rules of the form X — Y, where people who buy the antecedent item set
(X) are also likely to buy the consequent item set (Y). For example, one might find the
following rule in data from an electronics store:

{printer}—{printer cartridge, printer paper}

Here, people buying a printer typically also buy ink and paper for their new printer. It is
a directional relationship as people buying ink and paper together are often not also
buying a printer.

The antecedent and the consequent in an association rule are item sets containing
one or more item. The same item cannot appear in both the antecedent and the
consequent. Whilst rules can be written for all possible item sets, it is only the rules
which demonstrate a strong association between X and Y which are informative. The
three measures shown in eqs. (2) to (4) can be used to assess the strength of the
association rule X — Y. Support measures the proportion of transactions containing
both X and Y, thus helping us to avoid rare cases. Confidence indicates how often Y is
true when X is true. Lift measures the strength of the relationship between X and Y.

o(X and Y)

¢ @)

Support =
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o(Xand Y)

Confidence : 6(X—Y) = () (3)
L 0(X—Y)
Lift = “o(r) (4)

where o(X) is the count of all transactions containing item set X, and N is the total
number of transactions analysed.

Whilst thresholds for support and confidence can be used to identify meaningful
rules, it would be impractical to calculate these measures for all possible association
rules for a large dataset. If we only had four possible items (1,2, 3 and 4), then there
would be 50 possible association rules (see Table 1) and the number of possible rules
increases exponentially with the number of items.

The Apriori Algorithm provides an efficient method for identifying association rules
with support above a given threshold (Agrawal and Srikant 1994). The algorithm
‘prunes’ the item sets used to create rules by identifying in advance which will have
insufficient support. The properties which are utilised are:

1. If an item set I has sufficient support, then every subset of I also has sufficient
support, and

2. If an item set I has insufficient support, then all of its supersets will also have
insufficient support.

The process begins by considering each item separately and calculating the support for
each one. Any items with insufficient support should then be removed. Item sets
containing two items would then be created using only the items with sufficient support
in the previous stage. The support for each of these item sets would then be compared

Table 1 All possible association rules when there are 4 items

{11 — {2} {1} —1{2,3} {1} —1{2,3.4} {241 = {1} {134} — {2}
{11 —{3} {1} — {24} {21 = {1,343 {24 — {3} {2341 = {1}
{11 = {4 {11 —= 3.4} {31 = {1,2.4} 34— {1}

{2} =11} {21 = {13} {4 —{1,2.3} 34} — {2}

{2} =13} {21 = {14 {1.2} = {3} {12} - {34

2} — {4} (21— 3.4 {12} — {4} {13} — (2.4}

31—={1 {31 —=1{1.2} {1,3} — {2} {14 — 2.3}

{3} = {2} 31— {14 {1,3} = {4 {23} = {1.4}

{3} = {4} (31— {24 {14} — {2} {24 — {13

{4 = {1} {4 —{1,2} {14} — {3} {341 —{1,2}

41— 12} {4 = {13} {231 = {1} {1,23} = {4

41— {3} {4 —1{2.3} {237 — {4} {124} — {3}
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against the threshold and any with insufficient support would be removed. The process
would continue until there are no further item sets to combine.

This is more efficient then calculating the support for all item sets. If in the example
above, the set {1} had insufficient support, then all of its supersets could immediately
be discarded, including {1,2}, {1,3}, {1,2,3} etc..

The manner in which these methods can be used to examine spatial intrapersonal
variability will be discussed in the following section.

4 Methodology

To gain insights into spatial intrapersonal variability from point-to-point sensor data,
this paper proposes the methodology presented in Fig. 3.

This section will focus on the three innovative stages in the methodology, namely
the process of identifying clusters of spatially similar trips (Section 4.1), measuring
spatial intrapersonal variability for each traveller (Section 4.2), and exploring relation-
ships between different trajectories within the network based on the people who are
using them (Section 4.3).

4.1 Dimension Reduction

The dimensionality of the data can be reduced by clustering spatially similar trips as
discussed in Section 3.1. The methodology proposed in Crawford et al. (2018) takes
into account the non-zero probability of a Bluetooth-enabled device not being detected
as it passes a sensor but it does not take into account different sensors having higher or
lower probabilities of detecting a passing Bluetooth-enabled device. This can occur

[ Raw data J

Data processing
and linking

N\

Trip data

S—

/

Compute distance matrix
and cluster

Clusters of spatially‘
similar trips

J

Compute normalised

Herfindahl- H|rschman Assooa‘mon rule
Indcx mmmg
Traveller perspective Trajectory perspective
A measure of spatial Association rules
intrapersonal variability connecting trajectories
for each person/vehicle made by the same people

Fig. 3 Overview of proposed methodology for analysing spatial intrapersonal variability
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with Bluetooth detectors due to variations in the height of installation, distance from the
centre of the road and nearby infrastructure. The current paper therefore extends the
methodology by introducing sensor specific indel costs.

An indel cost represents the distance when aligning an observation in one sequence
(for example at Site A) against a gap inserted into the other sequence. A sensible
adjustment would be to lower the indel cost when aligning a sensor with a lower
detection rate against a gap, since there is a higher likelihood that the device did pass
the sensor but was not observed therefore we do not want to excessively penalise a
missed observation.

For example, consider the two link network in Fig. 4. A, B, C and D are Bluetooth
detectors. All vehicles contain one Bluetooth-enabled device and they travel from A to
D. Let us assume that 80% of Bluetooth-enabled devices are detected when passing B
but only 50% of Bluetooth-enabled devices are detected when passing C. A and D
detect all Bluetooth-enabled devices. If 100 vehicles make the trip ABD and 100
vehicles make the trip ACD, then we would expect approximately 130 observations
at either B or C. We would record 80 ABD trips, 50 ACD trips, and 70 AD trips.
Sequence alignment is used in this paper to determine the distance matrix for the
hierarchical clustering of trip sequences. By applying a constant indel cost in the
sequence alignment process, we implicitly assume that the ‘distance’ between trip
sequences AD and ABD and the ‘distance’ between AD and ACD are the same. We
know, however, that this is not the case and that the trips only recorded at AD are more
likely to represent ACD trips, and so the distance between AD and ACD should be
smaller. In this case, the sensor specific indel cost for aligning with sensor C should be
0.625 (50%/80%) times the indel cost for aligning with sensor B.

The current research maintains the upper bound on indel costs proposed in Crawford
et al. (2018), namely half of the shortest path between the two furthest apart sensors.
Sensor specific indel costs can then be calculated relative to this upper bound, with the
sensor with the highest detection rate having an indel cost equal to the upper bound.
The indel cost for sensor A can therefore be calculated using eq. (5).

P(A) " max; i (dist(j, k))

ICy = e (PD) 5 (5)

Where P(i) is the probability of a Bluetooth-enabled device being detected at sensor i
and dist(j, k) is the shortest distance by road between sensors j and .

Fig. 4 Two link example
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Whilst the calculation of the sensor specific indel costs is very straightforward,
estimating the probability of detecting a Bluetooth device at each sensor is more
challenging. In the case study below, sets of three Bluetooth detectors on one link
are used to estimate the relationship between the number of detections per lane and the
detection rate. Other options include undertaking experiments to directly measure the
detection rates at each sensor location or utilising co-located Bluetooth sensors and
loop detectors to estimate each sensor’s detection rate.

4.2 Spatial Intrapersonal Variability (Traveller Perspective)

The spatial clusters create a more manageable number of categories for calculating the
Herfindahl-Hirschman Index (HHI). The HHI can be used to measure the diversity of
trips made by each traveller. The normalised HHI shown in (1) can be calculated
separately for each traveller, using the total number of spatial clusters (M) and the
proportion of the traveller’s trips in each cluster (s;).

The normalised version of the index is used in this research as it results in a value
between zero and one, which makes interpretation easier. A normalised HHI of zero for
a traveller represents an equal number of trips in all spatial clusters and a value of one
represents all trips in one spatial cluster.

As well as calculating the HHI using all trips made by the traveller to produce a
single measure of spatial diversity, the HHI can also be applied to subsets of trips made
by each traveller to allow intrapersonal comparisons. In this paper, the spatial diversity
of trips made on weekdays is compared against the spatial diversity of trips made on
weekend days for each traveller separately. The same approach is used to compare the
spatial variability in trips made in the summer of 2015 against those made in the
autumn of 2015, again for each traveller separately.

4.3 Spatial Relationships (Trajectory Perspective)

After undertaking the spatial clustering, association rule mining can be used to explore
which trajectories through the network are typically made by the same travellers. The
‘items’ are trajectories made by the traveller, as represented by the spatial clusters. By
using the spatial clusters, rather than the full trip sequences, we obtain a more manage-
able number of items for examination. Each ‘transaction’ (or ‘basket’) relates to the trips
made by one traveller over the period of the study. The transaction consists of a list of the
spatial clusters used by that traveller, with each cluster appearing at most once.

As each item, or spatial cluster in our case, can appear at most once in a transaction,
this method does not distinguish between frequent and less frequent trips. In the current
paper, therefore, only spatial clusters used on a regular basis were included in the
transactions. Regular was defined as at least once per month on average.

The method also only considers the spatial aspects of trips; the timing of trips, in
terms of time of day, time of year or the order of trips, is ignored.

4.4 Applying the Methods

The current research utilised the open source statistical software R (R Core Team 2019)
for all of the data processing and analysis. A small, anonymised dataset and code to

@ Springer



Analysing Spatial Intrapersonal Variability of Road Users Using... 389

perform the three methods described above are available here: https://github.com/
ficrawford/Spatial-intrapersonal-variability-using-Bluetooth-data. It should be noted
that data cleaning and processing is far more labour intensive and has a much longer
run time than the analysis itself.

The data structure required in R for the analysis is shown in Fig. 5. All of the
methods can be applied using other tools but different data structures may be required.
Point-to-point sensor data is typically obtained in separate files for each sensor or
camera — these are denoted by Site A, B and C below. Each observation will include a
unique identifier, denoted by ‘MAC’ here, and a date-time stamp. The following data
processing steps are then required:

1. Basic data cleaning and processing. This will depend on the type of data obtained,
but for Bluetooth data it will typically involve retaining only one observation when
a device passes the sensor, then matching up observations across sites to get trip
sequences. Trip sequences are the set of sensors at which the device was detected
whilst making one trip. The timestamps are crucial for this step as they enable the
splitting of different trips within a day where the time between observations is
outside of the expected range for travel by car or van between the two sensor
locations at that time. In preparation for the sequence alignment process, each trip
should be one row in the dataframe and the sensor names should be listed, using a
new variable for each observation. This is not an efficient way to store the data, but
it is required for the upcoming steps.

2. The unique trip sequences observed should then be collated, along with the number
of times each trip sequence was observed in the data (all travellers combined). Trip
sequences observed very few times can be removed from the analysis at this stage
to reduce computation times.

3. Weighted cluster analysis is then undertaken using Ward’s method and sequence
alignment is used to compute the distance matrix (TraMineR package (Gabadinho

E I e
Site A

MAC_01 01-01-2018 08:38:11 MAC_01

———)

MAC_01 02-01-2018 08:09:53 MAC_02 A c

MAC_01 01-01-2018 08:43:21 2
MAC_01 01-01-2018 08:43:26

requency
A C 12

MAC_01 _3 . . =
MAC_01 B A c X3
MAC_02 A C X1
5 6
m__m (MAC ousters |
MAC_01 MAC_01 X1, X3, X7, X8

MAC_02 X1, X2, X3

MAC_02 17 21 2
MAC_03 X3, X4, X5, X6, X7

MAC_03 0 0 36

Fig. 5 Data structure used in R
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et al. 2011a)). The as.clustrange function within the WeightedCluster package
(Studer 2013) can be used to calculate measures to inform the choice of number
of clusters.

4. The trip sequences and their assigned clusters should then be merged back into the
full dataset so that the unique traveller identifiers can be used. The clustering did
not take into account which trips were made by which travellers.

5. Before the HHI calculation can be made, the data must be processed so that each
traveller has one row. For each traveller, the dataframe must record the number of
trips made in each of the spatial clusters.

6. Before the association rule mining can be undertaken, the data must also be
processed so that each traveller has one row. In this case, however, the data should
be transformed into a list which includes the names of the clusters used frequently
by that traveller (with each cluster name appearing at most once).

4.5 Factors Affecting Computational Complexity

As well as the data processing steps discussed in the previous subsection, there are
three main steps in the methodology which require relatively large amounts of pro-
cessing power for large datasets.

Firstly, there is the Sequence Alignment process. As this is used to populate the
distance matrix for clustering spatially similar trips, Sequence Alignment must be
undertaken for every pair of trip sequences. The complexity will therefore increase
with the number of different trip sequences in the data and the pairwise comparisons
will require more time and memory as the average number of Bluetooth sensors passed
during a trip increases. The TraMineR package used in the current paper can undertake
pairwise comparisons on 4318 sequences of average length 16 in 15 s (Gabadinho et al.
2011b, p.25).

Secondly, there is the hierarchical clustering process. This type of clustering is
required in this methodology as we utilise Sequence Alignment to determine distances
between trip sequences. Hierarchical clustering is, however, much slower than other
clustering algorithms such as k-means clustering. To improve efficiency, this paper
calculates the distance matrix based on the different trip sequences observed and then
weighted clustering is used to account for the number of times each trip sequence
occurs in the data. Trip sequences observed rarely were removed prior to calculating the
distance matrix. For a very large number of trip sequences it may be necessary to
explore more efficient methods which have been developed for clustering protein
sequences for example in Loewenstein et al. (2008).

The third complex process is the Apriori Algorithm used in the Association Rule
Mining. Tan et al. (2014, p.346) describe the factors affecting computational complex-
ity. The number of transactions and the average transaction width both have an
influence. In our case, these correspond to the total number of Bluetooth devices
observed ‘regularly’ and the average number of spatial clusters used per person. The
total number of items has an influence, and in our case this is the number of spatially
similar clusters. The support and confidence thresholds selected will also influence the
complexity as lower thresholds will result in less pruning. Each of these factors is
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within the control of the analyst who can adjust the support threshold, the definition of
‘regular’ travellers or, to a lesser extent, the number of spatially similar clusters to
reduce processing times.

5 Case Study

The proposed methodology is applied to real-world data provided by Transport for
Greater Manchester (TfGM). Since 2011, TfGM have been installing fixed Bluetooth
detectors alongside major arterials and orbitals in and around key urban centres in
Greater Manchester such as Manchester, Wigan and Rochdale, for the purpose of
monitoring travel times. Antennae with 9dBi gain are used, which Bhaskar and
Chung (2013) found provided a range of approximately 100 m. TfGM adjust the
strength of detectors on installation to account for the size of the junction. An algorithm
is used to truncate and encrypt MAC addresses prior to storing the data. TfGM
compared Automatic Number Plate Recognition and Bluetooth detection data for one
link over a twelve hour period and calculated hourly penetration rates (of Bluetooth
detectors to vehicles) between 16% and 34%.

The case study is limited to eight Bluetooth detectors in and around Wigan town
centre (Fig. 6). Data was analysed for a one year period from 1/1/2015 to 31/12/2015.
The sensors have all been installed at a similar height although their position relative to
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Fig. 6 Map of case study area including Bluetooth detector locations
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traffic varies, as will be discussed in Section 5.1. A smaller number of sensors has been
used compared with the analysis undertaken in Crawford et al. (2018) so that the results
from the association rule mining can be summarised within the space available in this
paper and the explanations do not require detailed information about trip attractors and
road attributes within different sections of the case study area.

The raw Bluetooth data was processed into trip sequences using the procedures described
in Crawford et al. (2018). If the time difference between successive observations of the same
traveller is not consistent with driving directly between the two locations then the string is
split into separate trips. This decision is made based on the distance between the detectors,
the relevant speed limits, and the travel times of surrounding Bluetooth devices. This
cleaning process, therefore, secks to identify trips made within motorised vehicles only.
Bluetooth data has been used in other research for pedestrian analysis (Delafontaine et al.
2012; Malinovskiy et al. 2012; Versichele et al. 2012) and cyclist travel times (Mei et al.
2012) but the difficulty arises in using Bluetooth to collect data on multiple modes as it is not
usually possible to differentiate between a trip made by car with a stop en-route, and a trip by
a slower mode such as cycling.

5.1 Overview and Dimension Reduction

After cleaning and matching data from the eight sites, 2.3 million trips made by
196,557 devices remained. The current research only examines regular travellers,
which are defined as devices which recorded 52 or more trips within the case study
area during the year. In total, 9564 devices satisfied this criterion and together they
recorded 1.4 million trips. As might be expected, the observations of these regular
travellers are slightly skewed towards the town centre, with 30% of all of the observa-
tions occurring at S4 and 17% at S2.

To apply the methodology proposed in Section 4.1, sensor specific detection
probabilities need to be estimated. For this case study, this is done by examining the
factors affecting detection rates at other Bluetooth detectors in the Greater Manchester
area and then using these relationships to estimate the detection rates for the case study
detectors.

Trios of Bluetooth detectors on the same or adjacent links were identified across
Greater Manchester where the shortest path between the two outer sensors passes the
central sensor. For each trio, the proportion of trips between the outer sensors which
were also detected at the central sensor was calculated. Seven trios in Greater Man-
chester were examined. Most of these locations are not within the case study area, but
they involve the same detector type. All available data from 2015 was examined. For
each location, the detection rate for each direction of travel was estimated.

Five of the seven trios have detection rates of between 81% and 89% when
combining data from both directions. This is consistent with the 80% detection rate
found by Araghi et al. (2014). The other trios have much lower detection rates,
however. The lowest detection rates were from a site with a substantial difference in
the detection rate depending on the direction of travel (66% and 38%). This was the
only sensor examined which was not on a straight section of road. The detector is on
the outer corner of a fairly sharp bend which has very wide lanes on the inner side of
the bend. The detection rates observed at this site are therefore considered to be
relatively atypical. The central sensor in this trio is one of the case study detectors
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and so the estimated detection probabilities can be used directly within the analyses
below. No other case study detectors have similar characteristics in terms of their
placement.

Examination of ATC counts and BT detections at the same location suggested that
the probability of detection increased as flow increased, although it was not a linear
relationship. This could be due to higher traffic volumes resulting in congestion
slowing down vehicles, resulting in a longer period of time in the Bluetooth sensor’s
detection zone and thus a higher probability of being recorded. A quadratic equation
between the estimated Bluetooth detection rate and Bluetooth detections per lane was
fit to the data from the remaining trios and resulted in an R2 of 0.96. This relationship
was then used to estimate detection probabilities for the case study sites as shown in
Table 2.

These detection rates were then used to calculate the sensor-specific indel costs for the
Sequence Alignment process. Hierarchical clustering of the trip sequences was then under-
taken using the pairwise distances from the Sequence Alignments to populate the distance
matrix. The collection of partition quality measures available in the WeightedCluster
package (Studer 2013), including the Average Silhouette Width and the Calinski-
Harabasz Index, was used to determine that 55 was the optimal number of clusters.

Each cluster contains a set of trip sequences (described by a series of Bluetooth
observations). As an example, the most frequently observed trip sequences for two of
the clusters are shown in Figs. 7 and 8. When considering sequences observed 50 or
more times by any device during the year, the clusters contained 6.5 different sequences
on average. The trips observed during the year were not evenly distributed amongst the
clusters; the largest two clusters contained 28% of trips observed during the year.

To determine the impact of using sensor-specific indel costs, the clustering was also
performed using a fixed indel cost for all sensors for comparison purposes. Although
the choice of 55 clusters was optimal when using sensor-specific indel costs, this was
not the case when using fixed indel costs. In order to have the same number of clusters
from the two methods for a more meaningful comparison, the number of clusters
selected for the sensitivity analysis was a compromise based on the cluster quality
measures from the two sets of analyses. Therefore, for the sensitivity analysis, 60

Table 2 Estimated detection rates for the case study sites

Ref Total Bluetooth Average daily Total number of lanes  Bluetooth Estimated
detections Bluetooth detections detections detection rate (%)
per lane (daily)

S1 3,112,373 8527 4 2132 73
S2 2,994,452 8204 4 2051 71
S3 2,605,651 7139 2 3569 88
S4 5,013,170 13,735 6 2289 76
S5 3,339,419 9149 5 1830 66
S6 2,598,288 7119 2 3559 88
S7 1,586,395 4346 2 2173 74
S8 1,598,050 4378 3 1459 57*

*The detection probability for this detector was measured directly
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Fig. 7 Sequences in cluster X16 with at least 50 observations during the year
clusters were selected in both cases. Figure 9 compares the cluster membership between
the two methods by showing for each of the fixed indel cost clusters, the degree to

which those sequences were assigned to the same sensor-specific indel cost cluster. Of
the 60 clusters produced using the method proposed in Crawford et al. (2018), 47

Fig. 8 Sequences in cluster X2 with at least 50 observations during the year
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Fig. 9 Highest proportion of sequences in one sensor-specific indel cost cluster for each of the fixed indel cost
clusters

clusters had a maximum of 50% of the sequences in that cluster assigned to a single
cluster in the revised method, using sensor-specific indel costs as proposed in this
paper. This demonstrates that the effort required to estimate sensor-specific detection
probabilities and to include them in the Sequence Alignment process is worthwhile as it
substantially improved the clusters obtained.

5.2 Spatial Intrapersonal Variability (Traveller Perspective)
On average, the regular travellers made trips within 17 different spatial clusters during
the year (Fig. 10). The maximum number of spatial clusters which could have been

used was 55 and only 3% of the travellers used 35 or more.

12501

Number of people

0 10 20 30 40 50 60
Number of clusters

Fig. 10 Histogram showing numbers of spatial clusters per person
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The Herfindahl-Hirschman Index (HHI) considers the proportion of trips
assigned to each spatial cluster and therefore provides a more comprehensive
view of intrapersonal variability. The normalised HHI for each regular traveller
is shown in Fig. 11. A value of zero represents an even spread of trips across
all spatial clusters and a value of one means that all the traveller’s trips belong
to the same spatial cluster. For the case study area, this distribution is heavily
skewed to the right. The peak has a HHI of approximately 0.08 which could be
obtained by using 21 of the spatial clusters during the year and using 5 of
those frequently.

One application of these measures of spatial diversity is to examine whether
people exhibit more or less spatial diversity at different times, for example
according to the day of the week or the time of year. For the case study area,
the Herfindahl-Hirschman Index was calculated twice for each person — once
for trips on weekdays and once for trips during the weekend. The comparison
was not possible for all of the regular travellers as 9% made no trips by car/
van in the case study area on weekend days. Also, one traveller made regular
trips on weekend days, but none on weekdays during the year. Where the
remaining people made at least 10 trips on weekdays and at least 10 trips on
weekend days, the Herfindahl-Hirschman Indices were plotted in Fig. 12.

Figure 12 is a heatmap where each square in the grid has a colour based on
the number of people with a HHI for their weekday trips within the square’s x-
axis range and a HHI for their weekend trips within the square’s y-axis range.
The red line cuts through squares containing people who have weekend and
weekday HHIs within the same bin. The people above the red line have higher
HHIs for their weekend trips than their weekday trips which means a higher
concentration of trips in fewer spatial clusters at the weekend, and vice versa.
Of the 6664 people satisfying the minimum sample size criteria, 57% had a
larger Herfindahl-Hirschman Index for weekends than weekdays. This suggests
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Fig. 11 Histogram of the normalised Herfindahl-Hirschman Index, showing spatial diversity for each person
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a slight bias towards people having a more balanced distribution of trips across

spatial clusters on weekdays.
Figure 13 compares the HHIs for trips made in the summer and autumn of 2015. No

systematic difference in travellers’ behaviour between these seasons is observed in
terms of spatial diversity.
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Fig. 13 Comparison of spatial diversity during the summer and autumn of 2015
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5.3 Spatial Relationships (Trajectory Perspective)

The association rules with support of at least 0.03 and confidence of at least 0.5 were
identified initially. A large number of association rules remained and so to aid
interpretation, only the 100 association rules with the highest confidence values were
examined in more detail. These rules had confidence values between 0.65 and 0.95.
These show high levels of confidence, particularly for the more highly ranked rules, as
a confidence of 0.95 means that 95% of the times that rule can be applied, it is correct.
The associated values for lift range from 1.67 to 7.56, again indicating a strong
relationship particularly for the more highly ranked rules. By including a threshold
for support, rules including spatial clusters which are not observed very frequently are
excluded. As a result, all of the consequent item sets in the top 100 rules contain the 11
most frequently observed spatially similar clusters.

The most effective way of communicating association rules is through visualisation.
Figure 14 includes the 100 association rules with the highest confidence and it was
created using the arulesViz package (Hahsler 2019) in R.

In the plot, the clusters of spatially similar trips are denoted by X1 to X55. Each
association rule is represented by a circle whose size represents the support for that rule
and the colour represents the lift (darker colour represents greater lift). Arrows point
from the relevant cluster names to a circle to represent the left hand side of the rule (“if
they used this route...”). Arrows point out from the circle to the relevant cluster names
representing the right hand side of the rule (*...then they also used this route”).

The centre of the plot includes X10, X6 and X4 which are the three clusters most
commonly observed on the right hand side of the association rules. These three clusters
contain the 2nd, 5th and 3rd most trips, respectively, out of the 55 clusters. All three
clusters predominantly contain trip sequences containing just two observations. In the
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Fig. 14 Graph of the association rules with the highest confidence
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case of X10, these are observations in or very close to the town centre. X6 contains
short trips into the town centre (particularly containing S4) and X4 contains the reverse
of those trips. In all, 73 of the association rules have one of these three clusters as the
consequent item set and 76 of the 100 rules have at least one of these clusters in the
antecedent item set. This is perhaps not surprising as the town centre contains many
attractive destinations and short sequences can occur in their own right or as part of
longer trips where the Bluetooth device was not detected by other sensors.

In many cases, clusters on the left hand side and the right hand side of rules are pairs
in that they include sequences containing the same sensor observations but in the
opposite order. This is expected since many outbound trips will be followed by a return
trip passing the same sensors but in reverse. What is interesting, however, is that rules
with multiple clusters in the antecedent item set typically have higher confidence than
related rules with just one cluster in the antecedent item set. For example, clusters X10
and X11 represent short trips in or close to the town centre going westbound and
eastbound respectively. The rule {X11} — {X10} has a confidence value of
0.81 and a lift of 2.17. If, however, we consider people who have made trips
in cluster X11 and who have also made trips in cluster X9, then the confidence
rises to 0.95 and the lift to 2.53. Cluster X9 contains slightly longer trips from
the North or East through the town centre.

The other clusters are not equally distributed around the dense central area, however.
In the top right hand side of Fig. 14, spatial clusters X22 and X13 sit completely
detached from the rest of the graph. The rule {X13} — {X22} is the only rule out of the
top 100 association rules which contains either of these clusters. This was the rule with
the highest lift value (7.56). It is not surprising that these two clusters are related given
that the most common trip sequence in X22 is S7 to S1 and the most common sequence
in X13 is S1 to S7 (see Fig. 15). Their disconnect from the other clusters tells us that
there is no route which people travelling between S1 and S7 typically use within the
town. This does not mean that people using these routes do not use other parts of the
network, it just means that there is not a strong enough relationship with any other
specific route. Given that these clusters are not related to the commonly used town
centre routes, however, this suggests that many of the X22 / X13 travellers do not also
visit the town centre. One possible use of such information could be in the placement of
signs providing information to travellers in the area, for example about the use of
Bluetooth sensors for monitoring travel times and patterns. This analysis suggests that
signs in the town centre will be seen at some point by people travelling along many
parts of the network, but that an additional sign between S1 and S7 may be required to
reach this separate group of people.

On the right hand side of Fig. 14 there is a pair of clusters which are not completely
detached from the main graph, but they could be considered to be peripheral. The most
common trip sequences in clusters X1 and X20 are shown in Fig. 16. These two
sequences pass the same sensors but in the opposite order. Although these two clusters
are related to the main body of the graph, the majority of the connection occurs through
cluster X5. Cluster X5 predominantly contains trips between S3 and S4 in both
directions. These trips are from the town centre going South and they overlap with
the southern parts of the sequences in X1 and X20. This provides insights which could
be useful for data collection, particularly intercept surveys. Given that clusters X1 and
X20 represent trips passing through Wigan from North to South, if the survey aimed to
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capture people passing through in this manner but also people making other types of
trips in the area, then somewhere between S3 and S4 (i.e. in cluster X5) might be a
suitable location for an intercept survey.

In Fig. 14, the more peripheral rules tend to have relatively low support but high lift.
This means that the clusters involved are observed less frequently but that the relation-
ships between the spatial clusters are strong. This need not always be the case with
peripheral rules, but in this case they represent more peripheral trip sequences which
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may or may not pass through the town centre. Compared with the clusters in the centre
of Fig. 14 which are in the town centre, there are likely to be fewer alternative routes
available and fewer observed trips.

6 Applications

Section 5 demonstrated how the proposed method could provide insights into the
behaviour of regular road users even for a small case study. As well as helping network
managers to understand their users better, the methods proposed in this paper could also
be used to estimate inputs for other analyses. In this section these further applications
will be discussed in terms of modelling, monitoring and evaluation, and service design.

Several existing models account for users with different amounts of information.
Most models of this type relate to traveller information systems, such as the models
developed by Bifulco et al. (2016) which account for compliance with the information
provided in terms of the accuracy of the information and penetration rate of the
information systems. These models could be extended to include the network
knowledge of different user classes, and the methodology in the current paper could
be used to estimate the relevant parameters. Similarly, Li et al. (2017) examine route
choice behaviour using user classes with different types of knowledge about network
conditions and this could be extended to account for existing network experience. The
current research could also inform user classes relating to demand regularity as was
proposed in Han et al. (2018).

The type of information discovered about road users using the methods proposed in
this paper could also be useful for understanding traveller response to network disrup-
tions. Papangelis et al. (2016, p.63) have highlighted the role which previous experi-
ence and knowledge plays in both short and long term impacts of disruptions on
traveller behaviour. Current behaviour could also provide insights into travellers’
perceived comfort zones (Ngoduy et al. 2013) which could shape their responses. By
examining the association rules between disrupted links and alternative routes, road
network operators may be able to produce better predictions of how travellers might re-
route or choose alternative destinations.

Since habit and inertia also play a role in route switching behaviour (Vacca et al.
2019), for example, it is crucial to be able to quantify the regularity of current behaviour
if the network operators wish to affect change.

The outputs from the methods described above may also be useful for calibrating
and/or validating multi-day models such as activity based models or day-to-day
dynamical models within the framework described in Watling and Cantarella (2015).
The methods may also inform new types of models which are likely to evolve based on
the availability of ‘Big Data’ (Milne and Watling 2019). Such models are likely to be
more empirically driven and therefore methods such as these which allow us to
examine the underlying mechanisms of traveller behaviour (in this case over multiple
days) is crucial.

As well as modelling implications, the methodology may also be valuable for
monitoring and evaluating network interventions or disruptions. For example, the
methodology provides a way of quantifying the extent to which the same travellers
will benefit from or be disrupted by two network interventions in the same city. The
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information obtained could therefore be used for scheme appraisals and for evaluation
studies to explore the equitability of funding across the network. For example, main-
tenance to remove potholes or gritting in the winter may currently be undertaken on
roads which are typically used by the same group of people.

The current research examines the routes through the network which people take and
therefore provides a more direct measure of those benefiting or losing out due to
investment in the road network. As highlighted by Park and Kwan (2018), examining
residential locations only ignores the movement of people through their daily lives.
This is equally important when determining whether there is segregation in the use of
the road network.

Residential data is also used in the evaluation of transport infrastructure. Dalton et al.
(2013), for example, use nearby residential population to measure the beneficiaries of
infrastructure such as gyms and parks. Whilst this may be reasonable, they also use this
approach for examining the beneficiaries of cycle lanes which is arguably less justifi-
able. When considering motorised vehicles using the road network, as in the current
paper, it is even more important to focus on actual users rather than local residents if
such data is available.

The proposed methodology could also be used within evaluation processes to
examine how pre- and post-intervention behaviour differs. This would be particularly
relevant for policies affecting a zone such as congestion charging and low emission
zones which often charge by the day not the trip. In doing so, the results could also be
used to verify the results from scheme appraisal modelling (models such as de Palma
and Lindsey (2006) and Takama and Preston (2008)).

By providing insights into traveller needs, the methodology presented could also be
used to inform real-life system design such as the spatial allocation of on-demand
service vehicles or the subsidies provided to Mobility As A Service providers to serve
less profitable areas.

7 Conclusions

The case study has demonstrated that even for a small town with just eight detectors,
the proposed methodology can be used to measure spatial intrapersonal variability and
can provide unexpected insights into the difference in variability between days of the
week and seasons. The use of association rules also provides insights into network
usage which cannot be obtained from examining traffic counts or an equilibrium model.
The outputs from the association rule mining would be useful for stimulating debate
about where to target signage, data collection or interventions.

There are limitations stemming from the type of data used. Perhaps most
importantly, socio-demographic data is not often available for point-to-point
sensor data. This is problematic if the analysis aims to examine issues sur-
rounding equity. Also, when considering issues relating to new services or
behaviour change, it is important to understand the demographic characteristics
of people making certain trips. For some types of data, particularly ETC and
ANPR data, additional data about vehicle owners may be accessible, although
perhaps at an additional cost. Where it is not possible to access such data,
additional data collection such as intercept surveys or household surveys may
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be required to supplement the findings from the analysis based on the methods
presented in this paper.

Future work could extend the association rule mining methodology to differentiate
between frequent and occasional use of different spatial clusters to provide more
nuanced results. Section 6 also discussed many possible applications for the outputs
from the proposed methods, but further work is required to integrate outputs from the
proposed methodology into modelling frameworks and to demonstrate how the outputs
could be communicated to policy makers.

This paper presents an innovative methodology to gain new insights from point-to-
point sensor data. Point-to-point sensor data is not new, for example number plates
have been recorded in studies for many decades, but the scale and types of data
available are growing rapidly. As technological developments rapidly change our
mobility patterns, mobility services and the data available on mobility, it is crucial that
we continue to develop new methods to gain insights from the available data and our
modelling frameworks evolve so that we can understand current behaviour but also
shape the future of mobility.
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