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A Multilevel Approach for Obtaining Locally Optimal Finite

Element Meshes

Peter K. Jimack, Rashid Mahmood, Mark A. Walkley and MartinZdes
Computational PDE Unit, School of Computing
University of Leeds, Leeds LS2 9JT, UK

Abstract

In this paper we consider the adaptive finite element solufangeneral class of variational
problems using a combination of node insertion, node mowt@red edge swapping. The adaptive
strategy that is proposed is based upon the constructiorhigrarchy of locally optimal meshes
starting with a coarse grid for which the location and conwégtof the nodes is optimized. This
grid is then locally refined and the new mesh is optimized ?nddme manner. Results presented
indicate that this approach is able to produce better mébhaghose possible by more conventional

adaptive strategies and in a relatively efficient manner.

1 Introduction

Automatic mesh generation is an important computatioralftor the fi nite element analysis of a wide
variety of engineering problems ranging from structurallgsis through to computational fluid dynam-
ics for example. For many of these problems the usenstructuredyrids offers many advantages over
structured grids, such as permitting the straightforwaasgulation of geometrically complex domains
or allowing the mesh density to be adapted according to theweur of the solution. In this paper we
are concerned mainly with the latter of these propertiesnstructured grids: the natural manner in
which numerous forms of mesh adaptivity are permitted.

Broadly speaking mesh adaptivity algorithms may be categdras belonging to one of two class-

es. The first of these, generally referred tohagfi nement, involves adding vertices and elements to



the mesh in some manner. This may be through local refi neneemt [(0]) or through more global
remeshing (e.g. [15]) but has the general aim of increasiagtmber of vertices and elements in those
regions of the domain where some measure of the error is aptaday high. The second class of ap-
proach, often referred to asrefi nement, adapts the mesh in such a way that the numbertafegeand
elements remains essentially unchanged. This is typiealyeved through the use of node movement
(e.g. [7, 8]), where the mesh is continuously deformed so asctease the density of vertices in those
regions of the domain with the highest errors, or throughutbe of edge swapping (e.g. [11]), where
the number and position of the vertices is held fi xed but thg wavhich they are connected together
is allowed to change. (There is also a third class of adaptiyerithm, known ag-refi nement, which
involves increasing the degree of the fi nite element appratibn space on a fi xed mesh, however we
do not consider this approach here. See, for example, [1&)rfpr further details.)

In this paper we present a new hybrid algorithm that combihesocal insertion and movement of
vertices with the local swapping of edges in order to atteimpbtain optimal fi nite element meshes for
a general class of problem. These are variational probleimshwnay be posed in the following form

(or similar, according to the precise nature of the boundanditions):

min /F(g, u, Vu)dz (@H)
wQ(CR™)—=R™ JQ

for some energy density functidri : R™ x R™ x R™*"™ — R. Physically this variational form may
be used to model problems in linear and nonlinear elastivétgt and electrical conduction, motion by
mean curvature and many more (see, for example, [2],[¥],[Bhroughout the majority of this paper
we restrict our attention to the two-dimensional case where 2, however generalizations to three
dimensions®{ = 3) are considered towards the end.

For variational problems of the form (1), the fact that thaebsolution minimises the energy func-
tional provides a natural optimality criterion for the dggsiof computational grids usingrefi nement.
Indeed, the idea of locally minimising the energy with regpe the location of the vertices of a mesh
of fi xed topology has been considered by a number of authays[&,[14]), as has the approach of
locally minimising the energy with respect to the connettiof a mesh with fi xed vertices (e.g. [11]).
Accordingly, the specifi c algorithms that we use for node emognt are generalizations of those used

in [6] and [14], and the edge swapping is based upon [11]. drethils of these algorithms and how
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they are combined with loc&l-refi nement are presented in the following section.

In section 3 it is then demonstrated that combining the aleredi nement and-refi nement ap-
proaches in an appropriate manner allows locally optimisgro be obtained which are better (in
terms of energy minimisation) than using either strategyel The approach taken is to start with a
very coarse mesh which is optimised usirgefinement. This is then refined locally to create a new
mesh with a greater number of elements and vertices whiclitgalhbe optimised. By repeating this
process a number of times a hierarchy of locally optimal raesé obtained. Since the initial mesh at
each level of the hierarchy is produced by local refi nememnodptimal mesh at the previous level it
follows that this typically provides a reliable startingipowhen optimising the new mesh. The results
presented demonstrate that the proposed hybrid algorihahle to provide a mesh which allows the
solution of (1) to be approximated to an arbitrary error tatee using substantially fewer vertices and
elements than through-refi nement alone. Furthermore, it is also demonstrate ttvaa fi xed size
of mesh, this multilevel approach invariably fi nds a betteally optimal solution than is obtained by

applyingr-refi nement directly to a regular starting mesh of the samedisize.

The paper concludes by addressing possible generalizagfdhe technique to three-dimensional
problems and discussing the strengths and weaknessesmbihesed hybrid algorithm for obtaining

locally optimal meshes in two dimensions.

2 Multilevel adaptivity

In this section we consider the adaptive fi nite element smiwdf problems of the form (1), first using
r-refi nement and then addirigrefi nement to obtain a sequence of optimal meshes.rTiefi nement
approach is described first and consists of a combinatiorodé movement and edge swapping in
order to minimize the energy functional for a given size osmeAt this stage the mesh may be any
triangulation of the domaif2, which is assumed to be a subsefdf (i.e.m = 2 in equation (1)), and

we only consider piecewise linear fi nite element trial fumrs.
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2.1 Locally optimal meshes

We defi ne a locally optimal mesh for the fi nite element solutd(1) to be a mesh with the following

properties.

1. There exists some numhber> 0 such that if any node is displaced by any distafigé ¢ in any
direction (subject to the constraint that a boundary nod®nes on the boundary and the domain
is not altered) the fi nite element solution on the new mestahanergy which is no less than the

energy of the fi nite element solution on the locally optimais.

2. By noting that each internal edge of a triangulation igstidy exactly two triangles then, if the
union of these two triangles is a convex quadrilateral, wg oi#ain a modifi ed triangulation by
swapping the diagonal of this quadrilateral, as shown inufed.. The finite element solution
on any such modifi ed triangulation has an energy which is &g tlean the energy of the fi nite

element solution on the locally optimal mesh.

In order to obtain such a mesh from a given starting mesh wamnisgproach which is based heavily
on that of [14]. This approach combines node movement and sdgpping in a manner which only
requires the solution of local problems in order to conveage global solution of the full problem, (1),
on a locally optimal grid. For clarity we describe the nodeseraent and the edge swapping algorithms
separately and then discuss how they may be combined.

A necessary condition for the position of each node of trengulation to be optimal is that the
derivative of the energy functional with respect to eachatpdsition is zero. Like the approach of [14]
our algorithm seeks to reduce the energy functional moncadiy by moving each node in turn until the
derivative with respect to the position of each node is Zérbilst this does not guarantee with absolute
certainty that we reach a local minimum (as opposed to a sgmiht or even a local maximum), the
presence of rounding errors combined with the downhill reatii the technique ensures that in practice
any other outcome is almost impossible.

The algorithm proposed consists of a number of sweeps threagh of the nodes in turn until

convergence is achieved. At the beginning of each sweepréukent, with respect to the position of
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each node, of the energy functional
E= / F(z, u", Vuh)dz @)
Q

is found (whereu” is the latest piecewise linear fi nite element solution).sTikidone using a slightly
different approach to that described in [14], based uporm@ead. In [8] it is proved that §; is the

position vector of nodéthen

oF auz Jdo;
i = [ 150~ | g e )

whereaq; is the usual local piecewise linear basis function at ngdg; is thealth

th

component ofs;
(d = 1tom), F, represents the derivative 6fwith respect to itp" ' argument, other suffi ces represent
components of tensorg,; is the Kronecker delta and repeated suffi ces imply summéjien 1 to m
andk = 1 ton). Note that using (3) the gradients with respect to all ofviertices in the mesh may be
assembled in a single pass of the elements. These gradienbtea sorted by magnitude and the nodes
visited one at a time, starting with the largest gradient.

When each node is visited the direction of steepest descent,

_aE
0s;’

13

(4)

§:

is used in order to determine along which line the node shiballshoved. The distance that the node is
moved along this line is computed using a one-dimensionaimization of the energy subject to the
constraint that the node should not move more than a praparti(0 < w < 1) of the distance from
its initial position to its opposite edge (see Figure 2). ®aaew position for the node has been found

the value of the solutiony; say, at that node must be updated by solving the local problem

' F(z,u", Vu")dz . 5
urrél,gn/g (z,u", Vu")dz 5)

Here(; is the union of all elements which have nades a vertex and Dirichlet conditions are imposed
on 9%); using the latest values far”. Once this update is complete the same process is undeftaken
the next node in the sorted list and when each node has batsutise sweep is complete. Provided
convergence has not been achieved the next sweep may thian beg

Using the above approach the interior nodes could move irdalegtion however a slight modifi -

cation is required for nodes on the boundaryfThese nodes may only be moved tangentially along
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the boundary and even then this is subject to the constranthhe domain remains unaltered. Where
this constraint is not violated the downhill direction of timm along the boundary is easily computed
by projectings from (4) onto the local tangent of the boundary. The one-dsi@nal minimization in
this direction is then completed as for any other node. OrcBlgt boundaries the updated valueuwof

is of course prescribed however on any other type of bounitiamyst be computed by solving a local

problem of the same form as (5).

Once convergence with respect to the position of each noslbden achieved a further reduction
in the energy of the solution is sought by the use of edge singppollowing [11] a loop through each
of the internal edges of the mesh is completed and, for eagh, ¢de local energy on the two triangles
on either side is computed. The edge is then swapped in theendlustrated in Figure 1 and the new
local energy over the two triangles on either side is conthutkthis energy is less than the original
local energy on the quadrilateral then the edge swap is kepéerwise it is rejected. Once the loop
through each of the edges has been completed it is repeatiéthare is an entire pass for which no

edges are swapped.

Of course the grid is unlikely to be locally optimal at thisiposince the edge swapping will gen-
erally cause the node locations to become sub-optimal. ¢éligfis necessary to alternate between the
node movement and the edge swapping algorithms until théendrocess has converged. The down-
hill nature of each step in the process guarantees that thiswentually occur. Despite this guarantee
however, for pragmatic reasons it is useful to be able to se@osmall number of additional constraints
on the allowable meshes. For example, in our implementatioine edge swapping algorithm param-
eters are provided for the maximum number of edges that maybeected to a single node and for
the smallest angle allowed in any triangle. Similarly, foe hode movement algorithm a parameter
is provided to specify the smallest area allowed for any elenfand any triangle which shrinks to
a size below this threshold is removed from the mesh by a simi@iment/node deletion algorithm).

Numerous other such parameters could also be included.
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2.2 Local mesh refinement

The main diffi culty with ther-refi nement strategy introduced in the previous subsedsighat it is
impossible to knova priori how many nodes or elements will be required in order to geffacsently
accurate fi nite element solution to any given variationabpgm. Even an optimal mesh with a given
number of nodes may not be adequate for obtaining a solufiardesired accuracy. For this reason
some form of mesh refi nement is essential.

In [14] global mesh refi nement is combined witliefi nement and it is demonstrated that this pro-
vides better solutions than the use of uniform glabaéfi nement alone. In this work we extend these
results in a number of ways. Firstly, by generalizing to ey® of equations (i.e» > 1 in (1)) and
secondly, by using local (rather than uniformjefi nement in conjunction with-refi nement. This, we
demonstrate, leads to further effi ciency gains above andrakthose observed in [14]. In addition,
we also demonstrate that the hierarchical approach ofrggastith a coarse grid and then optimizing,
refi ning, optimizing, refi ning, etc., provides a far more uebadaptive algorithm than simply refi ning
fi rst and then optimizing the node positions and the meshiogyat the end.

For the purposes of this two-dimensional work two differeatl refi nement algorithms have been
considered. The first of these divides all triangles whiahtarbe refi ned into four children (as used
in [10] for example and illustrated in the top half of Figurewhilst the other divides all triangles
which are to be refi ned into just two children (as used in [4Jeample and shown in the bottom half
of Figure 3). In each case any “hanging nodes” left at the egaif see Figure 3) are removed by
bisecting the neighbouring elements and then performiogl kedge swapping.

There are many possible ways in which theefi nement might be combined with therefi nement
to produce a hybrid algorithm. Our experience suggestsamabust approach is to always refi ne an
optimized mesh and then to interpolate the coarser solotibmthe refi ned mesh as a starting point for
the next level of optimization. It also appears to be adwgenas to approximately optimize the nodal
solution values first before attempting to optimize the poss. The local refi nement itself attempts
to subdivide all elements for which the local energy is geedttan X % of the largest energy value
calculated on any single element. TypicalNyis chosen to be somewhere betwdérand80.

In the following section the performance of this hybrid aiggom is assessed using a number of
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test problems. In each case comparisons are made with theaabpof [14], in whichr-refi nement
is combined with globah-refinement, and with the more conventional approach ofgukinal /-

refi nement on its own.

3 Numerical results

In this section we study three representative test probiemosler to assess the quality of the adaptive
technique that has been described. The fi rst of these isiiciatttest case however the second problem

is taken from [8] and [13] whilst the third appears in [3], f@}d [14].

3.1 Problem one

We begin by considering the simple two-dimensional reactigfusion equation
1
—A'u—l—g—Q'u:O, z€Q=1(0,1)x(0,1), (6)
subject to the Dirichlet boundary conditions
u=e o1/e @)

throughou®(2. This boundary condition is chosen so that (7) is also thetes@ution of (6) over the

whole domairf2. Furthermore, solving equation (6) corresponds to minimgizhe energy functional

ou Ju U
/ [ﬁrZ 8;62 5_2] dz , (8)

and so this clearly falls into the general class defi ned bylero (1). Indeed, substituting (7) into (8)

shows that the energy of the exact solution is given by

F= %[1 _ e, )

For the purposes of these experiments however we restricomsideration to the single case- 0.01,
for which £ = 50.0000.
Initially the problem is solved on a uniform coarse grid @ning just32 elements. This grid is

then optimized using the-refi nement approach of Subsection 2.1 and the total enedyces from
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374.473 to 50.8937, reflecting the fact that before optimization there were egrdes of freedom in
the boundary layer near, = 0. Following [14] this optimal grid may now be uniformly refidgo
producel 28 elements which may themselves be optimized. This leads ¢tuéian with a total stored
energy 0f50.1137. A further global refi nement and optimization then leads smlution with a total
stored energy 030.0158 on a mesh 0512 elements: this sequence of locally optimal meshes is shown

in Figure 4.

Figure 5 illustrates two further meshesiif2 elements: the first obtained by global refi nement of
the initial uniform mesh and the second by optimizing thigl glirectly. The energies of the solutions
on these meshes at@3.630 and50.2311 respectively thus illustrating, for this example at ledisg
superiority of the hierarchical approach wherefi nement is combined with globatrefi nement. It is
clear from these meshes that although the second grid iBylogdimal it suffers from the problem that
too many of the degrees of freedom, inherited from the fi rigt, ¢jie in a part of the domain that is far

from the boundary layer.

The purpose of this paper however is to propose that the dhydgorithm should combine-
refi nement with locak-refi nement and Figure 6 shows a sequence of meshes obtaitied manner.
The first mesh is the same one, containd2gelements, that appears in Figure 4, whilst the second,
third and fourth meshes contai, 94 and 323 elements respectively and were obtained by refi ning
into 2 children only those elements whose local energy elam#0% of the maximum local energy on
any element. The total energies of the solutions on thesenfi@shes ar60.8937, 50.3408, 50.1010
and50.0085 respectively: clearly illustrating the superiority of thee of local rather than globat

refi nement within the hybrid algorithm.

To conclude our discussion of this example we illustrateattheantage of applying the hybrid ap-
proach hierarchically by contrasting it with the use of loeaefi nement alone, possibly followed by
a single application of-refi nement. Figure 7 shows two grids 148 elements and two grids aR4
elements that were obtained in this manner (again usingeshbtd of X = 60 for the local refine-
ment). The total energies of the solutions on th¢8 element meshes (obtained by local one-to-four
refinement alone and then a single application of the mesimagaition at the end) ar84.8553 and

50.0536 respectively, whilst the total energies of the solutionsh®v84 element meshes (obtained by
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local one-to-two refi nement plus a fi nal optimization) ate4939 and50.0714 respectively. We see
that in both cases, despite the fact that the second of e@icbfpaeshes is locally optimal, the quality
of these local optima are not as good as that obtained uselgi¢inarchical approach. A summary of

all of the computations made for this test problem is prodiceTable 1.

Elements| Energy | Description

32 374.473| Figure 4 (top left)
32 50.8937| Figure 4 (top right)
128 50.1137| Figure 4 (bottom left)

512 50.0158| Figure 4 (bottom right

512 103.630| Figure 5 (left)

512 50.2311| Figure 5 (right)

32 50.8937| Figure 6 (top left)
42 50.3408| Figure 6 (top right)
94 50.1010| Figure 6 (bottom left)

323 50.0085| Figure 6 (bottom right

1048 | 54.8553| Figure 7 (top left)
1048 | 50.0536| Figure 7 (top right)

784 51.4939| Figure 7 (bottom left)

784 50.0714| Figure 7 (bottom right

Table 1: Summary of the results obtained for Problem onedliigal energy minimum i50.0000).

3.2 Problem two

We now consider the more challenging problem of calculatieglisplacement fi eld for a two-dimensional
linear elastic model of an overhanging cantilever beam stpy a vertical point load at the end of the

cantilever, as illustrated in Figure 8. For this problem= » = 2 and the energy functional is given by

1 8ui E)uk
=— | ——LCijp=—"dz — | pbiu; dz — | G;u;ds . 10
2 Qawj ]M(?xg = /Qp O g e as (10)
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Here, all repeated suffices are summed froto 2, C is the usual fourth order elasticity tensor (in
this case corresponding to a Young’'s modulis= 100 and a Poisson ratio = 0.001), pb provides

the external body forces due to gravity ahdcepresents the traction boundary condition (in this case a
point load as illustrated in Figure 8). The left half of thevler boundary is fi xed whilst the rest of the
boundarygy say, is free. Unlike for the fi rst example we do not know an egatution for this problem

and so the optimal value for the stored energy is not knawriori.

As before we begin by solving the problem on a uniform coanse, ghis time containing4
elements. This grid is then optimized using the=fi nement algorithm to reduce the total energy from
—0.201352 to —0.253210. This optimal grid may now be uniformly refi ned to produXi& elements
which are also optimized, leading to a solution with a totafed energy of-0.302353. One further
global refi nement and optimization then leads to a solutith atotal stored energy 6f0.338964 on

a mesh ofl 024 elements. This sequence of locally optimal meshes is showigure 9.

Figure 10 illustrates two further meshesli®oR4 elements. The first of these is obtained by global
refi nement of the initial uniform mesh and the second by oiatirg this grid directly. The energies of
the solutions on these meshes ai®306791 and—0.329249 respectively and so we again observe the

superiority of the hierarchical approach wherefi nement is combined with globaitrefi nement.

As for the previous example, our goal is to assess the hylgatithm that combines-refi nement
with local k-refinement hence Figure 11 shows a sequence of mesheseambtaithis manner. The
first mesh is the same one, containi®yelements, that appears in Figure 9, whilst the second and
third meshes contai?24 and455 elements respectively and were obtained by refi ning intoil@ren
only those elements whose local energy exceedéd of the maximum local energy on any element.
The total energies of the solutions on these three meshes0a263210, —0.308351 and—0.363313
respectively: again illustrating the superiority of thewd local rather than globakrefi nement within

the hybrid algorithm.

We again conclude our example by illustrating the advantdggplying the hybrid approach hi-
erarchically by contrasting it with the use of lodakefi nement alone, possibly followed by a single
application ofr-refi nement. Figure 12 shows two grids&af4 elements and two grids @62 elements

that were obtained in this manner (again using a threshold ef 60 for the local refi nement). The
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total energies of the solutions on th@&4 element meshes (obtained by local one-to-four refi nement
alone and then a single application of the mesh optimizatidhe end) are-0.325679 and—0.342525
respectively, whilst the total energies of the solutionslo®462 element meshes (obtained by local
one-to-two refi nement plus a fi nal optimization) ar@.325879 and —0.342355 respectively. As be-
fore itis clear that the quality of the locally optimal mestobtained in this manner is inferior to that of
meshes obtained using the hierarchical approach. A sumafialyof the computations made for this

test problem is provided in Table 2.

Elements| Energy | Description

64 -0.201352| Figure 9 (top)

64 -0.253210| Figure 9 (second)

256 -0.302353| Figure 9 (third)
1024 | -0.338964| Figure 9 (bottom)
1024 | -0.306791| Figure 10 (top)
1024 | -0.329249| Figure 10 (bottom

64 -0.253210| Figure 11 (top)

224 -0.308351| Figure 11 (middle)
455 -0.363313| Figure 11 (bottom
674 -0.325679| Figure 12 (top)
674 -0.342525| Figure 12 (second
462 -0.325879| Figure 12 (third)
462 -0.342355| Figure 12 (bottom

Table 2: Summary of the results obtained for Problem twodtbbal energy minimum is unknown).

3.3 Problem three

The final two-dimensional problem that we consider also lve® just one dependent variable (i.e.

n = 1in (1)) however it features a solution which is singular a trigin. The energy functional
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corresponds to the Laplacian operator and is given by

_ L[ oudu
2 Jq 0z, 0z Lo

(11)

where the presence of repeated suffi ces again implies suamfi@m 1 to 2. The domaing?, is the unit
disc with a45° sector removed, as illustrated in Figure 13, and Dirichtetritlary conditions consistent
with the exact solutiom = /7 sin % are applied throughowX?. Since the exact solution is known in
this case sois the true value of the global minimunt'ah (11): 0.392699.

As with the previous examples the problem is first solved omarse initial mesh, in this case
with just28 elements, which is then optimized. This locally optimal mesthen refi ned globally and
optimized to three further levels, giving meshesl®, 448 and 1792 elements respectively. These
meshes are shown in Figure 14 and their corresponding apn&itiave energies 61549242, 0.434828,
0.404352 and0.396215.

Once again, it may be observed that the approach of optigithi@ mesh at each level after global
refinement is superior to applying globarefi nement alone and then optimizing the resulting mesh.
Figure 15 shows two meshes, each containirgp elements, that were obtained by this method. The
energies of the solutions on these meshe$ d’8164 (uniformA-refi nement only) an@.405547 (after
optimization), which are signifi cantly worse than for thedl mesh of Figure 14.

To conclude this example, we now consider the applicatiolocdl 4-refi nement in our hybrid
algorithm. Figure 16 shows a sequence of four meshes,af07, 255 and1275 elements respectively.

In order to contrast the solutions on these meshes with ttatséned on the meshes shown in Figure 14
we have forced refi nement of each of the edges on the circatardary so that the domains correspond
to the four domains in Figure 14. Further refinement (one eténto two children) has then been
permitted locally for any elements whose energy is gre&i@n40% of the maximum energy on any
single element. This local refinement is executed repeatuleach domain until it is necessary to
refi ne the boundary elements again. The total energies cfahitions on the four meshes shown in
Figure 16 ar®.549242 (the same mesh as in Figure 18431777,0.402413 and0.395183 respectively.

Again we have seen the advantage of using the hierarchicdl ppimization approach with local,
rather than global, refinement. Furthermore, when léeadfi nement is used on its own, even if this is

followed by mesh optimization, the resulting grids are rogaod. Two pairs of such grids, containing
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1437 (one-to-four refi nement) antt13 (one-to-two refi nement) elements respectively, are iaist

in Figure 17. For these examples the corresponding fi niteené solutions have total energies of
0.407613 and0.398523 (1437 elements before and after optimization) e&nd02199 and 0.398123
(1413 elements before and after optimization) respectivelyr (Re purposes of comparison, we have
artifi cially refi ned those edges on the circular boundaryssmansure that the domains are identical to
the fi nal domains in Figures 14 to 16.) A summary of all of thenpatations made for this test problem

is provided in Table 3.

Elements| Energy | Description

28 0.549242| Figure 14 (top left)
112 0.434828| Figure 14 (top right)
448 0.404352| Figure 14 (bottom left)

1792 | 0.396215| Figure 14 (bottom right

1792 | 0.438164| Figure 15 (left)

1792 | 0.405547| Figure 15 (right)

28 0.549242| Figure 16 (top left)
107 0.431777| Figure 16 (top right)
255 0.402413| Figure 16 (bottom left)

1275 | 0.395183| Figure 16 (bottom right

1437 | 0.407613| Figure 17 (top left)
1437 | 0.398523| Figure 17 (top right)

1413 | 0.402199| Figure 17 (bottom left)

1413 | 0.398123| Figure 17 (bottom right

Table 3: Summary of the results obtained for Problem thiezdtobal energy minimum &392699).
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4 Discussion

4.1 Two dimensions

The three examples of the previous section have clearlgtitited that the quality of the fi nal mesh
produced when using the proposed hybrid algorithm is hétitére sense that the fi nite element solution
has a lower energy, than that obtained by using efthefi nement or--refi nement alone. Furthermore
itis demonstrated that combining the mesh optimizatiohWital~-refi nement is superior to the global
refinement approach used in [14]. Finally, the advantagesimiguthe hierarchical approach, whereby
the intermediate level meshes are optimized, is also appag excellent combination of small mesh
sizes and low energies for the corresponding fi nite elen@uatiens being achieved.

When discussing the merits of our proposed algorithm it igartent to note that there are some
problems for which the benefi ts may not be quite so substastifiose observed in the three examples
above. A common feature to each of these examples is theab#yr of clustering the majority of
the mesh elements in a relatively small subset of the donveiven a problem is such that the optimal
mesh is more uniformly distributed across the domain thalloefi nement algorithm will show little
or no advantage over the global approach of [14] since alalbstements of the mesh will need to be
refi ned when moving from one level to the next. This is a phegroon that we have observed in at least
one example that we have considered (the nonlinear probdewh as the second test problem in [14]).

Nevertheless, even in this case, our variant of the algorfierformed no worse than that used in [14].

4.2 Three dimensions

Up to this point our discussion has been restricted maintiiécsolution of two-dimensional problems
(i.,e.m = 2in (1)). We now conclude the paper by considering how theifeuttl approach may also
be applied to obtain optimal tetrahedral meshes when spptioblems in three dimensions.

The defi nition of a locally optimal mesh in Subsection 2.1tears two components. One is that the
position of each vertex of the mesh should be locally optimvhlist the other is that the connectivity of
these vertices should also be locally optimal. The fi rst e§this quite straightforward to generalize to

three dimensions however the edge-swapping part of theitiefiis more complex. This is discussed
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in some detail in [6] for example, where a number of differst@ncils are used to modify the local
topology of the mesh depending upon how many elements shaege. As a general rule, if there are

e elements sharing a particular edgeX 3) then the union of these elements may be reconnected in
a way that replaces them witte — 4 different elements. This is made even more complicated &y th
fact that there are numerous alternative ways to reconhecaegion in this manner, all of which need
to be considered when seeking a local optimum. In [6] theatbje s just to improve the geometric
quality of the mesh and so it is not always necessary to censitl possible edge swaps (they never
locally reconnect the mesh when> 7 for example). Moreover, because these local reconneatibns
the mesh allow the possibility of introducing new elememid adges it is not entirely straightforward

to guarantee the termination of an energy minimizationtigm based upon this approach.

Due to these diffi culties associated with edge swapping,esgict this initial discussion on pro-
ducing locally optimal tetrahedral meshes to the problempiimizing the node locations only. This
means that we will consider a mesh to be optimal if it satistihedi rst of the two conditions enumerated

in Subsection 2.1.

The node movement part of our algorithm then generalizeplgito three dimensions. The deriva-
tives of the energy with respect to the nodal positions milybst computed using (3) with a single
loop over the elements of the mesh. This list may then bedartd, beginning with the largest values
of |§—§:|, the nodes may be moved in turn. In each case the movemeritagqn (approximate) one-
dimensional minimization in the direction of steepest @as¢given by (4)). As in two dimensions we
may also introduce artifi cial constraints on this minimia@ato prevent the possibility of the mesh from
becoming too degenerate. Once the updated location of nbae been found it is a simple matter to

modify the corresponding solution value through a localeain the patch of element3;, surrounding

that node.

The local refi nement part of the algorithm could either belemgnted by dividing each tetrahedron
into two children (as in [4] for example) or into eight chiéar (as in [12] for example). It is the latter
approach that we use here, and this is illustrated in Fig8r&he removal of “hanging nodes”, which
appear when neighbouring elements are at different refi neleeels, is achieved through the use of a

transitional refi nement layer, as illustrated in Figure 19.
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For a simple test problem we consider the following geneadilon of the fi rst equation solved in

the previous section.
_Au+512u:o, 2eQ=(0,1)% (0,1)x (0,1) (12)
subject to the Dirichlet boundary conditions
u=e /¢ (13)

throughouto$2. As with the two-dimensional example (13) is the true solntof (12) over all of(?,
and the corresponding energy functional ((8) but with thexlified ©2 and summation of the repeated
suffi ces froml to 3) is has a minimum value given by (9). We again choose 0.01 to yield a thin
boundary layer near; = 0 and an optimal energfy = 50.0000.

Following the approach used for testing the two-dimendialgorithm in Section 3, we begin by
assessing the performance of three-dimensional multiteesh optimization when combined with
global h-refinement. Initially the test problem is solved on a reguaarse grid of384 tetrahedral
elements, as illustrated in Figure 20. This mesh is themop#id and the total energy of the solution
reduces fron878.628 to 104.857. Three levels of uniform refi nement, each followed by opziation,
then yield solutions with energies 69.9077, 52.3988 and 50.7552 on meshes 08072, 24576 and
196608 elements respectively. To see that this fi nal mesh is superame obtained without multilevel
optimization the problem is then solved on a three levelarnifrefi nement of the initial mesh shown in
Figure 20 (with196608 elements therefore), to yield a solution with ene6gy2790. When this mesh
is locally optimized however the energy only decreases @laevof52.4342.

We now demonstrate that the potential advantages of usoal tefi nement with the multilevel
optimization also appear to apply in three dimensions.ti&tawith the locally optimaB84 element
grid, a sequence of three further meshes is obtained thrmeghh-refi nement (again using a thresh-
old of X = 60) followed by local optimization. These meshes contzih5, 16933 and 100866
tetrahedral elements and the corresponding solutionsdragies 069.9024, 52.3814 and50.7460
respectively. Finally, we demonstrate the superioritylo$ fi nal mesh over one obtained using only
local ~-refi nement followed by local optimization at the end. Thisnes from the observation that a

grid of 573834 elements obtained using only lodalrefi nement yields a solution energy ©f.8852
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and when this is optimized the solution energy only reduoesl 13324. A summary of all of these

computational results is provided in Table 4.

Elements| Energy | Description

384 104.857
3072 | 59.9077| Multilevel optimization and
24576 | 52.3988| globalh-refi nement.

196608 | 50.7552

196608 | 67.2790| Globalh-refi nement followed

196608 | 52.4342| by optimization.

384 104.857
2655 | 59.9024| Multilevel optimization and
16933 | 52.3812| local ~-refi nement.

100866 | 50.7460

573834 | 54.8852| Local ~#-refi nement followed

573834 | 51.3324| by optimization.

Table 4: Summary of the results obtained for the three-dgioeral test problem (the global energy

minimum is50.0000).

Because of the diffi culties in visualizing very large unsttued tetrahedral meshes we do not in-
clude pictures of all of the grids described above. Nevégti® it is perhaps informative to include a
couple of representative examples. Figure 21 therefor@shanesh 01 0687 elements created as part
of the above sequence of lodakrefi nements. The solution on this mesh has an enerd9#61. In
contrast to this, Figure 22 shows a locally optimal mesR@3 elements, created as part of the se-
guence of multilevel optimizations with locatrefi nement. Although containing many fewer elements
than the mesh in Figure 21 the solution on this mesh also hawex energy 069.9024. Despite not
appearing to be particularly smooth, the mesh in Figure 2&icdy seems to possess the excellent
qualities of being both fi ne in the direction perpendicutatite boundary layer (near the fage= 0)

and quite coarse in the directions parallel with the layteis &nticipated that the addition of a suitable
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edge-swapping strategy will, as in two dimensions, furthgarove the quality of these meshes.

5 Conclusion

In this paper we have presented a technique for producintgefetément solutions to variational prob-
lems on locally optimal meshes. The major contribution ipttopose a multilevel approach which is
shown to lead to better quality meshes, with fewer eleméh#s) those obtained by using alternative
techniques. Furthermore, based on the ideas presented]irtigre is no need to solve any global
problems other than on an initial coarse grid. Extensiveemical results have been presented for a
variety of problems in two dimensions and more provisioesauits have been described for a three-
dimensional example. All of these numerical experiment&poved to be extremely encouraging.
Some additional work is still required however to turn thisrpising technique into effi cient, re-
liable and robust general-purpose software. For examipbeuse of edge-swapping has proven to be
highly benefi cial in two dimensions and an approach simdahat used (in a different context) in [6]
is therefore also likely to be well worth including. In addit, although global solves are not strictly
necessary, there may well be effi ciency gains to be madedhrte use of approximate global solves
at appropriate points in the algorithm (immediately afierefi nement for example): these should be
investigated carefully. As another example, it is still grep question as to how accurately the mesh
needs to be optimized at each level of the hierarchy befaral Iefi nement takes place. Related to
this, it also is unclear how accurately it is necessary teeseich of the one-dimensional minimization
problems that are encountered at each node within each sWéepnode movement algorithm. Other
issues that should be considered further concern the iaapoetof the order in which nodes and edges
are visited during local optimization sweeps and the pdi#sibf making more aggressive use of the

element/node deletion algorithm that is currently only &ayed when elements shrink to zero.
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Figure 1: An illustration of the modifi cation of a mesh by theapping of a single edge.
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Figure 2: An illustration of local node movement:is the direction of steepest descent for the node

motion andw represents the maximum distance that the node may movesiditeiction.

Figure 3: Anillustration of the refinement of certain (shddelements of a mesh using one-to-four

subdivision (top) and one-to-two subdivision (bottom).
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Figure 4: An initial mesh (top left) followed by a sequenceméshes obtained byrefi nement and

then combinations of globak-refi nement with--refi nement.

Figure 5: A globally refi ned mesh 6fi 2 elements and the corresponding locally optimized mesh.
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Figure 6: A sequence of meshes obtained-bgfi nement of an initial coarse grid (top left) and then

combinations of locak-refi nement followed by-refi nement.

Figure 7: A pair of meshes df048 elements obtained using local one-to-féaurefi nement (top left)
followed by optimization and a pair of meshes @4 elements obtained using local one-to-two

refi nement (bottom left) followed by optimization.
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Figure 8: An illustration of the overhanging cantilever imeaith a vertical point load at the end of the

cantilever.

Figure 9: An initial mesh followed by a sequence of mesheaiobt byr-refi nement and then combi-
25
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Figure 10: A globally refi ned mesh @024 elements and the corresponding locally optimized mesh.

Figure 11: A sequence of meshes obtained-bgfi nement of an initial coarse grid and then combina-

tions of localh-refi nement followed by-refi nement.
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Figure 12: A pair of meshes 74 elements obtained using local one-to-féurefi nement (top) fol-
lowed by optimization (second) and a pair of meshes6afelements obtained using local one-to-two

h-refi nement (third) followed by optimization (bottom).
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Figure 13: An illustration of the domain for the singular pkem.

27



ll\\%%\

W\

i

il

\\
Figure 14: A sequence of meshes obtainedgfi nement of an initial coarse grid (top left) and then

N

combinations of globak-refi nement followed by-refi nement.
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Figure 15: A globally refi ned mesh @792 elements and the corresponding locally optimized mesh.
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Figure 16: A sequence of meshes obtainedgfi nement of an initial coarse grid (top left) and then

combinations of locak-refi nement followed by-refi nement.
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Figure 17: A pair of meshes dft37 elements obtained using local one-to-féurefi nement (top left)

followed by optimization and a pair of meshesldafl3 elements obtained using local one-to-tivo

refi nement (bottom left) followed by optimization.
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Figure 18: An illustration of the regular refi nement of a abtedron into eight children by bisecting

each edge.

7\
Figure 19: An illustration of the transitional refi nementeofetrahedron when it has a single “hanging

node”.

Figure 20: An illustration of an initial uniform mesh contaig 384 tetrahedral elements.
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Figure 21: An illustration of al0687 element mesh for the solution of equation (12) using ldcal

refi nement alone.

Figure 22: An illustration of 2655 element mesh for the solution of equation (12) using the idybr

algorithm.
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