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In recent years, several new technical methods have
been developed to make AI-models more transparent
and interpretable. These techniques are often referred
to collectively as ‘AI explainability’ or ‘XAI’ methods.
This paper presents an overview of XAI methods,
and links them to stakeholder purposes for seeking
an explanation. Because the underlying stakeholder
purposes are broadly ethical in nature, we see this
analysis as a contribution towards bringing together
the technical and ethical dimensions of XAI. We
emphasize that use of XAI methods must be linked
to explanations of human decisions made during the
development life cycle. Situated within that wider
accountability framework, our analysis may offer a
helpful starting point for designers, safety engineers,
service providers and regulators who need to make
practical judgements about which XAI methods to
employ or to require.

This article is part of the theme issue ‘Towards
symbiotic autonomous systems’.

1. Introduction
Increasingly, artificial intelligence (AI)—specifically,
machine learning (ML)—is being used in ‘critical’
systems. Critical systems directly affect human well-
being, life or liberty. These may be digital systems
(such as those that are used by human experts to
inform decisions regarding medical treatment or prison
sentences) or embodied autonomous systems (such as
highly automated cars or unmanned aerial vehicles).

2021 The Authors. Published by the Royal Society under the terms of the
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by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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The use of critical ML-based systems to assist or to replace the human decision-maker raises many
questions about when, and whether, we should trust them. AI explainability (XAI) methods are
part of the answer. The use of XAI methods can contribute to building assurance, or justified
confidence, in critical systems employing ML.

In this paper, we will link stakeholder purposes and the technical dimensions of explainability.
Stakeholders may seek to use XAI methods for a range of reasons, such as to assess confidence,
to inform consent, to contest decisions or to regulate the use of systems. These reasons are often
broadly ethical in nature. We argue that XAI methods are one way to help serve these purposes,
but the requirement for justification also traces the explananda back to human decisions during
design and implementation. Thus, XAI methods sit within a wider accountability ecosystem. Our
approach has similarities to [1] in focusing on the stakeholder groups who comprise the audience
for XAI methods, but our focus is more distinctly on the practical reasons for which stakeholders
seek an explanation; we also add some stakeholder classes, such as prediction-recipients, as
distinguished from end-users and the courts. Our approach also has similarities with [2] in that it
identifies variations in requirements for explanations across stakeholders, but we focus more on
external stakeholders, e.g. regulators, given our greater emphasis on safety and assurance.

The remainder of the paper is structured as follows. Section 2 introduces and contextualizes the
explainability of ML-based systems. Section 3 identifies key stakeholder classes, and it considers
the time dimension and general underlying purposes stakeholders will likely have for XAI
methods. This helps to structure an analysis of the state of the art in explainabilty; §4 surveys
widely used global and local XAI methods, categorizing the latter as either feature-importance or
example-based methods. Section 5 illustrates some of these methods in use for a clinical Decision-
Support System (DSS). The integration of the analysis of stakeholder purposes and XAI methods
then occurs in §6 which includes a table that cross-references the needs of stakeholders against
the XAI methods available. This is supported by a narrative description of three scenarios to
deepen understanding. Section 7 takes a systems engineering perspective, discussing trade-offs
between explainability and performance, and addressing the broader role of XAI methods in
safety assurance. Section 8 considers the importance of explainability in achieving and assuring
trustworthy AI and ML.

2. Explaining explainability

(a) The challenge of AI explainability

Conceptually, traditional software development follows a defined ‘life cycle’. It starts with
the definition of requirements, proceeds via design to implementation, e.g. coding, and
then the software is progressively tested as individual parts of the software are integrated to make
up the overall system. Where systems are critical, the life cycle is very rigorous. Key requirements,
e.g. for safety, are defined and refined at each stage of the development. Verification gives
assurance that the system meets its key requirements; McDermid [3] illustrates this process for
safety-critical software in aviation. Typically, where there is a formal regulatory system, standards
define what needs to be done to achieve assurance and to gain approval for deployment of the
system.

By contrast, development of ML-based systems is a highly iterative process, with a very
different life cycle and the current standards do not give a basis for assurance. The models at the
heart of ML-based systems are trained on data representative of the problem to be addressed and
then their performance is evaluated against pre-defined criteria, e.g. the number of false positives
in detecting tumorous growths in X-ray images, and refined until their performance is satisfactory.
The models have utility because they generalize beyond their initial training data. For example,
autonomous vehicles (AVs) can identify pedestrians in situations that were not present in their
training dataset, predict their trajectory and carry out manoeuvres to avoid a collision.
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Figure 1. Context and roles of explainability. (Online version in colour.)

There are many classes of ML, e.g. neural networks (NNs) [4], support vector machines
(SVMs) [5] and (deep) reinforcement learning (RL) [6]. NNs have sub-classes, e.g. convolutional
neural networks (CNNs) [7] and deep neural networks (DNN) [8]. Our aim here is to ‘explain
explainability’ so far as practicable without going into details of particular ML methods. For our
purpose here, we can characterize ML-based systems as being trained on large datasets to perform
classification or regression tasks. When the resulting models are used for classification purposes,
they make probabilistic predictions, e.g. a 90% probability that an image contains a tumour.

ML models are often highly complex and thus are not directly amenable to human inspection
(alternatively ‘opaque’ or ‘black boxes’). Further, the ML model structure may not match the
features humans would use in making the decisions, so interpretation would remain difficult even
if the model could be inspected. Some image analysis systems can make erroneous classifications
of objects when a small amount of noise is added which is imperceptible to a human—but very
significant in the model because of the features that have been learnt [9].

In simple terms, XAI methods seek to provide human interpretable representations of the ML
models to help overcome these and other problems.

(b) Context and roles for explainability

We use a simple illustration, based on the ML life cycle model in [10], to ‘explain explainability’
(figure 1). This figure is intended to show that different stakeholders, e.g. users, regulators and
courts, may have different purposes in trying to understand what the ML-based system is doing.
The intent is that the information is presented to the stakeholder in a meaningful context. This, in
turn, can help to inform human decision-making, e.g. deciding whether or not to approve the use
of an ML-based system or to accept a prediction or recommendation.

The boxes shaded in gold-brown in figure 1 indicate what explanations may be needed.
XAI research in the technical community mainly focuses on explaining the system’s outputs
(predictions) and on the model. But there will also often be a need to explain the collection of
the data (box shaded in green), and preparation of the training data to show that it is balanced,
e.g. in terms of gender or race, or to show that it covers all the different sorts of road junction
found in a given country where an AV is to be used. Data preparation is a key explanandum of an
ML model, and the human decision makers should be able to explain the choice of the particular
dataset, which is the first step in the ML life cycle.
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ML models reflect features of the problem which the system is intended to solve (and of its
solution). In practice, the ML system developer shapes the set of features represented in the model
by training it on selected data, assessing its performance (e.g. what proportion of pedestrians it
correctly recognizes—known as true positives—and those objects, such as life-size pictures of
people in an advert on the side of a bus, it mistakenly categorizes as pedestrians—known as false
positives), and iterating to improve performance. Training will seek to balance the performance
between the different criteria. This balance will be decided by the developer for a particular
system, e.g. for an AV, a high level of false positives may be acceptable to reduce false negatives,
for safety reasons. Development of ML models always involves such balances or trade-offs. What
XAI methods can do is to highlight the consequences of such trade-offs. In fact, a lot of work on
explainability, e.g. [2], is focused on developers to help them guide ML-model development but,
in this paper, we will primarily focus on other stakeholders, external to the development.

To avoid confusion with the decisions made by humans in-the-loop, the term ‘predictions’ is
used in figure 1 but these might include decisions made by an autonomous system, e.g. an AV may
decide to stop when it detects a traffic light at red. We continue with this terminology throughout
the rest of paper: all outputs of the ML-based system—whether decisions, recommendations,
predictions or classifications—will be referred to as ‘predictions’.

(c) Types of explainability method

At the first level of our analysis, we will focus on two dimensions of XAI methods:

— Local versus global—a local explanation relates to a single prediction (arising from a
single input to an ML model), whereas a global explanation seeks to explain the model as
a whole [2] thus shedding light on the range of possible predictions.

— Time—we split time for the explanations into three categories: prior—before the
prediction is made; contemporaneous—at the same time as the prediction; and post—
after the prediction is made.

In §4, we will consider feature-importance and example-based methods. We will also employ
the distinction between model-specific and model-agnostic explanation. A model-agnostic
explanation can be produced independent of the method used for developing the model, e.g.
NNs or SVMs, whereas model-specific explanations depend on the type of ML model used.

3. Stakeholders and explanations

(a) Stakeholders

There are several stakeholder groups who might require an explanation of the ML model and its
predictions. Within the scope of this paper, we identify the following classes of stakeholder, each
bearing a different relation to the system:

Prediction-recipients (e.g. mortgage applicants, offenders in custody, hospital patients). These
stakeholders do not use the ML-based system themselves (the prediction is usually mediated by
an expert user) but they are directly affected by its predictions.

End users (e.g. car drivers, on-line shoppers). These stakeholders are both direct users of the
ML-based system and are also directly affected by it. Although the end user will often be a
prediction-recipient, we exclude them from that category as they use the system directly. Even
so, end users may not always have direct visibility of individual predictions, e.g. for AVs.

Expert users (e.g. clinicians, remote pilots). These stakeholders are direct users of the ML-based
system but they are not directly affected by its predictions. They are indirectly affected since they
may be accountable (both legally and morally) for consequences of enacted predictions.
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Regulatory agencies (e.g. Financial Services Authority, Vehicle Certification Agency, Medical and
Healthcare Products Regulation Agency). These stakeholders are neither direct users of the ML-
based system, nor directly affected by it. They do, however, protect the interests of prediction-
recipients and end users. The regulatory ecosystem is complex and needs to adapt to ML-based
systems [11]. Even so, these bodies are responsible for system approval and deployment; they
also oversee the system’s continued (safe) use. Assessors and insurer-funded research centres, e.g.
Thatcham, often provide the expert guidance and scrutiny that underpin this regulatory activity.

Service providers (e.g. Google, Automated Driving System Entities (ADSE) [12]). These
stakeholders are the companies and legal entities who put the system forward for authorization,
and vouch for the system when it is deployed. They may be the manufacturer or the software
developer, or a joint venture between the two [12]. These stakeholders may be legally liable for
the behaviour of the ML-based system once deployed [13].

Accident and Incident Investigators (e.g. National Transportation Safety Board (NTSB), Marine
Accident Investigation Branch (MAIB), Health and Safety Executive (HSE)). These stakeholders
are responsible for analysing accidents or incidents, and for making recommendations for
avoiding such events in the future with the same system or similar systems. In some cases, e.g.
the HSE, they may also be responsible for initiating legal proceedings;

Lawyers and the Courts (e.g. Barristers, Crown Prosecution Service (CPS)). These stakeholders
are interested in determining liability for harm caused by an ML-based system. Individual
lawyers may seek compensation on behalf of a prediction-recipient or end user.

Insurers (e.g. DirectLine, Aviva). These stakeholders cover financial risk on behalf of service
providers and users. In practice, they play a useful role to ensure that safety standards are met:
they may require evidence that a service provider has met regulatory requirements, and even
impose stricter standards of their own.

(b) Purpose of explanation

Studies of explanations span the sciences, psychology, cognitive science and philosophy [14].
Researchers have noted that the term ‘explanation’ has essentially been re-purposed by the XAI
community [15]. What it means in its technical sense touches only on some dimensions of the
multi-disciplinary discourse on explanations and their functions.

Explanations provided by XAI methods are descriptive. This speaks to the transparency that
the techniques can provide. There are similarities here with scientific modelling. Both deal in
approximations that provide descriptions of phenomena or behaviour [15]. XAI methods can
also provide causal and logical explanations. They provide some understanding as to how a
prediction is generated by the ML model. This speaks to the interpretability that the techniques
can provide (hence our use of the term ‘intepretation’ in figure 1). Causality is central to accounts
of explanation in philosophy, law, psychology and cognitive science [14]. But philosophical
accounts also place an emphasis on normative explanations [16]. These are explanations that offer
good reasons for a belief, decision or action; in this way, they can justify a process or an outcome
to those affected by it. Explanations provided by XAI methods do not supply explanations in
this sense [17]. The methods may, for example, highlight which features in the data have been
assigned a larger weight by the model, which determines the effect of a feature on a prediction or
the feature’s importance in the model [18]. This assignation of weight is in turn determined by the
feature’s success in producing accurate results in the training phase. As such, reasons given for
the importance of a certain feature must refer back to human decision-making during the training
of the model. This is the wider accountability framework within which XAI methods sit. People,
and not (just) systems, are answerable for decisions made in the ML development life cycle.

A great deal of work has been done in the social sciences about people’s expectations from
explanations. Some of these, such as the finding that people prefer contrastive explanations
accompanied by an underlying causal explanation, can be met or approximated to some degree
by XAI methods [14]. Psychological studies indicate an explainer’s values inform explanation
selection and evaluation, and these choices in turn can have a significant influence on the
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recipient’s understanding of an event; the explainer should therefore reflect carefully upon the
XAI method used and its communication to the recipient [15]. It is important that explanations
are communicated at the appropriate level of abstraction for the stakeholder [19]. The use of
visual interfaces can also improve some stakeholders’ epistemic access to an explanation [20]. But
equally, interpretations of system behaviour that are presented as more rigorous and complete
than they actually are will contribute to unjustified trust [21,22].

Below, we identify some general underlying reasons stakeholders may have for seeking the
explanations provided by XAI methods. This characterization is not intended to be understood as
homogeneous or exclusive. A single stakeholder, such as an expert user, may have more than one
underlying purpose, e.g. they may seek an explanation to determine whether a model complies
with regulation as well as an explanation to evaluate confidence in a specific prediction before
acting on it. By the same token, individuals from different stakeholder classes may have similar
purposes, e.g. to use the information to challenge a particular prediction. Thus our analysis,
particularly in §6, should be seen as indicative, not definitive or exhaustive, and it is intended
as a starting point on which to build.

Our hypothesis is that understanding these underlying purposes—which we have distilled
into the general categories below on the basis of first-hand experience working with developers,
industry and regulators—will help to inform understanding of explanation requirements, such as
whether a global or local explanation is required, which in turn can inform which XAI methods
are most appropriate in a given context. The timing of the explanation will also be relevant to
explanation requirements. Our analysis broadly aligns with those in [23,24]. We believe that
there would be merit in further empirical study to confirm the nature and importance of the
relationships between stakeholder classes and their underlying reasons for seeking explanations
of ML-models and predictions.

1. Clarity. Greater clarity of the model or its predictions is something all stakeholders, almost
by definition, require. It is a prerequisite to meet all the other purposes given below.
All dimensions of XAI methods are relevant to answering this need: global explanations
prior to deployment; local explanations contemporaneously and local explanations
retrospectively. It is also important, however, to temper this requirement with honesty
from those providing the XAI methods. They should not be taken to offer clear, or exact,
explanations when such clarity is not feasible [21].

2. Compliance. Determinations of compliance with law, regulation, or best practice is another
underlying purpose to which XAI methods may contribute. Sector-specific regulators will
have their own requirements for the approval of ML-based systems. In addition, cross-
domain Acts of Parliament apply (e.g. Data Protection Act 2018, UK GDPR, Equality
Act 2010). It has been suggested that stakeholders may rely upon XAI methods to
fulfil legal duties to provide information about the logic of specific outputs to affected
individuals [25]. These will be post-hoc local explanations. In addition, global XAI
methods could become part of the toolkit of both regulatory bodies and compliance
officers to interrogate and demonstrate the fitness of the system for purpose [26]. And
local contemporaneous XAI methods might play a role in ongoing assurance of the
model’s performance in context.

3. Confidence. Stakeholders will often want to evaluate their confidence in a prediction
before proceeding with a decision that has been informed by the prediction. Research
suggests that the provision of sufficiently detailed explanations can affect the acceptance
of algorithmic decisions by users—primarily expert-users [25]. XAI methods may be used
to serve this purpose. Global explanations may inform degrees of confidence in the range
of a model’s predictions prior to deployment. Where the ML-based systems are used by
human experts to inform decision-making, a local and contemporaneous explanation will
be required in order to decide whether to act on a specific prediction in real time.

4. Consent and Control. XAI methods may also play a role in enabling stakeholders to
better exercise their own human autonomy in relation to an ML-model [24]. Appropriate
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explanations could enable users to give their informed consent to recommendations by
ML-based personal assistants, for example, or, in the case of an AV, to understand a
transition demand sufficiently to resume effective hands-on control of the system. This
purpose is closely related to confidence, since both ultimately concern acceptance. As
with the previous case, the explanations that best serve this purpose will likely be local
and contemporaneous.

5. Challenge. Stakeholders who seek to challenge or contest a particular prediction may
also rely in part upon XAI methods to do so. Examples of members of particular
demographic groups being adversely and unfairly affected by ML-based predictions are
legion. One particularly egregious example was the COMPAS system, which predicted
an individual’s risk of recidivism, and often incorrectly assigned high risk scores to
black defendants and low risk scores to white defendants [27]. Other examples include
bias in hiring and loan decisions [28]. Demands for fairness often lead to demands for
interpretable models [17]. XAI methods may help identify when an error has occurred, or
provide evidence to contest a prediction. For such purposes, the requirement will be for
a local explanation, after the recommendation has been made.

6. Continual improvement. Finally, XAI methods can help developers of ML-based systems,
as well as other stakeholders such as accident investigators and regulators, to ensure that
the systems are continually improved and updated. The requirement here will be for both
global and local explanations.

These different underlying reasons for seeking an explanation are broadly ethical in nature.
They relate to the obligations people and organizations owe to one another. They relate to whether
people’s reasonable expectations of fairness and respect are met by a model’s predictions. They
relate to the exercise of individual human autonomy. They relate to stakeholder assessments
of whether a model’s behaviour aligns with normative goals for the system. But necessarily,
these purposes will only be served in part by XAI methods. The methods themselves are often
approximations, and give partial and selective information. Moreover, XAI methods do not
provide normative explanations. They will need to sit within a wider justificatory discourse, in
which human organizations and decision-makers provide the reasons for the choices that led to
the models being developed as they were throughout the life cycle.

4. Explainability methods
Research shows that local XAI methods are far more common than global XAI methods for
complex ML models [2]. In this section, we first briefly discuss some relatively simple ML models
that are intrinsically interpretable and which can provide both local and global explanations.
We then focus on the more complex ML models that tend to be used in critical applications
where local XAI methods can provide valuable information. For these more complex models,
we look at both feature importance methods, which can be model-agnostic or model-specific, and
at example-based methods, which are generally model-agnostic.

(a) Intrinsically interpretable ML models

Some types of ML model are viewed as being intrinsically interpretable (explainable) due
to their simplicity, e.g. linear regression and decision trees [29]. For example, the weights of
a linear regression model can be viewed as a crude feature importance score giving global
insight into the model if the input features are at a similar scale. The feature importance for
a decision tree can be calculated based on the mean decrease of Gini impurity [30] or, as
an alternative, using permutation feature importance [31], which calculates importance based
on the decrease in the model score when a single feature value is randomly shuffled in the
dataset. These explanation methods can provide global insight into the decision tree model, and
permutation feature importance has been shown to avoid some flaws of the Gini impurity-based
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method [32] and is model-agnostic. In addition, these interpretable ML models are often used as
a surrogate to approximate other complex ML models giving insight into the more complex ML
model [33].

(b) Explainability methods for complex ML models

There are many different ways to categorize XAI methods, as outlined above. Here, we sub-divide
the methods that are useful for complex ML models into feature importance and example-
based methods. Feature importance methods can be model-agnostic or model-specific, unlike
explanations of intrinsically interpretable models that are normally model-specific. Example-
based explanations are normally model-agnostic and are important for explaining the complex
ML models used in critical applications. There are many different XAI methods in the literature.
We briefly describe some of the more widely used methods here, give an illustrative example in
§5 and show how the XAI methods map to stakeholder needs in §6.

(c) Feature importance methods

Feature importance is by far the most popular method in explainability research [34]. There
are two main sub-categories of feature importance methods. One is perturbation-based
methods. Another is gradient-based methods. Perturbation-based methods make perturbations
to individual inputs either by removing, masking or altering an input feature or set of input
features and observing the difference with the original output. This approach can be used in many
different applications, e.g. image data, tabular data or text data [35,36]. For example, in an image
classification task using CNN, perturbation was implemented by occluding different segments of
an input image and visualizing the change in the predicted probability of the classification [37].

LIME (Local Interpretable Model-Agnostic Explanations) is a popular pertubation-based
method [38]. It generates the explanation by approximating the complex ML model using an
interpretable one, e.g. a linear model, learned on perturbations of the single input sample of
interest. LIME assumes it is possible to fit an interpretable model around a single input sample
that mimics how the complex ML model behaves locally. The simple interpretable model can then
be used to explain the predictions of the more complex ML model for this single input sample.

Perturbation methods based on Shapley values from cooperative game theory are also very
popular [39]. Shapley values are a way to assign the total gain from a cooperative game to its
players guaranteeing a unique solution. In using Shapley values to explain a model prediction,
the model input features are viewed as the players and the model prediction is the gain resulting
from the cooperative game. However, it is difficult to calculate the exact Shapley values in practice
as they are exponential in the size of the model input features. Consequently, approximate
methods have been proposed, e.g. aggregation-based methods [40], Monte Carlo sampling [41]
and approaches for graph-structured data, e.g. language and image data [42].

SHAP. (SHapley Additive exPlanations) [43] is another method approximating Shapley values.
SHAP incorporates several tools, e.g. KernelSHAP and TreeSHAP [44]. KernelSHAP is a weighted
linear regression approximation of the exact Shapley value inspired by LIME and it can be used
to provide local explanations for any ML model. TreeSHAP is an efficient estimation approach
for tree-based models only, i.e. it is model-specific. The work on SHAP has defined a new class of
additive feature importance measures which unifies several existing explainability methods.

Perturbation-based methods allow a direct estimation of feature importance, but they tend to
be very slow as they perturb a single input feature or set of features each time, so as the number of
input features in the ML model grows, it can take a long time to generate the importance score for
all of the features, e.g. for image analysis [45]. Also, as complex ML models are often nonlinear, the
explanation is strongly influenced by the set of features that are chosen to be pertubated together.
In comparison, gradient-based methods have the potential to be much more efficient.

The basic gradient-based method is just to calculate the gradient of the output with respect
to the input. For example, a ‘saliency map’ is produced by calculating the gradient of the output
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with respect to the input in an image classification task identifying pixels that have a significant
influence on the classification [46]. There are several variants of gradient-based methods. Gradient

* Input multiplies the gradient (strictly the partial derivative) by the input value to improve the
sharpness of feature importance [47]. Integrated Gradients is similar to Gradient * Input, in that
it computes the gradient of the output with respect to each input feature by integrating over a
range from a baseline to the current value of the feature, to produce an average gradient [48].
This method has a number of desirable properties associated with it. DeepLIFT (Deep Learning
Important FeaTures) [49] has been developed specifically for use with deep NNs. DeepLIFT
compares the activation of each neuron to its ‘reference activation’ and assigns an importance
score to each input according to the difference. The ‘reference activation’ is obtained through
some user-defined reference input to represent an uninformative background value, for example,
for image classification this could be a totally black image. DeepLIFT has been shown to be a good
approximation to Integrated Gradients in most situations [50].

(d) Example-based methods

Example-based methods use particular input instances to explain complex ML models, thus they
normally provide local explanations. This is motivated by the way humans reason, using similar
situations to provide explanations [51]. This is common practice, for example, in the law [52,53]
where judicial decisions are often based on precedents (known as case law). There is growing
interest in using example-based methods to explain complex ML models and some view them as a
useful complement to feature-based explanations [54]. We describe three example-based methods.

Counterfactual explanations for ML models were introduced by Wachter et al. [55]. They use
similar situations that give different predictions from the current input instance to the ML model,
e.g. achieving a desirable outcome in healthcare. These can be used, for example, to indicate what
changes in a patient’s state or treatment are needed to allow them to be discharged from hospital.
To be used this way, it is important that the counterfactual explanations minimize the difference
between the current input features and the counterfactual examples. The kinds of metrics that
should be used to minimize the difference is an ongoing area of research [56,57].

Adversarial examples were discovered and discussed by Szegedy et al. [58]. They are small,
intentional, feature perturbations that cause an ML model to make an incorrect prediction, e.g.
to mis-classify an object in image analysis [59] or to fool reading comprehension systems in text
classification tasks [60,61]. It is different from counterfactual explanations which are typically
used when the ML model is fixed. An adversarial example in autonomous driving might be to
add noise to an image of a stop sign so that it would not be recognized by the ML model, although
it would seem unchanged to a human. Once such problems are identified, they can be used to
improve the robustness of complex ML models. Therefore, adversarial examples are generally
used during model training, rather than providing explanations like feature importance methods,
but more robust ML models can improve the quality of the feature importance results [62].

Influential instances are the inputs from the training dataset that were most influential for the
predictions of the ML model, i.e. the ML model parameters are highly influenced by these inputs.
One simple way of finding influential examples is to delete inputs from the training dataset, to
retrain the model and to assess the impact; while straightforward, this is impractical for large
datasets. Often mathematical techniques are used which do not require retraining the model [63].
Like adversarial examples, influential examples are best used during training and contribute more
to ML model robustness than providing direct explanations.

5. Explainability example
In this section, we present a concrete example, applying a feature importance method (DeepLIFT)
to a healthcare application. In Intensive Care Units (ICUs), mechanical ventilation is a complex
clinical intervention that consumes a significant proportion of ICU resources [64,65]. It is of critical
importance to determine the right time to wean the patient from mechanical support. However,
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Figure 2. ROC Curves for the example NNs. (Online version in colour.)

Table 1. Accuracy for the example NNs.

accuracy

CNN 86.5%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DNN 87.1%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

assessment of a patient’s readiness for weaning is a complex clinical task and it is potentially
beneficial to employ ML to assist clinicians [66]. The example uses NNs based on the MIMIC-
III dataset [67] to predict readiness for weaning in the next hour. The NN models are trained
on data for 1839 patient admissions, the NN architecture and hyperparameters are tuned using
a validation dataset of 229 patient admissions, and performance is evaluated on 231 patient
admissions. For more detail, see [54] which also shows the use of counterfactual explanations.

The performance of an ML model is often assessed in terms of accuracy of the prediction and
the area under the receiver operating characteristics curve (AUC-ROC). For a ‘random’ model the
AUC-ROC would be 0.5 and for a perfect model it would be 1. The example compares both CNN
and DNN. Based on performance, both are promising, achieving around 87% accuracy and 0.93–
0.94 AUC-ROC (figure 2 and table 1). Based on performance, there seems to be little to choose
between them. However, we then used DeepLIFT to determine feature importance for the two
NNs, see figure 3 where longer bars mean that the features are of greater importance. Note that
the sign indicates positive and negative influences on the outcome and zero means that the feature
is of little importance. This shows significant differences between the two models.

First, DeepLIFT reveals that the CNN shows ethnicity, gender and age all have an importance
near zero, whereas the DNN shows age and gender as having higher importance. Such
information should be of critical importance to regulators determining which models to approve.
It would be over-simplistic to infer from this information that the CNN is less biased than the
DNN, since making models formally ‘blind’ to protected characteristics rarely removes the risk
of bias, and may even have the opposite effect, depending on context [68]. But making the feature
importance visible to healthcare regulators enables them to ask the right questions about the
potential negative impact of proposed ML-based applications on certain demographic groups.

Second, the feature importance for the CNN is more consistent with clinical knowledge.
Some features, e.g. the Richardson-RAS scale [69], which show how alert patients are, have high
importance in both NNs. However, the CNN places greater importance on a number of patient
conditions such as tidal volume (depth of breaths) and on features of the treatment, e.g. the mode
of operation of the ventilator, which would typically be considered by a clinician. This use of
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Figure 3. Comparative feature importance. (a) CNN feature importance, (b) DNN feature importance. (Online version in colour.)

explainability is an example of decision support for an expert user, but it also has a role in helping
ML model developers produce more effective results, and helping regulators determine approval.

This example shows the importance of XAI methods for complex ML models and how the use
of performance alone is not enough to assess whether or not a given ML model is an appropriate
advisory tool in a safety-critical situation. This also shows how explanations can be visualized, as
identified in figure 1, so as to be accessible to stakeholders.

6. Integration of stakeholder purposes and XAI methods
The discussion of stakeholders in §3 and the survey of XAI methods in §4 is integrated in
table 2. Here, we first explain the table structure then give a more in-depth discussion of three
combinations of stakeholder and scenario in which explanations are required, highlighting the
ethical considerations for each; we also revisit the example from the previous section showing
how it relates to the table.

Table 2 identifies the stakeholders and the purpose of explanations in a given scenario,
e.g. confidence and compliance for a regulator engaged in system approval. Timing for the
explanations is identified, and the last three rows correspond to the boxes shaded in gold-brown
in figure 1 and identify whether explanations should be local or global, with an illustration of
candidate XAI methods presented in the last two rows (methods for visualizing data are out
of the scope of this paper). The table is intended to be illustrative, not exhaustive. To keep the
table compact, investigation covers a number of cases, not just physical accidents. For example, a
prediction-recipient might make an immediate challenge to a decision (shown in the right-most
column) but the Courts, and a lawyer operating on the recipient’s behalf, might be interested in
global as well as local explanations, e.g. to see if an ML model displayed systematic bias.

Prediction-recipients, being the directly affected individuals, should always be the core focus
of ethics and safety. We also include here directly affected individuals who are excluded from
prediction systems. An important ethical consideration for prediction-recipients in domains such
as criminal justice and retail banking is that they are not subject to an unfairly discriminatory
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Table 2. Illustrations of explainability requirements for different stakeholders and scenarios.

dimension/example regulation investigation service service decision support decision support

stakeholders regulator accident investigatora service provider end user expert user prediction recipient


scenario system approval investigate accident or

incident

system deployment service use decision support decision support

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

purpose of explanation confidence, compliance clarity, compliance,

continuous

improvement

confidence,

compliance,

(continuous

improvement)

challenge, consent and

control

confidence, consent

and control,

challenge

challenge



timing of explanations pre-deployment post-incident pre-deployment same time as decision same time as decision same time as decision


data explainability global local, global global n.a. local, global local


model explainability global (interpretable

models, adversarial

examples,

influential

instances)

global (permutation

feature importance,

counterfactual

explanations,

TreeSHAP)

global (interpretable

models, adversarial

examples,

influential

instances)

n.a. global (permutation

feature importance,

interpretable

models)

n.a.



prediction explainability n.a. local (KernelSHAP,

counterfactual

explanations)

n.a. local (KernelSHAP,

DeepLIFT,

interpretable

models)

local (interpretable

models,

counterfactual

explanations)

local (KernelSHAP,

DeepLIFT,

interpretable

models)


aService Provider may investigate service ‘outages’ (incidents) and Lawyers/Courts may also investigate challenges from decision recipients, using similar methods.

 Downloaded from https://royalsocietypublishing.org/ on 12 July 2022 
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prediction. There are many examples of ML-based models that have been shown to reinforce bias
against individuals on the grounds of race and gender [70], as well as postcode or socio-economic
status [71]. While the primary explananda here are the human decisions that went into creating
the dataset (figure 1), XAI methods will also be required to help to determine whether the ML
model reflects or exacerbates bias [72]. As discussed above, feature importance methods can help
to determine this. It should be noted that automated predictions about individuals constitute
personal data in the case that the individual is identifiable [26]. They therefore fall within the
remit of data protection law. This gives rise to requirements for a post-hoc local explanation, should
the individual seek to challenge an automated prediction that has been made about them. This is
illustrated in the rightmost column in table 2, showing the relevance of interpretable models to
give contemporaneous explanations, but note also the possible need for post-event explanations
in support of legal processes.

Expert-users, such as radiographers and oncologists, are the individuals for whom most
advisory ML-based systems are designed. The objective is for such stakeholders to be able to
determine confidence in order to make an informed decision about whether to accept and act on the
prediction, thus to exercise consent and control. It is presently unclear whether insufficient scrutiny
of an ML-generated prediction would constitute a legal breach of a doctor’s duty of care; however,
they may also want to challenge or query predictions. But clinicians clearly have a strong moral
duty to ensure their patient’s well-being and safety [73]. XAI methods can help them to fulfil that
duty. Clinicians make diagnostic decisions by considering and weighing a set of features, data
points and clinical markers [74]; see also the example in §5. The clinician may therefore find
value in example-based explanations, such as counterfactual explanations, particularly where
their immediate apprehension of the patient, and insights gleaned from additional information
not included in the ML model (e.g. biopsy results), indicates a different result to the prediction
provided by the system [73].

Service-providers have several explanatory requirements, given their need to comply with
regulation, ensure the safety of systems, meet the requirements of end users, and to provide
explanations to investigators post-hoc. This gives rise to a comprehensive range of explanations
required, both global explanations prior to deployment for purposes of confidence, compliance and
local explanations post-hoc to support continuous development. The middle column in table 2 shows
the role of XAI methods in the pre-deployment case for the service provider; the column for
investigation also covers service providers seeking to understand unintended behaviour and to
improve the system.

In addition, the example in §5 is a DSS, and it reflects the requirements for an expert user. In
particular, the example shows feature importance methods used to provide model explainability,
in support of Confidence.

7. Discussion
The study of XAI methods is normally conducted from a purely technical perspective. But when,
and what type of, explanations are needed, and by which stakeholders, is also often an ethical
question. What we have sought to do here is to bring the two dimensions together. The intent
is that the information in the form illustrated in table 2 can be used to identify candidate XAI
methods, although we acknowledge that the coverage in the table is not exhaustive. Further, this
does not produce a ‘unique’ solution and, for example, both LIME and DeepLIFT could be used
to provide local explanations for an accident investigation where deep NNs have been used. The
development of both ML and XAI methods is proceeding apace so it is unlikely that the choice of
XAI methods will be codified in the near future, if indeed that is possible, but it is hoped that an
analysis in the form of table 2 will help inform method choice.

Some have argued that only interpretable models should be used for critical decisions [22], and
table 2 would seem to support this view. We take a rather broader view that there are trade-offs to
be made between performance and explainability. For example, if it is essential to understand the
model, then the choice of ML methods might be limited, primarily to interpretable models and
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these have the benefit of providing contemporaneous explanations. But these are less powerful
than many other ML methods, and might not perform well in terms of mission objectives. Further,
algorithms such as DeepLIFT are fast – the examples shown in figure 3a,b took around 1–2 min
to produce on a modest computer—so these might be useful where a slight delay in producing
explanations was acceptable. This suggests that more explicit recognition should be given to XAI
methods when choosing the ML methods to use where assurance is a key factor. For example, with
AVs, while in theory contemporaneous explanations might be of value, in practice it is doubtful
whether or not they would be useful to drivers—and using more powerful ML methods that still
permit the use of XAI methods to support incident analysis might be justifiable.

It is generally accepted that verification and validation (V&V) of ML is challenging, and there
is no widely agreed ‘best’ way to undertake V&V. Work on building an assurance model for V&V
has produced ‘desiderata’ for assurance through the ML life cycle, using a model which inspired
the structure of figure 1 [10]. It seems unlikely that assurance processes for ML will reach a level
of rigour equivalent to the prevailing standards for ‘conventional software’. Thus, it is possible
that explainability will, in time, come to have a greater role in assurance. One of the reasons for
believing this is that autonomy, in essence, transfers decision-making from humans to machines—
one way to gain confidence that this has been done satisfactorily is to expose the nature of the
decision-making process—and this is what explainability seeks to do.

Finally, assurance cases, in the form of structured arguments supported by evidence [75], play
a significant role in communicating why it is believed that a system is safe to deploy, particularly
in safety-critical industries. The more complex and novel the system and its context are, the more
important the role of the assurance case is in informing the risk-based deployment decision. There
is an increasing interest in the use of assurance cases to justify the safety of ML-based systems,
particularly for automotive [76] and healthcare applications [77]. The notion of explainability,
particularly pre-deployment, could form a key part of an ML assurance case used to explain
and justify, e.g. to regulators, key decisions about the choice of the ML model and quality and
suitability of the data sets. Post-deployment, local XAI methods could help to implement a highly
dynamic assurance case [78,79] where the critical predictions made by an ML-based system could
be used to update the assumptions about, and confidence in, the system deployed compared with
the assessment made pre-deployment.

8. Conclusion
ML-based systems are already being used in situations that can have an effect on human well-
being, life and liberty. This, combined with the fact that they move decision-making away
from humans, makes it an assurance imperative to provide evidence that this transference is
appropriate, responsible and safe. Explanations of ML-models and ML-generated predictions can
be provided as part of this evidence. But they sit within a wider accountability framework, in
which human decision-makers are still required to give the normative reasons or justifications
(which XAI methods cannot provide) for the ML-models. Our analysis of stakeholder needs
and the contrast with the capabilities of XAI methods gives, we believe, a starting point for
understanding how to employ explainability in an assurance role. Assurance of ML-based
systems deployed in living environments has an ethical dimension. This is reflected in the
underlying ethical nature of the reasons—to inform consent, to challenge an unfair prediction,
to assess confidence before implementing a decision that, if wrong, could harm the recipient—
for which stakeholders might require visibility of an ML-model or an explanation of one of its
predictions. We hope that this paper will help shift the balance of work on XAI methods from
a largely technical one to a wider consideration of the role of explainability in assurance and
achieving evidence-based acceptance of ML.
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