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Abstract. Machine learning (ML) has the potential to bring significant clinical benefits.

However, there are patient safety challenges in introducing ML in complex healthcare set-

tings and in assuring the technology to the satisfaction of the different regulators. The work

presented in this paper tackles the urgent problem of proactively assuring ML in its clin-

ical context as a step towards enabling the safe introduction of ML into clinical practice.

In particular, the paper considers the use of deep Reinforcement Learning, a type of ML,

for sepsis treatment. The methodology starts with the modelling of a clinical workflow that

integrates the ML model for sepsis treatment recommendations. Then safety analysis is car-

ried out based on the clinical workflow, identifying hazards and safety requirements for the

ML model. In this paper the design of the ML model is enhanced to satisfy the safety re-

quirements for mitigating a major clinical hazard: sudden change of vasopressor dose. A

rigorous evaluation is conducted to show how these requirements are met. A safety case is

presented, providing a basis for regulators to make a judgement on the acceptability of in-

troducing the ML model into sepsis treatment in a healthcare setting. The overall argument

is broad in considering the wider patient safety considerations, but the detailed rationale

and supporting evidence presented relate to this specific hazard. Whilst there are no agreed

regulatory approaches to introducing ML into healthcare, the work presented in this paper

has shown a possible direction for overcoming this barrier and exploit the benefits of ML

without compromising safety.
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1. Introduction

Machine learning (ML) has received a lot of attention recently due to its rapid development

and promising applications in many areas, particularly in healthcare. ML has the ability to process

huge datasets beyond the scope of human capability and use the analysis of that data to produce mean-

ingful insights and enable timely responses. For example, it is believed that ML can assist clinicians



in planning and providing care, ultimately leading to better outcomes with lower costs of care [1].

Indeed, recent research [2] shows how ML can be used to help pathologists to identify and localise

cancerous tumours from images with promising results. ML has also been used to discover antibiotics

which are structurally different from known antibiotics [3] and the same group at MIT is working on

the use of ML to discover treatments for COVID-19 [4]. However, before such applications can be

deployed, it is necessary to demonstrate their safety.

Healthcare regulators have developed standards for assuring the safety of digital systems [5],

e.g. DCB0160 from NHS Digital [6]. However, these standards and the associated regulatory ap-

proaches assume that software is developed in a “conventional way” and thus are not well-suited to

ML applications, where systems are produced without explicit programming but by automatically

learning from complex data sets. Although these issues are starting to be addressed, e.g. by the US

Federal Drug Administration (FDA) [7], there is still a disconnect between regulatory practices and

the processes for assuring ML in healthcare. Indeed, one of the key findings of a recent study by the

UK Care Quality Commission (CQC) was “the need for more assurance about the clinical aspects

of the algorithms in machine learning, and more clarity on how hospitals should implement machine

learning devices within clinical pathways to ensure high-quality care” [8]. This indicates the need for

more focused effort on practical methods of safely translating ML from research into clinical practice.

One of the problems to be addressed is that development of ML is often undertaken in “silos”, e.g.

focusing on particular data analysis challenges [9], without addressing the broader issues of clinical

adoption. To overcome this problem it is necessary to bring together expertise and stakeholders from

many disciplines including clinical practice, ML and safety engineering.

The paper provides a concrete clinical use case for sepsis treatment using ML, specifically

deep Reinforcement Learning (RL) in this case. Sepsis is a life-threatening condition and a major

cause of fatalities in hospitals. It is hard to detect the onset of the condition and the optimal treatment

is as yet unclear [10]. RL is well-suited to decision-support problems and several researchers have

already applied RL to the problem of recommending optimal sepsis treatment, e.g. [11]. We have

also adopted RL, as the existing work both gives a baseline on which to build and to demonstrate how

to achieve safety-driven design of the RL model.

In particular, we developed and applied a novel methodology that incorporates safety engi-

neering processes to support development and refinement of the clinical workflow and the ML model.

The safety engineering process identifies hazards (i.e. sources of potential patient harm), hazard

causes and requirements for hazard controls. The design of the ML model is then enhanced to sat-



isfy the relevant safety requirements and a rigorous evaluation is undertaken to provide evidence that

these requirements are met. The evidence feeds into a safety case which presents the safety ratio-

nale, including showing the completeness of the controls. This work provides a process for assuring

the safety of the ML model in its clinical context of use thus supporting regulators in assessing the

acceptability of introducing an ML model into a healthcare setting.

The rest of the paper is structured as follows. Section 2 discusses the background and related

work, including the safety of ML in healthcare. Section 3 describes the methodology we have used

in this work covering the clinical, safety and ML elements outlined above. Section 4 presents our

detailed clinical use case on the treatment of sepsis, focusing on mitigating a major clinical hazard:

sudden change of vasopressor dose. A discussion of the role of the work and the possible future

directions is presented in Section 5. Section 6 presents conclusions.

2. Background and Related Work

It is common to categorise ML algorithms into three types according to the way they are

trained, viz: supervised learning, unsupervised learning and RL. All three types have been explored

in healthcare. Supervised learning involves training using data points with known outcomes and

the learning algorithms are a form of optimisation which seeks to minimise loss or error. There

is a lot of work using supervised learning for classification problems in healthcare, e.g. for breast

cancer screening [12, 2]. Unsupervised learning identifies previously unknown correlations in data

with the minimum of human supervision. A typical application in healthcare is to try to identify

phenotypes – that is groups of patients who are homogeneous in how the specific medical condition

is presented. Examples include Acute Respiratory Distress Syndrome (ARDS), identifying hypo- and

hyper-inflammatory phenotypes [13] and sepsis, identifying four novel phenotypes [14]. RL is an ML

technique that is often used in complex decision making tasks to find an optimal strategy [15]. It has

been applied to identify optimal treatments in healthcare very recently, e.g. determining treatment

regimes in chronic disease and automated medical diagnosis [16]. It involves an agent seeking to

maximise its reward through interaction with its environment. A more focused discussion of RL and

its application to sepsis can be found in Section 4.

Although there are many research activities investigating how to exploit the potential ben-

efits of ML in healthcare, few studies have progressed to deployment in clinical care [17]. Thus,

researchers are now beginning to realise that more effort needs to be put into safe deployment of ML

in healthcare. For example, “sepsis watch”, has reported on the work of a multi-disciplinary team



including statisticians, data scientists and clinicians introducing a deep-learning based sepsis detec-

tion and management system into clinical care [18]. In this work, front-line clinical staff were highly

engaged in the design and development of the workflow, ML model, and its application. Several iter-

ations occurred throughout the product lifecycle to improve the ML model to suit its clinical context

of use. Rigorous evaluation was carried out with external partners to assess the possible inequality

and bias introduced by ML and they conducted operational impact evaluation to demonstrate safety

and efficacy. They emphasised the importance of multi-disciplinary working and early involvement

of all stakeholders in order to successfully integrate ML technologies into routine clinical care.

In [17] the authors took a broad view of the issues, providing an overview of the barriers to de-

ployment of ML and translating research into practice. The work focuses on developing a “roadmap”

for accelerated translation of ML based interventions into healthcare, which includes choosing the

right problems, developing a useful solution, carrying out rigorous evaluation, and deploying respon-

sibly, by first undertaking “silent mode” operation, i.e. running the system but not using its results,

to evaluate the technology. They then suggest undertaking a clinical trial but they think a randomised

control trial (RCT) might not be feasible as it requires a different workflow compared with the control

group, which might lead to confusion, and suggest that other forms of trial might be more appropriate,

e.g. a pre-post study. Similar to “sepsis watch” they emphasise the importance of multi-disciplinary

teams, although no actual deployment was reported.

When it comes to effectiveness research in healthcare, the “gold standard” is RCTs [19]. How-

ever, only a few projects have carried out RCTs for ML-based applications. For example, an RCT was

conducted on an ML-based severe sepsis prediction algorithm finding reductions in average length of

stay and in-hospital mortality in the group using the ML-based tool as opposed to the control group

[20]. Another project studied a deep learning-based polyp detection system. Evaluation of its use dur-

ing colonoscopy showed increases in polyp adenoma detection rates against the control group [21].

A third example is an AI-based decision-support tool used to aid anaesthetists in controlling hypoten-

sion [22]. Like the polyp detection system, this decision-support tool operates in real-time and was

shown to be effective, i.e. to reduce periods of intraoperative hypotension. Despite these successes,

there remains a debate about the practicality and effectiveness of RCTs for ML-based tools. For ex-

ample [23] discusses the cost and difficulty of conducting RCTs, including the effort involved, e.g.

clinician training, and the problem of evaluation where the ML-based systems continue learning from

operational data, an issue which the Federal Drug Administration (FDA) is currently investigating

[7], proposing an Algorithm Change Process (ACP) for updating the deployed ML model.



Both “sepsis watch” [18] and the work on “roadmaps” [17] provide useful insights and guid-

ance into the successful translation of ML applications into clinical practice. However, despite their

emphasis on multi-disciplinarity neither considers the early involvement of safety engineers nor a

proactive approach to managing patient safety, although patient safety is mentioned in both papers.

The work described here extends the notion of multi-disciplinarity to include safety engineering thus

enabling proactive management of safety when introducing ML-based systems in healthcare, whether

an RCT is used or not.

3. Methodology

Figure 1. Framework for integrating ML system into clinical care

Our methodology is shown in Fig. 1 and incorporates concepts from “sepsis watch” [18] and

the work on “roadmaps” [17], extended to enable the proactive incorporation of patient safety into

the development of ML models. The rectangular boxes describe the activities performed while the

solid arrows show the flow of the activities. The dashed arrows represent the information that pertains

to assurance rationale and evidence, which is captured in the safety case. The “flow” starts at the

top left, iterates through Solution design, Solution development and Pre-trial testing & assessment,

ending with Rigorous Evaluation or/and Clinical Trial.

In this paper, we are mainly concerned with the Solution design, Solution development, Pre-

trial testing & assessment and the Safety Case, which are all marked in green in Fig. 1. Infrastructure

is an important element to enable the deployment of ML models in healthcare but is out of scope for



this paper. The elements marked in blue have a clinical focus and are largely outside the scope of this

paper, although an overview of sepsis is given in Section 4 to provide context for the safety work and

ML model development.

Solution design comprises Clinical workflow design, Hazard identification & safety require-

ments and ML Model design. In order to deploy ML models effectively in healthcare, it is important

to ensure they fit into the clinical context. Clinical workflow design defines the integration of the

ML model into the socio-technical clinical setting to address the healthcare problem, supporting the

clinicians in their work. Thus, it is necessary to involve the front-line staff at this step to identify po-

tential constraints or requirements to ensure that the clinical workflow is feasible and efficient for the

end-users of the ML model. Additionally, the clinical workflow will serve as the basis for proactive

safety analysis, including identifying hazards and deriving safety requirements for the ML model de-

sign. Hazards are situations which, if not controlled, could lead to harm [24]. Hazard identification is

central in safety risk management as it gives us a focus for assessing risks and defining safety barriers.

Traditionally, this has been done using systematic analysis techniques and documented in the form of

tables. ML Model design includes identifying the set of input features that will be used in training the

model so that it is effective in its clinical setting and for the problem being addressed. Although there

are various techniques to help to select the relevant features, it is important to incorporate clinical

domain expertise to identify the right set of features. Once the input features have been identified, it

is time to extract the right source of data for the model development because the quality and quantity

of the data will directly determine how good the ML model can be [25]. In addition, it is necessary

to identify the performance metrics that are most suitable and informative to evaluate the ML model,

given the problem being addressed [26].

Solution development comprises Clinical workflow development, Safety barrier visualisation

and ML Model development. Clinical workflow development includes developing user interfaces to

support the implementation of the clinical workflow which would help the front-line staff to use the

ML model effectively. The front-line staff would be particularly involved in testing and validating the

functions, information, control, and visual components of the interface. Safety barriers are means of

controlling the potential hazards that we identified previously based on the clinical workflow to reduce

the risk that they will compromise patient safety. In this paper, we especially focus on the barriers that

can be implemented in the ML model itself. This may include altering the input features used by the

ML model to ensure it takes into account safety-relevant information or improving the interpretability

of the ML model to help clinicians make informed decisions. The ML Model development involves



training the model using the data identified during the Solution design augmented if necessary to

implement the defined Safety barriers.

Pre-trial testing & assessment mainly concerns the technical issues of the ML model’s readi-

ness for use, e.g. predictive accuracy based on the previously defined performance metrics. The

ethical and other challenges could be evaluated later [27], e.g. in the rigorous evaluation through

clinical trials. In practice, there is no clear cut distinction between the activities shown in Fig. 1.

In fact, the activities often overlap and iterate. Ideally the safety activities occur in conjunction with

the clinical and ML model design & development activities. The iteration between Solution Design,

Solution development and the Pre-trial testing & assessment is the basis for developing the ML model

to be safe enough to go on to a pilot study or a “silent mode” use prior to rigorous evaluation, e.g.

clinical trials.

The use of safety cases is a long-established practice in many safety-critical domains. Partic-

ularly in the UK, the development of a safety case is a mandatory requirement in key sectors such

as defence, nuclear and railways [28]. In the National Health Service (NHS) in England, compliance

with the clinical safety standards DCB0129 and DCB0160 requires a safety case for Health IT sys-

tems [5]. A safety case for clinical risk management “is a structured argument which is supported by

a body of relevant evidence that provides a compelling, comprehensible and valid case that a system

is safe for a given application in a given operating environment” [6]. In our methodology, the safety

case draws evidence from all the phases in Fig. 1 and documents the safety rationale for the integrated

workflow including the ML model at all stages in its development.

Next, we apply the methodology to a clinical use case involving treatment of sepsis patients.

4. Clinical Use Case: Sepsis Treatment

The clinical use case focuses on the treatment of sepsis. Sepsis is a life-threatening organ

dysfunction which is caused by a dysregulated host response to infection [29]. It is estimated that

one in five deaths worldwide are due to sepsis [30]. Evidence suggests that current practices in the

administration of intravenous fluids and vasopressors for treating sepsis are suboptimal [31]. Conse-

quently, researchers have harnessed RL to learn the “optimal” treatment strategy for recommending

intravenous fluids and vasopressors, e.g. [32] [11].



Basic Concepts of Reinforcement Learning (RL)

RL consists of an agent interacting with its environment by performing actions and receiving

feedback from the environment. The environment is often represented by a Markov Decision

Process (MDP) in which an assumption is made that the future state of the process depends

only on the current state; that is, given the current state, the future state does not depend on

the cumulative history of past states. An MDP is defined by M = 〈S,A, P,R〉, where S is

the state space, A is the action space, P is the transition function with P (s′|s, a) denoting the

probability of reaching state s′ if taking action a in state s. R is the reward function such that

R(s, a, s′) is the immediate reward given to the agent for transitioning between states s and s′

via action a. A policy is a function defining the agent’s behaviour and maps a perceived state

of the environment to an action for the agent to take.

In this work, we use a previously published deep RL model [32] for sepsis treatments which

recommends intravenous fluids and vasopressors. In particular, we apply our methodology and show

how to integrate the ML model into clinical care in a way that enables proactive management of patient

safety. The clinical use case shows the iteration round the Solution design, Solution development and

Pre-trial testing & assessment “loop” in our methodology. The main work products of this iteration,

e.g. the Clinical workflow and the Hazard analysis and safety requirements as well as the the Safety

case are shown in the following subsections. For ease of presentation we combine the design and

implementation of the Clinical workflow and ML model in the following section.

4.1. Clinical workflow design and development

Figure 2. High-level workflow design

There are two main ways of introducing ML models into healthcare: either replacing clini-

cians or assisting them. For example, [12] explained that an ML model for breast cancer screening

can be used in the standard double-reading process to replace the second reader while maintaining



an equivalent performance. In our work, the ML model serves as a decision support tool, assisting

clinicians in sepsis treatment as shown in Fig. 2. First, a doctor recommends initial doses of intra-

venous fluids and vasopressors for the sepsis patient. Then the doctor is shown the recommendations

from an RL agent for the same sepsis patient. Afterwards, the doctor makes the final decision on the

recommended dosage for intravenous fluids and vasopressors, reflecting the role of the ML model as

a decision aid. This is different from most current advisory systems in healthcare in that they make

recommendations first, then doctors choose to accept them or to modify them, without the explicit

initial recommendation. The reason for designing the workflow this way is to support later pilot stud-

ies and/or clinical trials to evaluate the ML model not only in a technical sense, but also to see how

it affects the clinicians’ behaviour in the socio-technical context, e.g. due to automation bias. After

evaluation, if confidence and trust has been built in the ML model, then it would be appropriate to

alter the workflow to allow the clinicians to use the ML model like a normal advisory systems, i.e.

without the explicit initial recommendation.

The detailed workflow that integrates the ML model is shown in Fig 3. This workflow shows

a broader view of sepsis treatment including the screening activities. There are often two distinct

phases: the initial resuscitation and the more stable period thereafter. However, the workflow inten-

tionally doesn’t distinguish these two phases, but is intended to give guidance for both, as appropriate.

The workflow starts by screening the patient for (suspected) sepsis. The screening criteria

are based on published NHS improvement protocols [33]; if necessary, it can also be altered to suit

the local hospital screening protocol. Here, early warning score (EWS) [34] is used and sepsis is

suspected if EWS is greater than 3 and at least one sepsis red flag criterion, e.g. newly altered

mental state, is present. The rest of the workflow shows both the initial resuscitation for sepsis and

septic shock and the treatment afterwards, i.e. the stable period. It is mainly based on the sepsis 6

pathway from the Sepsis Trust [35] and the Hour-1 Bundle from the Surviving Sepsis Campaign [36].

The Hour-1 bundle is designed for initial resuscitation but intravenous fluids and vasopressors will

continue to be given in the stable period, most likely for several days. Specifically, when it comes to

recommending intravenous fluids and vasopressors, the workflow integrates the ML model, i.e. the

RL agent, into the clinical workflow. This is shown as recommendation 2, which matches the high-

level workflow design in Fig. 2. Recommendation 1 is the doctors’ initial recommendation based on

current clinical practice. If necessary, recommendation 1 can also be altered to suit the local hospital

protocol. The final decision is made by the doctors after they are informed about the RL agent’s

recommendation. As noted above, we designed the clinical workflow this way to reflect its role as a



decision aid, and to enable us to assess how much the RL agent influences the behaviour of the doctors

and whether the RL model could indeed improve clinical results, e.g. reducing in-hospital mortality.

Importantly, the approach helps to ensure that an accountable doctor makes the final decision [27].

The workflow concludes with the nurses administering the intravenous fluids and vasopressors

as advised by the doctors. It is important to recognise the role of nurses in this clinical workflow as

they usually are the ones at the bedside actually making the adjustments according to more general

guides set by the doctors. This also needs to be considered in the hazard analysis especially deriving

the causes and controls of the hazards (as detailed in the next section).

After the iteration on the designs of the clinical workflow and ML model (model design is dis-

cussed in Section 4.3), development begins. Implementing the clinical workflow involves integrating

tools and providing appropriate user interfaces for clinical staff. Integration requires data exchange

with the electronic health record, particularly to transfer the features that the RL model needs to pro-

cess in order to recommend the doses for the patient. This work is primarily the responsibility of

IT specialists, including those working for vendors of Health IT systems that are integrated into the

clinical workflow. User interfaces will be needed for clinicians both to provide them with informa-

tion, e.g. recommended doses from the RL model, and to enable them to input information, including

recording decisions they have made [37]. It is good practice to employ “user-centred design” [38]

where specialists in user interface design work with all the different classes of user, including nurses

and doctors, to produce appropriate systems. Generally the design process will be iterative, to define

and refine functions, information, control, and visual components of the system. These capabilities

need to be provided in compliance with relevant standards and guides, to allow the hospital to comply

with audit requirements – in general to support management processes as well as clinical ones. Fi-

nally, staff need to be trained to understand the new workflow and to work effectively with the tools.

Using the clinical staff who were engaged in design and development to train other users may prove

effective, as they will understand and be able to explain the systems from a user perspective.



Figure 3. The detailed workflow integrating ML model to treat sepsis patient



4.2. Hazard identification & safety requirements

In safety management it is common to organise risk analysis and control around the notion

of a hazard [24], however it needs to be interpreted in the context of a particular system or situation

[39]. Once hazards have been identified, the system or situation is analysed to determine potential

causes of the hazards and the potential clinical effects. For each identified hazard the associated risk

is estimated. Typically, the risk reflects the severity and the likelihood of the hazard’s consequences.

Sometimes the likelihoods can be quantified; other times estimates are qualitative, based on domain

knowledge. In addition, the risk of the hazards will determine the priority for the introduction of

safety barriers (means of preventing the causes of hazards or reducing the impact of hazards if they

do arise). Once safety barriers have been identified and introduced, then the risk associated with the

hazards can be re-evaluated.

Hazard and safety analysis of computer-based systems often uses variants of Hazard and Oper-

ability Studies (HAZOP) [40] from the chemical industry. The HAZOP approach is based on flows (of

chemicals, etc.) through process plant. The variants used for computer-based systems, e.g. SHARD

[41], consider information flows through systems. SHARD is suitable for identifying both hazards

and causes of hazards, as it focuses on deviations from intent that could be hazardous. It provides

a structured approach to the identification of deviations from intent by systematically applying the

guidewords (omission, commission, early, late and incorrect) to each flow. In this context, commis-

sion means doing something that was not intended.

In this paper, we only show the hazard identification for the delivery of vasopressors; intra-

venous fluid can be analysed in a similar way. The analysis is carried out by a multidisciplinary team

comprising two safety engineers, one Intensive Care Consultant and two ML engineers prompted by

the guidewords in the SHARD method. The resulting hazards are as follows:

• Omission – No vasopressor administered;

• Commission – Unnecessary vasopressor administered;

• Incorrect – Wrong vasopressor administered;

• Incorrect – Wrong dose administered (this hazard concerns a single dose);

• Incorrect – Sudden change of vasopressor dose administered (this hazard concerns two con-

secutive doses);

• Late – Delay in administering vasopressor.

The guideword early is not considered, as there is ongoing clinical research about whether or

not to deliver vasopressor earlier to increase mean arterial pressure (MAP) for sepsis treatment. The



guideword incorrect results in three potential hazards: one concerns administering the wrong vaso-

pressor; another concerns administering a single wrong vasopressor dose; the third concerns a sudden

change of vasopressor dose between two consecutive doses. Current clinical practice is to change the

dosage of vasopressors gradually as a sudden major change in the dose can be dangerous to some

patients, e.g. resulting in acute hypotension (arising from rapidly decreasing doses), hypertension or

cardiac arrhythmias (arising from rapidly increasing doses) [42] [43] [44]. Because the half life (the

period of time for the concentration of a drug in the body to reduce by 50%) of Norepinephrine (a

commonly used vasopressor) is measured in seconds or minutes [45], changes in Norepinephrine can

have rapid effects on patients.

After the identification of the potential hazards, we applied SHARD analysis to the clinical

workflow to identify the causes of the hazards. This is done by going through each activity (the

rectangular boxes) in Fig. 3 with a focus on recommendation 2, i.e. the part of the workflow marked

in green. The Table below shows a fragment of the SHARD analysis with a focus on one hazard

-– sudden change of vasopressor dose administered – identified above. The analysis for the other

hazards can be found in the supplementary material. Table 1 is a high-level summary of the analysis.

The full analysis is also included in the supplementary material but a brief summary of the approach

is presented here.

The SHARD analysis works “backwards” through the workflow, starting with the identified

hazards then considers each activity in the workflow in turn, following the process outlined in [46].

Each hazard, e.g. “No vasopressor administered” is an output deviation from the final activity –

“administer vasopressor as decided by doctor” in this case. The hazard can have many causes. First,

it can arise within (an internal deviation) in the final activity in the workflow; internal deviations

are identified using the SHARD guidewords. For example, omission by the nurse responsible for

vasopressor administration, perhaps due to a heavy workload, leads to the hazard “no vasopressor

adminstered”. Second, the hazard can be caused by deviations in activities earlier in the workflow

which propagate from earlier activities to the final activity. Specifically, input deviations of the final

activity arise from output deviations of the preceding activity, and so on through the workflow. For

example, in this case, the input deviation for the final activity “administer vasopressor as decided by

doctor” can be omission of the final dose recommendation, which ultimately contribute to the hazard

“no vasopressor adminstered”.

In this way we can identify how deviations from intent for each activity can combine and

propagate through the complete workflow to give rise to hazards, noting that the deviation of one



Table 1. Fragment of SHARD analysis showing a single hazard

Guide word Deviation (Hazards) Possible Causes Effects Severity

Incorrect

Sudden change of

vasopressor dose

is administered

(concerns two

consecutive doses)

1 Kink of line

2 The pump fails, e.g. due to electrical problem or

bag/syringe not installed correctly

3 The delivery line might not be connected to

patient’s central line, e.g. due to the patient

pulling out the central line

4 The drug might not be added to the diluent, so

the syringe/bag just contains saline (a problem

when bags/syringes are being changed over)

5 Nurse prepared wrong dose (e.g. due to

calculation error)

6 Inappropriate titration of dose by nurse

7 Doctor fails to check current dose

8 Initial recommendation by doctor has a sharp

change in dose and doctor carried through the

recommendation (not considered in this paper)

9 RL agent recommends a sharp change in dose

and doctor accepts the advice, e.g. due to

automation bias

10 Features in state space of the RL model are not

sufficient to represent the patient conditions for

sepsis decision making

11 Reward function used for RL model is coarse

12 Cost function used for RL model development is

not appropriate

13 Hyperparameters used for RL model development

are not optimised

14 Training data for RL model development is not

appropriate

15 Data corruption (e.g. invalid or wrong data

produced by over-writing patient’s features)

16 Features for wrong patient entered

17 Wrong patient feature values entered (e.g. due to

unit difference)

18 Test results for wrong patient received

19 Incorrect test results received

Acute Hypotension,

Strokes, Renal failure,

Heart attack could

occur from a sharp

drop in the dose

Hypertension,

Cardiac Arrhythmia,

Strokes, Raised

intracranial pressure,

Pulmonary oedema

could occur from a

sharp rise in the dose

Major/

considerable



class, e.g. omission, can lead to the deviation of another class, e.g. incorrect. This process enables us

to produce a summary of possible hazard causes, taking into account the complex interdependencies

between the activities, as illustrated in Table 1. The severity classification used in the table is based

on the standard DCB160 developed by NHS digital [6].

As indicated above, Table 1 summarises the detailed analysis in the supplementary material,

combining the results from analysing all the different activities in the workflow in Figure 3. The

possible causes of most interest in this paper are numbers 10-14, which are highlighted in the table,

as they directly affect the RL recommendation, i.e. recommendation 2 in the workflow. In addition,

causes 1 to 6 can arise from the administration phase, which is the final activity in the workflow.

Causes 7 to 9 can arise from the final decision phase which is the activity before administration in the

workflow, where cause 9 is a combination of an RL agent failure (a potential consequence of numbers

10-14) and a human error (automation bias). Causes 15 to 19 can affect the quality of the input data

to the RL model, which is the beginning activity in recommendation 2 in the workflow. The possible

causes in Table 1 can arise from different types of failure, e.g. technical failure and human errors.

However, a single cause can trace back to multiple different sources. For example, cause 2 can arise

from a technical failure, but also a human error. Although our focus is mainly on the ML components

in this paper, the visualisation of controls in Section 4.5 addresses some of the other possible causes

identified in Table 1.

Safety requirements are derived from the hazard analysis to control the hazard causes identi-

fied in Table 1. To produce a set of requirements for the ML components in the workflow it is helpful

to identify the interfaces in the workflow that bound those components. The key interface is be-

tween “Recommendation by RL agent” and the “Final decision’ in Fig. 3’ which shows the interface

between the ML model and the clinicians. Given this, we can identify that the hazardous interface

failure is “RL agent recommends a sharp change in dose” (an output deviation from the ML model)

which contributes to the clinical hazard “Sudden change of vasopressor dose administered”. Thus the

requirements derived from controlling the hazardous interface failure help guide the design of the ML

model which falls within the scope of “Recommendation 2” in the clinical workflow.

The resultant requirements are set out in Table 2. R0 follows directly from the definition

of the hazardous interface failure. Requirements R1 to R5 are lower level design and development

requirements necessary to support R0. R1 relates to cause 10 and is concerned with input feature

issues. Defining the features in the state space for the RL model is a design issue, so R1 is allocated

accordingly. R2 relates to cause 11 in Table 1. Similarly, it is allocated to “RL model design” as this



Table 2. Safety Requirements for RL model derived from Hazard analysis

ID Description Type Allocation

R0
Sudden changes in recommended dose

shall be close to clinician practice
Performance & Safety RL model development

R1

Feature representation in the state space

shall be sufficient to allow the control

of sudden changes in recommended dose

Performance & Safety RL model design

R2

An appropriate reward function shall be

defined to allow the recognition of

desired clinical outcome

Performance & Safety RL model design

R3
An appropriate cost function shall be

defined to penalise hazardous behaviours
Performance & Safety RL model development

R4
Hyperparameters shall be optimised

based on the validation dataset
Performance & Safety RL model development

R5
Patient cohort shall be defined using

recognised criteria, i.e. sepsis-3
Performance & Safety RL model design

is the phase in the methodology where reward functions are defined. Requirements R3, R4 and R5

relate to causes 12, 13, and 14 respectively; they are all allocated appropriately. Thus, Table 2 covers

all the RL agent-related causes in Table 1 and if the requirements are satisfied, this should reduce

the likelihood of the hazardous interface failure arising – “RL agent recommends a sudden change in

dose”. The requirements have to be produced using specialist knowledge of ML, reinforcing the need

for a multi-disciplinary team. Causes 15 to 19 in Table 1 should be addressed in the user interface

design in that it can reduce the likelihood that such causes arise.

4.3. Model design & development

In this paper, we have adapted the RL model in [32] to train an agent to learn the optimal pol-

icy for sepsis treatment; from now on we refer to this as the original policy. The adapted RL model

used 47 features to represent the state space (as against 48 in the original work), including patients’

demographics, Elixhauser premorbid status, vital signs, laboratory values, fluids and vasopressors

received to satisfy safety requirement R1 in Table 2. The action space includes 25 possible actions

with five discretised choices for the dose of intravenous fluids and five for vasopressors respectively,

shown in Table 3. The terminal reward is based on 90-day mortality (as against hospital-mortality



in the original work) with +15 for survived and -15 otherwise. The intermediate reward uses SOFA

(Sequential Organ Failure Assessment) score and Arterial Lactate (the level of lactate from arterial

blood) as they did in the original work to satisfy safety requirement R2. The SOFA score is a mea-

surement of organ failure with high values associated with poor outcomes; similarly, high levels of

lactate suggest stress or inadequate organ perfusion and are associated with poor outcomes in sepsis

treatment. A well-established and widely-used RL algorithm – Double Deep Q-networks (DQN) [47]

is used to determine the policy (a brief introduction to DQN is given in the box below). Therefore,

the cost function used a standard double DQN loss function plus one regularisation term, as indicated

in the original work to satisfy safety requirement R3.

Table 3. Dosage actions

Dose of vasopressor (mcg/kg/min)

No.: 0 1 2 3 4

Range: 0 (0.002, 0.079) (0.08, 0.2) (0.201,0.449) (0.45, 1.005)

Median: 0 0.04 0.135 0.27 0.786

Dose 0 0 1 2 3 4

of 1 5 6 7 8 9

IV 2 10 11 12 13 14

fluid 3 15 16 17 18 19

4 20 21 22 23 24

Principles of Deep Q-Networks (DQN)

DQN is a widely-used modern RL algorithm, which combines Q-learning [48] with a deep arti-

ficial neural network. It learns a policy by employing the same core update rules and operating

principles as Q-learning but using a neural network in order to represent its Q-function. DQN

uses the experiences or samples 〈s, a, r, s′〉 generated by interaction with the environment to

train the neural network, where r is the observed immediate reward. A common implementa-

tion uses a squared error loss of the difference between the output of the so called prediction

network, Q(s, a, θ) and the desired target Qtarget = r + γ maxa′Q(s′, a′, θ) to update the neural

network’s weights.

Simple DQNs have some shortcomings and there are various ways of refining them to improve

their performance. One way to improve algorithmic stability is to use double DQN which

introduces a second network — the target network. The purpose of the target network, pa-



rameterised by θ′, is to provide a stationary target upon which the Q-function can converge.

Periodically, the target network is updated to match the prediction network.

An additional improvement of using double DQN is that the target network is used to select

the action for the prediction network to evaluate. The standard double DQN loss is shown in

equation (1).

L(θ) = E[(Qdouble−target −Q(s, a; θ))2], (1)

where Qdouble−target = r + γQ(s′, argmaxa′Q(s′, a′; θ); θ′).

The data used for model development is based on the same data set and the same patient cohort

taken from MIMIC III – a large publicly available database [49] – as in the original work. Patients are

included in the cohort when they meet the sepsis-3 criteria [29] – suspected infections combined with

SOFA score ≥ 2. Exclusion criteria are: 1. not adult, 2. intravenous fluid intake not documented,

3. possible withdrawal of treatment, 4. erroneous intake or output data. The detailed MIMIC III

data pre-processing can be found in the supplement to [11]. This satisfies safety requirement R5. The

resulting patient cohorts were divided into a training dataset (80%, 20,938), a validation dataset (10%,

2149) and a testing dataset (10%, 2160). For detailed patient features included in the state space, see

the supplement to [11]. The hyperparameters are manually tuned and optimised using the validation

data to satisfy safety requirement R4. By satisfying requirements R1 to R5, we could state that this

will also satisfy requirement R0, but it is necessary to evaluate the RL model after training to see if

this is the case, see Section 4.4.

The RL model was developed in Python and uses the TensorFlow library [50]; the code devel-

oped is available at: https://github.com/Yanjiayork/sepsisRL. As the MIMIC III data set was gener-

ated by recording the real clinicians’ actions, we refer to it as the clinician policy in contrast with the

(learnt) original policy. We evaluated the original policy and compared it against the clinician policy,

i.e. the real patient trajectories in the test data set, including whether or not they show the sudden

major change related to the hazardous interface failure “RL agent recommends a sudden change in

dose” when recommending vasopressor dosage for each patient.

4.4. Pre-trial testing & assessment

As indicated above, this phase of the methodology mainly concerns the technical issues of the

ML model’s readiness for use. Evaluation of performance is standard in ML after the training of the

model. In the original work [32] they carried out evaluation to check the “sanity” of their learnt policy.

In addition, in our work, we evaluate the original policy from the safety perspective – specifically in



Table 4. Summary of max dose change between consecutive doses for the three policies

Dose of vasopressor (mcg/kg/min)

Small-Medium Dose Change (0-0.75) Large Dose Change (>0.75)

Clinician Policy 97% (2,100) 3% (60)

Original Policy 65% (1,404) 35% (756)

Modified Policy 92% (1,990) 8% (170)

terms of sudden changes in the recommended vasopressor dosage by the RL agent, given our focus

on this hazardous interface failure.

According to [51], doses of Norepinephrine over 0.5 mcg/kg/min are usually considered to be

“high” and suggest the need for rescue or second-line therapy. Doses over 1.0 mcg/kg/min are rarely

used. In the action space, shown in Table 3 in Section 4.3, moving from action 0 to action 4 in the

following step for the same patient, or vice versa, gives a dose change > 0.75 mcg/kg/min, as 0.786

mcg/kg/min is the median of action 4 and the median for action 0 is 0. This is clearly in a dangerous

range and it is considered hazardous, i.e. “RL agent recommends a sudden change in dose”.

We evaluated the maximum vasopressor dose change for the clinician policy and the original

policy on the test data set, which has 2,160 patients, by calculating the max absolute vasopressor dose

change in one step for each patient during their treatment, see Table 4. In the clinician policy, we

found 3% (60 patients) among 2,160 patients have a dose change > 0.75 mcg/kg/min. In contrast,

in the original policy, we found 35% (756 patients) among 2,160 patients have this sudden change.

The max absolute vasopressor dose change following the original policy is substantially higher than

that of following the clinician policy. This implies that the original policy gives rise to the hazardous

interface failure, because of the prevalence of these sudden major dose changes.

In response to the above clinical safety concerns, we have modified the model in order to fur-

ther satisfy safety requirement R0 in Table 2, which is to reduce the rate of sudden major vasopressor

dose changes close to clinician policy. We made two alterations to enable the RL agent to learn a

safer policy. Firstly, we added an extra feature in the state space, which is the relative dose change

compared with the previous vasopressor dose for each patient. This enables the agent to take account

of the difference between the current step and the previous step in terms of vasopressor dose while

learning the policy, rather than merely using the current step state features. Secondly, we have also

altered the cost function used for training. We have added a second regularisation term to penalise

the output Q-values when the recommended dose is higher or lower than the previous dose by 0.75



mcg/kg/min (i.e., a jump from action 0 to action 4 or vice versa in one step when recommending

vasopressor doses for the patients). These changes are summarised in Table 5.

Table 5. Major changes in the modified RL model

Features in state space (R1) Cost Function(R3)

RL model in [32] 48
L(θ) = E[(Qdouble−target −Q(s, a; θ))2] +

λ1max(|Q(s, a; θ)| −Qthresh, 0)

Modified RL model

48 (Removed one feature

– timestep, added an extra

one – relative dose change )

L(θ) = E[(Qdouble−target −Q(s, a; θ))2] +

λ1max(|Q(s, a; θ)| −Qthresh, 0) +

λ2max(|Vchange| − 0.75, 0)

Vchange is the agent recommended dose (argmax

of Q(s, a; θ)) minus the vasopressor dose

in the previous step; λ1 and λ2 are the tuning

parameters that decide how much to penalise the

flexibility of the model.

This reflects the importance of iteration of the model design and development in order to meet

safety requirement R0, through further refinement to meet the lower level requirements, specifically

R1 and R3.

After the implementation of these two alterations we have learnt a new modified policy. The

maximum absolute vasopressor dose change in one step for each patient for the modified policy is also

shown in Table 4, providing a comparison with the clinician and original policies. Table 4 shows that

the modified policy gives a clear reduction in sudden major dose changes. Particularly, we found that

there are 8% (170 patients) amongst the 2,160 patients in the test data set found with the maximum

dose change, i.e. > 0.75 mcg/kg/min in the modified policy. Thus, the modified policy has reduced the

rate of such sudden major changes of vasopressor dose by 77.5% when compared with the original

policy. Therefore, we consider this modified policy meets requirement R0 through satisfying the

lower-level requirements (R1 to R5). For detailed implementation of the modified policy, refer to our

previous publication [52].

A further important aspect of assessment is to understand the interpretability of the modified

policy, i.e. the extent to which the recommendations made by the RL agent reflect clinical understand-

ing. In ML it is common to train a surrogate model to approximate a complex ML model [53]. Often

a simpler ML model is used as the surrogate. In this case we trained two random forest classifiers

as surrogate models to understand the relative importance assigned to the features when recommend-



Figure 4. Feature importance (from out of bag score) for clinician policy and the modified

policy



ing vasopressor in the modified policy and the clinician policy, see Fig.4. Note the clinician policy

is the dose decided by clinicians and extracted from MIMIC III. When training these two random

forest classifiers, the classes are binarised in the same way where 0 means no vasopressor prescribed

(action 0) and 1 means vasopressor prescribed (action 1, 2, 3, 4). In other words, the current dose

of vasopressor was discarded for both random forest classifiers (clinician and modified policy) as the

concern here is what features influence whether or not vasopressor is recommended, not the size of

the recommended dose.

The relative importance of each feature was estimated using an out-of-bag score on the whole

dataset, by permuting the values of each feature, which is also called permutation feature impor-

tance [54]. Note that the clinician policy can only represent what was recorded in MIMIC III, not

necessarily what was in the clinicians’ minds when they made their decisions, thus Fig. 4 shows

the relative importance of the clinical features for the classification, rather than directly comparing

decision-making. With this caveat, in both policies, SOFA plays the most important role, which is as

expected as SOFA describes sepsis-related organ failure. The two policies also give high importance

to mean blood pressure and white blood cell count (WBC count). Gender and re-admission are of

low importance in both policies; this is unsurprising as these parameters would not be expected to

affect the decision to recommend vasopressor (or not). However, compared with the clinician pol-

icy, the modified policy is more balanced rather than having such a heavy focus on SOFA. And by

comparison with the clinician policy, the modified policy places emphasis on other important factors,

e.g. shock index, which has been shown to indicate the need for vasopressor therapy [55]. Thus the

feature importance assessment has confirmed that the decisions suggested by the modified policy rely

primarily on sensible clinical parameters, and it is not dominated by a single factor, i.e. SOFA.

4.5. Safety barrier visualisation

Our understanding of the hazards, potential causes of hazards, safety requirements and means

of satisfying the requirements does not arise all at once. Instead, this understanding emerges and is

refined by iteration around the “Solution design”, “Solution implementation” and “Pre-trial testing &

assessment” phases shown in Fig. 1. We use Bow Tie Diagrams (BTDs) to consolidate this emerging

understanding. BTDs represent a barrier model of safety, where barriers are a collection of related

controls, and provide a graphical view of how hazards are controlled [56]. Through the visualisation

of the safety barriers and controls, it can help to expose the weak points in the system and identify the

need for new barriers and controls if necessary. This implies that there are two types of barriers and

controls: pre-existing and newly introduced that arising from the safety analysis. The visualisation



of the safety barriers and controls also helps in the development the safety case by showing how the

risks associated with the system or situation are being managed.

Here, we use AdvoCATE [57] to produce the BTDs and safety case (see Section 4.6). Advo-

CATE is an advanced Assurance Case Automation Toolset developed by NASA. Two linked BTDs

are presented as follows: Fig 5 presents the BTD for the hazardous interface failure “RL agent recom-

mends a sharp change in dose” and Fig. 6 presents that for the hazard “sudden change in vasopressor

dosage adminstered” which also shows the role of the hazardous interface failure, and its patient

safety impact within the clinical pathway (as modelled in Fig. 3).

We start with Fig. 5. The elements in the figure as are follows:

• Context (square with the black and yellow border) – an activity or condition that is part of

normal operation, but which can be a source of harm when control is lost, in this case the

activities related to the RL agent in the workflow, grouped together as “Recommendation 2”

in Fig. 2;

• Top event (orange circle) – the occurrence of an undesirable event, in this case the hazardous

interface failure “RL agent recommends a sudden change of vasopressor dose”;

• Threats (round-cornered blue box) – a cause that contributes to the top event, in this case

arising from the design and development of the RL agent, i.e. causes 10 to 14 in Table 1;

• Barriers (round-cornered box with yellow heading) – a group of related controls that reduce

the likelihood that a threat causes the top event. For example, “design considerations” includes

different controls over the way the RL agent is designed and developed;

• Controls (associated with a barrier) – a specific control for a threat, in this case the controls

address all the threats that can give rise to the interface hazard.

To further illustrate how the safety barriers in Fig. 5 are linked to the previous sections,

we consider one of the threats at the bottom left of the figure that “Cost function for RL model

development is not appropriate”. This threat is cause 12 in Table 1 and it is addressed by safety

requirement R3 in Table 2. There are in total three controls for this threat with two under the “design

considerations” barrier and one under the “Evaluation” barrier. Among them, the control “Add a

second regularisation term ...” was newly introduced in “Pre-trial testing & assessment” (see Section

4.4) in order to further satisfy requirement R3 also shown in Table 5. This illustrates how the BTD

draws together the safety work done at different phases of the workflow to provide a consolidated

visualisation of hazards, threats, controls, etc. The BTD also provides extra information in terms



of temporal dependencies, showing how the threats can combine to result in the hazardous interface

failure or the ultimate hazard if the controls fail.

Fig. 6 presents a partial BTD for the hazard “Sudden change of vasopressor dose adminis-

tered” (Fig. 5 and Fig. 6 link to form a more complete BTD). The events in Fig. 6 link directly

to the causes in Table 1, for example, one of the threats “kink of line” is cause 1 in the table. The

completeness of the BTDs in terms of coverage of threats can be checked by inspection against Table

1. In addition, the hazardous interface failure is also shown as a threat in Fig. 6, which helps us to

see how the design and development of the RL model can contribute to patient harm. In other words,

the BTD in Fig. 6 enables us to understand the role of the RL model in its clinical context and to

proactively and systematically address patient safety in its design. The main entities in the BTD in 6

are:

• Context – the final activity in the workflow in Fig. 2;

• Top event – the hazard “sudden change in vasopressor dosage adminstered”;

• Threats – causes from the SHARD analysis in Table 1 that contribute to the top event, e.g.

“kink of line” and the hazardous interface failure;

• Barriers – clinician and other barriers, e.g. “infusion pump” which addresses the “kink of

line” threat;

• Controls – for example “infusion pump alarm” is part of the “infusion pump” barrier.

The assemblage of new and pre-existing controls are presented in Fig. 6, e.g. “Infusion pump

alarm” and “Nurses refer back to the doctor if they have a concern” are pre-existing controls. The

“Interpretability” barrier is newly introduced in order to support the doctor to make an informed

final decision as shown in the top-level workflow, see Fig. 2. The implementation of this control is

explained in Section 4.4 and illustrated in Fig. 4 by showing the feature importance for the modified

policy.



Figure 5. Bow Tie Diagram for interface hazard “RL agent recommends a sharp change in

dose”



Figure 6. Partial Bow Tie Diagram for ultimate hazard “Sudden change of vasopressor dose is administered”



The BTDs are an important result of iteration through the framework shown in Fig. 1. The

phases are not linear and may be visited multiple times, e.g. as is shown in Section 4.4 where model

design and development is revisited, responding to the propensity of the initial RL agent to produce

sudden vasopressor dose changes. The resultant modification of the RL agent is reflected in the BTD

by adding a new control under the “Design considerations” barrier. Further, as mentioned above,

developing safe clinical applications of ML requires a multi-disciplinary team, at least including clin-

icians, ML experts, human factors specialists and safety engineers. However, these disciplines are not

necessarily all involved at the same time and the BTDs provide a platform for integrating and visu-

alising information arising from the different specialisms in a way that could support communication

and gaining a shared understanding of the issues across disciplines.

4.6. Safety Case

All the phases of the methodology in Fig. 1 feed into the safety case. The safety case draws

together and integrates the work in the different phases of the workflow, showing and critically eval-

uating how the information produced might demonstrate the safety of the “system” which, in this

paper, is taken to mean the complete clinical workflow presented in Fig. 3. Before we describe the

safety case we have developed, we briefly introduce the notation.

Figure 7. Goal Structuring Notation

In this work we present the safety argument using the Goal Structuring Notation (GSN) [58];

a legend showing the key elements of the notation is presented in Fig. 7. The goals – claims that

we wish to make and support – are shown as rectangles and they can be decomposed into sub-goals

thus forming a tree. Goals are understood in a context – for example, the operating environment for

the system, which is analogous to the context in the BTD. Where the decomposition of goals is not

obvious this is explained through a strategy, represented as a rhombus. In a complete safety case

all leaf-level goals are supported by solutions, represented as circles; the solutions provide evidence

references to support the argument. Incomplete parts of the argument are shown with a diamond,

meaning that part of the argument is to be developed. The detailed description of the notation can be



found in [59].

Figure 8. Top Safety Argument

Figure 9. G8 Safety Argument

Here, we present two linked safety arguments in Fig 8 and Fig 9 with the top goal G0 “Risk



of delivery of IV fluid and vasopressor medications in sepsis treatment is controlled”. The term

“controlled” is used as it is unrealistic to assume that the risk in sepsis treatment can be eliminated,

given the dependence on individual patient characteristics and circumstances, including comorbidi-

ties. This goal decomposes naturally into the IV and vasopressor treatment; as our focus in this paper

is on vasopressors, the IV goal (G2) is left undeveloped.

The goal G1 “Risk of delivery of vasopressor in sepsis treatment is controlled” is stated in

the context of the clinical workflow in Fig. 3 and the RL model which is set out in the context (C2)

of the hazard log. A hazard log summarises information about all hazards including severity, causes

and controls. In this case the hazards are identified through the SHARD analysis in Section 4.2.

The strategy (S1) is an argument over the hazard risks. By showing how the hazards are controlled,

this supports G1. For brevity here we focus on showing how a single hazard “Sudden change of

vasopressor dose administered” is controlled, i.e. goal G3. The remaining hazards can be addressed

in a similar way, through goal G4 as indicated in GSN using the diamond symbol, i.e. to be developed.

The strategy for meeting goal G3 is an argument over the barriers showing that they are diverse and

effective, see goal G5.

In Fig. 8, goal G5 is further decomposed across the six barriers shown in Figs. 5 and 6. Some

of these sub-goals relate to the pre-existing barriers and controls, e.g. clinician and training procedure,

G6 and infusion pump, G11. The rest of the sub-goals are all related to the RL model with G7 relating

to the evaluation of the model, G8 relating to the “design considerations” described in Section 4.3,

G9 relating to the “data preparation to identify a suitable patient cohort” and G10 relating to the

“interpretability” described in Section 4.4. G7 is supported by Table 4 which compare the original

and modified learnt policies with the clinician policy. G9 is supported by the selected patient data, see

section 4.3 and correction of outliers. G10 is supported by the solution Fig. 4 showing the “Ranked

feature by importance using the random forest tree”.

Goal G8, “Requirements for model design and development are satisfied”, is further decom-

posed, in Fig. 9, into four goals that are consistent with the safety requirements R1 to R4 (R5 is

addressed in G9). These four goals all have a single sub-goal that is more “concrete” and thus iden-

tifies how the higher-level goal is met. For example, goal G16 defines the broadening of the set of

features in the state space for the RL model to reduce the occurrence of the hazardous interface failure

“RL agent recommends a sharp change in dose”, by including the relative dose change in the state

space (see Section 4.4) and thus meeting goal G12. The other goals G17-G19 have a similar role with

respect to goals G13-G15. The solutions for goals G16-G19 summarise the relevant information in



Sections 4.3 and 4.4. The process of developing the safety case for the overall clinical workflow shows

how the different phases in the methodology link together and support each other demonstrating the

safety of the RL model in its clinical context.

5. Discussion

The best way to safely and justifiably deploy ML in clinical care remains an open issue. Some

work has compared the route of introducing ML into clinical deployment with the process of drug

discovery [60], which highlights the difficulties being faced. Our work made an initial attempt to

address this issue by integrating safety into the design and development of the ML model in order

to minimise the risk of patient harm without compromising its potential benefit. We illustrated our

methodology through a concrete clinical use case which concerns sepsis treatment. The clinical use

case we show is important and also challenging as sepsis is a major cause of fatalities worldwide and

its optimal treatment remains uncertain. The use of RL is suitable given that the problem is to find

the optimal treatment. The results show the feasibility and promise of our methodology. Therefore,

we review and reflect on the work presented to give insight into the steps that could potentially lead

to wider use of ML in healthcare including acceptance by regulators.

First, in healthcare, technology needs to be developed and assured in its clinical context. We

believe that this is true in general, but particularly important for ML due to its complex and subtle

nature. We demonstrated the merit of doing so by first modelling a clinical workflow which explicitly

shows the role of ML in its clinical context. This helps us to understand how the ML model is

intended to be used and thus to determine the risk associated with it. We call this “safety-driven

design”, which proactively manages patient safety by identifying the potential hazards, evaluating the

ML model against the hazards, and finally finding ways to improve its safety in a systematic way if

any weaknesses of the model are exposed. The work here focuses on a major clinical hazard within

a safety case that considers wider socio-technical patient safety factors. However, to gain further

confidence in the utility of the methodology we intend to test it in different clinical settings and for

different clinical conditions.

Second, ML design & development and safety work must proceed in parallel – there is no

simple linear ordering of development and analysis tasks, and the safety work needs to be contempo-

raneous with design in order to “drive it”. Further, a multi-disciplinary approach is essential to safely

introduce ML into healthcare [61]. As indicated previously, ML models are often developed in isola-

tion and a culture change will be required to overcome this. Our methodology is intended to support



this multidisciplinary approach but also including safety engineers, in contrast to earlier work, e.g.

[18]. The BTDs in particular provide an effective way of integrating and visualising the relationships

between the work of the different disciplines.

Third, as our methodology and clinical use case have shown, there is iteration between design,

development, safety and assessment activities prior to pilot studies. As a result, safety artefacts, e.g.

BTDs and the safety case, evolve during this iteration. However, changes will also occur in the

operational phase of the system as clinical understanding evolves, working practices adjust to the new

technology and the behaviour of the ML model becomes better understood. Thus, the BTDs and safety

case should continue to evolve during operation and the associated risks need to be reassessed. We

have previously shown how ML can be used on data from operations to inform operational updates to

safety cases [62] taking a step towards dynamic safety cases [63]. Although neither our methodology

nor the clinical use case extend into operations at this stage, it is essential that safety and risk continues

to be monitored in operation so we are seeking opportunities to integrate the approach set out here

with our earlier work on operational monitoring of safety [62]. For example, in this case, we could

collect the operational data and use statistical methods to measure whether the change in the mortality

rate due to sepsis is statistically significant.

Finally, for ML models to be deployed in healthcare, it is essential to involve and influence

regulators. As explained earlier, a report from the UK Care Quality Commission (CQC) [8] has

emphasised the importance of safety and assurance of ML and the clarity of its use in the clinical

context. We believe that our methodology can provide advantages in practice by assuring the safety of

the ML in a clearly defined clinical workflow in a way that enables effective communication between

the developers and users of ML models and regulators, thus facilitating their safe introduction.

6. Conclusion

We have developed a methodology for “safety-driven design” and shown how it can be used

to guide design & development to improve safety of ML models. It is proactive in that it leads to

improvements of the ML models as they are being produced. In contrast, a “design-first, assess safety

later” approach can result in expensive rework or even deployment of unsatisfactory systems. This

paper has presented a novel methodology that can be used for development of ML models systemat-

ically incorporating patient safety considerations. It has integrated key aspects of clinical workflow

design, ML design and development, and safety analysis to provide a pragmatic and integrated ap-

proach to safely introducing ML into a healthcare setting. It has built on leading research on the use



of RL for sepsis treatment – and shown how the “safety-driven design” methodology can result in

safety-significant improvements. In particular, the clinical use case concerns using an RL model to

recommend vasopressors and IV fluids for the treatment of sepsis, which showed that “safety-driven

design” can identify unsafe behaviour of the RL model, specifically sudden changes in vasopressor

dose, and guide the model learning to reduce this undesirable behaviour. It also provided an interpre-

tation of the learnt model to help clinicians to make informed decisions. The results of this iterative

and multidisciplinary work were integrated and visualised through the use of BTDs and a safety case

showing the rationale for believing that the RL model is acceptable for use in its clinical context.

Finally, we have shown a possible direction for regulators to undertake the assessment of

ML models. We believe that it could help satisfy the CQC’s stated need for “more assurance about

the clinical aspects of the algorithms in machine learning” [8]. We have not conducted an RCT

for the ML models developed here. The intent is that our analysis approach could serve as a risk-

reduction step, prior to conducting a clinical pilot study and an RCT, as indicated in Figure 1. It is not

intended to replace these evaluation methods but to help meet the safety preconditions for rigorous

clinical evaluation. In this way, our work may enable healthcare to gain the benefits of ML without

compromising patient safety.
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