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Spherical equivalence of cylindrical explosives: Effect of charge shape on
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Abstract

Quantification of near-field blast loading is a pressing issue for defence, transport security, and structural en-

gineering. Realistic explosion scenarios often involve the detonation of non-spherical high explosive charges,

rather than the idealised spherical/hemispherical explosives assumed in commonly employed semi-empirical ap-

proaches. Additionally, near-field effects are of great importance when assessing structural damage and injury

risk from such an event. There is a need, therefore, to incorporate the effects of charge shape and the resulting

loading distribution in simplified engineering-level tools using adjustments based on sound physical principles.

This article details the development of an energy equivalent formulation to derive spherical equivalence factors,

with the methodology illustrated for the scenario of a centrally detonated cylindrical explosive charge. A validated

two-part numerical model is used to generate specific impulse distributions and quantify the resulting plate defor-

mation, for a wide range of cylindrical aspect ratios (0.20 ≤ L/D ≤ 5), at a range of near-field scaled distances

(0.108 ≤ Z ≤ 0.485 m/kg1/3) for different sized structural targets. A series of verification examples are used to

demonstrate the accuracy of the method, with the peak deflection under the equivalent spherical charge matching

peak deflection under the cylindrical charge to within ∼4%. The method developed in this article could be ex-

tended to find equivalence between any two systems with complex distributed loading, allowing for a fast running

engineering approximation in cases where detailed modelling is inappropriate or infeasible.
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1. Introduction

Prediction of blast loading is a critical first step in assessing the performance of protective systems and critical

infrastructure against the effects of near-field explosions. There is a pressing need to better understand the fun-

damental processes governing the development of blast loads on a structure, and subsequent structural response,

in order to provide the engineering community with simple predictive tools based on physically valid principles.

Determining peak dynamic deflection is necessary in applications such as armoured vehicle design [1], assessment

of perimeter walls against vehicle-borne explosives [2], and the provision of protected spaces within buildings

[3]. High-fidelity numerical schemes are not yet suitable (on account of computational cost) for use in risk-based

analyses which require the consideration of a wide range of input parameters, however their ability to provide key

insights into mechanistic behaviour makes them highly suitable for informing the development of quick running

tools.

Existing methods for predicting blast loading on a structure, e.g. those based on the analytical work of Brode [4]

or the Kingery/Kingery & Bulmash semi-empirical relations [5, 6] (implemented into the computer code ConWep

[7]), are known to be accurate for relatively simple geometric scenarios [8]. However, such methods are based

on the assumption that the explosive is either formed into a sphere and detonated in free air, or formed into a

hemisphere and detonated on the ground. Whilst these scenarios are suitable for fundamental scientific studies of

blast wave development, it is rare that a real-life explosive device will conform to this idealisation. It is necessary,

therefore, to understand the loading from a non-spherical explosive in order to supplement existing and improved

predictive methodologies (e.g. [9]) with spherical equivalence factors. The aim of this study is to provide a series of

simple adjustment factors to allow users to model the effects of a non-spherical explosive whilst using engineering-

level simplified tools.

When a spherical explosive detonates the wave front reaches all edges of the explosive concurrently and the

blast wave expands into the air in a spherically symmetric manner. Conversely, the detonation wave in a cylindrical

charge will not reach all edges of the explosive at the same instant in time and the resultant shape of the blast wave

is highly complex due to differing levels of inertial confinement offered by the uninitiated explosive material. This

results in separate primary waves emanating from the ends and sides of the explosive, with secondary bridging

waves formed where the two meet [10]. Hence, it is well known that peak overpressure and specific impulse from

cylindrical explosives are dependent on azimuth angle [11], i.e. the angle between the longitudinal axis of the
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cylinder and the measurement axis [12].

A critical factor that governs the initial shape and subsequent expansion of a blast wave from a cylindrical

explosive is the aspect ratio, i.e. the ratio between the length (or height) of the charge, and its diameter: L/D.

Plooster [13] reviewed and analysed available experimental data [14, 15] to derive multi-parameter curve fits to

estimate incident overpressure as a function of scaled distance, L/D, and azimuth angle. This work was later

developed by Esparza [12] to include additional experimental results [16] which tested a larger range of L/D

and scaled distances, from which pressure and impulse amplitude ratio curves were derived for certain azimuth

angles. The results showed that the enhancement factor (that is the equivalent spherical mass required to impart

the same load as a unit cylindrical charge mass) varied between ∼0.3 and ∼18 as a function of scaled distance,

aspect ratio and azimuth angle, although the experimental results were only available for mid-field conditions,

Z > 1.24 m/kg1/3.

Simoens and Lefebvre [17] experimentally measured mid- to far-field incident blast pressure from spherical

explosives and cylinders of different aspect ratios and found a range of spherical equivalence factors between

0.8–1.8 (when considering incident pressure) and 0.6–1.4 (when considering incident specific impulse). Wu et

al. [18] used finite element analysis to undertake a parametric study on (among others) the effect of L/D, charge

orientation, and scaled distance. They found that peak reflected pressure and impulse from a vertically-orientated

cylinder (axis perpendicular to the span of the target) were much larger than those from a spherical mass or

horizontally-orientated cylinder (up to a factor of 2.5). Furthermore, for large values of L/D it was observed that

most of the energy was focused in the radial direction, whereas for small values of L/D most of the energy was

focused in the axial direction. Similar findings are reported in the work of Sherkar et al. [19], Artero-Guerrero et

al. [20], and Langran-Wheeler et al. [21, 22]. Pressure enhancements of between 3.0–6.6 have been reported in the

literature for centrally-detonated [23], end-detonated [24], and double-end-detonated cylinders [25].

The aforementioned studies, and the empirical relations derived by Knock et al. [26, 27, 28], only consider

pressure/impulse enhancement and spherical equivalence for a single point in free-air or on the target surface.

Quantification of the influence of charge geometry on the deformation of blast loaded structures, however, requires

knowledge of how the loading, and therefore spherical equivalence, is distributed across the entire loaded face of

the target. Clutter and King [29] numerically investigated the response of blast containment chambers following

internal detonation of spherical and non-spherical explosives. It was observed that the loading acting on the inside
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of the chamber was higher magnitude and more non-uniform for the non-spherical charges, and the resulting peak

plastic strain in the chamber wall was considerably larger.

Christian et al. [30] experimentally investigated the influence of charge shape on the response of steel-concrete

composite panels. From the resulting panel damage/deformation, the authors estimated that the actual blast pres-

sure generated by the 5 kg cylindrical charge (L/D = 1/2) was likely to be more than six times that of a spherical

charge of the same mass. Chung Kim Yuen et al. [31] demonstrated that the deformation of blast loaded plates is

highly sensitive to the orientation of squat (L/D < 1) cylindrical charges, again supporting the observation that

smaller L/D charges focus more energy in the axial direction. In recent experimental work [32] it was observed

that explosives formed into a L/D = 1/3 cylinder produced similar loading magnitudes and distributions to spher-

ical explosives, and hence resulted in similar values of plate deformation, despite being placed a factor of three

times further clear distance from the target.

Shi and Stewart [33] noted in 2015 that there were still no published equivalence values for scaled distances

less than 1.24 m/kg1/3, and stated “further studies for explosions at small scaled distances are required to better

quantify. . . the equivalent spherical mass ratio” [33]. Since then, two notable studies have investigated the re-

sponse of plates under the loading from cylindrical charges with a view to deriving near-field equivalence values

and hence developing quick-running predictive methods. Nurick et al. [34] experimentally measured plate defor-

mation following detonation of explosive charges of various mass and shape situated in close proximity to the

target. Following this, the authors used ZND detonation theory to derive a series of effective explosive mass fac-

tors. It was shown that mid-point deflection was reasonably well correlated to effective mass, and therefore if two

explosive shapes have identical effective mass, the resulting deflections will be similar. The concept of effective

charge mass was later used by by Davids et al. [35] to derive an empirical relationship between charge dimensions

and the expansion of steel cylinders following internal detonation of cylindrical explosives.

Bortolan Neto et al. [36] aimed to develop a more accurate predictive approach by training an artificial neural

network (ANN) using experimental data published by Jacob et al. [37]. Whilst the outputs from the network

matched the experimental data (and supplementary validated numerical analyses used to increase the size of the

training dataset) reasonably well, the predictive ability of the ANN was hampered by a lack of training data.

Additionally, ANNs generally perform poorly when tasked with predicting outside the limits of the original training

dataset. Whilst novel numerical techniques have been used to optimise plate geometries under blast loading [38,
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39, 40, 41], the loading is typically represented using ConWep-type simplified load models and therefore only the

effects of spherical explosives have been considered thus far.

There remains an opportunity, therefore, to derive spherical equivalence factors for near-field cylindrical ex-

plosives based on the consideration of plate deformation, in a manner that matches the simplicity of an analytical

approach and the accuracy of a well-trained machine learning model or high-fidelity numerical scheme. This pa-

per presents the development of such equivalence factors using a two-part validated numerical modelling approach

using the LS-DYNA explicit solver [42].

Firstly, multi-material Arbitrary Lagrangian-Eulerian models are used to generate a suite of specific impulse

distributions for cylinders of various aspect ratios at various scaled distances. These specific impulses are applied to

Lagrangian plate models as initial velocity distributions, and it is shown that deformation can be readily predicted

by transforming the loading into an equivalent uniform impulse, using the method proposed in Ref. [43] and

explained in detail below. That is, peak displacement is shown to be strongly correlated to the initial kinetic

energy uptake of the plates, and only knowledge of the imparted kinetic energy (derived from the specific impulse

distribution) is required to transform a cylindrical charge into an equivalent sphere. Here, the equivalence factor is

defined as EF = WS /WC , where WS is spherical charge mass and WC is cylindrical charge mass. EF > 1 therefore

indicates when a cylinder will impart a larger kinetic energy compared to a sphere of equal mass. This forms the

basis of the predictive method derived in the latter part of this paper, which is verified against an unseen numerical

model to demonstrate the accuracy of the relations derived herein.

2. Theoretical framework

Experiments performed by Rigby et al. [32, 44] showed that the initial velocity profile of thin plates was directly

proportional to the imparted specific impulse distribution, which was reasoned through consideration of local

conservation of momentum. This work provided the underlying physical basis of the energy equivalent uniform

impulse derived in Ref. [43]. An abridged derivation is presented here. Note that whilst analytical methods exist

to quantify the effects of temporal and spatial variations of loading on dynamic plastic deformation [45, 46], such

approaches typically require the spatial distribution of loading to be simplified (e.g. triangular, trapezoidal) and

therefore may not be representative of the complex loading distributions from cylindrical charges. In this article,

we follow the convention that thin plates are defined as those with central deflections that are several times greater
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than plate thickness, and membrane strains that arise from transverse (out of plane) displacements are assumed to

dominate [47]. This is applicable for plates with span:thickness > 20 [48].

Consider a collection of masses subjected to a distributed impulsive load, as in Figure 1(a). Each mass is

connected to its neighbour by a fictitious lateral spring element. If these elements possess an infinite resistance to

shear deformation, then each mass can instantaneously transfer load to its neighbours and the plate responds as a

rigid body, as in Figure 1(b). The kinetic energy of the plate would therefore only be a function of the total impulse

acting on the plate,

Ek,l =
I2

2ρtA
(1)

where ρ and t are density and thickness of the plate, and I is total impulse, i.e. distributed specific impulse, i,

integrated over the area of the plate, A. Since this results in a lower-bound estimate of kinetic energy, this term is

given the subscript l.

Conversely, if the lateral spring elements possess zero resistance to shear, then the initial velocity profile of the

plate would be directly proportional to the impulse distribution, as in Figure 1(c). The kinetic energy of each mass,

and therefore the total kinetic energy of the plate, is dependent on the distribution of specific impulse acting on the

plate,

Ek,u =
1

2ρt

∫

A

i2 dA (2)

Since this results in an upper-bound estimate of the kinetic energy, this term is given the subscript u. The

experimental work in Refs. [32, 44] suggests that the initial kinetic energy uptake of a thin plate closely matches

the upper-bound value.

The energy equivalent uniform impulse, IEk, is defined as the value of uniform impulse that, if applied to a plate,

would result in the same kinetic energy uptake as the upper-bound kinetic energy associated with the distributed

load,

IEk =




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(a)

(b)

(c)

Figure 1: Initial distribution of specific impulse (a), and deformation modes associated with lower bound (b) and upper bound (c) kinetic

energy, after [43]

Finally, the impulse enhancement factor, Ki, can be defined such that

IEk = KiI. (4)

This provides a quantitative measure of the non-uniformity of the applied load: Ki = 1 indicates a perfectly

uniform load, and Ki > 1 indicates a load that is spatially non-uniform. Increasing values of Ki signify a loading

distribution that is more concentrated with a greater difference between upper- and lower-bound kinetic energies.

It can be said that total impulse, I, imparts the same momentum as the distributed load but a lower energy, whereas

the energy equivalent impulse, IEk imparts the same kinetic energy as the distributed load but a higher momentum.

3. Numerical model validation

3.1. Overview

All numerical analyses were performed using LS-DYNA explicit solver [42], version 971 R8.10. Throughout

this article a two-stage uncoupled analysis approach is adopted in order to study the response of plates under

loading from various shapes of explosive detonated at various stand-off distances (SODs). Firstly, the detonation

process, blast wave formation, and interaction of the blast wave with the target structure is modelled using an

axi-symmetric, multi-material Arbitrary Lagrangian-Eulerian (MMALE) framework. The MMALE models are

used to generate curves of specific impulse against radial ordinate (distance from the centre of the target), with
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values of specific impulse calculated from numerical integration of the pressure histories at an array of tracer

points located at 1 mm intervals along the reflecting surface. In the MMALE models, the reflecting surface is

modelled using nodal-point constraints, i.e. it is effectively rigid, which implies that the response time of the

structure is significantly longer than the loading duration and structural deformation remains zero throughout the

duration of load application. The loading conditions are assumed to be perfectly impulsive and, as such, fluid-

structure softening does not occur. The MMALE functionality in LS-DYNA has previously been validated against

experimental blast loading data from spherical and cylindrical explosives [43, 49], hence this validation exercise

focusses on comparison against previous experimental measurements of plate deformation only.

In the second part of the analysis, the plates are represented using Lagrangian shell elements, and the impul-

sive loading is applied directly as nodal-point velocities, v, through v(x) = i(x)/ρt, where i, ρ and t are specific

impulse, density and thickness of the plate as above, and x is radial ordinate. Whilst this technique has success-

fully been used to directly assign a known (experimentally measured) specific impulse distribution onto a plate in

a Lagrangian-only analysis [43, 50, 51], it still remains to validate the MMALE/Lagrangian two-stage approach

i.e. in situations when the loading is not known a priori and is instead determined through numerical analysis. The

accuracy of this two-stage method is therefore demonstrated in this section by comparing the results against two

sets of experimentally-measured plate deformation data.

In both sets of experiments, transient deformation was recorded at the centre of 3 mm thick, 300 mm diameter

circular high-strength steel plates (Domex 355MC), clamped around the periphery. In the first set [32], two charge

configurations were tested: 50 g PE4 spheres detonated at 44.0 mm clear distance to the target, and 50 g PE4

cylinders (L/D = 1/3), detonated at 145.0 mm clear distance to the target. In the second set [52], eight charge

configurations were tested: 38 mm diameter PE4 cylinders with mass ranging from 10–25 g (L/D = 0.14–0.36)

detonated at either 40 mm or 50 mm clear distance to the target.

3.2. Validation against Rigby et al. [32] data

3.2.1. MMALE model set up

The air was modelled using the *mat nullmaterial model and *eos linear polynomial equation of state (EOS).

The explosive was modelled using the *mat high explosive burn material model and Jones-Wilkins-Lee (JWL)

semi-empirical equation of state, *eos jwl [53]. The material properties and EOS parameters for air and PE4

are given in Table 1. Since the composition of PE4 is nominally identical to that of C4 and it has been shown
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to produce similar output [54], the EOS parameters for C4 published by Dobratz & Crawford [55] were used to

represent the explosives in this study.

Table 1: Material model and equation of state parameters for air and PE4 [55]

mat null

Parameter Value Unit

ρ0 1.225 kg/m3

eos linear polynomial

Parameter Value Unit

C0 0.0 Pa

C1 0.0 Pa

C2 0.0 Pa

C3 0.0 Pa

C4 0.4 –

C5 0.4 –

C6 0.0 –

E0 253.40e3 Pa

mat high explosive burn

Parameter Value Unit

ρ0 1601 kg/m3

D 8193 m/s

PCJ 28.00e9 Pa

eos jwl

Parameter Value Unit

A 609.77e9 Pa

B 12.95e9 Pa

R1 4.50 –

R2 1.40 –

ω 0.25 –

E0 9.00e9 Pa

Both MMALE validation models used a 250×250 mm domain of square axi-symmetric shell elements. The

element side length in the spherical charge model equalled 1.25 mm and the element side length in the cylindrical

charge model equalled 1.00 mm. An initial mesh sensitivity study was performed in Ref. [56] and determined that

these element sizes were sufficient to achieve total impulse (specific impulse integrated over the central 100 mm

radius region of the plate) to within 3% of the converged value, whilst still maintaining a reasonable analysis

time (<10% the converged analysis time). Peak specific impulse and peak pressure values close to the axis of

symmetry exhibited some mesh-dependent numerical ‘jetting’ [21], which renders such measures unsuitable for
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mesh convergence studies (although total impulse is largely unaffected as this behaviour is extremely localised).

The jetting effect can be minimised by avoiding an over-fine numerical mesh. The y-axis is automatically defined

as the axis of symmetry, the top edge of the domain was constrained against normal translations to act as a rigid

boundary, and the two remaining domain edges were set as ambient (outflow) boundaries.

The geometry of the explosives was defined using the *initial volume fraction geometry keyword. Container

type 6 (sphere) was used for the spherical charge model, defining a 19.5 mm radius sphere centred on the axis

of symmetry, 63.5 mm vertical distance from the reflecting boundary (44.0 mm clear distance). Container type

5 (rectangular box) was used for the cylindrical charge model, with one corner located on the axis of symmetry,

145 mm vertical distance from the reflecting boundary, and the opposite corner located 24.5 mm horizontal dis-

tance from the axis of symmetry and 161.5 mm vertical distance from the reflecting boundary, see Figure 2. The

detonators were not explicitly modelled and instead the explosives were point-detonated in the centre using the

*initial detonation keyword.

63.5 mm

19.5 mm
145.0 mm

24.5 mm

16.5 mm

axis of symmetry axis of symmetry
outflow boundary outflow boundary

ou
tfl

ow
 b

ou
nd

ar
y

ou
tfl

ow
 b

ou
nd

ar
y

rigid boundary rigid boundary

Figure 2: Geometry of the spherical [left] and cylindrical [right] MMALE validation models

3.2.2. Lagrangian modelling set up

The specific impulse distributions determined from the spherical and cylindrical charge models were used as

input loading for the second stage models. In the experimental work in Rigby et al. [32], digital image correlation

(DIC) was used to measure transient deformation of the 300 mm diameter, 3 mm thick Domex 355MC plates,
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fully clamped around the perimeter, subjected to the blast loading from spherical and cylindrical PE4 explosives

as outlined previously. Transient displacement data were recorded in six tests; three for each charge configuration.

The plates were modelled in quarter-symmetry as 200× 200 mm square plates. Any nodes with radial ordinate

≥150 mm were constrained against all translations and rotations to match the experimental support conditions.

Nodes along the symmetry planes were constrained appropriately. The plates were meshed with 2 × 2 mm, 4-

noded fully integrated quadrilateral shell elements with 3 mm thickness and five through-thickness integration

points to be consistent with previous studies [43, 57]. The simplified Johnson-Cook material model [58] was used

(*mat simplified johnson cook), with parameters for Domex 355MC steel as determined in Ref. [59] and shown

in Table 2. The MMALE specific impulse distributions from the part one analyses were applied to the plates using

the *initial velocity node keyword according to the methodology outlined in Ref. [43].

Table 2: Johnson-Cook material properties for Domex 355MC steel [59]

*mat simplified johnson cook

Parameter Value Unit

ρ 7830 kg/m3

E 206.8e9 Pa

ν 0.30 –

A 362e6 Pa

B 642e6 Pa

n 0.5597 –

C 0.032 –

3.2.3. Results

Figure 3 shows experimental and numerical plate deformations for spherical (a) and cylindrical (b) charge

models. The numerical peak deflections (spheres: 17.97 mm, cylinders: 22.49 mm) compare well with the mean

experimental peak deflections (spheres: 20.54 mm, cylinders: 21.96 mm), as do the general forms of the deflection

histories. Whilst cylindrical specific impulse distributions have been shown to slightly over-predict loading at the

plate centre [43], this results in a relatively modest over-prediction of plate deformation (∼3%) on account of the

small area of the plate for which specific impulses are over-predicted and therefore its minimal contribution to

kinetic energy/equivalent uniform impulse.

Furthermore, the results are also in good agreement with those presented in Ref. [43] for fully-coupled MMALE

analyses (spheres: 20.00 mm, cylinders: 21.69 mm) and Lagrangian-only models under experimentally-measured

specific impulse distributions (spheres: 20.52 mm, cylinders: 21.83 mm), giving additional confidence in the
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two-stage approach adopted in this article. It is worth noting that, in total, the analysis time of the fully-coupled

MMALE models in Ref. [43] is approximately a factor of 10–15 greater than the analysis time of the two-stage

models presented herein (∼20 hours compared to ∼90–120 minutes).

0 0.5 1 1.5 2
Time after arrival (ms)

0

5

10

15

20

25

D
efl

ec
tio

n 
(m

m
)

(a)

0 0.5 1 1.5 2
Time after arrival (ms)

0

5

10

15

20

25

D
efl

ec
tio

n 
(m

m
)

(b)

Experiment Simulation

Figure 3: Validation of numerical deformation of 300 mm diameter, fully clamped, 3 mm thick steel plates against experimental data from Ref.

[32]: a) 50 g sphere at 44.0 mm clear SOD; b) 50 g (L/D = 1/3) cylinder at 145.0 mm clear SOD

3.3. Validation against Curry & Langdon [52] data

3.3.1. Model set up

The MMALE model set up was identical to the previous validation study, i.e. the air and explosive were

modelled using *mat null, *eos linear polynomial, *mat high explosive burn, and *eos jwl respectively, as in

Table 1. Again, a 250×250 mm domain of 1 mm square MMALE axi-symmetric shell elements was used, with the

explosive geometry defined using the *initial volume fraction geometry keyword. Container type 5 (rectangular

box) was used to specify the rectangular shape of the charge (cylindrical when rotated around the symmetry axis)

with one corner located on the axis of symmetry, at either 40 mm or 50 mm vertical distance from the reflecting

boundary, and the opposite corner located 19.0 mm horizontal distance from the axis of symmetry and 5.5–13.8 mm

from the front face (nearest the target) of the explosive, see Table 3. The explosives were point-detonated in the

centre of the back face as per the experimental work [52] using the *initial detonation keyword.

Specific impulse distributions from the first stage analysis were mapped onto the second stage models using the

*initial velocity node keyword as previously. The quarter-symmetric 200 × 200 mm square plates (2 × 2 mm, 4-
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noded fully integrated quadrilateral shell elements, 3 mm thickness, five through-thickness integration points) were

fully constrained at any distance ≥150 mm from the plate centre to match the experimental support conditions. The

platers were made of Domex 355MC steel (Table 2).

Whilst DIC was also used to measure transient deformation in the experimental work in Curry & Langdon

[52], only peak deflection is used here to validate the two-stage numerical modelling approach.

3.3.2. Results

Peak deflections from the experiments [52] and numerical analyses are given in Table 3. Figure 4 shows

experimental and numerical peak deflection as a function of charge mass for the two clear SODs, and Figure 5

shows the agreement between experimental and numerical results, where a straight line of unit gradient indicates a

perfect fit.

Table 3: Input parameters and results from validation against Curry & Langdon [52] experiments

W (g) L/D (-) L (mm) D (mm) Clear SOD (mm) Z (m/kg1/3) t (mm) Peak deflection (mm)

Exp. Num. % diff.

10 0.14 5.5 38 40 0.198 3 22.02 19.85 -9.8

15 0.22 8.3 38 40 0.179 3 25.28 25.99 2.8

20 0.29 11.0 38 40 0.168 3 30.67† 31.05 1.2

25 0.36 13.8 38 40 0.160 3 36.27 35.02 -3.5

10 0.14 5.5 38 50 0.245 3 16.84 17.94 6.5

15 0.22 8.3 38 50 0.219 3 21.74 23.35 7.4

20 0.29 11.0 38 50 0.204 3 24.66∗ 27.92 13.5

25 0.36 13.8 38 50 0.195 3 30.46 31.38 3.0

*Average of two tests

†Average of three tests

The numerical results are typically within +/-10% of the experimental peak deflections, with the exception of

one of the 20 g, 50 mm SOD tests which is over-predicted by approximately 5 mm. It is worth noting that the

peak deflection from this test appears lower than the general trend observed in Figure 4, and this over-prediction

is therefore not indicative of a systemic error in the modelling approach. The remaining 50 mm SOD tests are

slightly over-predicted by approximately 1–2 mm in each case, with an average deviation of +8%. The numerical

simulations are in slightly better agreement with the 40 mm SOD tests, with a maximum under-prediction of

approximately 2 mm and an average deviation of -2%. It can be concluded that the two-stage MMALE/Lagrangian

analysis method adopted in this article has demonstrated a sufficiently high level of accuracy and can therefore be
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Figure 4: Peak deflection versus charge mass for 40 mm and 50 mm clear SOD experiments [52] and numerical analyses
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Figure 5: Numerical versus experimental [52] peak deflection, with perfect fit and +/-10% bounds shown

used with confidence to model plate deformation under blast loading from near-field cylindrical charges of varying

L/D.

4. Parametric study

4.1. Design and compiled results

A detailed parametric study was conducted in order to quantify the loading distribution, and to assess subse-

quent plate deformation, from a range of spherical and cylindrical explosive charges. Since impulse enhancement
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factor, i.e. the ratio between the energy equivalent and total impulse, is invariant of plate density and thickness

[60], these were retained from the validation exercise. The plate dimensions were extended to 400 × 400 mm

square (modelled as a 200 × 200 mm square in quarter symmetry), fully clamped around the perimeter, to enable

a greater combination of impulse and energy equivalent impulse to be studied. The influence of plate dimensions

on spherical charge equivalence will be considered later in this article.

The remaining parameters governing specific impulse distribution, for a given charge mass, are: charge shape;

cylinder aspect ratio (L/D), and; stand-off distance (SOD, hereafter denoting distance from the target to the centre

of the charge). A consistent charge mass of 100 g PE4 was used throughout, with variations in SOD providing a

range of scaled distances. Again, the explosives were point detonated in the centre. Relevant input parameters are

summarised in Table 4. For the L/D = 5 cylinder, analyses at SOD = 0.050 m and 0.225 m were omitted to avoid

simulations where the explosive overlapped the edges of the domain.

Table 4: Parametric study inputs

Shape L/D (-) W (kg) L (mm) D (mm) SOD (m) Z (m/kg1/3) t (mm)

Sph. - 0.1 - 49.2 0.050–0.225 0.162–0.431 3

Cyl. 0.20 0.1 14.7 73.5 0.050–0.225 0.108–0.485 3

Cyl. 0.33 0.1 20.7 62.0 0.050–0.225 0.108–0.485 3

Cyl. 1.00 0.1 43.0 43.0 0.050–0.225 0.108–0.485 3

Cyl. 3.00 0.1 89.5 29.8 0.050–0.225 0.108–0.485 3

Cyl. 5.00 0.1 125.7 25.1 0.075–0.200 0.162–0.485 3

For each charge configuration, four models were run:

1. Axi-symmetric air blast MMALE analysis to determine specific impulse distribution along the target face

2. ‘Distributed’: quarter-symmetric Lagrangian plate under the unmodified peak specific impulse distribution

from the MMALE model

3. ‘Uniform’: quarter-symmetric Lagrangian plate under the total impulse from the MMALE model applied as

a uniformly distributed load

4. ‘Equivalent’: quarter-symmetric Lagrangian plate under the energy equivalent impulse (calculated using

Equation 3 and the distributed impulse from the MMALE model) applied as a uniformly distributed load
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The loading in the Lagrangian models was applied as an impulsive load using initial nodal velocities as pre-

viously. In total, 46 different charge configurations were considered, resulting in 46 MMALE models and 138

Lagrangian models, and therefore 184 simulations in total. A detailed compilation of the results from the paramet-

ric study is provided in Table 5.

Nurick and Martin [61] define the damage number, φ, as:

φ =
IEk

2t2
√

LALB ρσ0

(5)

where IEk, t, and ρ are energy equivalent impulse, plate thickness, and density as previously, LA and LB are

plate length and breadth (LA = LB = 0.4 m), and σ0 is static yield stress (362 MPa). Partial tearing around the

plate boundary was observed for quadrangular plates when φ ' 28 in [61]. The L/D = 1/5 cylinder at both 0.05 m

and 0.075 m SOD, and the L/D = 1/3 cylinder at 0.05 m SOD resulted in φ > 28 and therefore their deflections

have been omitted from Table 5. The specific impulse distributions for these cases, however, have been retained

to facilitate development of the equivalence factors in the next section since the loading is assumed to be perfectly

impulsive throughout and development of specific impulse on the loaded face is independent of plate response and

thickness.

4.2. Influence of L/D on loading and deflection

A number of observations can be made on how loading and deformation are influenced by aspect ratio. Figure 6

shows the influence of aspect ratio on specific impulse distribution, as determined from the MMALE analyses for

100 g cylinders at 100 mm SOD. Here, total and energy equivalent impulse (I and IEk) range from 141.3 N.s and

350.6 N.s (Ki = 2.48) for L/D = 1/5, to 36.9 N.s and 67.5 N.s (Ki = 1.83) for L/D = 5: a factor of ∼4 difference

in impulse and a factor of ∼5 difference in energy equivalent impulse due to changes in aspect ratio alone. This

is in broad agreement with the findings in Ref. [18], i.e. decreasing axial loading component and increasing radial

loading component as L/D increases.

For comparison, the total and energy equivalent impulse for a 100 g sphere at 100 mm are 91.3 N.s and

120.2 N.s respectively (Ki = 1.32). It is evident that some degree of axial focussing occurs even for high values

of L/D: the epicentral peak specific impulse for the L/D = 5 cylinder is 6.56 MPa.ms; a factor of 2.5 greater than

the epicentral peak specific impulse from the spherical charge (2.67 MPa.ms). Throughout, the cylindrical peak
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Table 5: Parametric study results

Shape L/D (-) SOD (m) Impulse (N.s) Deflection (mm)

Total Energy

equivalent

Distributed Uniform Equivalent

Sph. - 0.050 101.3 211.8 101.3 45.9 107.3

Sph. - 0.075 97.7 152.9 74.7 43.9 73.8

Sph. - 0.100 91.3 120.2 57.8 40.5 56.4

Sph. - 0.125 85.5 100.8 47.8 37.5 45.7

Sph. - 0.150 80.4 88.4 41.8 34.8 39.0

Sph. - 0.175 75.4 79.5 36.8 32.3 34.4

Sph. - 0.200 70.0 72.2 33.0 29.6 30.8

Sph. - 0.225 63.5 65.3 29.5 27.0 27.7

Cyl. 0.20 0.050 152.0 508.5 - - -

Cyl. 0.20 0.075 147.3 421.5 - - -

Cyl. 0.20 0.100 141.3 350.6 171.1 67.8 180.2

Cyl. 0.20 0.125 137.3 299.0 146.2 65.7 157.4

Cyl. 0.20 0.150 133.2 262.3 131.1 63.5 139.3

Cyl. 0.20 0.175 127.3 234.4 117.9 60.3 122.4

Cyl. 0.20 0.200 121.6 212.6 106.9 57.1 107.8

Cyl. 0.20 0.225 118.5 196.5 98.8 55.5 97.6

Cyl. 0.33 0.050 134.7 462.7 - - -

Cyl. 0.33 0.075 130.7 372.6 181.7 62.2 190.2

Cyl. 0.33 0.100 125.0 303.6 147.1 59.0 159.4

Cyl. 0.33 0.125 120.9 254.5 122.8 56.7 135.0

Cyl. 0.33 0.150 117.3 220.2 108.1 54.8 112.8

Cyl. 0.33 0.175 111.8 194.8 96.3 51.7 96.7

Cyl. 0.33 0.200 107.1 176.1 87.0 49.1 86.2

Cyl. 0.33 0.225 103.1 161.5 79.4 46.9 78.3

Cyl. 1.00 0.050 86.8 280.3 135.2 38.2 148.5

Cyl. 1.00 0.075 83.7 213.1 100.5 36.5 108.1

Cyl. 1.00 0.100 80.6 169.1 79.2 34.9 82.3

Cyl. 1.00 0.125 76.4 139.2 64.9 32.9 66.7

Cyl. 1.00 0.150 73.8 119.7 56.0 31.6 56.1

Cyl. 1.00 0.175 71.6 107.2 49.9 30.5 49.2

Cyl. 1.00 0.200 65.3 96.9 44.4 27.7 43.5

Cyl. 1.00 0.225 60.7 89.4 40.6 25.8 39.5

Cyl. 3.00 0.050 48.1 186.5 88.0 20.8 92.0

Cyl. 3.00 0.075 45.5 113.7 51.5 19.8 52.8

Cyl. 3.00 0.100 42.2 89.9 40.9 18.5 39.8

Cyl. 3.00 0.125 41.7 72.6 33.3 18.3 31.0

Cyl. 3.00 0.150 38.4 61.3 27.9 17.1 26.1

Cyl. 3.00 0.175 36.5 55.0 24.7 16.3 23.5

Cyl. 3.00 0.200 34.8 51.6 22.7 15.7 22.2

Cyl. 3.00 0.225 33.6 50.3 22.0 15.3 21.7

Cyl. 5.00 0.075 37.1 102.2 47.4 16.6 46.4

Cyl. 5.00 0.100 36.9 67.5 31.3 16.5 28.6

Cyl. 5.00 0.125 34.3 56.8 26.7 15.6 24.2

Cyl. 5.00 0.150 32.4 47.5 22.1 14.9 20.6

Cyl. 5.00 0.175 30.7 41.9 19.1 14.3 18.4

Cyl. 5.00 0.200 29.1 39.3 17.8 13.8 17.4

17



specific impulses possess a higher epicentral value than the spherical charge loading, with the area over which

the cylindrical loading exceeds the spherical loading approximately inversely proportional to L/D. It is likely,

therefore, that spherical equivalence will be dependent on the dimensions of the target, with smaller targets more

sensitive to, and therefore exhibiting larger enhancement factors on account of, this central focussing.

The relationship between L/D and peak deflection is examined in Figure 7 for SOD = 100 mm. Here, the effect

of a more concentrated specific impulse distribution can be clearly seen: for L/D = 1, the total impulse is 80.6 N.s,

yet the peak deflection (79.2 mm) exceeds the deformation of the plate under the spherical load (57.8 mm), despite

the spherical impulse being larger (91.3 N.s). The energy equivalent uniform impulse values are 169.1 N.s and

120.2 N.s for the cylindrical and spherical charge respectively, suggesting that plate deflection is more strongly

dependent on energy equivalent rather than total impulse.

Deflection under the cylindrical loading is equal to deflection under the spherical loading at approximately

L/D = 1.5–1.8. This suggests that for this aspect ratio, target size (0.4×0.4 m, scaled target size 0.86×0.86 m/kg1/3)

and scaled distance (0.215 m/kg1/3), the equivalence factor is 1.0.

4.3. Verification of energy equivalent uniform impulse and kinetic energy uptake

In this study, plate deflection was analysed under three types of loading as explained previously: the distributed

load and two forms of uniform load which conserve either momentum (total impulse) or kinetic energy (energy

equivalent impulse). The results in Table 5 show that, for each loading model, there is a high level of agree-

ment between the peak deflection under distributed and energy-conserved equivalent loading, IEk. Here, the mean

absolute relative difference between the two models is 4.3%, and all models are within 10% (maximum relative

error of 9.98% for L/D = 1/3 and SOD = 0.125 m). There appears to be no strong correlation between the

agreement attained and the magnitude of energy equivalent impulse (weak positive correlation, coefficient of de-

termination R2 = 0.049) or the impulse enhancement factor (weak positive correlation, coefficient of determination

R2 = 0.051).

This suggests that peak plate deflection under an energy equivalent uniform load, derived by conserving and

equating kinetic energy uptake from the distributed load, will be similar to peak plate deflection under the dis-

tributed load. Whilst not the primary aim of this article, this transformation is highly advantageous in that it

enables a complex spatially-varying load to be expressed as a single parameter (energy equivalent impulse per unit

area) which can be used as an input variable in simple well-established engineering models e.g. the SDoF method
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Figure 6: Example specific impulse distributions from MMALE analyses for 100 g cylinders and sphere at 100 mm SOD
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Figure 7: Plate deflection versus aspect ratio (L/D) for 100 g cylinders and sphere at 100 mm SOD

[62] or the empirical laws derived in Ref. [61] for prediction of large inelastic deformation of plates under uni-

form impulsive loading. Agreement between peak deflection under distributed and momentum-conserved uniform

loading, I, is considerably less good, with a mean absolute relative error of 43% and a maximum relative error of

76%.

Figure 8 shows deformation profiles (deflected shape at the moment of peak deflection) and deflection-time

histories at the centre of the plates for L/D = 1 cylinders at 100 mm (a, b), 150 mm (c, d) and 200 mm (e, f)

SOD. It can be seen that whilst there are differences in the deformed profile of the plates under the distributed

and equivalent loading, the midspan (peak) deflection values are in close agreement, as previously discussed.

Since the distributed and energy equivalent loading imparts the same kinetic energy, these deformation profiles

therefore represent different distributions of the same total strain energy. This strain energy localisation may

become significant during fracture and/or failure, however the transformation is satisfactory in this study on account

of the near-identical peak deflections.

Whilst further work is required to quantify the limits of validity of the approach detailed in this article, it is

known that partial tearing is observed for quadrangular plates when φ ' 28 and hence this damage number should

serve as an initial upper limit. Since the equivalence factor is governed by Z, L/D, and span only, the derived

equivalence is invariant of the properties of the plate itself. For a particular loading distribution and spherical

equivalence, certain plates will fail (in which case the transformation is not valid), and certain plates will only
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deform plastically (in which case the transformation is valid). The validity of this approach is therefore not limited

to a range of equivalence factors.

Additionally, the rapid rise to peak deflection observed for plates under the distributed loading model may be

significant for materials more sensitive to strain rate effects. Again, however, the effects appear minimal for the

plates considered in this study.
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Figure 8: Deflection of 400 mm square clamped plates under distributed, uniform, and energy equivalent uniform impulses: (a) peak deforma-

tion profile at maximum deflection, 100 g L/D = 1 cylinder at 100 mm; (b) deflection-time history, 100 g L/D = 1 cylinder at 100 mm; (c)

peak deformation profile at maximum deflection, 100 g L/D = 1 cylinder at 150 mm; (d) deflection-time history, 100 g L/D = 1 cylinder at

150 mm; (e) peak deformation profile at maximum deflection, 100 g L/D = 1 cylinder at 200 mm; (f) deflection-time history, 100 g L/D = 1

cylinder at 200 mm

The results have clearly demonstrated that peak displacement is strongly correlated to the initial kinetic en-

ergy uptake of the plates, and that distributed and energy-equivalent uniform loads will result in a similar peak

deflection, albeit with a different deformed profile. That is, kinetic energy uptake is the key parameter governing
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plate deformation. In Figure 9, total uniform impulse and energy equivalent uniform impulse (integrated over plate

area) are plotted against peak deflection under the distributed load. A strong linearity exists between equivalent

impulse and deflection (coefficient of determination R2 = 0.998), with a small negative offset due to increasing

contribution of bending behaviour, relative to membrane action, for smaller values of impulse and deflection [63].

Referring back to Figure 8, it is evident that this linearity is invariant of the shape of the loading distribution, only

the magnitude of kinetic energy uptake and energy equivalent impulse.
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Figure 9: Linear relationship between energy equivalent impulse and deflection for all models

It can be concluded, therefore, that if two different explosives produce different distributions but the same

kinetic energy uptake and therefore energy equivalent impulse, they will result in the same central peak deflection.

Results in the parametric study demonstrate that this approach is valid for uniform loads and for distributed loads

with values of impulse enhancement factor up to at least 3.87 (that is, where the distributed loading imparts 3.87

times more kinetic energy than the momentum-conserved total impulse). It is now possible to calculate the kinetic

energy uptake after loading from a cylindrical explosive with the range 0.2 ≤ L/D ≤ 5 and 0.108 ≤ Z ≤ 0.485,

and calculate the mass of a sphere such that, when detonated at the same SOD, will impart the same kinetic energy

and thus result in the same deflection (for centrally detonated charges). This approach is adopted in the following

section to derive equivalence factors, EF = WS /WC , where WS is spherical charge mass and WC is cylindrical

charge mass. Hopkinson-Cranz scaling [64, 65] is used to express the results in terms of a unit cylindrical mass.
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5. Spherical equivalence of cylindrical explosives

5.1. Development of equivalence factors

In order to derive equivalence factors for a wide range of Z and L/D, specific impulse distributions from the

previous cylindrical MMALE simulations were expressed in scaled terms, i.e. as the resultant load from a unit mass

of explosives throughout. This was achieved by multiplying distances and specific impulses by (1/0.1)1/3 = 2.15

according to Hopkinson-Cranz scaling [64, 65], where 0.1 kg is the charge mass used in the previous simulations.

Since the cylindrical models are unit mass, distance and scaled distance can be used interchangeably.

These scaled loading distributions were mapped onto a grid of 0.5 × 0.5 mm elements for target sizes of

0.25 × 0.25 m, 0.50 × 0.50 m and 1.00 × 1.00 m in order to evaluate spherical equivalence factors for a range of

scaled target dimensions. The original MMALE analyses reported specific impulses out to 0.86 m/kg1/3 from the

target centre, so extrapolation was used for the small number of grid points outside of this region. To facilitate this,

a value of i = 0 was appended to each distribution, at an arbitrary large distance from the plate centre, such that

the specific impulse distributions remained monotonically decreasing and positive beyond 0.86 m/kg1/3 from the

target centre.

The previously-determined spherical MMALE specific impulse distributions were expressed at a range of

charge masses/scales by multiplying distances and specific impulses by (WS /0.1)1/3, where WS is the spherical

mass at the scale that the results are being expressed at, and 0.1 kg is the charge mass used in the previous simu-

lations. As with the cylindrical distributions, these were mapped onto a grid of 0.5 × 0.5 mm elements for target

sizes of 0.25 × 0.25 m, 0.50 × 0.50 m and 1.00 × 1.00 m.

The kinetic energy uptake was calculated for each specific impulse distribution according to Equation 3, over

the entire range of charge shapes (spherical and cylindrical: 0.2 ≤ L/D ≤ 5), charge masses (unit for cylinders,

0.4 ≤ WS ≤ 10 kg for spheres), scaled distances (0.108 ≤ Z ≤ 0.485 m/kg1/3 when scaled off the cylindrical

charge mass), and scaled target sizes (0.25, 0.50 and 1.00 m/kg1/3 when scaled off the cylindrical charge mass).

In total, kinetic energy uptake was calculated for 168 cylindrical charge configurations and 2,592 spherical charge

configurations (9 × SODs, 96 ×Ws, and 3 target sizes).

Once kinetic energy uptake was evaluated for each cylindrical charge, logarithmic interpolation was used to

determine the spherical mass, WS , required to result in the same value of Ek,u for the same SOD and target size.

Since WC = 1 throughout, the spherical mass required to achieve the same kinetic energy uptake would, by
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definition, equal the spherical enhancement factor, EF.

Figure 10 shows contours of spherical equivalence for the range of parameters studied. As expected, EF is

dependent on aspect ratio, with smaller values of L/D yielding larger values of EF. To a lesser extent, EF is also

dependent on scaled distance, with the largest values of EF found for larger values of Z and smaller values of L/D.

This is due to differences in the rate of decay of peak specific impulse with respect to scaled distance and should be

viewed as a measure of the relative weakness of the spherical charge loading, rather than the relative strength of the

cylindrical charge loading at these scaled distances. For example, at Z = 0.485 m/kg1/3, the normally reflected peak

specific impulse is 2.51 MPa.ms/kg1/3 for the spherical charge and 14.1 MPa.ms/kg1/3 for the cylindrical charge,

compared to 19.6 MPa.ms/kg1/3 and 56.7 MPa.ms/kg1/3 for the spherical and cylindrical charge respectively at

Z = 0.108 m/kg1/3. Clearly, Z = 0.108 m/kg1/3 still represents a worst-case scenario in terms of loading and

deformation, despite EF not exceeding ∼2 for all target sizes.

Finally, EF appears to also be dependent on scaled target size, with smaller target sizes generally yielding

larger values of EF. This is on account of the high epicentral focussing of the cylindrical charge impulse (see

Figure 6): the smaller the area, the greater the apparent disparity between the cylindrical and spherical specific

impulse distributions, and hence the larger spherical mass required to achieve equivalence and the larger value of

EF for a given Z and L/D.

5.2. Verification of equivalence factors

In order to demonstrate the accuracy of the derived equivalence factors, three verification examples were per-

formed using the following inputs (see Figure 10):

(i) L/D = 1.30, EF = 1.00 and t = 8.0 mm

(ii) L/D = 0.80, EF = 1.60 and t = 10.0 mm

(iii) L/D = 0.60, EF = 2.00 and t = 12.5 mm

In all examples, scaled distance and scaled target size were set as 0.220 m/kg1/3 and 0.50 × 0.50 m/kg1/3

respectively. These parameters did not form part of the original parameter study and can be considered to represent

unseen combinations of Z and L/D. In all examples the charge mass was set as WC = 0.512 kg. As in the

parametric study, the modelling was performed in two parts: MMALE analyses were first used to establish specific
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impulse distributions from the different charge configurations (one cylinder and three spheres per example, see

Table 6), and subsequent Lagrangian analyses simulated plate response under these distributed loads, where the

specific impulse distributions were applied as equivalent initial nodal velocities. Note that uniform and energy

equivalent uniform loads were not modelled in these examples. For each example, spherical charge models were

also run with the equivalence factor set to ±10% the values determined from Figure 10 in order to assess the

sensitivity of the method to small changes in equivalence factor. Converged mesh sizes from the parametric study

(1 mm square axi-symmetric MMALE elements, 2 mm square Lagrangian shell elements for the two analysis

parts respectively), were retained for the verification examples without modification since WC = 0.512 kg, hence

SOD = 0.22 × 0.5121/3 = 0.176 m and actual target span is 0.50 × 0.5121/3 = 0.40 m).

The input parameters used in the verification study are summarised in Table 6. All span:thickness ratios (50, 40,

and 32 respectively) satisfy the condition for thin plates (span:thickness > 20 [48]) and therefore it can be assumed

that the plates deformed predominantly due to membrane action with minimal contribution from bending. The

equivalence factors derived herein are invariant of plate thickness, provided this assumption is adhered to.

Table 6: Input parameters for verification examples

Ex. Shape L/D (-) EF W (kg) L (mm) D (mm) SOD (m) Z (m/kg1/3) t (mm) Span (mm)

(i) Cyl. 1.30 – 0.512 88.3 67.9 0.176 0.220 8.00 400

Sph. – 1.00 0.512 – 84.8 0.176 0.220 8.00 400

Sph. – 1.10 (+10%) 0.563 – 87.6 0.176 0.213 8.00 400

Sph. – 0.90 (−10%) 0.461 – 81.9 0.176 0.228 8.00 400

(ii) Cyl. 0.80 – 0.512 63.9 79.8 0.176 0.220 10.0 400

Sph. – 1.60 0.819 – 99.2 0.176 0.188 10.0 400

Sph. – 1.76 (+10%) 0.901 – 102.4 0.176 0.182 10.0 400

Sph. – 1.44 (−10%) 0.737 – 95.8 0.176 0.195 10.0 400

(iii) Cyl. 0.60 – 0.512 52.7 87.9 0.176 0.220 12.5 400

Sph. – 2.0 1.024 – 106.9 0.176 0.175 12.5 400

Sph. – 2.2 (+10%) 1.126 – 110.3 0.176 0.169 12.5 400

Sph. – 1.8 (−10%) 0.922 – 103.2 0.176 0.181 12.5 400

Figure 11 shows MMALE specific impulse distributions (a) and deflection-time histories at the centre of the

plates (b) for all three verification examples (i–iii). It can be seen that whilst the loading distributions differ

significantly, with the epicentral specific impulse from the cylindrical charges at least a factor of two greater than

the epicentral specific impulse from the spherical charges in all examples, the resulting plate deflection histories

are remarkably similar. Again, the plates under the cylindrical charge loading exhibit a more rapid rise to peak
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deflection in each case relative to the spherical loading models, with a slightly lengthened post-peak oscillation

period owing to small differences in the final deformed profiles of the plates.

Peak deflections from the verification exercises are shown in Table 7. The equivalent spherical displacements

(with 1.0EF) differ from the cylindrical displacements by between 1–4% for all cases. Applying ±10% factors to

the equivalence is shown here to provide an adequate margin of error, particularly when considering that practical

examples may not align exactly with contour levels in Figure 10 and some interpolation/user-interpretation may

be required. These verification exercises have offered an effective demonstration of the accuracy of the method

derived in this article for determining spherical equivalence factors, even for combinations of Z and L/D which

were not part of the original parameter study.

Table 7: Peak deflections from verification exercises

Ex. Peak deflection (mm)

Cyl. Sph.

1.0EF 1.1EF 0.9EF

(i) 41.82 39.97 46.52 34.29

(ii) 49.19 47.97 53.14 41.72

(iii) 54.76 54.35 61.56 46.23

6. Summary and conclusions

Quantification of the magnitude and distribution of the blast load acting on structural elements located close

to an explosive charge is an essential first step in providing engineered protective systems. Here, the shape of the

charge is known to significantly alter the imparted load, and simplified predictive methods which do not account

for charge shape are unsuitable. There is a need to augment such simplified tools with physically valid adjustments

to model the effects of charge shape.

This article aimed at developing a series of simple equivalence factors, defined as EF = WS /WC , where WS

and WC are the mass of the spherical and cylindrical charges respectively. The equivalence factors were derived by

equating the kinetic energy uptake [43]) from a cylindrical and equivalent spherical explosive located at the same

stand off distance. Experimental data published in Ref. [32] was used to validate a two-part numerical modelling

approach. Firstly, multi-material Arbitrary Lagrangian Eulerian analyses were performed to generate distributions
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Figure 11: Results from verification examples: (a) MMALE model peak specific impulse, (b) Lagrangian model deflection. WC = 0.512 kg,

Z = 0.220 m/kg1/3, and plate dimensions 400×400 mm throughout. (i) L/D = 1.30, EF = 1.00, WS = 0.512 kg, t = 8.00 mm. (ii) L/D = 0.80,

EF = 1.60, WS = 0.819 kg, t = 10.0 mm. (iii) L/D = 0.60, EF = 2.00, WS = 1.024 kg, t = 12.5 mm. See Table 6 for all input parameters in

the verification examples
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of specific impulse, which were then mapped on to Lagrangian plate models as initial velocity distributions in

order to quantify plate deformation in the second stage of the analysis.

The validated modelling approach was used to perform a detailed parametric study, comprising 184 simulations

in total, for 0.20 ≤ L/D ≤ 5 and 0.108 ≤ Z ≤ 0.485 m/kg1/3. For each charge configuration, plates were analysed

under the distributed load (determined from part one of the analysis), as well as a uniform load (momentum-

conserved, I) and an equivalent uniform load (energy-conserved, IE,k). A high level of agreement was attained

between the plates under the distributed and energy equivalent load, suggesting that transforming a distributed

load into an energy equivalent uniform impulse (Equation 3) is a physically valid method for expressing a spatially

varying load as a single-number equivalent. Furthermore, a strong linearity was shown to exist between initial

kinetic energy and peak plate deflection.

Finally, kinetic energy uptake was evaluated for a large range of charge shapes (spherical and cylindrical:

0.2 ≤ L/D ≤ 5), charge masses (unit for cylinders, 0.4 ≤ W ≤ 10 kg for spheres using Hopkinson-Cranz

scaling [64, 65]), scaled distances (0.108 ≤ Z ≤ 0.485 m/kg1/3 when scaled off the cylindrical charge mass), and

scaled target sizes (0.25, 0.50 and 1.00 m/kg1/3 when scaled off the cylindrical charge mass). In total, kinetic

energy uptake was calculated for 168 cylindrical charge configurations and 2,592 spherical charge configurations

(9×SODs, 96×Ws, and 3 target sizes). For each cylindrical charge, logarithmic interpolation was used to determine

the spherical mass required to impart the same kinetic energy at the same SOD for the same target size. The results

were presented as contours of equivalence factor, plotted against scaled distance and aspect ratio, for the three

target sizes considered. This method allows the engineer to use well established predictive tools, e.g. ConWep [7],

with a relatively simple adjustment to model the effects of a non-spherical charge.

A series of verification examples were devised, which showed that modelling a cylindrical charge as an equiva-

lent spherical charge resulted in a deflection that matched the cylindrical model to within ∼4%, and it is suggested

that ±10% on the factors determined from Figure 10 should adequately account for inaccuracies in determining

spherical equivalence from the charts.

The method developed herein is based on sound physical principles which incorporate the effects of loading

distribution across the entire reflecting surface (as opposed to a single point), and is informed by detailed and

rigorous numerical modelling with clearly demonstrated accuracy and validity. The proposed method is applicable

for situations where central deflections are several times greater than plate thickness, membrane strains that arise
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from out of plane displacements are assumed to dominate, and failure does not occur (φ < 28). Such an approach

is suitable for use beyond the spherical/cylindrical equivalence derived in this manuscript, and can conceivably be

used to develop equivalence between any two systems which each posses a complex distributed loading function.
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