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ABSTRACT: 3-Fluoro- and trifluoromethylthio-piperidines rep- FISCF3
resent important building blocks for discovery chemistry. We \l\\/Nj:Ar
report a simple and efficient method to access analogs of these . H
. . . . h BocN__ _O 7N R2
compounds that are armed with rich functionality allowing them to g £\ FISCF,
be chemoselectively derivatized with high diastereocontrol. *o 0 -
1IN FG H
FISCF; " gﬁﬁﬁiﬁgﬂfy Alk&(f\;ve
® Readily available N~ NAr
F-source H
Chemo- and diastereoselective
functionalization
luorine-containing molecules exhibit a variety of useful as modulating the basicity of the nitrogen atom. 3-
properties in pharmaceuticals, agrochemicals, and materi- Fluoropiperidines have also been investigated as radiotracers
als science.' ™ In particular, the introduction of a C—F bond for NR2B NMDA receptor visualization.”
into a bioactive compound can have a dramatic impact on both In spite of the importance of 3-fluoropiperidine derivatives,
the physical and chemical properties of the molecule.” only a few general strategies exist to access these compounds.
Additionally, nitrogen heterocycles are one of the most highly The electrophilic fluorination of piperidone derived enol
represented motifs within FDA approved small molecule drugs, equivalents has been reported,’” but this method faces
with the piperidine ring as the most prevalent example of this regioselectivity issues when applied to nonsymmetrical
class.” Among other modifications of this cyclic amine, the scaffolds. The deoxofluorination of alkoxypiperidines has also
selective incorporation of a fluorine atom at the 3-position of been reported, but these reactions require extensive
the piperidine scaffold has been demonstrated to be an prefunctionalization and exhibit poor atom economy.'' A
effective strategy to improve the pharmacological properties of particularly prevalent strategy relies on the intramolecular
a number of biologically active compounds targeting SYK,6 aminofluorination of olefins using Pd-catalysis12 or hypervalent
CGRP,” and MET kinase® (Figure 1). In these cases, the iodine reagents.13 However, these methods commonly employ
fluorine atom plays a key role in preventing metabolism, as well strong oxidizing agents or rely on the use of stoichiometric
quantities of toxic"" or expensive reagents.13C A recent report
77777777777777 o on the direct hydrogenation of fluorinated pyridines'* provides
; oF N/Q a diastereoselective synthetic pathway for the synthesis of
O/ D fluoropiperidines, but the high H, pressure required reduces
PN 1 N operational simplicity. We envisioned that our recently
H | reported [4 + 2] annulation strategy to N-heterocycles"
7777777777777 Me CGRP receptor could offer a powerful route to 3-fluoropiperidines using
antagonist

readily available a-fluoro-f-ketoester starting materials.'®
Advantages of this method would include its highly modular
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Figure 1. Prominent bioactive 3-fluoropiperidines.
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nature, allowing for the rapid construction of the piperidine
core. Moreover, the heterocycle products contain orthogonal
functionality that would allow their elaboration to new
products through multiple vectors (Scheme 1).

Scheme 1. Synthetic Routes to 3-Fluoropiperidines
a) Intramolecular aminofiuorination of olefins:

N R4

E
Rz\\(\/ IM] or AriX, qufj/
I}IH fluorine source ’}‘
R3 R3
b) Hydrogenation of fluoropiperidines:
[Rh], HBpin
N H, (50 bar) N
RE JF LT
N then TFAA N
TFA
¢) Pd-catalyzed [4+2] annulation (this work):
Pd
k/[ @] NHBoc
) NBoc Q TFA N
Sadl )
F F

We began our studies by investigating the allylation/
condensation reaction of readily available a-fluoro-f-ketoester
1la and cyclic carbamate 2 as shown in Scheme 2. Subjecting
this substrate to S mol % of Pd(dba), and 15 mol % of ligand
L1 followed by treatment of the intermediate with TFA led
smoothly to the desired 3-fluoropiperidine 4a in high yield
(Scheme 2a). Moreover, this product was also obtained in
comparable yield employing a one-pot procedure without
isolation of intermediate 3. To our delight, scaling up the
reaction to multigram quantities yielded 4a with similar results.
We then examined the applicability of this methodology to a

number of a-fluoro-fB-ketoesters. Aryl substituted imines with
either electron-withdrawing or electron-donating groups at the
para-position on the aryl ring gave excellent yields (4b—f).
Substitution at other points on the aryl ring such as ortho-
methyl (4g) and naphthyl (4h) are also well tolerated. The
heterocyclic thiophenyl containing substrate 1i was also
converted into the corresponding piperidine imine 4i in 78%
yield. In addition to a-fluoro-B-ketoesters, numerous other
fluorinated nucleophiles could be employed in the allylation/
condensation sequence including a-fluoro-f-ketonitriles (4j),
a-fluoro-p-ketosulfones (4k), and a-fluoro-f-ketoamides (41).
Unfortunately, however, a-fluoroketones bearing alkyl groups
were not transformed to the corresponding heterocycles, and a
complex mixture of products was instead produced.
Furthermore, this sequence could also be applied to alkyl
substituted a-fluoro-p-ketoesters in a regioselective manner
(Scheme 2b). Simple alkyl groups containing various levels of
substitution at the a-position (Me, 1°, 2°, and 3°) afforded the
piperidine imines 4n—4r in high yields. Finally, a derivative of
L-proline was evaluated, with 4s obtained in good yield and
with moderate diastereoselectivity. The excellent functional
group tolerance of this reaction sequence serves to highlight
the mild nature of this procedure.

We next turned our attention to demonstrating that the
functionalized 3-fluoropiperidines were versatile intermediates
for organic chemistry (Scheme 3). First, a chemoselective
reduction of 4a using NaBH(OAc); in acetic acid solvent
produced saturated piperidine $ with high diastereoselectivity.
Subsequent protection of § using di-tert-butyl dicarbonate then
gave compound 6 in 88% yield, with the X-ray structure of 6
(CCDC 2063492) providing the relative configuration of the
major diastereoisomer obtained in this process. Interestingly, a
chemoselective reduction of the ester moiety was also achieved
using LiAlH, to give 7 in moderate yield. A hydrolytic

Scheme 2. Reaction Scope”

L1:
o Pd(dba), (5 mol%) oL O %
O)K(O . L1 (15 mol%) TFA (50 equiv. E O-p_N
BocN.__O CH.CI CH,Cl, P o’ %
F 70( 2z NHBoc N O
2 3 4

W a) 2-Aryl 3-fluoropiperidines

o, [0} o, (o] [0} [0}
OEt ,emnemmmeemmeeemeeeeneeeeas ) OEt OEt OEt OEt OEt
F ! One-pot (3a not isolated); 81%; F F F F F
pz 1 3.2 g substrate 2 scale; 91% : = = Pz > _
N Ph el i N N N N N
4a 84% 4b 94% OMe 4c 84% Cl 4d 76% CF; 4e 71% Me 4 74% NO,
[0} OMe
S0,C¢HsMe-p N_
F F
> P2
N” >Ph N”>Ph
4k 87% 41 87%
[0}
OEt OEt
F F
_ Ts
N N
4m 80% 4n 78% 40 86% 4p 78% 4q 78% 4r 92% 4s 49% 4.2:1dr

“Reaction conditions: 1 (0.3 mmol), 2 (0.2 mmol), Pd(dba), (10 pmol, S
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mol %), L1 (30 umol, 15 mol %), DCM (0.1 M), rt, 18 h under N,.

https://doi.org/10.1021/acs.orglett.1c00752
Org. Lett. 2021, 23, 2811-2815



Organic Letters

pubs.acs.org/OrgLett

Scheme 3. Chemoselective Functionalization of 3-
Fluoropiperidine Imines”

F coet 10

54%, E/Z = 2:1

HN N
N . |
Ph™ > a | Chemo-& d Ph
F CO,Et < Ph diastereoselective | —> L os
F CO,Et functionalization
° ‘ quant
90%, 96:4
X l .
BocN N HN
|
Ph” ) Ph on
F 'CO,Et \_on I
6 7 9
88% 50% 77%, >98:2

“Reagents and conditions: (a) NaBH(OAc); (1.5 equiv), AcOH, rt,
18 h (90%); (b) Boc,O (2.0 equiv), Et;N (2.0 equiv), THF, rt, 18 h
(88%); (c) LiAlH, (2.0 equiv), THF, rt, 3.5 h (50%); (d) aq. HCI (15
equiv), 100 °C, 1 h (quant.); (e) NaBH, (2.0 equiv), MeOH, 0 °C to
rt, 18 h (77%); (f) Hoveyda—Grubbs second Gen. (S mol %), pent-4-
en-1-yl acetate (3 equiv), DCM, 25 °C 18 h then reflux, 3 h (54%).

decarboxylation using aq. HCl and heating afforded
fluoropiperidine 8, which could then be reduced using
NaBH, to provide saturated piperidine 9 in 77% yield as a
single diastereoisomer following column chromatography.'”
Notably, this decarboxylation circumvents the limitation
associated with the poor reactivity of a-fluoroketones in the
allylation/condensation cascade. Selective functionalization of
the exocyclic alkene is also possible; cross-metathesis produced
10 as a mixture of geometric isomers. The ability to selectively
functionalize each functional handle in piperidine imines 4
demonstrates their utility as synthetic intermediates.

The suitability of our method for accessing useful fluorinated
heterocycles suggested that it might be adapted to allow the
incorporation of trifluoromethylthio (SCF;) groups. In this
regard, and to the best of our knowledge, only two examples of
3-SCF;-substituted piperidines have been reported.'® Due to
its electron-withdrawing nature and high lipophilicity, the
SCF; moiety can significantly modulate the pharmacological
properties of bioactive compounds Nevertheless, the
availability of synthetic methods that deliver saturated N-
trifluoromethyl-thiolated six-membered heterocycles is scarce,
and those that are documented suffer from limited substrate
scope.”’

Our efforts to employ the [4 + 2] annelation sequence to a-
SCF;-ketones is summarized in Scheme 4. Aryl substituted
ketones proved to be excellent substrates for this trans-
formation, generating a range of 3-SCF;-substituted piper-
idines under mild conditions. Unfortunately, these products
proved to be unstable to chromatography, and so we used a
borohydride reduction step prior to isolation. Accordingly, 2-
aryl 3-trifluoromethylthio-piperidines 13a—g were isolated in
excellent yields over three steps, and with very high cis-
stereocontrol. X-ray crystal structure analysis of aryl substituted
products 13a (CCDC 2063487) and 13e (CCDC 2063489)
confirmed the relative stereochemistry of the major diaster-
eomer in these cases, and the stereochemistry of all other aryl-

2813

Scheme 4. Synthesis of 3-SCF;-Substituted Piperidines”

2
o
Pd(dbay), (5 mol%)
1.TFA SCF
L1 (15 mol%) SCF3 AN 3
CH20|2 RT, 18 h 2. NaBH,
NHBoc 0°Cto RT, 18 h u
12 13
Yj SCF; _‘g\ Yj SCF; SCF;
1 . .
N~ “Ph 1 N~ N~
s o JHLE SV O
byt OMe Me
13a; 71% W 13b; 64% 13c; 59% 1!
98:2d.r. 98:2d.r. 98:2d.r.
Yj ~SCF; Yj ~SCF;3 f»‘\, \L/j”\SCFS
cl
N~
H
13d; 51% 13e 51% 13f; 30%
98:2 d.r. 98:2 d.r. 98:2 d.r.
N
H
13g; 52% 13h; 76% 13i; 43% U
98:2d.r. 5:1d.r. 3:1dr.

“Reagents and conditions: 11 (0.7 mmol), 2 (0.47 mmol), Pd(dba),
(23 pmol, 5 mol %), L1 (70 umol, 15 mol %), CH,Cl, (0.1 M), RT,
18 h under N,. “Heated at 40 °C.

substituted products was assigned by inference. Unfortunately,
however, 2-aryl-substituted ketones containing electron-with-
drawing groups (4-nitrophenyl and 4-trifluoromethylphenyl)
were found to decompose during the TFA-mediated
deprotection—condensation step. Finally, a-SCF;-propiophe-
none led to a more substituted analog 13h, while the potential
to access 2-alkyl piperidine products was confirmed in one
case, albeit in low yield.

In conclusion, we report that 3-fluoropiperidines bearing
orthogonal imine, ester, and alkene functionality can be readily
prepared and chemoselectively derivatized, providing a power-
ful approach to these important substructures. Moreover, this
method can be extended to provide the first general means to
incorporate the 3-trifluoromethylthio-group into piperidines,
offering a new and efficient entry into these important
scaffolds.
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