
This is a repository copy of Predicting need for hospital admission in patients with 
traumatic brain injury or skull fractures identified on CT imaging : a machine learning 
approach.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/173350/

Version: Accepted Version

Article:

Marincowitz, C. orcid.org/0000-0003-3043-7564, Paton, L., Lecky, F. orcid.org/0000-0001-
6806-0921 et al. (1 more author) (2022) Predicting need for hospital admission in patients 
with traumatic brain injury or skull fractures identified on CT imaging : a machine learning 
approach. Emergency Medicine Journal, 39 (5). pp. 394-401. ISSN 1472-0205 

https://doi.org/10.1136/emermed-2020-210776

© 2021 The Author(s). This is an author-produced version of a paper subsequently 
published in Emergency Medicine Journal. Uploaded in accordance with the publisher's 
self-archiving policy. This version available under the Creative Commons Attribution-
NonCommercial Licence (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work 
is properly cited. You may not use the material for commercial purposes.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) 
licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new 
works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative 
works on the same terms. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Confidential: For Review
 O

nly
Predicting need for hospital admission in patients with 

traumatic brain injury or skull fractures identified on CT 

imaging: a machine learning approach.

Journal: Emergency Medicine Journal

Manuscript ID emermed-2020-210776.R2

Article Type: Original research

Date Submitted by the 

Author:
27-Feb-2021

Complete List of Authors: Marincowitz, Carl; The University of Sheffield, School of Health and 

Related Research (ScHARR)

Paton, Lewis; University of York Alcuin College

Lecky, Fiona; University of Sheffield, School of Health and Related 

Research

Tiffin, Paul; University of York Alcuin College

Keywords: Trauma, research, Trauma, head, imaging, CT/MRI

 

https://mc.manuscriptcentral.com/emj

Emergency Medicine Journal

Emergency Medici1ne Journa I 

SCHOLARONE'" 
Manuscripts 



Confidential: For Review
 O

nly
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined 

in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors 

who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance 

with the terms applicable for US Federal Government officers or employees acting as part of their official 

duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its 

licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the 

Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to 

the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate 

student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open 

Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and 

intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative 

Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set 

out in our licence referred to above. 

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been 

accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate 

material already published. I confirm all authors consent to publication of this Work and authorise the granting 

of this licence. 

Page 1 of 28

https://mc.manuscriptcentral.com/emj

Emergency Medicine Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

BMJ 



Confidential: For Review
 O

nly

1

Predicting need for hospital admission in patients with traumatic brain injury 

or skull fractures identified on CT imaging: a machine learning approach.

Carl Marincowitz1 NIHR Clinical Lecturer Emergency Medicine, MB BChir, PhD, MSc, BA (Hons), 

MRCEM

Lewis W. Paton2 Research Fellow, BSc (Hons), PhD

Fiona E. Lecky3 Professor, Honorary Emergency Medicine Consultant, MB ChB, FRCS, DA, MSc, PhD, 

FRCEM

Paul A. Tiffin4 Reader, BMedSci (Hons), MBBS, FRCPsych, MD

1. Corresponding Author. Centre for Urgent and Emergency Care Research (CURE), Health Services 

Research School of Health and Related Research, University of Sheffield, Regent Court, 30 Regent 

Street, Sheffield, S1 4DA, UK, Fax: +44 (0)114 222 0749 Tel: (+44) (0)114 222 4345,                                     

Email: c.marincowitz@sheffield.ac.uk

2. Department of Health Sciences, University of York, Alcuin Research Resource Centre, Heslington, 

York, YO10 5DD, Tel +44 (0) 1904 321516, Fax: +44 (0) 1904 32 3433,                                                        

Email: lewis.paton@york.ac.uk

3.  Centre for Urgent and Emergency Care Research (CURE), Health Services Research School of 

Health and Related Research, University of Sheffield, Regent's Court Regent Street, Sheffield, S1 

4DA, +44 (0)114 2220834, @CURE_SCHARR, Email: f.e.lecky@sheffield.ac.uk

4. Hull York Medical School York and Department of Health Sciences, University of York, Alcuin 

Research Resource Centre, Heslington, York, YO10 5DD, Tel +44 (0) 1904 321516, Fax: +44 (0) 1904 

321117,  Email: paul.tiffin@york.ac.uk

 

Page 2 of 28

https://mc.manuscriptcentral.com/emj

Emergency Medicine Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Confidential: For Review
 O

nly

2

Abstract

Background

Patients with mild traumatic brain injury (TBI) on CT scan are routinely admitted for 

inpatient observation.  Only a small proportion of patients require clinical intervention. We 

recently developed a decision rule using traditional statistical techniques that found 

neurologically intact patients with isolated simple skull fractures or single bleeds <5mm with 

no pre-injury anti-platelet or anti-coagulant use may be safely discharged from the ED. The 

decision rule achieved a sensitivity of 99.5% (95% CI, 98.1–99.9) and specificity of 7.4% (95% 

CI, 6.0–9.1) to clinical deterioration. We aimed to transparently report a machine learning 

approach to assess if predictive accuracy could be improved. 

Methods

We used data from the same retrospective cohort of 1699 initial Glasgow Coma Scale 13–15 

patients with injuries identified by CT who presented to three English Major Trauma Centres 

between 2010-2017 as in our original study. We assessed the ability of machine learning to 

predict the same composite outcome measure of deterioration (indicating need for hospital 

admission). Predictive models were built using gradient boosted decision trees which 

consisted of an ensemble of decision trees to optimise model performance.  

Results

The final algorithm reported a mean Positive Predictive Value of 29%, mean Negative 

Predictive Value of 94%, mean AUC (C-statistic) of 0.75, mean sensitivity of 99% and mean 
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specificity of 7%. As with logistic regression, GCS, severity and number of brain injuries were 

found to be important predictors of deterioration.

Conclusion

We found no clear advantages over the traditional prediction methods, although the models 

were, effectively, developed using a smaller data set, due to the need to divide it into 

training, calibration and validation sets. Future research should focus on developing models 

that provide clear advantages over existing classical techniques in predicting outcomes in 

this population. 

What is already known on this subject

We have previously empirically derived a clinical decision rule to select low risk patients 

with injuries on CT imaging following head trauma for discharge from the ED using 

traditional statistical methods, based on logistic regression. The decision rule is highly 

sensitive but lacks specificity and implementation would allow only a small proportion of 

patients to be discharged. Machine learning may theoretically improve the accuracy of 

prediction, allowing more patients to be safely discharged. 

What this study adds

Using data from the same cohort as our previous study we used a machine learning 

approach to predict which patients in the sample were likely to deteriorate. We found no 

clear improvement in prediction over a model previously developed using a classical 

statistical approach. 

Key Words:
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Mild Traumatic Brain Injury; Prognostic modelling; Machine Learning; Intra-cranial 

haemorrhage; Minor Head Injury.

Introduction

There are 1.4 million annual attendances to Emergency Department (ED) in England and 

Wales following head trauma.1 Of these, 95% of patients attend with an initial Glasgow 

Coma Scale (GCS) score in the range 13-15 and are defined as having a minor head injury.2 

Around 7% of these patients have brain injuries and skull fractures identified by CT Imaging.3 

In the UK, patients with injuries identified by CT are routinely admitted for observation, 

although only a small proportion clinically deteriorate.4 Internationally, some advocate 

routine admission of patients with injuries on CT to higher dependency areas due to the risk 

of deterioration, whilst other advocate use of the Brain Injury Guideline (BIG) criteria to 

select patients for discharge from the ED.5 6 

Accurate risk prediction of clinically important deterioration in GCS 13-15 patients with 

traumatic injuries identified by CT imaging could allow the discharge of low risk patients 

from the ED. Patients with expanding intra-cranial haemorrhage can rapidly and 

catastrophically deteriorate. This risk must be weighed against the potential advantage of 

any reduction in hospital admissions. Thus, the use of predictive models to select patients 

for discharge may be controversial in some clinical settings. The consequences of 

discharging a patient who deteriorates (a ‘false negative’) are much greater than admitting a 

patient who remains stable (a ‘false positive’). Therefore, accurate prediction of patients 

who will not deteriorate is more useful  than accurately predicting every patients’ risk of 

deterioration. We recently developed a risk prediction model and decision rule for discharge 

from the ED for this TBI population using traditional statistical approaches.7 8 Our derived 

decision rule outperformed existing guidelines, achieving a high sensitivity to a composite 

outcome of deterioration encompassing need for hospital admission, but lacked specificity. 

Logistic regression, using maximal likelihood estimation, optimises predictive accuracy 

across the range of possible probabilities of deterioration. Advocates of machine learning 

have highlighted that more flexible modelling techniques may better capture non-linear 

relationships and interactions between the variables in the data. The use of ‘ensemble 
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learning’, which combines the results of multiple models to make final predictions, is a way 

of addressing the ‘bias-variance trade-off’. That is, the potential bias from multiple models 

can be averaged out, or otherwise combined, to achieve more consistent predictive 

accuracy. Thus, theoretically, machine learning based prediction could achieve higher levels 

of accuracy compared to traditional statistical modelling approaches. 

However, at least for structured data (i.e. that already in numeric format) this has not been 

firmly established. A recent systematic review reported that, on average, machine learning-

based models tended to outperform predictive models that use logistic regression 

techniques, but only for studies deemed at high risk of bias.9 Moreover, others have raised 

concerns that machine learning derived models are prone to ‘overfitting’. That is, they 

replicate the relationships in the data being used to train them accurately but may fail to 

generalise accurately to new, unseen data sets. There have also been concerns over a lack 

of transparency and consistency in reporting the results from observational studies using 

machine learning.10 This raises issues with the validity and generalisability of the results 

reported from machine learning studies that purport to form the basis of current or future 

clinical decision support tools.

We therefore aimed to use machine learning to develop a predictive model which can 

accurately identify patients with TBI and skull fractures on CT imaging at very low risk of 

deterioration who could be safely discharged. We used the same data set as in Marincowitz 

et al.7 8 so that we were able to understand the predictive potential of machine learning, 

compared to the tool developed using traditional statistical approaches. Our objective was 

to build a machine learning model and report our results in a way which was both 

transparent, reproducible and accurately quantified uncertainty around the predictive 

precision. By doing so we aimed to address previous criticisms and establish whether the 

potential advantages of such an approach, employing the latest methods to machine 

learning using structured data, outweighed any limitations inherent to the approach in this 

context.10  

Materials and methods

Study Design

Page 6 of 28

https://mc.manuscriptcentral.com/emj

Emergency Medicine Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Confidential: For Review
 O

nly

6

Data were analysed from an existing retrospective cohort study using case note review of 

TBI patients presenting to the ED between 2010-2017 at three Major Trauma Centres in 

England: Hull University Teaching Hospital NHS Trust, Salford Royal NHS Foundation Trust, 

and Addenbrooke's Hospital (Cambridge University Hospitals NHS Foundation Trust). Both a 

detailed study protocol7 and a cohort study using traditional statistical techniques8 have 

previously been published. We previously used multivariable logistic regression with 

bootstrap internal validation to derive a predictive model which included: initial GCS, pre-

injury anti-platelet or anti-coagulant use, first neurological examination, number of injuries 

on CT imaging, severity of brain injury, severity of extra-cranial injuries and initial 

haemoglobin value. Our previously derived model is presented in Supplementary Material 1.  

Inclusion Criteria

Patients aged ≥16 with a presenting GCS score of 13-15 who attended the ED following 

acute head trauma and had injuries reported on CT brain scan. The latter was defined as: 

skull fractures, extradural haemorrhage, subdural haemorrhage with an acute component, 

traumatic intra-cerebral haemorrhage, contusions, traumatic subarachnoid haemorrhage 

and traumatic intra-ventricular haemorrhage. 

Exclusion Criteria

Patients were excluded where: a non-traumatic cause of intra-cranial haemorrhage was 

indicated, pre-existing CT abnormality prevented determining whether acute injury had 

occurred and patients transferred from other hospitals.

Primary Outcome

A composite measure of deterioration aimed at encompassing need for hospital admission 

was used. This included up to 30 days following ED attendance any of: death attributable to 

TBI, neurosurgery, seizure, a drop in GCS>1, ICU admission for TBI, intubation or hospital 

readmission for TBI. Where reason for death, ICU admission or readmission was unknown it 

was attributed to TBI deterioration.

Data collection
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ED CT brain scan requests and reports were screened at each centre to identify patients 

with traumatic brain injuries or skull fractures. Patients with identified injuries were 

matched to their full electronic and written case records to determine if they met the 

inclusion criteria data.  Where they did so, data were extracted by trained research staff 

using a standardised electronic proforma on patient deterioration outcomes and candidate 

predictors.

Data pre-processing

For each run of model building and testing the data were equally split into three subsets. 

These formed a ‘training set’ on which to develop the predictive algorithm, a ‘calibration 

set’ to build the model for probability recalibration (see below), and a ‘test set’ which is 

‘held back’ to validate the final algorithm. Stratified random sampling was used to ensure 

equal distribution of the primary composite outcome of deterioration between sets.

Predictive model building

Our predictive models were built using gradient boosted decision trees via the CatBoost 

package 12 in R.13 Gradient boosted decision tree models consist of an ensemble of decision 

trees, aiming to optimise model performance.  The method was selected as it is known to 

work well even with small and medium-sized data sets (i.e. several hundred to several 

thousand observations). This approach combines a number of methodological approaches 

to prediction; the use of decision trees; ‘ensembling’- where numerous slightly differing 

models are created, and the results averaged or voted on, and; ‘boosting’ where the 

algorithm successively focuses on the observations where the outcome is increasingly 

difficult to predict. By combining all three approaches, gradient boosted trees tend to 

outperform algorithms which only use one or two of these methods. There is evidence for 

this in that the majority of winning solutions in the ‘Kaggle’ prediction competitions feature 

ensembles of boosted trees.14 CatBoost extends this approach by the way it treats 

categorical (and in this case, ordered) predictor variables. The software recodes such 

categorical variables to numeric, depending on their observed relationship with the 

outcome of interest. This can potentially increase the amount of information available to 

predict the outcome of interest. The CatBoost algorithm has two main ‘hyperparameters’ 
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that can be changed in order to improve predictive accuracy and generalisability: the 

number of decision trees to grow, and; the number of variables to select at each node of the 

trees. The process of choosing hyperparameter settings is known as ‘tuning’. 

Model building proceeded as follows (also see Figure 1). When predicting relatively 

uncommon outcomes it is important to stop the algorithm focusing on achieving high 

accuracy by predicting the most prevalent outcome (in this case, a lack of deterioration). For 

this reason, we used ‘Synthetic Minority Over-sampling Technique’ (SMOTE) in order to 

create synthetic observations with the relatively uncommon outcome of deterioration, in 

the training data set.15  These synthetic patients are based on the actual data on patients 

with recorded deterioration, and are created using a ‘K-nearest neighbours’ approach to 

ensure the training data set has an apparent 50:50 split of participants with the two 

outcome types (deterioration/no deterioration). We used the default value of k=5. Thus, 

this pre-processing step helps the algorithm to train to predict the less common outcome (in 

this case, deterioration). The CatBoost model is then fitted to the training data set, learning 

how to link the predictor variables to the outcomes. This step involves a ‘tuning’ phase 

where the model hyperparameters (e.g. number of decision trees) are altered in order to 

optimise predictive performance. A grid search over possible values of the hyperparameters 

was performed in order to find the combination of hyperparameters that maximises the 

area under the receiver operator characteristic curve (AUC- equivalent to the ‘C-statistic’) 

on the training data set. This was done on a sample of training data. The final model is then 

applied to the previously unseen test data set to predict the class (i.e. deterioration or not) 

and probability of deterioration for each individual in the test data set. 

The predicted probabilities from a decision tree classification tend to cluster around a 

central point in order to maximise the accuracy metric used to optimise the algorithm. This 

means that the accuracy at predicting one class versus the other is maximised. However, the 

resulting predicted probabilities tend not to reflect the true underlying probabilities. This 

matters if, for example, one wishes to change the threshold for the predicted probability for 

a case and a non-case in order to, say, minimise false negative cases. Predicted probabilities 

from such machine learning models can be mapped on to those more likely to reflect the 

true underlying probabilities through a process known as recalibration. This involves 

building a second model using a separate portion of training data, not previously used for 
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building the original machine learning model. This second model seeks to predict the true 

underlying probabilities, as represented approximately by observed frequencies of the 

outcome type, from those predicted by the first-phase machine learning model. In this case 

we used an isotonic regression model on this separate subset of data (the calibration set) to 

link the predicted probabilities from the predictor variables to the approximate probability 

of observing the actual outcome (deterioration).16 Thus, running both the machine learning 

model and the recalibration model in series provided the final predicted probabilities which 

can be used to classify the patients in the final, unseen, validation, data set in terms of the 

risk of deterioration (high vs low risk). Metrics of model performance (e.g. AUC, Negative 

Predictive Value etc) were then calculated. 

Due to the stochastic nature of this algorithm development (e.g. data set splitting, 

imputation etc.) we repeated the entire process 2,500 times, and the performance metrics 

were stored for each run. The exception to this was the estimation of the optimal model 

hyperparameters in the ‘model tuning’ phase, which we performed only once. In this regard 

tuning was only performed once, on a single training sample, which was itself then split into 

a tuning training set and a tuning validation set. Performing tuning only once eased 

computational requirements, which is possible due to the stability of the results generated 

from the tuning phase. The optimal model hyperparameters from the second iteration 

onwards are thus set at the values decided in the tuning phase for the first iteration. The 

overall performance of the models was evaluated by calculating the mean accuracy metrics 

over the 2500 iterations. A measure of the spread of the results was calculated using the 

values at the 2.5th percentile and the 97.5th percentile, to give the central 95% 

interpercentile range.  

As the aim of the model was to decide which patients were relatively safe to discharge from 

the emergency department we selected an overall predicted probability threshold that led 

to a relatively high negative predictive value (NPV), albeit at the expense of positive 

predictive value (PPV). That is, we wanted a predictive system that was relatively good at 

deciding which patients are safe to go home, even if a significant proportion were flagged as 

requiring further observation, which might be unnecessary. The cost of false positives, in 

terms of patient care and potential consequences, was lower than that for false negatives. 

Thus, our aim of recalibration was to achieve a diagnostic prediction system that performed 
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at least as well as the BIG criteria8 (i.e. an NPV of at least 96.5% and minimum PPV of 28%). 

Our use of a separate recalibration model for the initial predicted probabilities allowed us to 

move the threshold for the predicted probabilities in this way. This had no impact on overall 

model performance, with a negligible impact on the AUC values for the model, though 

recalibration reclassified the error types produced. This meant that the final model output 

could be adjusted to minimise the risk of false negatives (patients predicted to be at low 

risk, but who actually did deteriorate) whilst maintaining acceptably useful levels of 

specificity (i.e. the ability to identify ‘true negatives’).  

Missing data

Missing values for predictor variables were imputed using a single imputation via the Amelia 

II package for R, which uses an Expectation-Maximization Bootstrap based (EBM) 

algorithm.11 This process was stochastic, and each iteration of model building included a 

new round of imputation. Thus, the missing data imputation was incorporated into the loop 

of data set splitting and model building. This was important as to account for the 

uncertainty of this process when evaluating the overall performance of the models.

Ethics

NHS Research Ethics Committee Approval was granted by West of Scotland REC 4 reference: 

17/WS/0204. As a retrospective case review conducted by members of the direct care team, 

consent was not requited.

Patient and Public Involvement

The Hull and East Yorkshire NHS Trust Trans-Humber Consumer Research Panel and Hull 

branch of the Headway charity were consulted in the initial stages of developing the 

research questions addressed in this study. 

Results

Study population

Figure 2 summarises screening of ED CT requests and inclusion of patients on matching to 

case records at each centre and Table 1 the population characteristics and candidate 
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variables. The cohort was mostly male, with around half of patients >60 years of age and 

one quarter with either pre-injury anticoagulant or -platelet use. The cohort was mostly 

male, with around half of patients aged over 60 and quarter with either pre-injury anti-

coagulant or anti-platelet use. 470 patients (27.7%; 95% CI: 25.5% to 29.9%) clinically 

deteriorated as defined by the primary outcome. A total of 223 patients (13.1%; 95% CI, 

11.6–14.8) underwent neurosurgery were admitted to ICU or were intubated. A total of 72 

patients had deaths attributable to TBI. A total of 471 patients had data missing from at 

least one candidate variable on case note review.

Table 1. Variables and population characteristics.

Candidate Variable Category Mean (SD), min-max

OR N (%)

Missing 

data (N)

Age Years 58.2 (SD 23.3)

16-101

Age≥65 = 44.9%

0

Sex Male

Female

67% (Median Age= 52)

33% (Median Age= 69)

0

Glasgow Coma Scale 15

14

13

976 (58%)

533 (31%)

185 (11%)

5 (0.3%)

Mechanism of Injury Assault

Fall

RTC

Sport

Other

228 (13%)

1090 (64%)

298 (18%)

21  (1%)

30 (2%)

31 (1.8%)

Intoxicated Yes 494 (29%) 38 (2.2%)

Seizure pre-hospital or in ED Yes 74 (4%) 10 (0.6%)

Vomit pre-hospital or in ED Yes 310 (18%) 12 (0.7%)

Preinjury Anti-coagulation or anti-

platelets

Anticoagulation use

Antiplatelet use

Both

155 (9%)

294 (17.3%)

8 (0.5%)

0

Abnormal First Neurological 

Examination

Yes 233 (14.5%) 89 (5.2%)

Initial Blood pressure Mean Arterial Pressure mmHG 98.5 (SD 17)

43-193

61 (3.6%)

Initial Oxygen Saturation % 97.4 (SD 2.4)

80-100

59 (3.5%)

Initial Respiratory Rate RR per Min 17.9 (SD 3.5)

10-48

94 (5.5%)

Haemoglobin Grams/litre 136 (SD 19.1)

68-265

211 

(12.4%)

Platelet Value 109/L 232 (SD 77)

2-742

211

(12.4%)

Number of Injuries on CT 1

2

3

824 (48.5%)

400 (23.6%)

217 (12.7%)

0
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4

5

Multiple diffuse injury*

142 (8.4%)

103 (6.1%)

13 (0.8%)

Injury severity on CT

(Modified Marshall Classification 

described in detail supplementary 

Material 2)

Isolated Simple Skull Fractures

Isolated Complex Skull fractures

1-2 bleeds < 5mm (total)

No or minimal mass effect

Significant midline shift

High/mixed-density lesion

Cerebellar/Brain stem injury

66 (3.9%)

123 (7.2%)

208 (12.2%)

1001 (58.9%)

159 (9.4%)

122 (7.2%)

22 (1.2%)

0

Any Skull Fracture (simple) Yes 316 (19%) 0

Any Skull Fracture (complex) Yes 360 (21%) 0

Contusion Yes 580 (34%) 0

Extradural bleed Yes 135 (8%) 0

Intraparenchymal haemorrhage Yes 240 (14%) 0

Subdural bleed Yes 694 (41%) 0

Intra-ventricular bleed Yes 50 (3%) 0

Subarachnoid bleed Yes 536 (32%) 0

Rockwood Clinical Frailty Scale 

(CFS)

Patients under 50

CFS 1-3

CFS 4-6

CFS 6-9

649 (39%)

642 (38%)

308 (18.5%)

72 (4.5%)

28

(1.6%)

Comorbidity Charlson Index 1.4 (SD 2.9)

0-28 (range)

20 (1.2%)

ISS Body regions excluding head 5.2  (SD 5.2)

0-75 (range)

0

Model parameters

The final model hyperparameters were determined in the tuning phase. In this respect 200 

trees were created at each run, with nine predictor variables selected, at random from the 

data set, to be used to create a split at each node (branch split). 

Model performance

For each of our 2500 model runs, our test data set consisted of a random sample of 576 

patients. Of these, the median number of patients the model predicted could be discharged 

across our 2500 models was 26 (‘true negatives’), and the median number of deteriorations 

of those ‘discharged’ (i.e. ‘false negatives’) was one. As can be seen from the results in Table 

2, the mean Negative Predictive Value (NPV) indicates that, on average, 94% of those who 

were recommended for discharge by the model did not deteriorate. Across all 2500 runs of 

our model, the value of the 2.5th percentile for NPV was 81%, and the 97.5th percentile was 

100%. The mean Positive Predictive Value (PPV) of our models was 29% (2.5-97.5th 

interpercentile range 28% to 31%). The mean sensitivity was 0.99 (0.96 to 1.00) and the 
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mean specificity 0.07 (0.01 to 0.17). The mean area under the curve (AUC– equivalent to a 

C-statistic), an overall metric of the potential utility of the model, was 0.75, with the 

interpercentile range of this value being 0.71 to 0.78. 

Table 2. Predictive ability of the machine learning based models in the test (validation) data sets 

according to mean accuracy metrics. The model was built and tested 2500 times to estimate the 

2.5th percentile and 97.5th percentile values for the performance metrics.

The CatBoost process did not produce interpretable models as such. However, the output 

for each run of the model produced ‘importance’ metrics for the predictors. This metric 

gives a normalised score to each variable which describes how much the prediction changes 

if the value of the predictor changes. Ranking the predictors by the mean importance scores 

therefore gives some indication of which variables the model finds most useful in predicting 

deterioration status. In Table 3 we provide the mean importance scores for the predictors, 

averaged over 100 runs. As can be seen in Table 3, we observed that severity of the injury is 

Metric Mean performance (2.5th  to 97.5th interpercentile range)

Accuracy 0.32 (0.28 to 0.40)

Area under the curve (AUC) 0.75 (0.71 to 0.78)

Sensitivity (‘true positive rate’) 0.99 (0.94 to 1.00)

Specificity (‘true negative rate’) 0.07 (0.00 to 0.19)

Positive Predictive Value 0.29 (0.28 to 0.31)

Negative Predictive Value 0.94 (0.81 to 1.00)
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deemed most important, followed by GCS, number of injuries, the particular hospital the 

patient was admitted to, and the presence of subdural haemorrhage. 

Table 3. Ranked mean ‘importance’ of the features (predictors) in the model, averaged over 100 

runs.  

Feature Mean importance

Injury severity on CT (Modified Marshall Criteria) 22.69

Glasgow Coma Scale 10.85

Number of injuries 9.67

Hospital admitted to 4.62

Subdural bleed 4.18

Comorbidity (Charlson Index) 4.05

Skull fracture type 3.97

Rockwood Clinical Frailty Scale 3.88

Haemoglobin (g/litre) 3.63

Initial blood pressure (Mean Arterial Pressure) 3.34

Age 3.17

Platelet value 3.16

Initial respiratory rate 2.73

Contusion 2.53

Pre-injury anti coagulation or anti-platelet use 2.41

Initial oxygen saturation 2.41

Subarachnoid bleed 2.39

ISS 2.37
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Intoxicated 2.36

Sex 1.51

Vomit pre-hospital or in ED 0.85

Intraparenchymal haemorrhage 0.61

Extradural bleed 0.57

Seizure pre-hospital or in ED 0.25

Intra-ventricular bleed 0.17

Discussion 

This is the first study to report the performance of a machine learning approach to 

predicting the need for hospital admission in this TBI population. Our final algorithm, over 

2500 runs, reported a mean PPV of 0.29, mean NPV of 0.94, mean AUC (C-statistic) of 0.75, 

mean sensitivity of 0.99 and mean specificity of 0.07. These performance metrics are 

broadly the same as those recently reported for a classical approach to predictive modelling 

on the same data set using logistic regression and the BIG criteria, although we report a 

slightly lower mean NPV (94%) than both the BIG criteria (96.5%) and the logistic regression 

model (97.7%).8

The modelling process suggested that the most important variables for predicting 

deterioration were injury severity, GCS and the number of injuries. While a direct 

comparison with the previous logistic model developed on these data is not possible, due to 

some differences in data management and sampling (i.e. in the present study the data set 

was divided into three portions), the largest odds ratios in the logistic model also related to 

injury severity, GCS and number of injuries.8 Other predictors in the logistic regression 

model included extra-cranial ISS value, anti-coagulant and anti-platelet use, an abnormal 

neurological examination and haemoglobin value. The presence of specific types of injury 

appeared more important in the machine learning models and this may be due to the 

modelling being able to account for interactions between injuries when co-occurring.
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Strengths and limitations

Our model appears similar to the previous logistic regression model in terms of both 

performance metrics and those variables apparently most important in predicting 

deterioration. The sole advantage of using the machine learning approach in this context 

appeared to be that the model was developed on much fewer data – approximately one 

third- than the previous one, employing a classical statistical approach. Our study had a 

sample size powered to derive a predictive model from our candidate variables using 

multivariable logistic regression for our original study. This, however, represents a relatively 

small sample size for developing machine learning models. Moreover, the effective sample 

size in the present study was smaller still because of the requirement to recalibrate the 

probabilities from the models being developed. Despite this, it managed to achieve broadly 

similar performance metrics. 

Theoretically, given greater data availability, the machine learning model may have 

outperformed the classical approach. It may be possible to achieve larger effective sample 

sizes via alternative methodological approaches. We split our data into three equal sets 

(‘training’, ‘calibration’ and ‘test). However, this may not be the optimal division of the 

original data, and this could have been assessed using sensitivity analyses. Within this, it 

could also be worth, in future studies, considering stratified training sets to account for key 

predictor variables. It may also have been possible to reduce ‘data spend’ by using a cross-

validation approach to model calibration, rather than having had a third, separate, portion. 

This would have required the data to be split only into training and test data sets. Training 

and calibration of the model would then take place on different ‘folds’ (i.e. further subsets) 

of these data, rather than using a separate ‘calibration’ data set as we did in this study. In 

this study we used a separate data set and isotonic regression as the approach was easily 

implemented in the workflow. In addition, the relative sparsity of one of the two outcome 

categories (deterioration) may have meant that the recalibration model may have benefited 

from a larger number of such outcomes being present in the data set portion it was built on. 

However, we recognise that alternative methodologies, such as recalibration using cross-
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fold validation, may have worked at least as well, or perhaps better, in the context of a 

relatively small data set.  

Machine learning models often overfit to the data on which they are trained. This leads to 

poorer performance in external, validation data, and hence, impaired generalisability. The 

‘CatBoost’ algorithm used here includes an ‘overfitting detector’ which can stop the model 

training process if overfitting is observed during the training process. 17 Our use of  

previously unseen (‘hold out’) validation data samples also would have helped to ensure 

realistic estimation of the performance of our derived models. However, it should be 

highlighted that even though such validation data sets had not been used to train the 

models they were still derived from the same study population. Also, ideally, tuning would 

have been carried out on an independent, fourth portion of the data, rather than a random 

subsample of a single training data set (i.e. a sixth of the total data set). The limited size of 

our sample precluded this. Whilst cross-fold validation is also commonly used to initially 

tune the hyperparameters used by a machine learning approach this is also a resampling 

technique and would not have avoided this issue. This issue could also have contributed to 

some degree of overfitting, and again, adversely affected the generalisability of the model 

to completely independent data sets. Thus, it would be important, as part of future 

validation work, to assess the performance of this machine learning model in a totally 

independent sample, drawn from a completely separate population of patients.

Our use of a ‘k-nearest’ algorithm (SMOTE) to generate synthetic data to rebalance the 

outcome variable will have reduced some of the risk of CatBoost focussing on predicting the 

most common, ‘negative’ cases, at the expense of positive cases, where deterioration 

occurred. However, we only used the default value (k=5) for the ‘nearest neighbours’ 

method to generate synthetic observations for this step of our methods. Different values for 

k are unlikely to have substantially impacted on our findings. However, a sensitivity analysis 

over plausible values of k could have been performed to assess the stability of this 

assumption 

The models derived with our machine learning approach would require the availability of 

reasonable amounts of computational power to be applied clinically and this represents a 

potential barrier for implementation into clinical practice. A simplified version of the model, 
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which used fewer important predictor variables, as identified via the ‘importance’ metric, 

could be used. Such a reduced model may be easier to implement in a clinical setting 

although may not perform as well. Thus, there would be a trade-off between model 

complexity and potential model performance and utility.

Ideally, all predictor variables would be completely independent of each other. However, 

was not the case in this data set, as with the data used in the original study. However, given 

the way that variables are randomly sampled in the machine learning model building 

process, when recombined, the less powerful predictor of a pair of variables that were 

relatively dependent on each other would be discarded. In the present study, this might 

have also been reflected in the ‘importance’ values for the different predictors included. 

Excessive dependency between predictor variables would also have caused convergence 

issues with our models, and such problems were not observed. Nevertheless, future studies 

in this area would ideally consider collecting (or combining) variables to ensure the relative 

independence of the predictors from each other. 

This study used a representative data set drawn from a population of patients presenting to 

the emergency department with traumatic head injury. However, the training data were 

drawn only from three hospitals and therefore the generalisability cannot be assumed. 

Nevertheless, our use of iterative model building provided a better estimate of the 

uncertainty of our results, and thus the potential generalisability than would normally be 

reported in machine learning based predictive studies. Also, by using a recalibration model 

within the process we were able to change the decision threshold to increase the NPV, 

whilst maintaining a relatively low, but potentially acceptable PPV.  Moreover, we used the 

latest algorithms to make the most of categorical data, as well as employing methods to 

adjust for relatively uncommon (unbalanced) outcomes and missing data. In common with 

other machine learning methods, interpreting the predictive models is much more 

challenging than classical approaches, although importance metrics aid somewhat in this 

regard.  

Implications

On the basis of these findings there would not be a strong case for moving to a more 

complex modelling approach compared to logistic regression or rule-based algorithms at 

Page 19 of 28

https://mc.manuscriptcentral.com/emj

Emergency Medicine Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Confidential: For Review
 O

nly

19

this time. However, it may be, as more data become available, the advantages for machine 

learning approaches may outweigh their limitations. Also, as more data is routinely 

electronically captured it might be that machine learning systems are able to capitalise on a 

wider range of predictor variables. Certainly, to date, the situations where machine learning 

seems to provide an advantage over conventional statistical approaches are where there 

are large quantities of unstructured data to learn from. Such clinical scenarios include 

classification tasks related to medical imaging 18 or the natural language processing of free-

text health records.19  Such research should be reported, transparently and according to 

consistent reporting standards, such as those that build on the TRIPOD guidelines for 

prognostic studies.20

Our machine learning models would select patients for discharge with around a 1 in 26 

chance of subsequently deteriorating. Whether this would be perceived as a clinically 

acceptable risk would depend on both clinicians’ and patients’ risk appetites and the 

circumstances to which a patient was being discharged to. This is likely to be seen as too 

high a risk if a patient is being discharged somewhere where they are not going to be 

monitored by family or cannot easily return to hospital if their condition changes. Moreover, 

current NICE guidelines advise, following head trauma, a patient should only be discharged 

from the ED if they can be observed at home by a responsible adult for at least 24 hours.

Future research should focus on comparing the model performance of this machine 

learning-based algorithm to the earlier logistic regression-based predictive model in an 

external validation data set. Moreover, it is important to assess the actual, real world impact 

of any predictive decision-making tool on actual patient care and clinical outcomes. The 

acceptable risk of deterioration to both patients and clinicians when discharging a patient 

from the ED is subjective and will vary depending on the individuals’ risk appetite. Further 

research is needed to quantify acceptable risk of deterioration in this TBI population and 

how different risk prediction models could be used to support shared decision making in this 

context.

Conclusion
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The predictive performance of our machine learning approach was similar to that of our 

logistic regression-based model. The risk of deterioration in a patient recommended for 

discharge, though relatively small, may, nevertheless, be still too high to be used clinically. 

Further research should be focused on developing models that provide clear advantages 

over existing, classical techniques for predicting outcomes in both this and external patient 

data sets. In addition, as in the present study, care should be taken to communicate the 

uncertainty over the results in order to convey a realistic appraisal of how such models are 

likely to perform across settings. Such rigour is essential if machine learning is to find its 

correct place within healthcare technology.  
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Figure 1: Flowchart machine learning model building and validation process
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Figure 2: Population Selection
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Figure 1: Flowchart machine learning model building and validation process 
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Figure 2: Population Selection 
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Supplementary Material 1: Original predictive model and Clinical Risk Score 

Factor Coefficient 

(optimism adjusted) 

Risk Score Value  

Preinjury Anti-coagulation or 

anti-platelets 

  0.3 

 

1 

GCS 

15 

14 

13 

 

  0 (Vs) 

0.4 

0.7 

 

 

GCS 15  0  

GCS 14  1 

GCS 13  2 

Normal first Neurological 

Examination  

  0.45 Abnormal 1.5 

Number of  Injuries on CT 

1 

2   

3  

4  

5    

Diffuse  

 

  0 (Vs) 

0.25 

0.4 

0.8 

0.9 

0.3 

 

 

 

1 0 

2 1 

3 1 

4 3 

5 3 

Diffuse 1 

Injury severity on CT* 

1 simple skull fracture 

2 complex Skull Fracture 

3 1-2 bleeds < 5mm 

4 No or minimal mass effect  

5 Significant midline shift  

 

  0 (Vs) 

0.3 

0.08 

0.7 

1.7 

 

1 0 

2 1 

3 0 

4 2 

5 5 

Page 27 of 28

https://mc.manuscriptcentral.com/emj

Emergency Medicine Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Confidential: For Review
 O

nly

6 High/mixed-density lesion  

7 Cerebellar/Brain stem injury  

2.7 

1.7 

 

6 9 

7 5 

ISS (body regions excluding 

head) 

  0.2 Up to 2 non-significant extra-

cranial injuries**                       0 

 

Any significant extra-cranial 

injury or 3 or more injuries      2 

Hb -0.01 Not included in risk score 

Constant  -1.38  

*TBI severity categories are described in detail in Supplementary material 2 

Supplementary Material 2: Categorisation of TBI severity 

Category Injury Description 

written CT report 

AIS Codes Equivalent 

Marshal 

Classification 

(Lesko et 

at11) 

1 Vault skull fractures 150000, 150400 150402  

2 Basal, depressed, 

open skull fractures 

150200, 150204, 150205, 150206, 150404, 150406, 150408 I 

3 1-2 Bleeds*  

/contusions total 

diameter <5mm  

140605, 140631, 140639, 140651, 140693, 140694 (and written 

CT report indicated injury <5mm) 
 

4 Bleed/contusion 

No or minor mass 

effect 

140602,140604,140606,140612,140614,140611,140620,140622, 

140628,140629,140630,140632,140634,140638,140640,140642, 

140644,140646,140650,140652,140654,140684,140688, 

140686, 140699, 140676, 140678, 140680, 140682, 140799 

 

II 

5** Bleed/contusion 

Significant midline 

shift or mass effect 

indicated in CT report 

140202, 140660, 140662, 140664, 140666 

 
III/IV 

6  140608,140610,140616,140618,140624,140626,140636,140648, 

140656, 140637, 140655 

 

VI  

7 Cerebellar/brainstem 

injury  

140204,140206,140208,140210,140212,140214,140218,140299, 

140402,140403,140404,140405,140406,140410,140414,140418, 

140422,140426,140430,140434,140438,140442,140446,140450, 

140458,140462,140466,140470,140474,140499, 

VII 

*Bleeds refers to subdural, extradural, intracerebral and subarachnoid haemorrhage 

**Written CT reports did not allow easy differentiation in the extent of mass effect, and therefore 

Marshall III and IV categories were collapsed into 1 category.  
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